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Abstract: This paper  investigates  the  application  of  recurrent neural networks,  specifically Long 

Short‐Term Memory (LSTM) models, for pressure forecasting in urban water supply systems. The 

objective of this study was to evaluate the effectiveness of LSTM models for pressure prediction tasks. 

To  acquire  real‐time  pressure  data,  an  information  system  based  on  Internet  of  Things  (IoT) 

technology  using  the MQTT  protocol was  proposed.  The  paper  presents  a  data  preprocessing 

algorithm  for  model  training,  as  well  as  an  analysis  of  the  influence  of  various  architectural 

parameters, such as the number of LSTM layers, the utilization of Dropout layers for regularization, 

and  the  number  of  neurons  in  Dense  (fully  connected)  layers.  The  impact  of  seasonal  factors, 

including month,  day  of  the week,  and  time  of  day,  on  the  pressure  forecast  quality was  also 

investigated. The results obtained demonstrate that the optimal model consists of two LSTM layers, 

one  Dropout  layer,  and  one  Dense  layer.  The  incorporation  of  seasonal  parameters  improved 

prediction accuracy. The model training time increased significantly with the number of layers and 

neurons, but this did not always result in improved forecast accuracy. The results showed that the 

optimally tuned LSTM model can achieve high accuracy and outperform traditional methods such 

as the Holt‐Winters model. This study confirms the effectiveness of using LSTM for forecasting in the 

water supply field and highlights the importance of pre‐optimizing the model parameters to achieve 

the best forecasting results. 

Keywords: recurrent neural networks;  long short‐term memory model; hydraulic pressure; water 

supply  systems;  digital  infrastructure;  Internet  of  Things;  pressure  forecasting;  water  supply 
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1. Introduction 

In the context of the development of the smart city concept, technical water supply systems are 

becoming  a  critical  element  in  ensuring  the  sustainable  transportation  and  distribution  of  vital 

resources. They play a key role in maintaining the stability of the urban environment, meeting the 

needs  of  the  population,  industry  and  utilities. However, with  the  development  of  social  and 

technological infrastructure, water supply networks not only expand, covering ever larger territories, 

but also become more complex and branched. Such a structure  increases  the risk of ruptures and 

accidents due  to equipment wear, uncontrolled  loads or  the  influence of external  factors, such as 

extreme weather conditions. Such emergency situations lead to serious environmental, economic and 
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social consequences, including water leaks, environmental pollution and interruptions in the supply 

of urban consumers. 

Traditional methods  of  responding  to  accidents  in water  supply  systems  involve  detecting 

failures only after the actual failure, often based on calls received by the water utility dispatch service. 

This approach is not always effective, since the limited resources of operational repair teams or the 

remoteness of facilities lead to significant delays in troubleshooting, which increases the average time 

to restore water supply. However, with the development of the Internet of Things (IoT) technology, 

it has become possible to integrate smart sensors into monitoring systems, which allows collecting 

data on  the state of  the hydraulic network  in  real  time. These data can be used  to  train machine 

learning models and subsequent digitization of the system state, ensuring early detection of potential 

accidents and increasing the efficiency of their elimination. In this regard, the objective of the study 

is  to evaluate  the effectiveness of using a recurrent neural network, namely  its variety  ‐ the Long 

short‐term memory (LSTM) model, in pressure forecasting problems. The scientific article examines 

the features of obtaining pressure data for training models, studies various architectures and their 

characteristics to improve the accuracy of pressure forecasting in water supply systems. The studies 

are carried out on the basis of the water supply system of the city of Gomel (Republic of Belarus), 

which  has  a  significant  length  of  pipeline  networks.  The  scientific  contribution  of  the  article  is 

expressed in the following positions: 

1. The mechanism  for obtaining data for  training a hydraulic model based on  the Internet of 

Things  (IoT)  technology  using  the MQTT  protocol  is  considered.  The  process  of  collecting  and 

preparing data is described in detail, including the difficulties and features that affect the quality of 

machine learning models. 

2.  The  effectiveness  of  various  neural  network  architectures  used  for  interval  pressure 

forecasting is studied. An analysis of the optimization of the internal network architecture is carried 

out, including an assessment of the influence of seasonal factors, the search for the optimal number 

of neurons in the LSTM model layers, the choice of the forecast horizon, the length of the historical 

sequence and the number of training epochs. All these aspects are considered to improve the accuracy 

and stability of the model when applied to water supply problems. 

It is expected that the proposed approach to the selection and optimization of a machine learning 

model, in particular LSTM models, will allow establishing basic parameters for predicting pressure 

in water supply systems at the training stage. This approach will eliminate  the need  for  long and 

resource‐intensive  processes  of  searching  for  optimal  hyperparameters, which will  significantly 

reduce the cost of computing resources for model training. This will provide the possibility of more 

rapid  implementation of  intelligent monitoring systems on  the scale of  large urban water supply 

networks and will increase their efficiency due to fast and accurate interval forecasting. 

