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Abstract: This paper investigates the application of recurrent neural networks, specifically Long
Short-Term Memory (LSTM) models, for pressure forecasting in urban water supply systems. The
objective of this study was to evaluate the effectiveness of LSTM models for pressure prediction tasks.
To acquire real-time pressure data, an information system based on Internet of Things (IoT)
technology using the MQTT protocol was proposed. The paper presents a data preprocessing
algorithm for model training, as well as an analysis of the influence of various architectural
parameters, such as the number of LSTM layers, the utilization of Dropout layers for regularization,
and the number of neurons in Dense (fully connected) layers. The impact of seasonal factors,
including month, day of the week, and time of day, on the pressure forecast quality was also
investigated. The results obtained demonstrate that the optimal model consists of two LSTM layers,
one Dropout layer, and one Dense layer. The incorporation of seasonal parameters improved
prediction accuracy. The model training time increased significantly with the number of layers and
neurons, but this did not always result in improved forecast accuracy. The results showed that the
optimally tuned LSTM model can achieve high accuracy and outperform traditional methods such
as the Holt-Winters model. This study confirms the effectiveness of using LSTM for forecasting in the
water supply field and highlights the importance of pre-optimizing the model parameters to achieve
the best forecasting results.

Keywords: recurrent neural networks; long short-term memory model; hydraulic pressure; water
supply systems; digital infrastructure; Internet of Things; pressure forecasting; water supply
reliability

1. Introduction

In the context of the development of the smart city concept, technical water supply systems are
becoming a critical element in ensuring the sustainable transportation and distribution of vital
resources. They play a key role in maintaining the stability of the urban environment, meeting the
needs of the population, industry and utilities. However, with the development of social and
technological infrastructure, water supply networks not only expand, covering ever larger territories,
but also become more complex and branched. Such a structure increases the risk of ruptures and
accidents due to equipment wear, uncontrolled loads or the influence of external factors, such as
extreme weather conditions. Such emergency situations lead to serious environmental, economic and
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social consequences, including water leaks, environmental pollution and interruptions in the supply
of urban consumers.

Traditional methods of responding to accidents in water supply systems involve detecting
failures only after the actual failure, often based on calls received by the water utility dispatch service.
This approach is not always effective, since the limited resources of operational repair teams or the
remoteness of facilities lead to significant delays in troubleshooting, which increases the average time
to restore water supply. However, with the development of the Internet of Things (IoT) technology,
it has become possible to integrate smart sensors into monitoring systems, which allows collecting
data on the state of the hydraulic network in real time. These data can be used to train machine
learning models and subsequent digitization of the system state, ensuring early detection of potential
accidents and increasing the efficiency of their elimination. In this regard, the objective of the study
is to evaluate the effectiveness of using a recurrent neural network, namely its variety - the Long
short-term memory (LSTM) model, in pressure forecasting problems. The scientific article examines
the features of obtaining pressure data for training models, studies various architectures and their
characteristics to improve the accuracy of pressure forecasting in water supply systems. The studies
are carried out on the basis of the water supply system of the city of Gomel (Republic of Belarus),
which has a significant length of pipeline networks. The scientific contribution of the article is
expressed in the following positions:

1. The mechanism for obtaining data for training a hydraulic model based on the Internet of
Things (IoT) technology using the MQTT protocol is considered. The process of collecting and
preparing data is described in detail, including the difficulties and features that affect the quality of
machine learning models.

2. The effectiveness of various neural network architectures used for interval pressure
forecasting is studied. An analysis of the optimization of the internal network architecture is carried
out, including an assessment of the influence of seasonal factors, the search for the optimal number
of neurons in the LSTM model layers, the choice of the forecast horizon, the length of the historical
sequence and the number of training epochs. All these aspects are considered to improve the accuracy
and stability of the model when applied to water supply problems.

It is expected that the proposed approach to the selection and optimization of a machine learning
model, in particular LSTM models, will allow establishing basic parameters for predicting pressure
in water supply systems at the training stage. This approach will eliminate the need for long and
resource-intensive processes of searching for optimal hyperparameters, which will significantly
reduce the cost of computing resources for model training. This will provide the possibility of more
rapid implementation of intelligent monitoring systems on the scale of large urban water supply
networks and will increase their efficiency due to fast and accurate interval forecasting.

