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Article 

Assessing potential links between climate variability 

and mean and extreme surface temperatures through-

out the United States 

Jason Giovannettone 1,* 

1 Sisters of Mercy of the Americas, Silver Spring, MD, USA; jgiovannettone@sistersofmercy.org 

* Correspondence: jgiovannettone@sistersofmercy.org; Tel.: +16125546159 

Abstract: In order to better understand the extent to which global climate variability is linked to the 

frequency and intensity of heat waves and overall changes in temperature throughout the United 

States (US), correlations between long-term monthly mean, minimum, and maximum temperatures 

measured at sites throughout the contiguous US and low-frequency variability of multiple climate 

indices (CIs) are analyzed over the period 1948 to 2018 using correlation analysis. The Pearson’s 
correlation coefficient is used to assess correlation strength, while Leave-One-Out Cross-Validation 

and a bootstrapping technique (p-value) are used to address potential serial and spurious correla-

tion and assess the significance of each correlation. Three parameters defined the sliding windows 

over which surface temperature and CI values were averaged: window size, lag time between the 

temperature and CI windows, and the beginning month of the temperature window.  A 60-month 

sliding window size and 0 lag time resulted in the strongest correlations overall; beginning months 

were optimized on an individual site basis. Strong (r >= 0.60) and significant (p-value <= 0.05) cor-

relations were identified. The Western Hemisphere Warm Pool (WHWP) and El Niño/Southern Os-

cillation (ENSO) exhibited the strongest links to temperatures in the western US, tropical Atlantic 

sea surface temperatures to temperatures in the central US, the WHWP to temperatures throughout 

much of the eastern US, and atmospheric patterns over the northern Atlantic to temperatures in the 

Northeast and Southeast. The final results were compared to results from previous studies focused 

on precipitation and coastal sea levels. Regional consistency was found regarding links between the 

northern Atlantic and overall weather and coastal sea levels in the Northeast and Southeast as well 

as on weather in the upper Midwest.  Though the MJO and WHWP revealed dominant links with 

precipitation and temperature, respectively, throughout the West, ENSO revealed consistent links 

to sea levels and surface temperatures along the West Coast.  These results help focus future re-

search regarding specific mechanisms of climate variability that appear the exhibit strong links to 

US regional weather and sea level variability and prediction. 

Keywords: climate variability; climate indices; low-frequency oscillations; temperature; ENSO; heat 

waves; Western Hemisphere Warm Pool 

1. Introduction 

The most visible weather/climate trend that can be verifiably attributed to climate change is the 

persistent increase in global temperatures since the late 1700’s to early 1800’s. The Intergovernmental 
Panel on Climate Change (IPCC) regarded this causality as likely with very high confidence [1]. More 

recently, global temperatures have experienced a sudden acceleration over the last 50 years, resulting 

in overall rate of temperature rise that is unprecedented when compared to the previous 2000 years 

[1]. Mean global surface temperature in the most recent decade of 2011-2020 has increased by 0.95 to 

1.20°C compared to 1850-1900 and is very likely projected to rise further up to a total increase of 1.3 to 

2.4°C for the period of 2081-2100 when considering an intermediate-low emissions scenario (i.e., 

Shared Socio-economic Pathway 1 (SSP1)-2.6) [1].  
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Projected increases in annual mean surface temperature are not consistent globally or even 

within a particular country. For example, long-term (i.e., 2081-2100) increases of 2.0 to 3.0°C com-

pared to the recent past (i.e., 1995-2014) are projected in the Midwest and Northeast regions of the 

United States (US) based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) model 

simulations using the SSP1-2.6 emissions scenario, while a less extreme increase of 1.0 to 2.0°C is 

projected for the remainder of the US under the same scenario [2]. Lee et al. [2] also show that the 

projected rise throughout the US in the mid- and long-term scenarios using the higher intermediate-

high (i.e., SSP3-7.0) emissions scenario is more highly dependent on proximity to the ocean.  For 

example, consistent with past trends in land vs. ocean surface temperatures, temperatures through-

out the entire interior of the US are projected under SSP3-7.0 to increase by a maximum of 3.0°C for 

the period 2041-2060 relative to the recent past, while areas closer to the coasts are expected to expe-

rience a maximum increase of 2.0°C. 

In addition to the projected increases in the magnitude of mean, as well as extreme, tempera-

tures, the changing persistence of temperature extremes (i.e., heat waves) is of grave concern.  Per-

kins [3] describes heat waves as longer-than-normal periods of high temperatures that, in addition to 

wider contrasts between short-term and seasonal minimum and maximum temperatures, can signif-

icantly impact the natural and built environments (e.g., structural integrity of bridges and buildings 

and damage to pavements and railways) as well as have serious negative implications on human 

health and mortality [4]. Multiple studies have assessed past changes in the behavior of heat waves 

over the last several decades in the US [5] and globally [3, 6]. Regarding future projections, the effects 

of climate change on heat waves will likely be more severe in urban areas due to the “urban heat 
island” effect.  Zhang and Ayyub [7], for example, projected that the magnitude of heat waves being 

experienced in Washington, DC, will increase by about 5.7°C by 2100 using the high emissions green-

house gas emissions scenario or representative concentration pathway (RCP) RCP8.5; the authors 

also estimated that the frequency and duration of said heat waves will double in the same time frame. 

