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Abstract: In order to better understand the extent to which global climate variability is linked to the
frequency and intensity of heat waves and overall changes in temperature throughout the United
States (US), correlations between long-term monthly mean, minimum, and maximum temperatures
measured at sites throughout the contiguous US and low-frequency variability of multiple climate
indices (CIs) are analyzed over the period 1948 to 2018 using correlation analysis. The Pearson’s
correlation coefficient is used to assess correlation strength, while Leave-One-Out Cross-Validation
and a bootstrapping technique (p-value) are used to address potential serial and spurious correla-
tion and assess the significance of each correlation. Three parameters defined the sliding windows
over which surface temperature and CI values were averaged: window size, lag time between the
temperature and CI windows, and the beginning month of the temperature window. A 60-month
sliding window size and 0 lag time resulted in the strongest correlations overall; beginning months
were optimized on an individual site basis. Strong (r >= 0.60) and significant (p-value <= 0.05) cor-
relations were identified. The Western Hemisphere Warm Pool (WHWP) and El Nifo/Southern Os-
cillation (ENSO) exhibited the strongest links to temperatures in the western US, tropical Atlantic
sea surface temperatures to temperatures in the central US, the WHWP to temperatures throughout
much of the eastern US, and atmospheric patterns over the northern Atlantic to temperatures in the
Northeast and Southeast. The final results were compared to results from previous studies focused
on precipitation and coastal sea levels. Regional consistency was found regarding links between the
northern Atlantic and overall weather and coastal sea levels in the Northeast and Southeast as well
as on weather in the upper Midwest. Though the MJO and WHWP revealed dominant links with
precipitation and temperature, respectively, throughout the West, ENSO revealed consistent links
to sea levels and surface temperatures along the West Coast. These results help focus future re-
search regarding specific mechanisms of climate variability that appear the exhibit strong links to
US regional weather and sea level variability and prediction.

Keywords: climate variability; climate indices; low-frequency oscillations; temperature; ENSO; heat
waves; Western Hemisphere Warm Pool

1. Introduction

The most visible weather/climate trend that can be verifiably attributed to climate change is the
persistent increase in global temperatures since the late 1700’s to early 1800’s. The Intergovernmental
Panel on Climate Change (IPCC) regarded this causality as likely with very high confidence [1]. More
recently, global temperatures have experienced a sudden acceleration over the last 50 years, resulting
in overall rate of temperature rise that is unprecedented when compared to the previous 2000 years
[1]. Mean global surface temperature in the most recent decade of 2011-2020 has increased by 0.95 to
1.20°C compared to 1850-1900 and is very likely projected to rise further up to a total increase of 1.3 to
2.4°C for the period of 2081-2100 when considering an intermediate-low emissions scenario (i.e.,
Shared Socio-economic Pathway 1 (5SP1)-2.6) [1].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202306.1546.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2023 doi:10.20944/preprints202306.1546.v1

Projected increases in annual mean surface temperature are not consistent globally or even
within a particular country. For example, long-term (i.e., 2081-2100) increases of 2.0 to 3.0°C com-
pared to the recent past (i.e., 1995-2014) are projected in the Midwest and Northeast regions of the
United States (US) based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) model
simulations using the SSP1-2.6 emissions scenario, while a less extreme increase of 1.0 to 2.0°C is
projected for the remainder of the US under the same scenario [2]. Lee et al. [2] also show that the
projected rise throughout the US in the mid- and long-term scenarios using the higher intermediate-
high (i.e.,, SSP3-7.0) emissions scenario is more highly dependent on proximity to the ocean. For
example, consistent with past trends in land vs. ocean surface temperatures, temperatures through-
out the entire interior of the US are projected under SSP3-7.0 to increase by a maximum of 3.0°C for
the period 2041-2060 relative to the recent past, while areas closer to the coasts are expected to expe-
rience a maximum increase of 2.0°C.

In addition to the projected increases in the magnitude of mean, as well as extreme, tempera-
tures, the changing persistence of temperature extremes (i.e., heat waves) is of grave concern. Per-
kins [3] describes heat waves as longer-than-normal periods of high temperatures that, in addition to
wider contrasts between short-term and seasonal minimum and maximum temperatures, can signif-
icantly impact the natural and built environments (e.g., structural integrity of bridges and buildings
and damage to pavements and railways) as well as have serious negative implications on human
health and mortality [4]. Multiple studies have assessed past changes in the behavior of heat waves
over the last several decades in the US [5] and globally [3, 6]. Regarding future projections, the effects
of climate change on heat waves will likely be more severe in urban areas due to the “urban heat
island” effect. Zhang and Ayyub [7], for example, projected that the magnitude of heat waves being
experienced in Washington, DC, will increase by about 5.7°C by 2100 using the high emissions green-
house gas emissions scenario or representative concentration pathway (RCP) RCP8.5; the authors
also estimated that the frequency and duration of said heat waves will double in the same time frame.
Vose et al. [8] also support projections of more intense heat waves in the future, but also projects a
decrease in the intensity of cold extremes. In either case, an important aspect of extreme temperatures,
whether hot or cold, is a clear understanding of the influence of climate variability.