2. Related Works

Today, there are many methods for analyzing large volumes of data collected from sensors in
real time, which allow for the timely detection of anomalies and potential threats. The introduction
of machine learning algorithms makes it possible to predict time series of process parameters or create
digital twins of technical systems, which becomes a powerful tool for modeling and testing various
emergency scenarios. Predictive models act as a standard for assessing deviations in process
parameters, which contributes to a deeper understanding of individual elements and the system as a
whole. Within the framework of world experience, special attention in this context is paid to
improving advanced methods that are used to prevent accidents, as well as assessing their
contribution to improving the management and maintenance of water supply infrastructure. Despite
the fact that the main attention in the article is given to water supply systems, artificial intelligence
algorithms demonstrate high potential for application in related areas, such as gas supply, oil
industry and heat supply. Analysis of examples presented in scientific publications confirms the
effectiveness of these technologies in various industries, which opens up broad prospects for their
adaptation and further development.
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Of particular interest is the work [1], which examines in detail the use of machine learning
methods in gas supply systems. The authors explore the potential of recurrent neural networks
(RNN) and the K-nearest neighbors method for detecting gas leaks. The comparative analysis
demonstrated that RNN models have significant advantages in tasks of this kind. This is due to their
ability to adapt to new data, effectively learn on large volumes of information and take into account
time dependencies, which is especially important for complex and dynamically changing conditions.
The high accuracy of predictions achieved during the experiments emphasizes the potential of RNN
as a tool for monitoring and managing infrastructure, where accurate detection and timely response
are critical.

The study [2] presents the results of applying machine learning methods to model failure
scenarios of pipelines with defects under pressure changes. The authors used approaches such as
Artificial Neural Networks (ANN), Extreme Gradient Boosting (XGB) and CatBoost (CAT)
categorical boosting. To train the models, data obtained from real pipeline inspections were used, as
well as the results calculated by the finite element method for predicting ruptures. Comparative
analysis showed that the CatBoost algorithm demonstrated the most accurate forecasts with minimal
errors, which distinguishes it from other methods. This study emphasizes that the use of machine
learning models such as CatBoost in combination with traditional analytical approaches significantly
improves the efficiency of pipeline safety assessment. This becomes especially important in
conditions of changing operating modes, where timely adjustment of process parameters is required
to prevent accidents.

The study [3] presents the application of machine learning models to predict water pipe
ruptures. The authors used gradient boosting algorithms implemented using the LightGBM (Light
Gradient Boosting Machine) library developed by Microsoft. The main feature of the proposed
approach is the comprehensive integration of various data, including engineering characteristics,
geological conditions, climatic indicators and socio-economic factors. The results of the study
demonstrate that taking into account social aspects along with technical parameters significantly
affects the accuracy of emergency prediction. This method of risk assessment in water supply systems
allows for a deeper analysis of the probability of failures, providing more effective management and
accident prevention strategies. This emphasizes the potential of modern machine learning
technologies for solving complex problems in the field of technical infrastructure.

Continuing with the topic of machine learning application in water supply systems, it is worth
mentioning the study [4] published in the ISH Journal of Hydraulic Engineering. In this paper, the
main focus is on the problem of water leakage monitoring using a reverse engineering approach. The
authors proposed to solve classification and regression problems for leak detection by analyzing
deviations in pressure or water flow using Artificial Neural Networks (ANN) and Support Vector
Machines (SVM). The study was conducted in two scenarios: the first included the analysis of
pressure data, the second - water flow data. To implement the tasks, the multilayered perceptron
(MLP) and multi-layer classification and regression SVM models were developed. The results
showed that ANN neural networks demonstrate higher accuracy in leak detection compared to SVM
in both scenarios. It is also emphasized that optimizing the amount and quality of input data during
the training process can significantly improve model performance, which remains an important
direction for further research.

The review highlights a study conducted by [5], which is devoted to the use of coarse hydraulic
models to control deviations in process parameters in water supply systems. The authors proposed
an approach based on monitoring actual flow rates and pressures in pipelines, combined with
machine learning methods. This method was tested on a reference water distribution network, where
it demonstrated high efficiency in detecting anomalies. The results of the study emphasize that the
integration of modern artificial intelligence and machine learning methods into the management of
water supply systems can significantly improve the accuracy and efficiency of leak and emergency
detection. This emphasizes the potential of such technologies to optimize the management of utility
networks and improve their performance.
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A study [6] published in the journal Applied Sciences presents a system for detecting and
localizing leaks in water pipes using deep learning and Internet of Things (IoT) technology. The
authors developed an approach based on intelligent sound leak detection and the use of
convolutional neural networks (CNN). The experimental results demonstrate that the CNN model
achieved an accuracy of over 95% after training, which highlights its high efficiency in the leak
detection task. Additionally, it was shown that the use of this system can reduce excavation costs by
26%, significantly increasing the overall efficiency of pipeline infrastructure management.

The study [7] focuses on innovative approaches to predicting failures in water supply networks.
The authors developed a classification model based on an Artificial Neural Network (ANN), using
physical parameters of pipes (diameter, length, material, etc.) and operational indicators (flow rate,
pressure, temperature, etc.) as input data. The effectiveness of the proposed method was analyzed
taking into account two different data processing strategies. The first scenario examines the model’s
performance under insufficient data, when the sample is too small for reliable training, and the
second — under excess data, which can hinder analysis due to information overload. On real data
from a Spanish water supply network, the ANN model demonstrated high accuracy, emphasizing
the importance of balancing the volume and quality of data to ensure reliable forecasts.