Vose et al. [8] also support projections of more intense heat waves in the future, but also projects a 

decrease in the intensity of cold extremes. In either case, an important aspect of extreme temperatures, 

whether hot or cold, is a clear understanding of the influence of climate variability.   

As climate change in the form of an increase in global carbon emissions has a clear effect on the 

increasing trend observed in mean ocean and global surface temperatures, extreme temperatures re-

sult from the added variance due to short-term climate variability superimposed on this trend, the 

basic mechanisms of which are still not well understood [9]. As ocean currents have a major influence 

on global weather, particularly regarding surface temperatures, the primary modes of climate varia-

bility considered in previous studies tend to focus on those that either directly characterize sea sur-

face temperatures (SSTs) (e.g., the Atlantic Multidecadal Oscillation (AMO), the Caribbean index 

(CAR), and the Western Hemisphere Warm Pool (WHWP) or atmospheric processes that have a 

strong influence on SSTs (e.g., the El Niño/Southern Oscillation (ENSO), the North Atlantic Oscilla-

tion (NAO), and the Pacific Decadal Oscillation (PDO)). 

ENSO is the leading mode of interannual SST variability throughout the tropical Pacific Ocean 

[10], and as such, has been found to have a significant impact on surface temperature variability in 

the US, particularly at the subseasonal time scale [11]. The specific mechanism by which ENSO affects 

US climate is through the generation of Rossby waves in the western subtropical North Pacific and 

the subsequent northward and then eastward propagation toward North America. ENSO’s influence 
on the North Pacific jet stream, particularly during its warm phase (i.e., El Niño) when water located 

along the equator in the eastern Pacific becomes anomalously warm, causes it to strengthen and ex-

tend farther eastward than average; the opposite effect is observed during ENSO’s cool phase (i.e., 
La Niña). Through the mechanisms mentioned above, ENSO has been found to influence sub-sea-

sonal surface air temperatures within multiple regions in the US: La Niña has been associated with 

extended periods of colder than normal temperatures in the northwestern and north-central US [10, 

12] during the winter months, while El Niño has been associated with warmer conditions over the 

Northeast during the winter and spring months and colder conditions over the Southeast during the 

autumn and winter months [13]. Various CIs that measure SSTs in different regions within the 
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equatorial eastern Pacific are used to characterize the current phase and strength of ENSO; these in-

clude the Multivariate ENSO Index (MEI) [14]; the Niño 1+2, 3, 3.4, and 4 regions; the Southern Os-

cillation Index (SOI) [15]; and the Trans-Niño Index (TNI) [16]. Refer to Figure 1 for approximate 

locations characterized by the ENSO as well as other CIs discussed.   

Similar to ENSO, the PDO experiences two phases that are characterized by changes in SSTs and 

atmospheric pressure in the North Pacific and as well as along the Pacific Coast, though the time 

scales over which these phases occur are longer. Warm phases of the PDO are characterized by cooler 

SSTs in the Central North Pacific and warmer SSTs along the western coast of North America [17]. 

During the winter and spring months (i.e. November – April), warm phases of the PDO are typically 

associated with anomalously warm temperatures in northwestern North America and along the West 

Coast and anomalously cool temperatures in the southeastern US; the reverse pattern occurs during 

the negative phase.   

An area of SSTs along the west coast of North America affected by ENSO and the PDO also 

includes a portion of what is referred to as the WHWP.  The WHWP is the second largest region of 

very warm water on Earth defined by water temperatures greater than 28.5°C. It includes a small 

portion of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western North Atlan-

tic [18–19]. Due to its high temperatures, the WHWP represents a significant source of heat to the 

atmosphere, which can have a substantial effect on temperatures throughout the contiguous US.  

Due to the fact that the WHWP encompasses the entire Florida Current, which eventually feeds into 

the Gulf Stream, the WHWP can impact land temperature along the East Coast as well. In addition, 

a connection between the WHWP and ENSO through a “tropospheric bridge” has been found to 
facilitate warmer SSTs in the tropical North Atlantic and WHWP during an El Niño event [20]. In 

addition, the CAR [21], which represents average SST anomalies within the Caribbean and thus is 

entirely located within the WHWP, can provide additional details in terms of the potential influence 

of SSTs south of the US on US surface temperatures. 

 

 

Figure 1. Locations characterized by various CIs in terms of SSTs and atmospheric behavior (i.e. pres-

sure and height anomalies). The CIs indicated by each abbreviation are defined in Table 1. 

Table 1. CIs (abbreviations and names) assessed along with their respective periods of record. De-

tailed definitions of each climate index can be found at NOAA [22]. 