As climate change in the form of an increase in global carbon emissions has a clear effect on the
increasing trend observed in mean ocean and global surface temperatures, extreme temperatures re-
sult from the added variance due to short-term climate variability superimposed on this trend, the
basic mechanisms of which are still not well understood [9]. As ocean currents have a major influence
on global weather, particularly regarding surface temperatures, the primary modes of climate varia-
bility considered in previous studies tend to focus on those that either directly characterize sea sur-
face temperatures (SSTs) (e.g., the Atlantic Multidecadal Oscillation (AMO), the Caribbean index
(CAR), and the Western Hemisphere Warm Pool (WHWP) or atmospheric processes that have a
strong influence on SSTs (e.g., the El Nifio/Southern Oscillation (ENSO), the North Atlantic Oscilla-
tion (NAOQO), and the Pacific Decadal Oscillation (PDO)).

ENSO is the leading mode of interannual SST variability throughout the tropical Pacific Ocean
[10], and as such, has been found to have a significant impact on surface temperature variability in
the US, particularly at the subseasonal time scale [11]. The specific mechanism by which ENSO affects
US climate is through the generation of Rossby waves in the western subtropical North Pacific and
the subsequent northward and then eastward propagation toward North America. ENSO's influence
on the North Pacific jet stream, particularly during its warm phase (i.e., E1 Nifio) when water located
along the equator in the eastern Pacific becomes anomalously warm, causes it to strengthen and ex-
tend farther eastward than average; the opposite effect is observed during ENSO’s cool phase (i.e.,
La Nina). Through the mechanisms mentioned above, ENSO has been found to influence sub-sea-
sonal surface air temperatures within multiple regions in the US: La Nifia has been associated with
extended periods of colder than normal temperatures in the northwestern and north-central US [10,
12] during the winter months, while El Nifio has been associated with warmer conditions over the
Northeast during the winter and spring months and colder conditions over the Southeast during the
autumn and winter months [13]. Various CIs that measure SSTs in different regions within the
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equatorial eastern Pacific are used to characterize the current phase and strength of ENSO; these in-
clude the Multivariate ENSO Index (MEI) [14]; the Nifio 1+2, 3, 3.4, and 4 regions; the Southern Os-
cillation Index (SOI) [15]; and the Trans-Nino Index (TNI) [16]. Refer to Figure 1 for approximate
locations characterized by the ENSO as well as other Cls discussed.

Similar to ENSO, the PDO experiences two phases that are characterized by changes in SSTs and
atmospheric pressure in the North Pacific and as well as along the Pacific Coast, though the time
scales over which these phases occur are longer. Warm phases of the PDO are characterized by cooler
SSTs in the Central North Pacific and warmer SSTs along the western coast of North America [17].
During the winter and spring months (i.e. November — April), warm phases of the PDO are typically
associated with anomalously warm temperatures in northwestern North America and along the West
Coast and anomalously cool temperatures in the southeastern US; the reverse pattern occurs during
the negative phase.

An area of SSTs along the west coast of North America affected by ENSO and the PDO also
includes a portion of what is referred to as the WHWP. The WHWP is the second largest region of
very warm water on Earth defined by water temperatures greater than 28.5°C. It includes a small
portion of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western North Atlan-
tic [18-19]. Due to its high temperatures, the WHWP represents a significant source of heat to the
atmosphere, which can have a substantial effect on temperatures throughout the contiguous US.
Due to the fact that the WHWP encompasses the entire Florida Current, which eventually feeds into
the Gulf Stream, the WHWP can impact land temperature along the East Coast as well. In addition,
a connection between the WHWP and ENSO through a “tropospheric bridge” has been found to
facilitate warmer SSTs in the tropical North Atlantic and WHWP during an El Nifio event [20]. In
addition, the CAR [21], which represents average SST anomalies within the Caribbean and thus is
entirely located within the WHWP, can provide additional details in terms of the potential influence
of SSTs south of the US on US surface temperatures.

Figure 1. Locations characterized by various Cls in terms of SSTs and atmospheric behavior (i.e. pres-
sure and height anomalies). The CIs indicated by each abbreviation are defined in Table 1.