2. Related Works 

Today, there are many methods for analyzing large volumes of data collected from sensors in 

real time, which allow for the timely detection of anomalies and potential threats. The introduction 

of machine learning algorithms makes it possible to predict time series of process parameters or create 

digital twins of technical systems, which becomes a powerful tool for modeling and testing various 

emergency  scenarios.  Predictive  models  act  as  a  standard  for  assessing  deviations  in  process 

parameters, which contributes to a deeper understanding of individual elements and the system as a 

whole. Within  the  framework  of  world  experience,  special  attention  in  this  context  is  paid  to 

improving  advanced  methods  that  are  used  to  prevent  accidents,  as  well  as  assessing  their 

contribution to improving the management and maintenance of water supply infrastructure. Despite 

the fact that the main attention in the article is given to water supply systems, artificial intelligence 

algorithms  demonstrate  high  potential  for  application  in  related  areas,  such  as  gas  supply,  oil 

industry and heat  supply. Analysis of examples presented  in  scientific publications  confirms  the 

effectiveness of these technologies in various industries, which opens up broad prospects for their 

adaptation and further development. 
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Of particular  interest  is  the work  [1], which  examines  in detail  the use of machine  learning 

methods  in  gas  supply  systems. The  authors  explore  the potential  of  recurrent  neural networks 

(RNN)  and  the  K‐nearest  neighbors method  for  detecting  gas  leaks.  The  comparative  analysis 

demonstrated that RNN models have significant advantages in tasks of this kind. This is due to their 

ability to adapt to new data, effectively learn on large volumes of information and take into account 

time dependencies, which is especially important for complex and dynamically changing conditions. 

The high accuracy of predictions achieved during the experiments emphasizes the potential of RNN 

as a tool for monitoring and managing infrastructure, where accurate detection and timely response 

are critical. 

The  study  [2]  presents  the  results  of  applying machine  learning methods  to model  failure 

scenarios of pipelines with defects under pressure changes. The authors used approaches such as 

Artificial  Neural  Networks  (ANN),  Extreme  Gradient  Boosting  (XGB)  and  CatBoost  (CAT) 

categorical boosting. To train the models, data obtained from real pipeline inspections were used, as 

well as  the  results  calculated by  the  finite  element method  for predicting  ruptures. Comparative 

analysis showed that the CatBoost algorithm demonstrated the most accurate forecasts with minimal 

errors, which distinguishes it from other methods. This study emphasizes that the use of machine 

learning models such as CatBoost in combination with traditional analytical approaches significantly 

improves  the  efficiency  of  pipeline  safety  assessment.  This  becomes  especially  important  in 

conditions of changing operating modes, where timely adjustment of process parameters is required 

to prevent accidents. 

The  study  [3]  presents  the  application  of machine  learning models  to  predict  water  pipe 

ruptures. The authors used gradient boosting algorithms implemented using the LightGBM (Light 

Gradient  Boosting Machine)  library  developed  by Microsoft.  The main  feature  of  the  proposed 

approach  is  the  comprehensive  integration of various data,  including engineering  characteristics, 

geological  conditions,  climatic  indicators  and  socio‐economic  factors.  The  results  of  the  study 

demonstrate  that  taking  into account  social aspects along with  technical parameters  significantly 

affects the accuracy of emergency prediction. This method of risk assessment in water supply systems 

allows for a deeper analysis of the probability of failures, providing more effective management and 

accident  prevention  strategies.  This  emphasizes  the  potential  of  modern  machine  learning 

technologies for solving complex problems in the field of technical infrastructure. 

Continuing with the topic of machine learning application in water supply systems, it is worth 

mentioning the study [4] published in the ISH Journal of Hydraulic Engineering. In this paper, the 

main focus is on the problem of water leakage monitoring using a reverse engineering approach. The 

authors proposed  to  solve  classification and  regression problems  for  leak detection by analyzing 

deviations in pressure or water flow using Artificial Neural Networks (ANN) and Support Vector 

Machines  (SVM).  The  study was  conducted  in  two  scenarios:  the  first  included  the  analysis  of 

pressure data,  the second  ‐ water flow data. To  implement the tasks, the multilayered perceptron 

(MLP)  and multi‐layer  classification  and  regression  SVM  models  were  developed.  The  results 

showed that ANN neural networks demonstrate higher accuracy in leak detection compared to SVM 

in both scenarios. It is also emphasized that optimizing the amount and quality of input data during 

the  training process  can  significantly  improve model  performance, which  remains  an  important 

direction for further research. 

The review highlights a study conducted by [5], which is devoted to the use of coarse hydraulic 

models to control deviations in process parameters in water supply systems. The authors proposed 

an  approach  based  on monitoring  actual  flow  rates  and  pressures  in  pipelines,  combined with 

machine learning methods. This method was tested on a reference water distribution network, where 

it demonstrated high efficiency in detecting anomalies. The results of the study emphasize that the 

integration of modern artificial intelligence and machine learning methods into the management of 

water supply systems can significantly improve the accuracy and efficiency of leak and emergency 

detection. This emphasizes the potential of such technologies to optimize the management of utility 

networks and improve their performance. 
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A  study  [6]  published  in  the  journal Applied  Sciences  presents  a  system  for  detecting  and 

localizing  leaks  in water pipes using deep  learning and  Internet of Things  (IoT)  technology. The 

authors  developed  an  approach  based  on  intelligent  sound  leak  detection  and  the  use  of 

convolutional neural networks (CNN). The experimental results demonstrate that the CNN model 

achieved  an  accuracy of over  95%  after  training, which highlights  its high  efficiency  in  the  leak 

detection task. Additionally, it was shown that the use of this system can reduce excavation costs by 

26%, significantly increasing the overall efficiency of pipeline infrastructure management. 