In 2018, Onukwugha C. G., Osegi E. N. presented a study in which integrated system models
combining machine learning and neural networks were used to monitor and forecast pressure in oil
and gas pipelines [8]. The authors demonstrated that the combination of various technologies can
significantly improve the accuracy and reliability of forecasts. This approach is an important example
of the integration of classical hydraulic analysis methods with artificial intelligence algorithms, which
can be adapted for water supply systems, opening up new opportunities for their management and
prevention of emergency situations.

Continuing the discussion of innovative approaches to monitoring and forecasting in water
supply systems, it is worth highlighting the study [9] devoted to the use of deep learning models to
predict failures in water supply networks. In this work, the authors applied the Residual Neural
Network (ResNet) algorithm and compared it with the classical Convolutional Neural Network
(CNN). The results of the study showed that ResNet outperforms CNN in terms of training speed
and forecasting accuracy. Particular attention in the study was paid to the role of physical parameters,
such as the length and diameter of pipes, which turned out to be critical for assessing the risk of
accidents. The authors concluded that the use of ResNet allows preventing more than half of the
failures, focusing on servicing less than 10% of pipes, which significantly increases the efficiency of
maintenance. Similar to the study by Onukwugha C. G., Osegi E. N., this work demonstrates how
the integration of deep learning with advanced technologies can significantly improve the
capabilities of monitoring and forecasting in water supply systems.

The review presents many modern approaches that demonstrate significant progress in the field
of monitoring and prediction of failures in engineering systems, including water supply. The
considered studies show that artificial intelligence and machine learning methods, such as artificial
neural networks (ANN), support vector machines (SVM), gradient boosting (XGBoost, CatBoost,
LightGBM), residual neural networks (ResNet) and convolutional neural networks (CNN), are
successfully applied to solve problems of classification, regression and prediction in engineering
networks. Among all the methods, a special place is occupied by recurrent neural networks (RNN)
and their varieties, such as LSTM (Long Short-Term Memory), which, due to their ability to analyze
sequential data and take into account temporal dependencies, are ideally suited for monitoring and
prediction problems in water supply systems. This article focuses on the use of LSTM models as the
main analysis method. This choice is due to their unique ability to process time dependencies and
adapt to changing conditions, which allows achieving high efficiency and accuracy in predicting
pressure in water supply systems.

3. Methods
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The structure of the study consisted of several consecutive stages. At the first stage, a data
collection and exchange scheme was developed, including connecting IoT devices, receiving
information from pressure sensors, and transmitting it to a cloud storage system. This stage provided
the basis for forming a statistical database and training models. At the second stage, data preparation
was carried out: eliminating gaps, normalization, necessary transformations of time series, and
dividing statistics into training and test data. At the next stage, the structure of the model class in
Python was created, which included setting up the architecture, activation functions, optimizing
hyperparameters, and training procedures. The last stage was devoted to training and testing the
recurrent neural network (RNN) model using its LSTM variety. The effectiveness of the model was
assessed based on metrics such as MAE, SMAPE, MAE, and RMSE.

3.1. Organization of Data Collection for Monitoring Pressure in a Water Supply System

An information system has been developed for operational monitoring and archiving of
pressure parameters of pumping stations in the water supply system of Gomel (Republic of Belarus).
Within the framework of this system, adhering to the concept of the Internet of Things (IoT), a
network of interconnected smart devices was deployed that automatically collect, exchange and
process data [10]. Figure 1 shows the diagram used, demonstrating the connection of pressure sensors
to data collection and transmission devices that polled these sensors and sent the received
information in raw form to the computing server [11]. To ensure the reliability of receiving and
transmitting information, a specialized Mosquitto broker (MQTT broker) was installed on the server,
acting as a central node. It ensured the coordination of data transmission between data publishers
(pressure sensors) and subscribers [12] (personal computers, telephones). The developed architecture
facilitated prompt response to changes in system parameters and the formation of statistical data for
subsequent training of the long short-term memory model.

-
// hy

Data collection and Rl Y
Pressure sensor transmissk?n device- — — — ——p Computer
publisher subscriber
MQTT
Broker
<« ——— - s
@ _>
Data collection and
Pressure sensor transmission device — —
subscriber Smartp!lone
subscriber

Figure 1. Architecture of data exchange during experiments.

In the context of this study, the data sources were PD100 piezoelectric pressure transducers of
the Russian Oven trademark. This choice was due to the high accuracy of the device, which was
critical for the formation of a reliable pressure database at the inlet of pumping stations. The pressure
sensors were connected directly to the pressure gauges (Figure 2 b) according to a specific layout on
the city map in accordance with the identified water consumption clusters [13]. This made it possible
to quickly organize the installation of equipment in the most significant water supply units. It is
worth noting that in the absence of pressure gauges, connecting the sensors requires more complex
operations that require preparatory welding. RTU-8xx modems from Teleofis (Figure 2, a),
configured for 5-minute measurements and sending messages to the cloud server, served as data
collection and transmission devices.
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a b |

Figure 2. The process of connecting the pressure transducer at the pumping station to the data collection and

transmission device.