Table 1. Cls (abbreviations and names) assessed along with their respective periods of record. De-
tailed definitions of each climate index can be found at NOAA [22].

Ending
Year
AO Arctic Oscillation 1950 2018

CI (abb.) Climate Index Beginning Year
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AMO Atlantic Multidecadal Oscillation 1948 2018
CAR Caribbean Index 1950 2018
EAWR Eastern Asia/Western Russia 1950 2013
MEI Multivariate ENSO Index 1950 2018
N12 Nifio 1+2 1950 2018
N3 Nifio 3 1950 2018
N34 Nifio 3.4 1950 2018
N4 Nifio 4 1950 2018
NAO North Atlantic Oscillation 1950 2018
NTA North Tropical Atlantic index 1950 2018
PDO Pacific Decadal Oscillation 1948 2018
SOI Southern Oscillation Index 1951 2018
TNI Trans-Nino Index 1948 2018
TNA Tropical Northern Atlantic index 1948 2018
TSA Tropical Southern Atlantic index 1948 2018
WHWP Western Hemisphere Warm Pool 1948 2018

Overlapping a significant portion of the eastern half of the WHWP, there are two Cls that char-
acterize SSTs over a large portion of the tropical North Atlantic while one CI additionally character-
izes SSTs in the equatorial and tropical South Atlantic. The North Tropical Atlantic index (NTA)
describes SSTs over the portion of the tropical North Atlantic extending from 6N to 18N between
60°W and 20°W and from 6°N to 10°N between 20°W and 10°W [21]. Overlapping the NTA and ex-
tending further east, the Tropical Northern Atlantic index (TNA) characterizes the anomalies of av-
erage monthly SSTs over the portion of the tropical North Atlantic extending from 5.5°N to
23.5°N/15°W to 57.5°W [23]. Further south, the Tropical Southern Atlantic index (TSA) characterizes
SSTs from Equator to 20°5/10°E to 30°W [23]. The NTA and the TNA are especially important in any
study of potential mechanisms by which temperatures within the US are modulated by SSTs due to
a direct teleconnection between these Cls and ENSO. During the El Nino phase eastward-propagat-
ing equatorial Kelvin waves transport tropospheric temperature changes from over the eastern and
central tropical Pacific to the tropical North Atlantic [24]; an eastward shift and increased variability
of ENSO due to global warming have been identified and may have significant effects on extreme
SSTs and SST variability within both regions within the tropical Atlantic [25]. As an additional mech-
anism by which all three CIs may affect US surface temperatures, high SST anomalies within the
tropical Atlantic (i.e., a region limited to SSTs of 28.5°C or greater) have been found to generate con-
vection over the Caribbean and anticyclonic circulation anomalies in the upper troposphere over the
Gulf of Mexico and Great Plains, resulting in enhanced subsidence, reduced cloud cover, and higher
surface warming for large parts of the US [26]. As such, these conditions were found to be associated
with a higher frequency of heat waves for much of the US east of the Rocky Mountains.

CIs that characterize atmospheric patterns over portions of the northern Atlantic Ocean have
also been found to have significant impacts on US weather and temperatures. The AO [27], for ex-
ample, is a large-scale climate pattern that describes the strength of counterclockwise-circulating
winds at approximately 55°N latitude. A belt of strong winds at this latitude strengthen during the
positive phase of the AO, which results in colder air being confined to the polar regions. Warming
during the positive phase of AO has been found to be especially significant over the eastern third of
the US during the winter months of January to March [28]. The negative phase is represented by a
weakening of the wind belt, which allows the colder air to penetrate southward into the midlatitudes.
The NAO [29-30], which is closely linked with the AO, characterizes atmospheric pressure patterns
over Greenland and those associated with the Subtropical High near the Azores. The positive phase
of the NAO is linked to below-average pressures over Greenland and the North Atlantic and above-
average pressure over the Azores as well as the eastern US and western Europe; opposite conditions
are observed during the negative phase. Such pressure patterns tend to cause the eastern US to expe-
rience above average temperatures during strong positive phases of the NAO and below average
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temperatures during strong negative phases [31]. Volkov et al. [32] have also demonstrated that
large-scale heat divergence throughout the North Atlantic resulting from these atmospheric patterns
results affects the temperature of the Florida Current, which can also have some effect on land surface
temperature along the East Coast of the US. A third CI, the Eastern Asia Western Russia index
(EAWR) [28], also characterizes atmospheric pressure anomalies within the central North Atlantic as
well in Europe, northern China, and near the Caspian Sea. Though previous studies regarding a
potential connection between the EAWR and US land temperatures are sparse, there is evidence of a
potential link with precipitation in portions of the US [33]; therefore, for the sake of completeness,
the EAWR was considered in the current study.