The study [7] focuses on innovative approaches to predicting failures in water supply networks. 

The authors developed a classification model based on an Artificial Neural Network (ANN), using 

physical parameters of pipes (diameter, length, material, etc.) and operational indicators (flow rate, 

pressure, temperature, etc.) as input data. The effectiveness of the proposed method was analyzed 

taking into account two different data processing strategies. The first scenario examines the model’s 

performance under  insufficient data, when  the  sample  is  too  small  for  reliable  training,  and  the 

second – under excess data, which can hinder analysis due  to  information overload. On real data 

from a Spanish water supply network, the ANN model demonstrated high accuracy, emphasizing 

the importance of balancing the volume and quality of data to ensure reliable forecasts. 

In 2018, Onukwugha C. G., Osegi E. N. presented a study in which integrated system models 

combining machine learning and neural networks were used to monitor and forecast pressure in oil 

and gas pipelines [8]. The authors demonstrated that the combination of various technologies can 

significantly improve the accuracy and reliability of forecasts. This approach is an important example 

of the integration of classical hydraulic analysis methods with artificial intelligence algorithms, which 

can be adapted for water supply systems, opening up new opportunities for their management and 

prevention of emergency situations. 

Continuing  the discussion of  innovative  approaches  to monitoring  and  forecasting  in water 

supply systems, it is worth highlighting the study [9] devoted to the use of deep learning models to 

predict  failures  in water supply networks.  In  this work,  the authors applied  the Residual Neural 

Network  (ResNet)  algorithm  and  compared  it with  the  classical Convolutional Neural Network 

(CNN). The results of the study showed that ResNet outperforms CNN in terms of training speed 

and forecasting accuracy. Particular attention in the study was paid to the role of physical parameters, 

such as  the  length and diameter of pipes, which  turned out  to be critical  for assessing  the risk of 

accidents. The authors concluded  that  the use of ResNet allows preventing more  than half of  the 

failures, focusing on servicing less than 10% of pipes, which significantly increases the efficiency of 

maintenance. Similar to the study by Onukwugha C. G., Osegi E. N., this work demonstrates how 

the  integration  of  deep  learning  with  advanced  technologies  can  significantly  improve  the 

capabilities of monitoring and forecasting in water supply systems. 

The review presents many modern approaches that demonstrate significant progress in the field 

of  monitoring  and  prediction  of  failures  in  engineering  systems,  including  water  supply.  The 

considered studies show that artificial intelligence and machine learning methods, such as artificial 

neural networks  (ANN),  support vector machines  (SVM), gradient boosting  (XGBoost, CatBoost, 

LightGBM),  residual  neural  networks  (ResNet)  and  convolutional  neural  networks  (CNN),  are 

successfully applied  to  solve problems of  classification,  regression  and prediction  in  engineering 

networks. Among all the methods, a special place is occupied by recurrent neural networks (RNN) 

and their varieties, such as LSTM (Long Short‐Term Memory), which, due to their ability to analyze 

sequential data and take into account temporal dependencies, are ideally suited for monitoring and 

prediction problems in water supply systems. This article focuses on the use of LSTM models as the 

main analysis method. This choice is due to their unique ability to process time dependencies and 

adapt  to  changing  conditions, which allows achieving high efficiency and accuracy  in predicting 

pressure in water supply systems. 

3. Methods 
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The  structure of  the  study  consisted of  several  consecutive  stages. At  the  first  stage,  a data 

collection  and  exchange  scheme  was  developed,  including  connecting  IoT  devices,  receiving 

information from pressure sensors, and transmitting it to a cloud storage system. This stage provided 

the basis for forming a statistical database and training models. At the second stage, data preparation 

was  carried  out:  eliminating  gaps,  normalization,  necessary  transformations  of  time  series,  and 

dividing statistics into training and test data. At the next stage, the structure of the model class in 

Python was  created, which  included  setting up  the  architecture,  activation  functions, optimizing 

hyperparameters, and  training procedures. The  last stage was devoted  to  training and  testing the 

recurrent neural network (RNN) model using its LSTM variety. The effectiveness of the model was 

assessed based on metrics such as MAE, SMAPE, MAE, and RMSE. 

3.1. Organization of Data Collection for Monitoring Pressure in a Water Supply System 

An  information  system  has  been  developed  for  operational  monitoring  and  archiving  of 

pressure parameters of pumping stations in the water supply system of Gomel (Republic of Belarus). 

Within  the  framework  of  this  system,  adhering  to  the  concept  of  the  Internet  of Things  (IoT),  a 

network  of  interconnected  smart devices was deployed  that  automatically  collect,  exchange  and 

process data [10]. Figure 1 shows the diagram used, demonstrating the connection of pressure sensors 

to  data  collection  and  transmission  devices  that  polled  these  sensors  and  sent  the  received 

information  in  raw  form  to  the  computing  server  [11]. To  ensure  the  reliability of  receiving  and 

transmitting information, a specialized Mosquitto broker (MQTT broker) was installed on the server, 

acting as a central node. It ensured the coordination of data transmission between data publishers 

(pressure sensors) and subscribers [12] (personal computers, telephones). The developed architecture 

facilitated prompt response to changes in system parameters and the formation of statistical data for 

subsequent training of the long short‐term memory model. 