CI (abb.) Climate Index Beginning Year 
Ending 

Year 

AO Arctic Oscillation 1950 2018 
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AMO Atlantic Multidecadal Oscillation 1948 2018 

CAR Caribbean Index 1950 2018 

EAWR Eastern Asia/Western Russia 1950 2013 

MEI Multivariate ENSO Index 1950 2018 

N12 Niño 1+2 1950 2018 

N3 Niño 3 1950 2018 

N34 Niño 3.4 1950 2018 

N4 Niño 4 1950 2018 

NAO North Atlantic Oscillation 1950 2018 

NTA North Tropical Atlantic index 1950 2018 

PDO Pacific Decadal Oscillation 1948 2018 

SOI Southern Oscillation Index 1951 2018 

TNI Trans-Niño Index 1948 2018 

TNA Tropical Northern Atlantic index 1948 2018 

TSA Tropical Southern Atlantic index 1948 2018 

WHWP Western Hemisphere Warm Pool 1948 2018 

Overlapping a significant portion of the eastern half of the WHWP, there are two CIs that char-

acterize SSTs over a large portion of the tropical North Atlantic while one CI additionally character-

izes SSTs in the equatorial and tropical South Atlantic.  The North Tropical Atlantic index (NTA) 

describes SSTs over the portion of the tropical North Atlantic extending from 6N to 18N between 

60°W and 20°W and from 6°N to 10°N between 20°W and 10°W [21]. Overlapping the NTA and ex-

tending further east, the Tropical Northern Atlantic index (TNA) characterizes the anomalies of av-

erage monthly SSTs over the portion of the tropical North Atlantic extending from 5.5°N to 

23.5°N/15°W to 57.5°W [23]. Further south, the Tropical Southern Atlantic index (TSA) characterizes 

SSTs from Equator to 20°S/10°E to 30°W [23]. The NTA and the TNA are especially important in any 

study of potential mechanisms by which temperatures within the US are modulated by SSTs due to 

a direct teleconnection between these CIs and ENSO.  During the El Nino phase eastward-propagat-

ing equatorial Kelvin waves transport tropospheric temperature changes from over the eastern and 

central tropical Pacific to the tropical North Atlantic [24]; an eastward shift and increased variability 

of ENSO due to global warming have been identified and may have significant effects on extreme 

SSTs and SST variability within both regions within the tropical Atlantic [25]. As an additional mech-

anism by which all three CIs may affect US surface temperatures, high SST anomalies within the 

tropical Atlantic (i.e., a region limited to SSTs of 28.5°C or greater) have been found to generate con-

vection over the Caribbean and anticyclonic circulation anomalies in the upper troposphere over the 

Gulf of Mexico and Great Plains, resulting in enhanced subsidence, reduced cloud cover, and higher 

surface warming for large parts of the US [26]. As such, these conditions were found to be associated 

with a higher frequency of heat waves for much of the US east of the Rocky Mountains.  

CIs that characterize atmospheric patterns over portions of the northern Atlantic Ocean have 

also been found to have significant impacts on US weather and temperatures.  The AO [27], for ex-

ample, is a large-scale climate pattern that describes the strength of counterclockwise-circulating 

winds at approximately 55°N latitude.  A belt of strong winds at this latitude strengthen during the 

positive phase of the AO, which results in colder air being confined to the polar regions.  Warming 

during the positive phase of AO has been found to be especially significant over the eastern third of 

the US during the winter months of January to March [28]. The negative phase is represented by a 

weakening of the wind belt, which allows the colder air to penetrate southward into the midlatitudes.  

The NAO [29–30], which is closely linked with the AO, characterizes atmospheric pressure patterns 

over Greenland and those associated with the Subtropical High near the Azores. The positive phase 

of the NAO is linked to below-average pressures over Greenland and the North Atlantic and above-

average pressure over the Azores as well as the eastern US and western Europe; opposite conditions 

are observed during the negative phase. Such pressure patterns tend to cause the eastern US to expe-

rience above average temperatures during strong positive phases of the NAO and below average 
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temperatures during strong negative phases [31].  Volkov et al. [32] have also demonstrated that 

large-scale heat divergence throughout the North Atlantic resulting from these atmospheric patterns 

results affects the temperature of the Florida Current, which can also have some effect on land surface 

temperature along the East Coast of the US. A third CI, the Eastern Asia Western Russia index 

(EAWR) [28], also characterizes atmospheric pressure anomalies within the central North Atlantic as 

well in Europe, northern China, and near the Caspian Sea.  Though previous studies regarding a 

potential connection between the EAWR and US land temperatures are sparse, there is evidence of a 

potential link with precipitation in portions of the US [33]; therefore, for the sake of completeness, 

the EAWR was considered in the current study. 

Encompassing a large area of the North Atlantic that significantly overlaps regions that are char-

acterized by the WHWP, NTA, TNA, NAO, and the EAWR, the AMO [34] provides a weighted av-

erage of SSTs from the Equator to approximately 70°N. Average SSTs in this region have been found 

to vary on a low-frequency multi-decadal time scale.  Due to its potential contribution to the PDO 

[35] and overall influence on northern hemisphere surface temperatures [36], particularly over North 

America and Europe, the AMO represents yet another CI that must be considered in any study on 

the effects of climate variability on temperatures in the US. 