Encompassing a large area of the North Atlantic that significantly overlaps regions that are char-
acterized by the WHWP, NTA, TNA, NAO, and the EAWR, the AMO [34] provides a weighted av-
erage of SSTs from the Equator to approximately 70°N. Average SSTs in this region have been found
to vary on a low-frequency multi-decadal time scale. Due to its potential contribution to the PDO
[35] and overall influence on northern hemisphere surface temperatures [36], particularly over North
America and Europe, the AMO represents yet another CI that must be considered in any study on
the effects of climate variability on temperatures in the US.

Based on the discussion above, the present study consists of two parts. The first part attempts to
link long-term average monthly mean, minimum, and maximum temperatures throughout the US to
any one of a comprehensive set of CIs (see Table 1) in order to compare potential links between mean
and extreme temperatures and the modes of climate variability represented by the Cls tested. The Cls
considered include those characterizing atmospheric activity (i.e. pressure and height anomalies) and
SSTs over and within portions of the central and northern Pacific and Atlantic Oceans and the Carib-
bean (see Figure 1 for approximate locations) and for which strong links to surface temperatures
within the US have been previously identified or are plausible. The results would assist in identifying
the existence of spatial patterns over which specific CIs exhibit a dominant link to long-term mean
and/or extreme surface temperatures. Such information would contribute to a better understanding
of the long-term variability in mean temperature as well the intensity and frequency of heat waves.
The data and methodology used to assess these links are discussed in Section 2, while the results of
the analyses are provided in Section 3. A discussion of how the final results fit or diverge from the
narrative formed by previous studies as well as how they are or are not consistent with similar pre-
vious analyses related to precipitation and sea levels is provided in Section 4. Final concluding re-
marks are reserved for Section 5.

2. Materials and Methods

2.1. Data

Monthly time series of mean, minimum, and maximum surface temperature collected from 1948
to 2018 were obtained from the National Oceanographic and Atmospheric Administration (NOAA)
United States Historical Climatology Network (USHCN) [37-38] database for sites located through-
out the contiguous US; the study area and site locations are shown in Figure 2.

Mean values of monthly CI data were obtained from the NOAA Physical Sciences Laboratory
(PSL) [22]. The current study considers numerous Cls (see Table 1 for the names and periods of record
for each CI) characterizing regional atmospheric pressure or height anomalies and sea surface tem-
peratures (SSTs) over and within the Atlantic and Pacific Oceans and Caribbean. Only ClIs that char-
acterize activity in or near regions where links to US surface temperatures have already been identi-
fied were considered. All CIs have similar periods of record to ensure consistency between the results.

2.2. Correlation Strength and Significance

The methodology used in the current study includes three major steps. The first step entailed
collecting available monthly temperature data from the USGCN over the study period of January
1948 to December 2018 at the sites shown in Figure 2; data was collected from a total of 1,218 sites.
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The data were then formatted into an input file that could be read and analyzed by the HydroMetriks
Climate Tool (Hydro-CLIM) developed by Giovannettone [39].

The second step involved using Hydro-CLIM and an R-script to estimate the correlation strength
and significance, respectively, between long-term average monthly mean, minimum, and maximum
surface temperatures and the CIs listed in Table 1 for all sites. Similar to the analyses performed in
Giovannettone et al. [40] and Giovannettone [33] with regard to monthly precipitation throughout
North and South America, the correlation analysis itself consisted of three parts. The first part in-
volved identifying three parameters required by Hydro-CLIM to perform the correlation analysis:
sliding window size for long-term averaging, lag time between the temperature and CI sliding win-
dows, and the beginning month of each temperature sliding window. Correlation strength

501

45/

401

lat

357

307

251

120 -100 -80

Figure 2. Locations of US Historical Climatology Network (USHCN) [37-38] temperature measure-
ment stations used throughout the US.

(i.e., Pearson’s r) between surface temperature and each CI was performed using sliding win-
dows (SW) that ranged in size from 1 to 90 months using lag times (LT) ranging from 0 to 60 months.
The mean temperature was then computed for all beginning months (BM =1 to 12 (i.e., January to
December)) using Equation (1):

BM+wW-1

— 1
ST, = z ST,,, 1)
BM

where ST, is the average monthly mean, minimum, or maximum surface temperature com-
puted for each sliding window defined by a beginning m = BM of year t to an ending month of
m=BM+W-1. Mean values of each CI were similarly calculated for all lag times (Equation (2)):
BM-LT+W-1
Cl =+ Z Cl,, (2)

BM-LT

with the major exception being that the computation window is set back a number of months
compared to the monthly temperature window equal to the lag time (LT) being considered. As was
done in Giovannettone [33], sites must have a minimum of eight valid pairs of long-term mean SL/CI
data (i.e., no data values are missing over at least 8 sliding windows). The overall optimal sliding
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window size and lag time between the temperature and CI sliding windows were then identified and
applied to all sites analyzed and used to identify the third site-specific parameter (i.e., beginning
month) that resulted in maximum correlation at each site. Following optimization of all three param-
eters, one dominant CI that resulted in the highest magnitude of linear correlation was identified at
each site for each temperature dataset.