MQTT 
Broker

Сomputer
subscriber 

Smartphone
subscriber

Data collection and 
transmission device – 

subscriber

Data collection and 
transmission device – 

publisher

Pressure sensor

Pressure sensor

 

Figure 1. Architecture of data exchange during experiments. 

In the context of this study, the data sources were PD100 piezoelectric pressure transducers of 

the Russian Oven  trademark. This choice was due  to  the high accuracy of  the device, which was 

critical for the formation of a reliable pressure database at the inlet of pumping stations. The pressure 

sensors were connected directly to the pressure gauges (Figure 2 b) according to a specific layout on 

the city map in accordance with the identified water consumption clusters [13]. This made it possible 

to quickly organize  the  installation of equipment  in  the most significant water supply units.  It  is 

worth noting that in the absence of pressure gauges, connecting the sensors requires more complex 

operations  that  require  preparatory  welding.  RTU‐8xx  modems  from  Teleofis  (Figure  2,  a), 

configured  for 5‐minute measurements and sending messages  to  the cloud server, served as data 

collection and transmission devices. 
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Figure 2. The process of connecting the pressure transducer at the pumping station to the data collection and 

transmission device. 

3.2. Features of Data Preparation for Model Training 

To train the recurrent neural network (RNN) model, it is important to properly prepare the data. 

The pressure data in the water supply network was collected using piezoelectric sensors equipped 

with  a  telemetry output  standardized  for  the  range of  4–20 mA. Raw values  in  this  range were 

received  by  the  server,  which  required  preliminary  transformation  before  being  used  in  the 

forecasting  model.  The  current  values  coming  to  the  cloud  server  were  scaled  using  linear 

interpolation to the pressure according to the formula: 

 min
min max min

max min
,

i i
p p p p

i i


  


        (1) 

where  p   – actual pressure value; minp ,  maxp   – minimum and maximum pressure sensor value;  i  

– actual current value; mini ,  maxi   – minimum (4 mA) and maximum (20 mA) current value. 

On the server side, storage of both raw and transformed pressure data is organized. Raw data 

included  time  stamps  corresponding  to  the moment of data  collection,  as well  as  current values 

obtained from the sensors. Transformed data are pressure values calculated using formula (1) based 

on the received current. As a result, the database took the form «epoch – pressure», where the first 

parameter  is  the  time stamp  (Unix  time), and  the  second  is  the  transformed pressure value. This 

approach allowed storing data in its original form for further processing and analysis, as well as using 

ready‐made transformed values for training models. An example of such data is presented in Table. 

1. 
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Table 1. Simplified representation of pressure time series. 

Epoch (Unix time)  Pressure, kPa 

1662768000  156 

1662768300  167 

1662768600  168 

1662768900  179 

...  ... 

The initial statistics then underwent pre‐processing, which included removing outliers, filling in 

missing values, and normalizing features. The latter is recommended to improve the learning process 

and solution convergence [13]. In this case, min‐max normalization is used to bring features to the 

range from 0 to 1: 

min
.

max min
.i

i norm
x x

x
x x





              (2) 

where  .i normx ,  ix   – normalized and original feature; maxx ,  minx   – the largest and smallest element 

of a feature. 

Thus, the initial data took the form of a matrix of size T × N. Here T is the number of time points 

(or measurements) of the time series, and N is the number of features corresponding to each moment 

in time. In the example of Table 1, the initial data set was determined by a single pressure parameter 

p at time t. In this case, N is equal to 1 and the matrix form of recording took the following form: 

1

2 .

T

p

p

p

 
 
 
 
 
 

А


                (3) 

In  the study,  the Keras  library  in Python  [14] was used  to  train  the  long short‐term memory 

(LSTM) model. One of the features of training the LSTM model is the need to represent the input data 

as a multidimensional tensor. In particular, recurrent neural networks expect the data to be in the 

form  of  a  three‐dimensional  tensor, where  the  first  axis  represents  the  number  of  observations 

(samples) in the data, the second axis corresponds to the length of the time interval or window, which 

determines the depth of history taken into account by the model when predicting pressure, and the 

third axis reflects the number of features that are used to predict future values. The transition of the 

original matrix A to a multidimensional form to form the input tensor in the LSTM model included 

the following steps: 

1. The depth of the observation history M was determined, which is one of the parameters of 

further research, which was selected depending on the accuracy of pressure forecasting (Figure 3). 

This parameter determines the size of the time window through which the model can «see» changes 

in the feature over a certain period of time. The depth of the history M allows the model to take into 

account the influence of past values on the forecast of future values of the output pressure sequence. 

2. The optimal forecast horizon of length K was determined (Figure 3). The minimum forecast 

error at each step of the interval window and the average error of the resulting sequence served as 

the criterion. 

PM ... pKpM+1...p1 p2 pM+2

Input sequence of length M Output sequence of length K
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Figure 3. A fragment of a sample of input and output sequence of a given length. 

3. The study used various architectures to extract additional factors from the original timestamp 

(epoch).  In particular,  such  features as minute, hour of day, month  index, day of  the week  type 

(working or weekend) were additionally extracted. This expanded the original matrix, increasing the 

number of input features. For each of these features N, a set of time windows of length M was formed, 

extracted from the original matrix A. The number of such windows was T – M. Further, each of these 

windows became a sample of dimension M×N, that is, it contained M observations for each of the N 

features. In total, T – (M + K) data sets were obtained for training the model (since for each sample it 

is necessary to have a corresponding output sequence of length K), which determines the number of 

samples in the three‐dimensional tensor. 