3.2. Features of Data Preparation for Model Training

To train the recurrent neural network (RNN) model, it is important to properly prepare the data.
The pressure data in the water supply network was collected using piezoelectric sensors equipped
with a telemetry output standardized for the range of 4-20 mA. Raw values in this range were
received by the server, which required preliminary transformation before being used in the
forecasting model. The current values coming to the cloud server were scaled using linear
interpolation to the pressure according to the formula:
~Imin (

i
P = Pmin T Pmax _pmin)> (1)

max ~ !min
where p —actual pressure value; p.i,, Pmax — Minimum and maximum pressure sensor value; i

—actual current value; iy, , ipax — Minimum (4 mA) and maximum (20 mA) current value.

On the server side, storage of both raw and transformed pressure data is organized. Raw data
included time stamps corresponding to the moment of data collection, as well as current values
obtained from the sensors. Transformed data are pressure values calculated using formula (1) based
on the received current. As a result, the database took the form «epoch — pressure», where the first
parameter is the time stamp (Unix time), and the second is the transformed pressure value. This
approach allowed storing data in its original form for further processing and analysis, as well as using
ready-made transformed values for training models. An example of such data is presented in Table.
1.


https://doi.org/10.20944/preprints202502.0536.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 d0i:10.20944/preprints202502.0536.v1

7 of 19

Table 1. Simplified representation of pressure time series.

Epoch (Unix time) Pressure, kPa
1662768000 156
1662768300 167
1662768600 168
1662768900 179

The initial statistics then underwent pre-processing, which included removing outliers, filling in
missing values, and normalizing features. The latter is recommended to improve the learning process
and solution convergence [13]. In this case, min-max normalization is used to bring features to the
range from 0 to 1:

xl

__% " Xmin ) )

X, — X

Xinorm

max min

where X, ,0m . Xi

—normalized and original feature; x,,, , Xm, — the largest and smallest element
of a feature.

Thus, the initial data took the form of a matrix of size T x N. Here T is the number of time points
(or measurements) of the time series, and N is the number of features corresponding to each moment
in time. In the example of Table 1, the initial data set was determined by a single pressure parameter

p at time ¢. In this case, N is equal to 1 and the matrix form of recording took the following form:

P
A= @)

Pr

In the study, the Keras library in Python [14] was used to train the long short-term memory
(LSTM) model. One of the features of training the LSTM model is the need to represent the input data
as a multidimensional tensor. In particular, recurrent neural networks expect the data to be in the
form of a three-dimensional tensor, where the first axis represents the number of observations
(samples) in the data, the second axis corresponds to the length of the time interval or window, which
determines the depth of history taken into account by the model when predicting pressure, and the
third axis reflects the number of features that are used to predict future values. The transition of the
original matrix A to a multidimensional form to form the input tensor in the LSTM model included
the following steps:

1. The depth of the observation history M was determined, which is one of the parameters of
further research, which was selected depending on the accuracy of pressure forecasting (Figure 3).
This parameter determines the size of the time window through which the model can «see» changes
in the feature over a certain period of time. The depth of the history M allows the model to take into
account the influence of past values on the forecast of future values of the output pressure sequence.

2. The optimal forecast horizon of length K was determined (Figure 3). The minimum forecast
error at each step of the interval window and the average error of the resulting sequence served as
the criterion.

P | P2 v | Pu Pu+1|Pu+2| - | Pk

N J
N J
' ~

Input sequence of length M Output sequence of length K
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Figure 3. A fragment of a sample of input and output sequence of a given length.

3. The study used various architectures to extract additional factors from the original timestamp
(epoch). In particular, such features as minute, hour of day, month index, day of the week type
(working or weekend) were additionally extracted. This expanded the original matrix, increasing the
number of input features. For each of these features N, a set of time windows of length M was formed,
extracted from the original matrix A. The number of such windows was T — M. Further, each of these
windows became a sample of dimension MxN, that is, it contained M observations for each of the N
features. In total, T — (M + K) data sets were obtained for training the model (since for each sample it
is necessary to have a corresponding output sequence of length K), which determines the number of
samples in the three-dimensional tensor.

4. To increase the volume of training data, the rolling window approach was used [15,16]. This
method involved forming a set of overlapping sequences, which was achieved by shifting the time
series by a given interval (Figure 4). This significantly increased the sample size for training the
model. For the initial training data with the number of observations T, the shift step S was specified.
Then, for each i-th position of the window with the shift step S = 1, the data samples are in the range
1 <i<Ng,where Ng=T—-(M+K)+S is the possible number of observations. The training matrix

A will contain 4 elements, wherei=1,2,.., Ng,;j=12,.., M+K.