Since the potential effects of spurious and serial correlation on the results is a key concern in the
type of analysis being performed, cross-validation and significance testing were performed on all
correlation results. Initially, the Leave-One-Out Cross-Validation (LOOCV) technique [41] was used,
after which the statistical significance of each correlation was estimated through a p-value that was
computed using a bootstrap technique [42—43]. The correlation between surface temperatures and the
dominant CI identified at each site for each temperature dataset was assumed to be strong and sig-
nificant, and thus retained in the final results, if the Pearson’s r value was greater than or equal to
0.60 and the p-value was less than or equal to 0.05 (i.e., rejection of the "no correlation” null hypoth-
esis at the 95% confidence level).

The final step in the current analysis involved combining the temperature correlation results
with similar results pertaining to precipitation and sea levels provided by Giovannettone [33] and
Giovannettone et al. [44], respectively, in an attempt to identify consistent links between regional
weather and climate, as well as sea levels, that would help focus future research on the impacts of
climate variability in these areas. Maps that clearly illustrate consistencies as well as differences be-
tween the links identified were developed.

3. Results

3.1. Optimal Sliding Window Size and Lag Time

Preliminary correlation analyses were performed using a range of sliding window sizes and lag
times. The results of these analyses helped identify specific CIs (WHWP and TSA) that exhibited
widespread dominant signals; these Cls were used to identify a sliding window size over which
mean, maximum, and minimum surface temperatures and CI values were averaged as well as a lag
time between the surface temperature and CI sliding windows that resulted in maximum correlation.
Figure 3 shows the correlation results for sliding window sizes ranging from 1 to 90 months using
zero lag time and an optimal site-specific beginning month for only those sites at which either the
WHWP (Figure 3a) or the TSA (Figure 3b) exhibited a dominant correlation with mean surface tem-
peratures. As can be observed in Figure 3a, the correlation with the WHWP increases

o
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Figure 3. Resulting correlation magnitudes at sites throughout the US at which mean surface temper-
ature correlates strongest with the (a) WHWP and (b) the TSA using sliding windows sizes ranging
from 1 to 90 months and lag time = 0 months over the time period of 1948-2018. The dashed lines
indicate the selected optimal sliding window size.

steadily between window sizes of 0 to a local maximum of 60 months, after which the improve-
ment in correlation is minimal. Similar results can be seen in Figure 3b when considering the TSA.
As a result of these findings and in order ensure consistency between all site correlation analyses, the
sliding window size for all sites and surface temperature analyses was defined to be 60 months within
the current study; this is consistent with the results from previous similar studies [39—40, 44].

Similar tests to those performed above with regard to sliding window size were also performed
in an attempt to identify an optimal lag time that could be used for all site analyses. The range of
lag times tested was 0 to 60 months using the previously identified optimal window size of 60
months. It should be noted that such a large window size, in addition to the fact that only averaging
windows within which there are no missing values are considered within each correlation analysis,
will result in the number of data points used in each analysis being reduced compared to if shorter
sliding windows had been utilized. This issue is alleviated by the fact that the period of record used
throughout (i.e., 1948-2018) allows a large number of data points to be available even following long-
term averaging. Analysis using the range of lag times above was again

only performed for sites with which the WHWP and TSA exhibited dominant correlation with
mean surface temperature. Correlation strength was not found to vary significantly over the range
considered, though a slight peak was found at a lag time equal to 0 months (not shown). Therefore,
in order to ensure consistent comparisons between all sites, a standard lag time of 0 months was used
was all future correlation analyses within the current study.