4. To increase the volume of training data, the rolling window approach was used [15,16]. This 

method involved forming a set of overlapping sequences, which was achieved by shifting the time 

series by a given  interval  (Figure 4). This  significantly  increased  the  sample  size  for  training  the 

model. For the initial training data with the number of observations T, the shift step S was specified. 

Then, for each i‐th position of the window with the shift step S = 1, the data samples are in the range 

1 SNi  , where  ( ) –  SN T M SK    is the possible number of observations. The training matrix 

A will contain  ,i ja   elements , where i = 1, 2, ...,  SN , ; j = 1, 2, ..., M + K. 

xi yi

xi yi

xi yi

xi yi

xi yi

Training stat istics of length T

Sample 1

Input data Output data

Sample 2

Sample 3

Sample...

Sample Ns 

Step offset S Input data of length M Output data of length K
 

Figure 4. To explain the use of the sliding window method to increase the statistics set. 

5. Matrix A was divided into two parts, defining the input data X with elements , where i = 1, 2, 

...  SN , ; j = 1, 2, ..., M and the output (target) data Y with elements , where I = 1, 2, ...,  SN ; j = M + 1, 

M + 2, ..., M + K. The resulting matrix is reduced to a tensor form, taking into account the number of 

features of the model: 

1 2, , , ,iT A A A 
         

  (4) 

where  iA   – the input layer matrix of the neural network has dimension М×N, where each column 

represents the i‐th subsequence of length M for each of the N features in the time series. Similarly, the 

output  layer  of  the matrix  has  dimension  ,  where  each  column  contains  information  about  K 

prediction values for each of the P parameters. In this study, one pressure parameter was predicted. 

3.3. Features of Assessing the Effectiveness of the Learning Process 
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At  the  training  stage,  the  search  for optimal model parameters was  carried out,  such as  the 

history length (M) and prediction depth (K), the number of neurons in the layers of the long short‐

term memory model (NLSTM). The main goal was to find the LSTM architecture that would provide 

the  maximum  accuracy  of  hydraulic  pressure  forecasting  [17,18].  To  assess  the  quality  of  the 

predictive model,  the cross‐validation method was used, namely block cross‐validation  [19]. This 

method is based on dividing the time series into non‐overlapping blocks using a sliding window with 

a given step. Instead of repeatedly training the model on different data blocks, the model was trained 

once using the initial architecture settings, which were then changed to find the best configuration. 

After that, the effectiveness of the model was assessed on the test set. The procedure for assessing the 

quality of learning algorithms used in these studies included: 

1. Splitting the data into training and test samples: a time series of length T+L (Figure 5) was split 

into a training sample of length T and a test sample of length L in a ratio of 70% to 30%. 

2. Dataset generation: In the forecasting process, a sliding window method with a given step 

was used to obtain new test data [15]. For each time step t (starting from the first element of the test 

sample to the end of the time series L), a data block of length M (data history) was used as input and 

the next K elements were used as the target variable. This formed a dataset of size (T – M – K + 1) x 

(M + K), where each row contains one set of input and output data (Figure 5). 

xi

Training data of length T

Historical  data 1 Forecast 1

Tes t data of length L

iy


xi iy


xi iy


xi iy


Test data block offset step

Historical  data 2

Historical  data 3

Historical  data 4

Forecast 2

Forecast 3

Forecast 4

 

Figure 5. Interpretation of the cross‐validation method used. 

3. Prediction for a given interval: at each step t, the model made a prediction for a given interval 

ahead K. The results of the predictions were saved for further analysis. 

4. Model quality assessment: The obtained predictions were compared with real observations. 

A  distinctive  feature  was  the  assessment  of  both  the  average  error  at  each  step  of  the  block 

displacement t over the entire depth of the forecast K, and the calculation of the average error of all 

predictions. In the studies conducted, classical metrics were used to assess the quality of the pressure 

forecasting model: MAPE  (mean absolute percentage error), MAE  (mean absolute deviation) and 

RMSE (root mean square error). Despite the widespread use of MAPE, this metric does not effectively 

cope with zero values, which is typical for scenarios related to an emergency pressure drop or on/off 

modes of pumping stations  (Figure 6).  In such cases, MAPE gave a distorted estimate due  to  the 

mathematical uncertainty that occurs when dividing by zero. 
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Figure 6. Switching on and off mode of the pumping station in the village of Bobovichi, Gomel district. 

To solve this problem, the SMAPE (symmetric mean percentage error) metric was used as an 

alternative, which works more stably in such conditions, since it excludes infinite values and gives a 

more correct assessment of the accuracy of the model at zero pressure values [20]: 

 1

1
SM APE .

/ 2

n
i i

i ii

y y

n y y






           (5) 

where  iy   – actual value at the  i‐th moment  in time;  iy

  – predicted value at  the  i‐th moment of 

time;  n  – number of observations. 

3.4. Finding the Optimal Architecture and Hyperparameters of the LSTM Model 

The  goal  of  the  study  was  to  find  an  LSTM  model  architecture  that  would  ensure  high 

forecasting accuracy and efficient use of computational and information resources during training. 