Training statistics of length 7'
Input data Output data
Sample 1 X Vi
Sample 2 | > o »i
~ -
Sample 3 | _ - S Xi Vi
~ -
Sample... _ < - X; Yi
—_—=
Sample N, | /,>\\\ X; Vi
|A ala ald |-
™~ hal |
Step offset S Input data of length M Output data oflength K

Figure 4. To explain the use of the sliding window method to increase the statistics set.

5. Matrix A was divided into two parts, defining the input data X with elements, wherei=1, 2,

. Ng,;j=1,2,..,M and the output (target) data Y with elements, where=1,2, .., Ng;j=M+1,

M +2, .., M+ K. The resulting matrix is reduced to a tensor form, taking into account the number of
features of the model:

T=\4,4,...4|, 4)

where 4; — the input layer matrix of the neural network has dimension MxN, where each column

represents the i-th subsequence of length M for each of the N features in the time series. Similarly, the
output layer of the matrix has dimension , where each column contains information about K
prediction values for each of the P parameters. In this study, one pressure parameter was predicted.

3.3. Features of Assessing the Effectiveness of the Learning Process
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At the training stage, the search for optimal model parameters was carried out, such as the
history length (M) and prediction depth (K), the number of neurons in the layers of the long short-
term memory model (NLSTM). The main goal was to find the LSTM architecture that would provide
the maximum accuracy of hydraulic pressure forecasting [17,18]. To assess the quality of the
predictive model, the cross-validation method was used, namely block cross-validation [19]. This
method is based on dividing the time series into non-overlapping blocks using a sliding window with
a given step. Instead of repeatedly training the model on different data blocks, the model was trained
once using the initial architecture settings, which were then changed to find the best configuration.
After that, the effectiveness of the model was assessed on the test set. The procedure for assessing the
quality of learning algorithms used in these studies included:

1. Splitting the data into training and test samples: a time series of length T+L (Figure 5) was split
into a training sample of length T and a test sample of length L in a ratio of 70% to 30%.

2. Dataset generation: In the forecasting process, a sliding window method with a given step
was used to obtain new test data [15]. For each time step f (starting from the first element of the test
sample to the end of the time series L), a data block of length M (data history) was used as input and
the next K elements were used as the target variable. This formed a dataset of size (T - M - K+ 1) x
(M + K), where each row contains one set of input and output data (Figure 5).

l_ . _Trajlingftaiflen_gthT_ _ Test data of length L
Historical data 1 o Vi Forecast 1
Historical data 2 X; Vi Forecast 2
Historical data 3 X; Vi Forecast 3
Historical data 4 Xi Vi Forecast 4
PR
Test data block offset step

Figure 5. Interpretation of the cross-validation method used.

3. Prediction for a given interval: at each step t, the model made a prediction for a given interval
ahead K. The results of the predictions were saved for further analysis.

4. Model quality assessment: The obtained predictions were compared with real observations.
A distinctive feature was the assessment of both the average error at each step of the block
displacement t over the entire depth of the forecast K, and the calculation of the average error of all
predictions. In the studies conducted, classical metrics were used to assess the quality of the pressure
forecasting model: MAPE (mean absolute percentage error), MAE (mean absolute deviation) and
RMSE (root mean square error). Despite the widespread use of MAPE, this metric does not effectively
cope with zero values, which is typical for scenarios related to an emergency pressure drop or on/off
modes of pumping stations (Figure 6). In such cases, MAPE gave a distorted estimate due to the
mathematical uncertainty that occurs when dividing by zero.
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Figure 6. Switching on and off mode of the pumping station in the village of Bobovichi, Gomel district.

To solve this problem, the SMAPE (symmetric mean percentage error) metric was used as an
alternative, which works more stably in such conditions, since it excludes infinite values and gives a
more correct assessment of the accuracy of the model at zero pressure values [20]:

1 & |J’i—5’i|
SMAPE = —Y 2L il ()
n 12:1 (yi +)7,-)/2

where y. - actual value at the i-th moment in time; y, - predicted value at the i-th moment of

time; n —number of observations.

3.4. Finding the Optimal Architecture and Hyperparameters of the LSTM Model

The goal of the study was to find an LSTM model architecture that would ensure high
forecasting accuracy and efficient use of computational and information resources during training.
To achieve these goals, various combinations of hyperparameters were used before training. The
search for the optimal model structure included the following stages:

1. Assessing the impact of adding additional layers to the LSTM model - we studied how an
increase in the number of layers affects the accuracy of the model and its ability to generalize.

2. Assessing the impact of parameters that determine seasonality - we analyzed the effectiveness
of adding seasonal parameters.

3. Assessing the impact of the number of neurons in model layers - we studied the dependence
of the model accuracy on the number of neurons in hidden layers.