Based on the discussion above, the present study consists of two parts. The first part attempts to 

link long-term average monthly mean, minimum, and maximum temperatures throughout the US to 

any one of a comprehensive set of CIs (see Table 1) in order to compare potential links between mean 

and extreme temperatures and the modes of climate variability represented by the CIs tested. The CIs 

considered include those characterizing atmospheric activity (i.e. pressure and height anomalies) and 

SSTs over and within portions of the central and northern Pacific and Atlantic Oceans and the Carib-

bean (see Figure 1 for approximate locations) and for which strong links to surface temperatures 

within the US have been previously identified or are plausible. The results would assist in identifying 

the existence of spatial patterns over which specific CIs exhibit a dominant link to long-term mean 

and/or extreme surface temperatures.  Such information would contribute to a better understanding 

of the long-term variability in mean temperature as well the intensity and frequency of heat waves. 

The data and methodology used to assess these links are discussed in Section 2, while the results of 

the analyses are provided in Section 3.  A discussion of how the final results fit or diverge from the 

narrative formed by previous studies as well as how they are or are not consistent with similar pre-

vious analyses related to precipitation and sea levels is provided in Section 4. Final concluding re-

marks are reserved for Section 5. 

2. Materials and Methods 

2.1. Data 

Monthly time series of mean, minimum, and maximum surface temperature collected from 1948 

to 2018 were obtained from the National Oceanographic and Atmospheric Administration (NOAA) 

United States Historical Climatology Network (USHCN) [37–38] database for sites located through-

out the contiguous US; the study area and site locations are shown in Figure 2. 

Mean values of monthly CI data were obtained from the NOAA Physical Sciences Laboratory 

(PSL) [22]. The current study considers numerous CIs (see Table 1 for the names and periods of record 

for each CI) characterizing regional atmospheric pressure or height anomalies and sea surface tem-

peratures (SSTs) over and within the Atlantic and Pacific Oceans and Caribbean. Only CIs that char-

acterize activity in or near regions where links to US surface temperatures have already been identi-

fied were considered. All CIs have similar periods of record to ensure consistency between the results.   

2.2. Correlation Strength and Significance 

The methodology used in the current study includes three major steps. The first step entailed 

collecting available monthly temperature data from the USGCN over the study period of January 

1948 to December 2018 at the sites shown in Figure 2; data was collected from a total of 1,218 sites. 
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The data were then formatted into an input file that could be read and analyzed by the HydroMetriks 

Climate Tool (Hydro-CLIM) developed by Giovannettone [39]. 

The second step involved using Hydro-CLIM and an R-script to estimate the correlation strength 

and significance, respectively, between long-term average monthly mean, minimum, and maximum 

surface temperatures and the CIs listed in Table 1 for all sites. Similar to the analyses performed in 

Giovannettone et al. [40] and Giovannettone [33] with regard to monthly precipitation throughout 

North and South America, the correlation analysis itself consisted of three parts. The first part in-

volved identifying three parameters required by Hydro-CLIM to perform the correlation analysis: 

sliding window size for long-term averaging, lag time between the temperature and CI sliding win-

dows, and the beginning month of each temperature sliding window. Correlation strength 

 

Figure 2. Locations of US Historical Climatology Network (USHCN) [37–38] temperature measure-

ment stations used throughout the US. 

(i.e., Pearson’s r) between surface temperature and each CI was performed using sliding win-

dows (SW) that ranged in size from 1 to 90 months using lag times (LT) ranging from 0 to 60 months. 

The mean temperature was then computed for all beginning months (BM = 1 to 12 (i.e., January to 

December)) using Equation (1): 

𝑺𝑻𝒕 = 𝟏𝑾 ∑ 𝑺𝑻𝒎𝑩𝑴+𝑾−𝟏
𝑩𝑴 ,                                  (𝟏)  

 

where 𝑺𝑻𝒕 is the average monthly mean, minimum, or maximum surface temperature com-

puted for each sliding window defined by a beginning m = BM of year t to an ending month of 

m=BM+W-1. Mean values of each CI were similarly calculated for all lag times (Equation (2)): 

𝑪𝑰𝒕 = 𝟏𝑾 ∑ 𝑪𝑰𝒎𝑩𝑴−𝑳𝑻+𝑾−𝟏
𝑩𝑴−𝑳𝑻 ,                              (𝟐)  

 

with the major exception being that the computation window is set back a number of months 

compared to the monthly temperature window equal to the lag time (LT) being considered. As was 

done in Giovannettone [33], sites must have a minimum of eight valid pairs of long-term mean SL/CI 

data (i.e., no data values are missing over at least 8 sliding windows). The overall optimal sliding 
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window size and lag time between the temperature and CI sliding windows were then identified and 

applied to all sites analyzed and used to identify the third site-specific parameter (i.e., beginning 

month) that resulted in maximum correlation at each site. Following optimization of all three param-

eters, one dominant CI that resulted in the highest magnitude of linear correlation was identified at 

each site for each temperature dataset.  