To achieve  these goals, various combinations of hyperparameters were used before  training. The 

search for the optimal model structure included the following stages: 

1. Assessing the  impact of adding additional  layers to the LSTM model  ‐ we studied how an 

increase in the number of layers affects the accuracy of the model and its ability to generalize. 

2. Assessing the impact of parameters that determine seasonality ‐ we analyzed the effectiveness 

of adding seasonal parameters. 

3. Assessing the impact of the number of neurons in model layers ‐ we studied the dependence 

of the model accuracy on the number of neurons in hidden layers. 

4. Assessing the impact of the amount of historical data and forecasting range ‐ we analyzed the 

effect of  increasing  the volume of  training data  and  further  forecasting  steps on  the  accuracy of 

modeling. 

Figure 7 shows a general view of the structure of the long short‐term memory model and the 

relationships between  the  layers,  the network, and  the optimization  function of  the model under 

study. 
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Figure 7. Towards an explanation of the choice of the LSTM neural network model architecture. 

The model was tested on statistical data presented by 5‐minute discreteness of the input pressure 

of the booster pumping station on Artilleriyskaya Street in Gomel for the period from 17.02.2023 to 

16.03.2023. The  size of  the original  statistics:  [13398, 2], where  the  first parameter determines  the 

generated number of observations; the second ‐ two features: epoch, pressure. 

4. Results and Discussion 

4.1. Optimization of the Internal Architecture of the Neural Network 

The study tested the impact of additional layers on the model performance. For this purpose, 

the basic architecture was used, within which the following parameters were fixed: the number of 

neurons  in  the  LSTM  layers  and  the  fully  connected  layer  was  50;  the  number  of  historical 

observations  fed  to  the model  input was  12;  the  length  of  the  output  sequence,  the  number  of 

predicted  values was  12;  and  the  number  of  input  parameters was  1  (pressure with  5‐minute 

discretization). These parameters were selected for the initial setup of the model, after which various 

configuration options were tried to assess their impact on the forecasting accuracy. In total, 7 different 

architectures with different combinations of the number of LSTM, Dropout, and Dense layers were 

considered [21,22]. The results of the model performance evaluation are presented in Figure 8. 
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Figure 8. The Impact of Neural Network Architecture on Model Performance. 

The study revealed the following: 

1. Increasing the number of LSTM layers to 2‐3 improves the forecast quality and reduces the 

MAPE, SMAPE, MAE, and RMSE metrics compared to a single‐layer LSTM architecture. 

2. Adding a regularization layer (Dropout) improves model performance. Models with one or 

two Dropout layers show a lower forecast error compared to models without adding Dropout layers. 

3.  Adding  additional  fully  connected  layers  (Dense)  does  not  always  improve  model 

performance. In this study, models with one Dense  layer show better results compared to models 

with two Dense layers. 

4. Model training time increases with the number of layers and model dimension. Models with 

more layers and parameters require more time to train. The model with three LSTM layers, Dropout 

and Dense without  changing  the  forecast quality  on  20  epochs  required  twice  as much  time  for 

training compared to the model consisting of two LSTM layers and one Dropout and Dense. Based 

on the analysis, we can conclude that the optimal model has 2 LSTM layers, 1 Dropout layer and 1 

Dense layer. The error of the given model on the test data was MAPE = 4.79%. 

4.2. Evaluation of the Impact of Seasonal Components on the Efficiency of the Model 

The study of  the  influence of seasonality parameters on  the quality of  the LSTM model was 

carried out by adding various combinations of time factors to the input layer of the recurrent neural 

network. The seasonality parameters were month, time (hours and minutes), and day of the week 

type. The data for training the model was collected for two months ‐ September and October 2022. 

The short time interval did not allow us to fully assess the variation of the month during the year and 

its impact on the forecasting results. In practice, this can be eliminated by continuous retraining of 

the model, when, as new data is received, the model is constantly updated and adapted to new data. 

The «day type» factor had minimal variability and took only two values: a working day or a day off. 

Holidays and pre‐holiday days were not included in the training set. Nevertheless, the results shown 

in Figure 9 show that the inclusion of various combinations of seasonality parameters affects both the 

quality of forecasts and the training time of the model. 

The analysis results show  that  in the case when  the  input statistics did not  take  into account 

seasonal factors, the model showed the following results: MAPE – 4.77%, SMAPE – 4.71%, MAE – 8.0 

kPa, RMSE – 10.3 kPa. Adding day type as the only seasonal parameter  led to a slight  increase in 

MAPE to 4.81%, while SMAPE remained at 4.71%. Adding minute as the only seasonal parameter 

increased the MAPE and SMAPE values to 4.78%, and MAE – to 8.1 kPa. Using minute and day type 
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together  increased the training time, but did not  lead to a significant  improvement in the metrics. 

Taking  into account the hour of day  in the model  increased MAPE and SMAPE to 4.9%, and also 

increased MAE and RMSE. The best result was achieved when using all  four parameters: month, 

hour, minute, and day type. This resulted in a MAPE of 4.37%, SMAPE of 4.34%, MAE of 7.4 kPa and 

RMSE of 9.4 kPa. 

 

Figure 9. The influence of seasonal components on the quality of the pressure forecasting model. 