4. Assessing the impact of the amount of historical data and forecasting range - we analyzed the
effect of increasing the volume of training data and further forecasting steps on the accuracy of
modeling.

Figure 7 shows a general view of the structure of the long short-term memory model and the
relationships between the layers, the network, and the optimization function of the model under
study.
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Figure 7. Towards an explanation of the choice of the LSTM neural network model architecture.

The model was tested on statistical data presented by 5-minute discreteness of the input pressure
of the booster pumping station on Artilleriyskaya Street in Gomel for the period from 17.02.2023 to
16.03.2023. The size of the original statistics: [13398, 2], where the first parameter determines the
generated number of observations; the second - two features: epoch, pressure.

4. Results and Discussion

4.1. Optimization of the Internal Architecture of the Neural Network

The study tested the impact of additional layers on the model performance. For this purpose,
the basic architecture was used, within which the following parameters were fixed: the number of
neurons in the LSTM layers and the fully connected layer was 50; the number of historical
observations fed to the model input was 12; the length of the output sequence, the number of
predicted values was 12; and the number of input parameters was 1 (pressure with 5-minute
discretization). These parameters were selected for the initial setup of the model, after which various
configuration options were tried to assess their impact on the forecasting accuracy. In total, 7 different
architectures with different combinations of the number of LSTM, Dropout, and Dense layers were
considered [21,22]. The results of the model performance evaluation are presented in Figure 8.
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Figure 8. The Impact of Neural Network Architecture on Model Performance.

The study revealed the following:

1. Increasing the number of LSTM layers to 2-3 improves the forecast quality and reduces the
MAPE, SMAPE, MAE, and RMSE metrics compared to a single-layer LSTM architecture.

2. Adding a regularization layer (Dropout) improves model performance. Models with one or
two Dropout layers show a lower forecast error compared to models without adding Dropout layers.

3. Adding additional fully connected layers (Dense) does not always improve model
performance. In this study, models with one Dense layer show better results compared to models
with two Dense layers.

4. Model training time increases with the number of layers and model dimension. Models with
more layers and parameters require more time to train. The model with three LSTM layers, Dropout
and Dense without changing the forecast quality on 20 epochs required twice as much time for
training compared to the model consisting of two LSTM layers and one Dropout and Dense. Based
on the analysis, we can conclude that the optimal model has 2 LSTM layers, 1 Dropout layer and 1
Dense layer. The error of the given model on the test data was MAPE = 4.79%.

4.2. Evaluation of the Impact of Seasonal Components on the Efficiency of the Model

The study of the influence of seasonality parameters on the quality of the LSTM model was
carried out by adding various combinations of time factors to the input layer of the recurrent neural
network. The seasonality parameters were month, time (hours and minutes), and day of the week
type. The data for training the model was collected for two months - September and October 2022.
The short time interval did not allow us to fully assess the variation of the month during the year and
its impact on the forecasting results. In practice, this can be eliminated by continuous retraining of
the model, when, as new data is received, the model is constantly updated and adapted to new data.
The «day type» factor had minimal variability and took only two values: a working day or a day off.
Holidays and pre-holiday days were not included in the training set. Nevertheless, the results shown
in Figure 9 show that the inclusion of various combinations of seasonality parameters affects both the
quality of forecasts and the training time of the model.

The analysis results show that in the case when the input statistics did not take into account
seasonal factors, the model showed the following results: MAPE —4.77%, SMAPE - 4.71%, MAE - 8.0
kPa, RMSE - 10.3 kPa. Adding day type as the only seasonal parameter led to a slight increase in
MAPE to 4.81%, while SMAPE remained at 4.71%. Adding minute as the only seasonal parameter
increased the MAPE and SMAPE values to 4.78%, and MAE - to 8.1 kPa. Using minute and day type
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together increased the training time, but did not lead to a significant improvement in the metrics.
Taking into account the hour of day in the model increased MAPE and SMAPE to 4.9%, and also
increased MAE and RMSE. The best result was achieved when using all four parameters: month,
hour, minute, and day type. This resulted in a MAPE of 4.37%, SMAPE of 4.34%, MAE of 7.4 kPa and

RMSE of 9.4 kPa.
Month, hour, minute and day type 4.37%
Month, hour, minute 4.55%
Month, hour and day type 4.52%
Month and hour 4.53%
g Month, minute and day type 5.20%
k51 Month and minute 4.79%
§ Month and day type 4.78%
g Month 5.05%
E Hour, minute and day type 4.54%
s Hour and minute 4.62%
2 Hour and day type 4.54%
@ Hour 4.90%
Minute and day type 4.78%
Minute 4.78%
Day type 4.81%
No 4.77%
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Figure 9. The influence of seasonal components on the quality of the pressure forecasting model.