Since the potential effects of spurious and serial correlation on the results is a key concern in the 

type of analysis being performed, cross-validation and significance testing were performed on all 

correlation results. Initially, the Leave-One-Out Cross-Validation (LOOCV) technique [41] was used, 

after which the statistical significance of each correlation was estimated through a p-value that was 

computed using a bootstrap technique [42–43]. The correlation between surface temperatures and the 

dominant CI identified at each site for each temperature dataset was assumed to be strong and sig-

nificant, and thus retained in the final results, if the Pearson’s r value was greater than or equal to 
0.60 and the p-value was less than or equal to 0.05 (i.e., rejection of the "no correlation” null hypoth-

esis at the 95% confidence level). 

The final step in the current analysis involved combining the temperature correlation results 

with similar results pertaining to precipitation and sea levels provided by Giovannettone [33] and 

Giovannettone et al. [44], respectively, in an attempt to identify consistent links between regional 

weather and climate, as well as sea levels, that would help focus future research on the impacts of 

climate variability in these areas. Maps that clearly illustrate consistencies as well as differences be-

tween the links identified were developed.  

3. Results 

3.1. Optimal Sliding Window Size and Lag Time 

Preliminary correlation analyses were performed using a range of sliding window sizes and lag 

times.  The results of these analyses helped identify specific CIs (WHWP and TSA) that exhibited 

widespread dominant signals; these CIs were used to identify a sliding window size over which 

mean, maximum, and minimum surface temperatures and CI values were averaged as well as a lag 

time between the surface temperature and CI sliding windows that resulted in maximum correlation. 

Figure 3 shows the correlation results for sliding window sizes ranging from 1 to 90 months using 

zero lag time and an optimal site-specific beginning month for only those sites at which either the 

WHWP (Figure 3a) or the TSA (Figure 3b) exhibited a dominant correlation with mean surface tem-

peratures. As can be observed in Figure 3a, the correlation with the WHWP increases 
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(a). 

 

(b). 

Figure 3. Resulting correlation magnitudes at sites throughout the US at which mean surface temper-

ature correlates strongest with the (a) WHWP and (b) the TSA using sliding windows sizes ranging 

from 1 to 90 months and lag time = 0 months over the time period of 1948–2018. The dashed lines 

indicate the selected optimal sliding window size. 

steadily between window sizes of 0 to a local maximum of 60 months, after which the improve-

ment in correlation is minimal. Similar results can be seen in Figure 3b when considering the TSA.  

As a result of these findings and in order ensure consistency between all site correlation analyses, the 

sliding window size for all sites and surface temperature analyses was defined to be 60 months within 

the current study; this is consistent with the results from previous similar studies [39–40, 44].  

Similar tests to those performed above with regard to sliding window size were also performed 

in an attempt to identify an optimal lag time that could be used for all site analyses.  The range of 

lag times tested was 0 to 60 months using the previously identified optimal window size of 60 

months. It should be noted that such a large window size, in addition to the fact that only averaging 

windows within which there are no missing values are considered within each correlation analysis, 

will result in the number of data points used in each analysis being reduced compared to if shorter 

sliding windows had been utilized. This issue is alleviated by the fact that the period of record used 

throughout (i.e., 1948–2018) allows a large number of data points to be available even following long-

term averaging. Analysis using the range of lag times above was again  

only performed for sites with which the WHWP and TSA exhibited dominant correlation with 

mean surface temperature.  Correlation strength was not found to vary significantly over the range 

considered, though a slight peak was found at a lag time equal to 0 months (not shown).  Therefore, 

in order to ensure consistent comparisons between all sites, a standard lag time of 0 months was used 

was all future correlation analyses within the current study. 

3.2. Correlation Strength and Significance 

After determining the sliding window size and lag time that resulted in overall optimal correla-

tion, these parameters were used along with the site-specific optimal beginning month to identify the 

CI(s) that exhibited maximum correlation with long-term mean, maximum, and minimum surface 

temperatures at all sites over the period of record (1948-2018); a total of 1,218 sites were initially con-

sidered in each case. A wide range of correlation magnitudes were identified.  Following cross-
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validation, the percentage of sites at which the dominant correlation magnitude with respect to long-

term monthly mean, minimum, and maximum temperatures was estimated to be |r| >= 0.60 was 

80.0%, 86.7%, and 72.0%, respectively. Stronger correlations of at least |r| >= 0.80 were identified at 

19.8%, 17.3%, and 16.1% of sites for the same temperature datasets, respectively. The spatial distribu-

tions of correlation magnitude and significance for long-term average mean, minimum, and maxi-

mum temperatures are shown in Figures 4a, 4b, and 4c, respectively. It can be seen that the strongest 

significant correlations were identified throughout much of the western half of the US and in the 

Northeast for all three datasets. An area extending southeast from the northern Great Plains to the 

southern East Coast exhibited weaker and less significant correlations than the rest of the US in all 

cases; in the case of mean and maximum temperatures, it can be seen that the weakest and least 

significant correlations were found in the northern and central Great Plains.   

 

(a). 

 

(b). 
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(c). 