There are several key findings  from examining the  impact of seasonal components on model 

performance: 

1. Impact of Seasonality: Including seasonality parameters such as month, hour, minute, and day 

type  in  a model  improves  its  predictive  ability. Overall, models  that  include  these  parameters 

perform better on all evaluation metrics than models without seasonality parameters. This may be 

because these parameters help the model capture structure in the data that would be invisible without 

them. 

2. Training Time:  Including more  seasonality parameters  increases  the  training  time  for  the 

model, which  is due to the  larger number of parameters required to process and  train the model. 

However,  it  is  important  to  note  that  despite  the  increased  training  time,  models  with  more 

parameters generally perform better predictively. 

3. Optimal Combination: The lowest MAPE, SMAPE, MAE, and RMSE scores are demonstrated 

by the model that includes all four seasonality parameters: month, hour, minute, and day type. This 

indicates that using all of these parameters together results in improved forecast accuracy. 

It  is worth  noting  that  training  the model with  seasonal  components  does  not  change  the 

procedure for obtaining information from primary converters and does not increase the volume of 

the  database  stored  on  the  server.  Information  about  the month,  hour, minute  and  day  type  is 

extracted  through  the Unix  timestamp  transformation.  This  allows  seasonality  to  be  taken  into 

account in the data without additional accumulation of information. 

4.3. Finding the Optimal Number of Neurons in LSTM Model Layers 

The choice of  the model configuration  is based on  the grid  search method, which  is used  to 

determine the optimal number of neurons in the LSTM and Dense layers of the neural network [23–

25].  In accordance with  this method of model  training, an algorithm  for cyclic enumeration of all 

possible combinations of hyperparameters is implemented. To enumerate various combinations in 

each layer, a list of neurons for each of the three layers of the model (two LSTM layers and one Dense 

layer) with values of 50, 150 and 250 was formed. In the conducted study, 21 models were trained 
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with a total time cost of 110019 sec. (30.6 h). During the study, it was noted that an increase in the 

number of neurons in the first and second LSTM layers leads to a significant increase in the model 

training time. However, no corresponding improvement in the quality of model forecasts is observed. 

This confirms the assumption  that the complexity of the model does not always correlate with  its 

performance.  In  connection  with  the  above  observations,  it  was  decided  to  stop  the  cyclic 

enumeration  of  parameters  after  reaching  the  specified  configuration.  Figure  10  shows  the 

distribution diagram of  the MAPE  forecast  error  indicator when  changing neurons  in  the LSTM 

layers and one Dense model. 

 

Figure 10. The influence of seasonal components on the quality of the pressure forecasting model. 

According to the obtained results, it follows: 

1. The error rates vary in a small range. This indicates that changing the number of neurons in 

each layer does not lead to a significant improvement or deterioration in the accuracy of the forecast. 

The  lowest error  rates are observed  in experiments #3 and #21  (L1=50, L2=50, D=250 and L1=250, 

L2=50, D=250, respectively). This may indicate that increasing the number of neurons in the Dense 

layer with a relatively small number of neurons in the LSTM layers, taking into account the resource 

costs for training, may be more effective for the task under study. 

2. The training time of the models varies significantly and, as a rule, increases with an increase 

in the number of neurons. The fastest learning occurs with the smallest number of neurons (L1=50, 

L2=50, D=50), the slowest – with the largest (L1=150, L2=250, D=150 and L1=150, L2=250, D=250). 

3. In this problem, increasing the number of neurons in the layers does not always lead to an 

improvement  in  the  forecast accuracy. At  the same  time,  the  training  time  increases significantly, 

which can be critical with limited computing resources. Based on these results, we can conclude that 

the optimal configuration  is a model with 50 neurons  in  the LSTM  layers and 250 neurons  in  the 

Dense layer as the most optimal in terms of the ratio of forecast accuracy and training time. In some 

cases, the growth of neurons in the first LSTM layer leads to an improvement in the quality of the 

model. With limited resources, the LSTM and Dense layers can be reduced to 50 neurons, which leads 

to the minimum training time of the considered configurations. 

4.4. Selecting the Optimal Length of the Input and Output Data Sequence 

The length of the history sequence refers to the number of previous time steps that the model 

uses for training and subsequently for predicting the target variable. If the history depth is too small, 

the model may not have enough information to identify important time patterns, otherwise training 

the model may  become  complex  and  expensive  in  terms  of  computational  time. The  conducted 
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experiment to find the optimal ratio of the history length and the forecast horizon took 95257 seconds 

over 20 epochs of model training. In this case, various combinations of input and output data were 

tried with an assessment of the model quality metrics. In the conducted study, 20 different sets of 

parameters with history [12,24,36,48] and forecast [12,24,36,48,60] depths were considered. The figure 

shows the results of the analysis of the influence of the history depth and the forecast horizon length 

on the change in the MAPE metric over 20 epochs of model training. In Figure 11 shows the results 

of the analysis of the influence of the depth of history and the length of the forecasting horizon on 

the change in the MAPE metric for 20 epochs of model training. 

 

Figure 11. The influence of history depth and forecast horizon length on model quality. 

As a result of the experiment, the following conclusion can be made: 

1. With  an  increase  in  the  length of  the  input data  (history depth),  the model  training  time 

increases significantly, which is associated with an increase in the dimension of the data tensor, as a 

result of which more computing power and time are required to train the model. 