3.2. Correlation Strength and Significance

After determining the sliding window size and lag time that resulted in overall optimal correla-
tion, these parameters were used along with the site-specific optimal beginning month to identify the
CI(s) that exhibited maximum correlation with long-term mean, maximum, and minimum surface
temperatures at all sites over the period of record (1948-2018); a total of 1,218 sites were initially con-
sidered in each case. A wide range of correlation magnitudes were identified. Following cross-
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validation, the percentage of sites at which the dominant correlation magnitude with respect to long-
term monthly mean, minimum, and maximum temperatures was estimated to be Irl >= 0.60 was
80.0%, 86.7%, and 72.0%, respectively. Stronger correlations of at least |r| >= 0.80 were identified at
19.8%, 17.3%, and 16.1% of sites for the same temperature datasets, respectively. The spatial distribu-
tions of correlation magnitude and significance for long-term average mean, minimum, and maxi-
mum temperatures are shown in Figures 4a, 4b, and 4c, respectively. It can be seen that the strongest
significant correlations were identified throughout much of the western half of the US and in the
Northeast for all three datasets. An area extending southeast from the northern Great Plains to the
southern East Coast exhibited weaker and less significant correlations than the rest of the US in all
cases; in the case of mean and maximum temperatures, it can be seen that the weakest and least
significant correlations were found in the northern and central Great Plains.
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Figure 4. Results of correlation analyses using a sliding window size of 60 months and a lag time of 0
months; results are given in terms of correlation magnitude (Irl) and significance (p-value) for long-
term average monthly (a) mean, (b) minimum, and (c) maximum surface temperatures. .

Sites exhibiting a correlation strength greater than a selected threshold of Ir| >=0.60 and a sig-
nificance less than a selected threshold of p-value <= 0.05 were then retained to assess any spatial
patterns that may exist with regard to the dominant ClIs identified. Application of these conditions
to the correlation analyses involving long-term average mean, minimum, and maximum surface tem-
peratures resulted in 974 sites (80.0%), 1,050 sites (86.2%), and 876 sites (71.9%) being retained within
each analysis, respectively. Lists of the Cls that exhibited dominance at a large majority of the sites
for each analysis along with the percentage of sites at which they were found to be dominant are
provided in Table 2. Refer to Figure 1 for the approximate locations characterized by each CI men-
tioned above.

Beginning with mean temperatures, the WHWP, AMO, and TSA exhibited the strongest signif-
icant links (see Columns 1 and 2 in Table 2) at the highest percentage of sites (45.8%, 16.6%, and 13.3%
of sites where a dominant strong and significant correlation was identified, respectfully). The loca-
tions of these correlations as well as dominant correlations with the other CIs shown in the first two
columns of Table 2 are illustrated in Figure 5a. Mean temperatures at sites throughout the western
half of the US were predominantly linked to the WHWP, except for a thin strip of sites located along
the West Coast that were more closely linked to NINO (as characterized by the CIs MEI, N3, N34,
and N4). A dominant link with SSTs throughout the tropical North Atlantic as characterized by the
AMO, NTA, TNA, and the EAWR can be observed throughout the southern Plains, the Appalachian
Mountains, and the Northeast, while connections to Atlantic SSTs further north as characterized by
the AO and NAO is observed along the southern East Coast as well as the portions of the Appalachian
Mountains. Links associated with the NTA and TNA were reported as NTA/TNA due to the close
proximity of both regions; links to the AO and NAO were reported as AO/NAO for the same reason.
Finally, SSTs in the southern tropical Atlantic (i.e., TSA) were found to be the dominant link with
mean surface temperatures through the northern Plains and the Midwest. The point should be made
here that even though one dominant CI is shown for each site, multiple CIs were found to exhibit
strong and significant correlations with temperatures at most sites. This means that if there are two
or more Cls that exhibit similar correlation strengths, sites that are located nearby to each other may
be characterized by dominant correlations with different Cls.
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Table 2. Percentage of sites where ClIs listed exhibit dominant strong and significant correlation with
mean (Columns 1 & 2), minimum (Columns 3 & 4), and maximum (Columns 5 & 6) surface tempera-
ture using a sliding window size of 60 months and lag time = 0 over the period 1948-2018.

CI % Sites CI % Sites CI % Sites
WHWP 45.8 WHWP 38.1 WHWP 314
AMO 16.6 TSA 28.1 AMO 27.4
TSA 13.3 NINO 11.0 NTA/TNA 114
NTA/TNA 11.2 NTA/TNA 8.6 TSA 8.7
NINO 6.1 AMO 55 EAWR 7.1
AO/NAO 25 EAWR 2.6 NINO 6.3
EAWR 2.3 CAR 2.4 CAR 4.2
CAR 14 AO/NAO 2.4 AO/NAO 1.8
PDO 04 PDO 0.9 PDO 0.8
Other 0.4 Other 0.5 Other 0.9
50
Cl
] O AMO
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Figure 5. Spatial distributions of dominant CIs linked to (a) mean, (b) minimum, and (c) maximum
monthly surface temperatures (window size = 60 months; lag = 0) for all sites at which |r| >=0.60 and
p <= 0.05 throughout the US during period 1948-2018. (See Table 1 for CI abbreviations.).