Figure 4. Results of correlation analyses using a sliding window size of 60 months and a lag time of 0 

months; results are given in terms of correlation magnitude (|r|) and significance (p-value) for long-

term average monthly (a) mean, (b) minimum, and (c) maximum surface temperatures. . 

Sites exhibiting a correlation strength greater than a selected threshold of |r| >= 0.60 and a sig-

nificance less than a selected threshold of p-value <= 0.05 were then retained to assess any spatial 

patterns that may exist with regard to the dominant CIs identified.  Application of these conditions 

to the correlation analyses involving long-term average mean, minimum, and maximum surface tem-

peratures resulted in 974 sites (80.0%), 1,050 sites (86.2%), and 876 sites (71.9%) being retained within 

each analysis, respectively. Lists of the CIs that exhibited dominance at a large majority of the sites 

for each analysis along with the percentage of sites at which they were found to be dominant are 

provided in Table 2. Refer to Figure 1 for the approximate locations characterized by each CI men-

tioned above.  

Beginning with mean temperatures, the WHWP, AMO, and TSA exhibited the strongest signif-

icant links (see Columns 1 and 2 in Table 2) at the highest percentage of sites (45.8%, 16.6%, and 13.3% 

of sites where a dominant strong and significant correlation was identified, respectfully).  The loca-

tions of these correlations as well as dominant correlations with the other CIs shown in the first two 

columns of Table 2 are illustrated in Figure 5a. Mean temperatures at sites throughout the western 

half of the US were predominantly linked to the WHWP, except for a thin strip of sites located along 

the West Coast that were more closely linked to NINO (as characterized by the CIs MEI, N3, N34, 

and N4). A dominant link with SSTs throughout the tropical North Atlantic as characterized by the 

AMO, NTA, TNA, and the EAWR can be observed throughout the southern Plains, the Appalachian 

Mountains, and the Northeast, while connections to Atlantic SSTs further north as characterized by 

the AO and NAO is observed along the southern East Coast as well as the portions of the Appalachian 

Mountains. Links associated with the NTA and TNA were reported as NTA/TNA due to the close 

proximity of both regions; links to the AO and NAO were reported as AO/NAO for the same reason. 

Finally, SSTs in the southern tropical Atlantic (i.e., TSA) were found to be the dominant link with 

mean surface temperatures through the northern Plains and the Midwest. The point should be made 

here that even though one dominant CI is shown for each site, multiple CIs were found to exhibit 

strong and significant correlations with temperatures at most sites. This means that if there are two 

or more CIs that exhibit similar correlation strengths, sites that are located nearby to each other may 

be characterized by dominant correlations with different CIs. 
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Table 2. Percentage of sites where CIs listed exhibit dominant strong and significant correlation with 

mean (Columns 1 & 2), minimum (Columns 3 & 4), and maximum (Columns 5 & 6) surface tempera-

ture using a sliding window size of 60 months and lag time = 0 over the period 1948–2018. 

CI % Sites CI % Sites CI % Sites 

WHWP 45.8 WHWP 38.1 WHWP 31.4 

AMO 16.6 TSA 28.1 AMO 27.4 

TSA 13.3 NINO 11.0 NTA/TNA 11.4 

NTA/TNA 11.2 NTA/TNA 8.6 TSA  8.7 

NINO 6.1 AMO 5.5 EAWR  7.1 

AO/NAO 2.5 EAWR 2.6 NINO  6.3 

EAWR 2.3 CAR 2.4 CAR  4.2 

CAR 1.4 AO/NAO 2.4 AO/NAO  1.8 

PDO 0.4 PDO 0.9 PDO  0.8 

Other 0.4 Other 0.5 Other  0.9 

 

 

 

(a). 

 

 (b). 
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(c). 

Figure 5. Spatial distributions of dominant CIs linked to (a) mean, (b) minimum, and (c) maximum 

monthly surface temperatures (window size = 60 months; lag = 0) for all sites at which |r| >= 0.60 and 

p <= 0.05 throughout the US during period 1948–2018. (See Table 1 for CI abbreviations.). 

The CIs exhibiting dominant correlations with average long-term minimum surface temperature 

at the largest percentage of sites is similar to that found for average temperatures (see Columns 3 and 

4 in Table 2) except for the fact that the dominance of the AMO was markedly less, while NINO (as 

characterized by the CIs MEI, N3, N34, N4, and the TNI) had a much larger spatial footprint. The 

WHWP remained the most dominant spatially at 38.1% of sites followed by the TSA at 28.1% and 

NINO at 11.0% of sites where a dominant strong and significant correlation was identified. The spa-

tial distribution of said correlations as well as the dominant correlations with other CIs shown in 

Columns 3 and 4 of Table 2 is illustrated in Figure 5b. Average minimum surface temperatures at 

sites throughout the western half of the US were still predominantly linked to the WHWP, but there 

was a much stronger NINO presence that extended to the western edge of the Plains states.  A dom-

inant link with SSTs throughout the tropical North Atlantic as characterized by the AMO and 

NTA/TNA was contained to a much smaller area over the southern Plains than was observed for 

mean temperatures, while the same link in the Northeast was of relatively similar spatial extent.  