2. With an increase in the length of the forecasting horizon, no stable growth or decrease in the 

model quality metrics is observed. This may indicate that the dependence between the forecasting 

horizon and the quality of the model may be non‐linear or may change significantly depending on 

other factors. 

3. Models with fewer input and output data usually show better results in terms of quality and 

performance metrics. 

4.  In  certain  cases,  it was observed  that  an  increase  in  the  length of  the output data with a 

constant length of the input data leads to a deterioration in the quality of the model. 

Of particular interest is the change in the loss function during the model training process. To do 

this, the number of epochs was increased from 20 to 50 and the behavior of the mean square error 

was assessed for cases with 12, 24 and 60 time steps entering the LSTM model (Figure 12). 
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Figure 12. Change in the mean square error (loss function) with increasing number of training epochs. 

Analyzing the results of the experiment, we can conclude that with increasing history depth, a 

more stable behavior of the mean square error is observed without significant outliers. This indicates 

better convergence of the model, that is, optimal adjustment of weight coefficients during the training 

process when receiving a larger amount of input data. A stable decrease in the loss function indicates 

that the model is more effective in learning on data with 60 time steps compared to 12, but the training 

time for 200 epochs increased by 50%, the metric on the MAPE test data was 4.36%. 

4.4. LSTM Models Compared with Holt‐Winters Model 

An important step in the study is to demonstrate the advantages of deep learning models. For 

this purpose, the LSTM model used is compared with the classical simpler Holt‐Winters exponential 

smoothing model  [26]. Additive  seasonality with  a  period  of  288, which  characterizes  the  daily 

dynamics with 5‐minute pressure data, is used as the initial parameters of the exponential smoothing 

model. Comparison of the quality metrics of the models was carried out on test data, which included 

statistics including an emergency pressure drop at the inlet of the booster pumping station (Figure 

13). The LSTM model demonstrates a lower forecasting error compared to the Holt‐Winters model. 

The MAPE value for the LSTM model is 4.36%, while the Holt‐Winters model has an average absolute 

percentage error of 6.07%. The MAE metric was 7.35 and 9.86 kPA for the first and second models, 

respectively. Based on these results, it can be concluded that the LSTM model has a higher quality 

and provides more accurate data prediction. 
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Figure 13. Comparison of the Long Short‐Term Memory Model with the Holt‐Winters Model. 

It is worth paying special attention to the behavior of the model during an emergency pressure 

drop. In Figure 13, the LSTM model is built with a forecast for 12 steps (1 hour into the future), while 

the length of the historical data fed to the model was 60 values (5 hours of history). It is interesting to 

note that the recurrent neural network model is able to notice and respond to the falling pressure 

dynamics,  even  though  in  the  considered  example  the  training  sample had only one  emergency 

scenario. This indicates high sensitivity and the ability of the model to detect changes in time series, 

even  with  limited  data  at  the  time  of  a  sudden  pressure  drop,  which  does  not  allow  the 

implementation of the Holt‐Winters model. 

Conclusions 

In the course of this study, an information system for obtaining data on hydraulic pressure in a 

water supply system was developed. These data were subsequently used to train a long short‐term 

memory (LSTM) model designed to predict pressure in a water supply system and use these forecasts 

to create preventive methods for responding to accidents. An  important stage of the work was to 

study  the  influence  of  the  neural  network  architecture  on  its  performance.  It  was  found  that 

increasing  the  number  of  LSTM  layers  (up  to  2‐3)  and  using  regularization  layers  (Dropout) 

contributes to improving the forecast accuracy, while adding additional fully connected layers does 

not have a significant effect. The optimal configuration of the model includes two LSTM layers, one 

Dropout layer and one Dense layer, which provided minimal values of error metrics such as MAPE 

(4.79%).  In  addition,  a  study was  conducted  on  the  influence  of  seasonal  factors  on  forecasting 

accuracy. It was found that adding parameters such as month, hour, minute and day type leads to an 

improvement  in  the quality of  the model and a  reduction  in  forecast errors  (MAPE decreased  to 

4.37%). 

The influence of the number of neurons in the LSTM and Dense layers on the model performance 

was also assessed using  the grid  search method. Based on  the obtained data,  the optimal model 

configuration with 50 neurons in the LSTM layers and 250 neurons in the Dense layer was selected, 

which provided the best ratio of forecast accuracy and training time. In parallel, the influence of the 

length of the input and output sequences on the quality of the model was investigated. Increasing 

the  length  of  the  input  data  (history  depth)  improved  the  convergence  of  the model,  but  also 

increased  the  training  time. Models with  less data demonstrated  faster  results with  comparable 

forecast accuracy. This confirms that the optimal choice of history depth and forecast length depends 

on the computing resources and the tasks at hand. 
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In the final part of the work, the proposed LSTM model was compared with the classical Holt‐

Winters exponential smoothing model. The results showed that LSTM significantly outperforms the 

Holt‐Winters model  both  in  forecast  accuracy  (MAPE  4.36  versus  6.07%)  and  in  sensitivity  to 

emergency situations, such as a sharp drop in pressure. Thus, the experiments showed that the use 

of LSTM models for forecasting pressure in water supply systems significantly improves the accuracy 

of forecasts, especially when including seasonal factors and optimizing the model architecture. The 

study is not exhaustive, and other combinations of hyperparameters may be more effective for the 

task of forecasting water supply network pressure. 
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