There are several key findings from examining the impact of seasonal components on model
performance:

1. Impact of Seasonality: Including seasonality parameters such as month, hour, minute, and day
type in a model improves its predictive ability. Overall, models that include these parameters
perform better on all evaluation metrics than models without seasonality parameters. This may be
because these parameters help the model capture structure in the data that would be invisible without
them.

2. Training Time: Including more seasonality parameters increases the training time for the
model, which is due to the larger number of parameters required to process and train the model.
However, it is important to note that despite the increased training time, models with more
parameters generally perform better predictively.

3. Optimal Combination: The lowest MAPE, SMAPE, MAE, and RMSE scores are demonstrated
by the model that includes all four seasonality parameters: month, hour, minute, and day type. This
indicates that using all of these parameters together results in improved forecast accuracy.

It is worth noting that training the model with seasonal components does not change the
procedure for obtaining information from primary converters and does not increase the volume of
the database stored on the server. Information about the month, hour, minute and day type is
extracted through the Unix timestamp transformation. This allows seasonality to be taken into
account in the data without additional accumulation of information.

4.3. Finding the Optimal Number of Neurons in LSTM Model Layers

The choice of the model configuration is based on the grid search method, which is used to
determine the optimal number of neurons in the LSTM and Dense layers of the neural network [23—
25]. In accordance with this method of model training, an algorithm for cyclic enumeration of all
possible combinations of hyperparameters is implemented. To enumerate various combinations in
each layer, a list of neurons for each of the three layers of the model (two LSTM layers and one Dense
layer) with values of 50, 150 and 250 was formed. In the conducted study, 21 models were trained
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with a total time cost of 110019 sec. (30.6 h). During the study, it was noted that an increase in the
number of neurons in the first and second LSTM layers leads to a significant increase in the model
training time. However, no corresponding improvement in the quality of model forecasts is observed.
This confirms the assumption that the complexity of the model does not always correlate with its
performance. In connection with the above observations, it was decided to stop the cyclic
enumeration of parameters after reaching the specified configuration. Figure 10 shows the
distribution diagram of the MAPE forecast error indicator when changing neurons in the LSTM
layers and one Dense model.
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L1:250L2: 50 D: 150 s 4.69%
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Figure 10. The influence of seasonal components on the quality of the pressure forecasting model.

According to the obtained results, it follows:

1. The error rates vary in a small range. This indicates that changing the number of neurons in
each layer does not lead to a significant improvement or deterioration in the accuracy of the forecast.
The lowest error rates are observed in experiments #3 and #21 (L1=50, L2=50, D=250 and L1=250,
L2=50, D=250, respectively). This may indicate that increasing the number of neurons in the Dense
layer with a relatively small number of neurons in the LSTM layers, taking into account the resource
costs for training, may be more effective for the task under study.

2. The training time of the models varies significantly and, as a rule, increases with an increase
in the number of neurons. The fastest learning occurs with the smallest number of neurons (L1=50,
L2=50, D=50), the slowest — with the largest (L1=150, L2=250, D=150 and L1=150, L2=250, D=250).

3. In this problem, increasing the number of neurons in the layers does not always lead to an
improvement in the forecast accuracy. At the same time, the training time increases significantly,
which can be critical with limited computing resources. Based on these results, we can conclude that
the optimal configuration is a model with 50 neurons in the LSTM layers and 250 neurons in the
Dense layer as the most optimal in terms of the ratio of forecast accuracy and training time. In some
cases, the growth of neurons in the first LSTM layer leads to an improvement in the quality of the
model. With limited resources, the LSTM and Dense layers can be reduced to 50 neurons, which leads
to the minimum training time of the considered configurations.

4.4. Selecting the Optimal Length of the Input and Output Data Sequence

The length of the history sequence refers to the number of previous time steps that the model
uses for training and subsequently for predicting the target variable. If the history depth is too small,
the model may not have enough information to identify important time patterns, otherwise training
the model may become complex and expensive in terms of computational time. The conducted
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experiment to find the optimal ratio of the history length and the forecast horizon took 95257 seconds
over 20 epochs of model training. In this case, various combinations of input and output data were
tried with an assessment of the model quality metrics. In the conducted study, 20 different sets of
parameters with history [12,24,36,48] and forecast [12,24,36,48,60] depths were considered. The figure
shows the results of the analysis of the influence of the history depth and the forecast horizon length
on the change in the MAPE metric over 20 epochs of model training. In Figure 11 shows the results
of the analysis of the influence of the depth of history and the length of the forecasting horizon on
the change in the MAPE metric for 20 epochs of model training.
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input: 48 output: 60 I —— 4,710%

input: 48 output: 48 I ——— 1, 90%
input: 48 output: 36 | I —— 5.05%
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Figure 11. The influence of history depth and forecast horizon length on model quality.

As a result of the experiment, the following conclusion can be made:

1. With an increase in the length of the input data (history depth), the model training time
increases significantly, which is associated with an increase in the dimension of the data tensor, as a
result of which more computing power and time are required to train the model.