There was also a much more widespread link to the WHWP throughout the East Coast and Southeast 

than was seen in Figure 4a, though SSTs in the northern Atlantic (i.e., AO and NAO) retained a small 

portion of the southeastern coast.  Finally, links to the TSA were much more pronounced and wide-

spread throughout the northern and central Plains, Midwest, and the Ohio River Valley than was 

observed for mean temperatures. 

The spatial distribution and extent to which the CIs mentioned above for mean and minimum 

temperatures was again similar when considering maximum surface temperatures except for a few 

key differences. The WHWP, AMO, and the NTA/TNA were found to be dominant at the greatest 

number of locations (namely at 31.4%, 27.4%, and 11.4% of sites where a strong and significant cor-

relation was identified, respectively).  The locations of these correlations as well as dominant corre-

lations with the other CIs shown in Columns 5 and 6 of Table 2 are illustrated in Figure 5c. While 

maximum surface temperatures at sites throughout the western half of the US were again predomi-

nantly linked to the WHWP with a thin strip of sites located along the West Coast closely linked to 

NINO (as characterized by the CIs MEI, N12, N3, N34, N4, and the SOI), the CAR exhibited domi-

nance at several western sites as well. The spatial extent of the link with tropical North Atlantic SSTs 

in the southern Plains was similar to that observed for mean temperatures, though the dominant 

correlation with the AMO extended much further east into the Tennessee and Ohio River Valleys as 

well as other portions of the Midwest. The dominance of the WHWP was much less pronounced 
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along the East Coast with the EAWR, AO, and NAO having a stronger presence in the Southeast as 

well as the AMO in the Northeast.  Finally, dominant links with the TSA were much less common, 

especially in the northern Great Plains where it was difficult to identify any dominant correlations 

with maximum surface temperatures that were both strong and significant. 

The results are consistent with those from previous studies with respect to the links between 

surface temperatures and ENSO along the West Coast and tropical Atlantic SSTs and temperatures 

in the Plains.  Additional discussion on this as well as on findings that have not been revealed in 

prior studies is provided in Section 4.  

4. Discussion 

Correlation analyses between long-term monthly mean, maximum, and minimum surface tem-

peratures and several climate indices (CIs) were performed over the period of record 1948–2018 in an 

attempt to identify spatially consistent links between various manifestations of climate variability 

and surface temperatures at sites located throughout the US. Analysis of long-term (60-month) aver-

ages of each temperature dataset revealed dominant links by a few prominent CIs: namely the ENSO 

CIs along the West Coast, the WHWP throughout the interior western half and a large portion of the 

eastern half of the US, the AMO in the southern Great Plains and Midwest, the NTA and TNA in the 

southern Great Plains and Northeast, the TSA throughout the northern Great Plains and Midwest, 

and the EAWR in the Southeast and Northeast.  These results are consistent with mechanisms iden-

tified in the literature as described previously and serve as a basis from which to identify potential 

CIs that deserve additional research regarding their effect on weather in a particular region of the US.    

The significant effect of SST variability within the Pacific Ocean and Gulf of Mexico on temper-

atures throughout the western half of the US is confirmed through the dominant correlations between 

long-term mean, maximum, and minimum temperatures and the CIs characterizing ENSO as well as 

the WHWP.  The influence of ENSO’s effect on Rossby waves from the west is especially obvious at 

sites located along the entire US West Coast where ENSO is most dominant.  

The dominant influence of SSTs either directly to the west or south declines significantly slightly 

as one moves slightly east of the Rocky Mountains into the Great Plains.  A strong link to the AMO 

manifests itself for all temperature datasets within the southern Plains.  This AMO region expands 

to the east when considering mean temperatures and further expands to the northeast when assessing 

the AMO’s potential link to monthly maximum temperatures.  The dominant link of northern (in 
this case tropical northern) Atlantic SSTs to all temperature types in the southern Plains is further 

confirmed by the added dominance of the NTA/TNA on the western border with the Rocky Moun-

tains.  In contrast, the northern Great Plains is dominated by the TSA for all temperature types, 

though the significant of these links progressively decreases moving from minimum to mean and on 

to maximum monthly surface temperatures.  Both links to the tropical Atlantic SSTs (and potentially 

to the AMO, though the AMO covers a much larger area that extends far north of the tropics), partic-

ularly in the case of maximum temperatures, supports prior research that has shown a significant 

effect of tropical Atlantic SSTs on the incidence of heat waves throughout the Great Plains [26], 

though it is interesting to note that the current suggest that this influence may extend much further 

to the east and northeast. 

Dominant links associated with atmospheric behavior over north of the tropical Atlantic was 

limited the Southeast and portions of the mid-Atlantic as well as the extreme Northeast when con-

sidering all temperature types.  Links with the AO and NAO were present in the Southeast and 

within a small area near the Shenandoah Valley in all cases as was a link between the EAWR and 

temperatures in the extreme Northeast.  When considering monthly maximum temperatures, a 

strong link with the EAWR also manifested itself over a large portion of the Southeast that included 

the states of Georgia and North and South Carolina. Such links are supported by prior studies previ-

ously mentioned [28–30, 32], especially proximity to the coast.  