The ClIs exhibiting dominant correlations with average long-term minimum surface temperature
at the largest percentage of sites is similar to that found for average temperatures (see Columns 3 and
4 in Table 2) except for the fact that the dominance of the AMO was markedly less, while NINO (as
characterized by the CIs MEI, N3, N34, N4, and the TNI) had a much larger spatial footprint. The
WHWP remained the most dominant spatially at 38.1% of sites followed by the TSA at 28.1% and
NINO at 11.0% of sites where a dominant strong and significant correlation was identified. The spa-
tial distribution of said correlations as well as the dominant correlations with other CIs shown in
Columns 3 and 4 of Table 2 is illustrated in Figure 5b. Average minimum surface temperatures at
sites throughout the western half of the US were still predominantly linked to the WHWP, but there
was a much stronger NINO presence that extended to the western edge of the Plains states. A dom-
inant link with SSTs throughout the tropical North Atlantic as characterized by the AMO and
NTA/TNA was contained to a much smaller area over the southern Plains than was observed for
mean temperatures, while the same link in the Northeast was of relatively similar spatial extent.
There was also a much more widespread link to the WHWP throughout the East Coast and Southeast
than was seen in Figure 4a, though SSTs in the northern Atlantic (i.e., AO and NAO) retained a small
portion of the southeastern coast. Finally, links to the TSA were much more pronounced and wide-
spread throughout the northern and central Plains, Midwest, and the Ohio River Valley than was
observed for mean temperatures.

The spatial distribution and extent to which the CIs mentioned above for mean and minimum
temperatures was again similar when considering maximum surface temperatures except for a few
key differences. The WHWP, AMO, and the NTA/TNA were found to be dominant at the greatest
number of locations (namely at 31.4%, 27.4%, and 11.4% of sites where a strong and significant cor-
relation was identified, respectively). The locations of these correlations as well as dominant corre-
lations with the other CIs shown in Columns 5 and 6 of Table 2 are illustrated in Figure 5c. While
maximum surface temperatures at sites throughout the western half of the US were again predomi-
nantly linked to the WHWP with a thin strip of sites located along the West Coast closely linked to
NINO (as characterized by the CIs MEI, N12, N3, N34, N4, and the SOI), the CAR exhibited domi-
nance at several western sites as well. The spatial extent of the link with tropical North Atlantic SSTs
in the southern Plains was similar to that observed for mean temperatures, though the dominant
correlation with the AMO extended much further east into the Tennessee and Ohio River Valleys as
well as other portions of the Midwest. The dominance of the WHWP was much less pronounced
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along the East Coast with the EAWR, AO, and NAO having a stronger presence in the Southeast as
well as the AMO in the Northeast. Finally, dominant links with the TSA were much less common,
especially in the northern Great Plains where it was difficult to identify any dominant correlations
with maximum surface temperatures that were both strong and significant.

The results are consistent with those from previous studies with respect to the links between
surface temperatures and ENSO along the West Coast and tropical Atlantic SSTs and temperatures
in the Plains. Additional discussion on this as well as on findings that have not been revealed in
prior studies is provided in Section 4.

4. Discussion

Correlation analyses between long-term monthly mean, maximum, and minimum surface tem-
peratures and several climate indices (Cls) were performed over the period of record 1948-2018 in an
attempt to identify spatially consistent links between various manifestations of climate variability
and surface temperatures at sites located throughout the US. Analysis of long-term (60-month) aver-
ages of each temperature dataset revealed dominant links by a few prominent Cls: namely the ENSO
ClIs along the West Coast, the WHWP throughout the interior western half and a large portion of the
eastern half of the US, the AMO in the southern Great Plains and Midwest, the NTA and TNA in the
southern Great Plains and Northeast, the TSA throughout the northern Great Plains and Midwest,
and the EAWR in the Southeast and Northeast. These results are consistent with mechanisms iden-
tified in the literature as described previously and serve as a basis from which to identify potential
ClIs that deserve additional research regarding their effect on weather in a particular region of the US.

The significant effect of SST variability within the Pacific Ocean and Gulf of Mexico on temper-
atures throughout the western half of the US is confirmed through the dominant correlations between
long-term mean, maximum, and minimum temperatures and the CIs characterizing ENSO as well as
the WHWP. The influence of ENSO's effect on Rossby waves from the west is especially obvious at
sites located along the entire US West Coast where ENSO is most dominant.