2. With an increase in the length of the forecasting horizon, no stable growth or decrease in the
model quality metrics is observed. This may indicate that the dependence between the forecasting
horizon and the quality of the model may be non-linear or may change significantly depending on
other factors.

3. Models with fewer input and output data usually show better results in terms of quality and
performance metrics.

4. In certain cases, it was observed that an increase in the length of the output data with a
constant length of the input data leads to a deterioration in the quality of the model.

Of particular interest is the change in the loss function during the model training process. To do
this, the number of epochs was increased from 20 to 50 and the behavior of the mean square error
was assessed for cases with 12, 24 and 60 time steps entering the LSTM model (Figure 12).
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Figure 12. Change in the mean square error (loss function) with increasing number of training epochs.

Analyzing the results of the experiment, we can conclude that with increasing history depth, a
more stable behavior of the mean square error is observed without significant outliers. This indicates
better convergence of the model, that is, optimal adjustment of weight coefficients during the training
process when receiving a larger amount of input data. A stable decrease in the loss function indicates
that the model is more effective in learning on data with 60 time steps compared to 12, but the training
time for 200 epochs increased by 50%, the metric on the MAPE test data was 4.36%.

4.4. LSTM Models Compared with Holt-Winters Model

An important step in the study is to demonstrate the advantages of deep learning models. For
this purpose, the LSTM model used is compared with the classical simpler Holt-Winters exponential
smoothing model [26]. Additive seasonality with a period of 288, which characterizes the daily
dynamics with 5-minute pressure data, is used as the initial parameters of the exponential smoothing
model. Comparison of the quality metrics of the models was carried out on test data, which included
statistics including an emergency pressure drop at the inlet of the booster pumping station (Figure
13). The LSTM model demonstrates a lower forecasting error compared to the Holt-Winters model.
The MAPE value for the LSTM model is 4.36%, while the Holt-Winters model has an average absolute
percentage error of 6.07%. The MAE metric was 7.35 and 9.86 kPA for the first and second models,
respectively. Based on these results, it can be concluded that the LSTM model has a higher quality
and provides more accurate data prediction.
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Figure 13. Comparison of the Long Short-Term Memory Model with the Holt-Winters Model.

It is worth paying special attention to the behavior of the model during an emergency pressure
drop. In Figure 13, the LSTM model is built with a forecast for 12 steps (1 hour into the future), while
the length of the historical data fed to the model was 60 values (5 hours of history). It is interesting to
note that the recurrent neural network model is able to notice and respond to the falling pressure
dynamics, even though in the considered example the training sample had only one emergency
scenario. This indicates high sensitivity and the ability of the model to detect changes in time series,
even with limited data at the time of a sudden pressure drop, which does not allow the
implementation of the Holt-Winters model.

Conclusions

In the course of this study, an information system for obtaining data on hydraulic pressure in a
water supply system was developed. These data were subsequently used to train a long short-term
memory (LSTM) model designed to predict pressure in a water supply system and use these forecasts
to create preventive methods for responding to accidents. An important stage of the work was to
study the influence of the neural network architecture on its performance. It was found that
increasing the number of LSTM layers (up to 2-3) and using regularization layers (Dropout)
contributes to improving the forecast accuracy, while adding additional fully connected layers does
not have a significant effect. The optimal configuration of the model includes two LSTM layers, one
Dropout layer and one Dense layer, which provided minimal values of error metrics such as MAPE
(4.79%). In addition, a study was conducted on the influence of seasonal factors on forecasting
accuracy. It was found that adding parameters such as month, hour, minute and day type leads to an
improvement in the quality of the model and a reduction in forecast errors (MAPE decreased to
4.37%).

The influence of the number of neurons in the LSTM and Dense layers on the model performance
was also assessed using the grid search method. Based on the obtained data, the optimal model
configuration with 50 neurons in the LSTM layers and 250 neurons in the Dense layer was selected,
which provided the best ratio of forecast accuracy and training time. In parallel, the influence of the
length of the input and output sequences on the quality of the model was investigated. Increasing
the length of the input data (history depth) improved the convergence of the model, but also
increased the training time. Models with less data demonstrated faster results with comparable
forecast accuracy. This confirms that the optimal choice of history depth and forecast length depends
on the computing resources and the tasks at hand.
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In the final part of the work, the proposed LSTM model was compared with the classical Holt-
Winters exponential smoothing model. The results showed that LSTM significantly outperforms the
Holt-Winters model both in forecast accuracy (MAPE 4.36 versus 6.07%) and in sensitivity to
emergency situations, such as a sharp drop in pressure. Thus, the experiments showed that the use
of LSTM models for forecasting pressure in water supply systems significantly improves the accuracy
of forecasts, especially when including seasonal factors and optimizing the model architecture. The
study is not exhaustive, and other combinations of hyperparameters may be more effective for the
task of forecasting water supply network pressure.
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