Based on the results of the current study with regard to surface temperature, Figure 6a provides 

a clearer, but more general, representation of approximate regions over which the CIs mentioned 
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above were dominant.  The regions as shown do not depict the more detailed differences observed 

between long-term mean, minimum, and maximum monthly temperatures, but merely provide an 

overall assessment in order to guide future research and as a way to compare to similar analyses 

performed in prior studies. To this end, Figures 6b and 6c present similar maps that provide general 

assessments of results from prior studies focusing on long-term monthly precipitation [33] and sea 

levels [44], respectively.  One key difference that should be noted here is that due to the shorter pe-

riod of record over which data on the Madden-Julian Oscillation (MJO) is available, the MJO was not 

considered in the current study; as a result, comparisons with between Figures 6a and 6b for the 

western half of the US cannot be made based on the results presented, though additional results in 

Giovannettone [33] did indicate a strong link to ENSO when longer lag times were considered, which 

is consistent with some of the findings here and in Giovannettone et al. [44], though no lag times were 

used in both instances.   

 

(a). 

     

 (b). 
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(c). 

Figure 6. Spatial distributions of strong and significant (|r| >= 0.60 and p <= 0.05) correlations identi-

fied between the dominant CIs indicated and long-term (a) surface temperature, (b) precipitation, and 

sea levels using optimal lag times and beginning months as described (a) within the current study as 

well as (b) and (c), respectively. (See Table 1 for CI abbreviations.). 

Unlike in the western half of the US, some informed comparisons can be made throughout the 

eastern half.  The apparent links between atmospheric behavior over the northern Atlantic (i.e., 

AO/NAO and EAWR) and weather over the Northeast, the Shenandoah Valley, and a large portion 

of the Southeast is evident for both temperature and precipitation. Further evidence of potential tel-

econnections with the EAWR are evident in the fact that it represented the dominant CI with regard 

to long-term mean sea levels along both the Northeast and Southeast coastlines (Figure 6c). These 

results suggest that this potential weather and sea level connection to the EAWR should be studied 

in further detail as literature on this topic is extremely sparse if not nonexistent. The EAWR also 

presents an opportunity to identify teleconnections between weather in parts of the US and weather 

in other regions characterized by the EAWR (i.e., Caspian Sea, Europe, and northern China).   

5. Conclusions 

There is a lack of knowledge and data to identify communities and locations most at risk from 

extreme temperatures, particularly with respect to extended period of high temperatures (i.e., heat 

waves), which can have detrimental effects on human health and the natural and built environments. 

Such knowledge is crucial to make planning decisions related to decreasing vulnerability and increas-

ing resilience both now and in the future, particularly in the face of climate change. Due to the direct 

projected effects of climate change on mean and extreme temperatures, it is essential to be aware of 

the underlying mechanisms related to climate variability that can be linked to short- and long-term 

fluctuations in temperatures, on top of which the projected effects of climate change can be superim-

posed.   

In an attempt to understand some of the underlying mechanisms related to long-term tempera-

ture variability, potential links between several climate indices (CIs) and long-term average mean, 

minimum, and maximum surface temperatures were assessed during the study period 1948–2018. 

The CIs considered in the current study either characterized SSTs over portions of the eastern Pacific 

Ocean, the tropical Atlantic Ocean, and the Gulf of Mexico and Caribbean, or atmospheric behavior 

in terms of height and pressure anomalies over the northern Atlantic Ocean. It was found that the 

Western Hemisphere Warm Pool (WHWP), which characterized SSTs south of the US, exhibited the 

most widespread dominant link with mean and extreme temperatures throughout the western US 

and portions of the East. Dominant links with ENSO were also identified, though these were limited 
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to a thin region extending along the entire West Coast.  Dominant links to SSTs southeast of the US 

(as characterized by the AMO, NTA, TNA, and TSA) within the northern and southern tropical At-

lantic Ocean were found in all cases throughout the northern and southern Great Plains as well as 

the Great Lakes regions. Temperatures within large portions of the Northeast and Southeast were 

linked to changes in atmospheric patterns over the northern Atlantic as characterized by the AO, 

NAO, and EAWR. This is not surprising as the locations of atmospheric conditions characterized 

three CIs are adjacent to each other, though previous research has focused on the AO and NAO while 

devoting little attention to the EAWR.  Proposed ideas with regard to potential mechanisms were 

proposed, but additional research is required to confirm the level of causality regarding all links that 

were identified. 

The results from the current study were then compared to similar results from previous studies 

that were focused on long-term precipitation and sea levels in order to determine the extent to which 

similar links were found.  The dominance of the WHWP and ENSO in the West was shared by the 

temperature and sea level analyses, while the MJO revealed stronger links with precipitation.  An 

additional similarity that was found was the dominance of the EAWR in the Northeast for both 

weather parameters as well as long-term sea levels.  These results, as well as the current lack of re-

search related to any effects of the EAWR on weather and climate in the US, stress the need for future 

research focused in this area.  
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