The dominant influence of SSTs either directly to the west or south declines significantly slightly
as one moves slightly east of the Rocky Mountains into the Great Plains. A strong link to the AMO
manifests itself for all temperature datasets within the southern Plains. This AMO region expands
to the east when considering mean temperatures and further expands to the northeast when assessing
the AMO'’s potential link to monthly maximum temperatures. The dominant link of northern (in
this case tropical northern) Atlantic SSTs to all temperature types in the southern Plains is further
confirmed by the added dominance of the NTA/TNA on the western border with the Rocky Moun-
tains. In contrast, the northern Great Plains is dominated by the TSA for all temperature types,
though the significant of these links progressively decreases moving from minimum to mean and on
to maximum monthly surface temperatures. Both links to the tropical Atlantic SSTs (and potentially
to the AMO, though the AMO covers a much larger area that extends far north of the tropics), partic-
ularly in the case of maximum temperatures, supports prior research that has shown a significant
effect of tropical Atlantic SSTs on the incidence of heat waves throughout the Great Plains [26],
though it is interesting to note that the current suggest that this influence may extend much further
to the east and northeast.

Dominant links associated with atmospheric behavior over north of the tropical Atlantic was
limited the Southeast and portions of the mid-Atlantic as well as the extreme Northeast when con-
sidering all temperature types. Links with the AO and NAO were present in the Southeast and
within a small area near the Shenandoah Valley in all cases as was a link between the EAWR and
temperatures in the extreme Northeast. When considering monthly maximum temperatures, a
strong link with the EAWR also manifested itself over a large portion of the Southeast that included
the states of Georgia and North and South Carolina. Such links are supported by prior studies previ-
ously mentioned [28-30, 32], especially proximity to the coast.

Based on the results of the current study with regard to surface temperature, Figure 6a provides
a clearer, but more general, representation of approximate regions over which the CIs mentioned
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above were dominant. The regions as shown do not depict the more detailed differences observed
between long-term mean, minimum, and maximum monthly temperatures, but merely provide an
overall assessment in order to guide future research and as a way to compare to similar analyses
performed in prior studies. To this end, Figures 6b and 6¢ present similar maps that provide general
assessments of results from prior studies focusing on long-term monthly precipitation [33] and sea
levels [44], respectively. One key difference that should be noted here is that due to the shorter pe-
riod of record over which data on the Madden-Julian Oscillation (MJO) is available, the MJO was not
considered in the current study; as a result, comparisons with between Figures 6a and 6b for the
western half of the US cannot be made based on the results presented, though additional results in
Giovannettone [33] did indicate a strong link to ENSO when longer lag times were considered, which
is consistent with some of the findings here and in Giovannettone et al. [44], though no lag times were
used in both instances.
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Figure 6. Spatial distributions of strong and significant (Ir| >=0.60 and p <= 0.05) correlations identi-
fied between the dominant CIs indicated and long-term (a) surface temperature, (b) precipitation, and
sea levels using optimal lag times and beginning months as described (a) within the current study as
well as (b) and (c), respectively. (See Table 1 for CI abbreviations.).

Unlike in the western half of the US, some informed comparisons can be made throughout the
eastern half. The apparent links between atmospheric behavior over the northern Atlantic (i.e.,
AO/NAO and EAWR) and weather over the Northeast, the Shenandoah Valley, and a large portion
of the Southeast is evident for both temperature and precipitation. Further evidence of potential tel-
econnections with the EAWR are evident in the fact that it represented the dominant CI with regard
to long-term mean sea levels along both the Northeast and Southeast coastlines (Figure 6¢). These
results suggest that this potential weather and sea level connection to the EAWR should be studied
in further detail as literature on this topic is extremely sparse if not nonexistent. The EAWR also
presents an opportunity to identify teleconnections between weather in parts of the US and weather
in other regions characterized by the EAWR (i.e., Caspian Sea, Europe, and northern China).

5. Conclusions

There is a lack of knowledge and data to identify communities and locations most at risk from
extreme temperatures, particularly with respect to extended period of high temperatures (i.e., heat
waves), which can have detrimental effects on human health and the natural and built environments.
Such knowledge is crucial to make planning decisions related to decreasing vulnerability and increas-
ing resilience both now and in the future, particularly in the face of climate change. Due to the direct
projected effects of climate change on mean and extreme temperatures, it is essential to be aware of
the underlying mechanisms related to climate variability that can be linked to short- and long-term
fluctuations in temperatures, on top of which the projected effects of climate change can be superim-
posed.

In an attempt to understand some of the underlying mechanisms related to long-term tempera-
ture variability, potential links between several climate indices (Cls) and long-term average mean,
minimum, and maximum surface temperatures were assessed during the study period 1948-2018.
The CIs considered in the current study either characterized SSTs over portions of the eastern Pacific
Ocean, the tropical Atlantic Ocean, and the Gulf of Mexico and Caribbean, or atmospheric behavior
in terms of height and pressure anomalies over the northern Atlantic Ocean. It was found that the
Western Hemisphere Warm Pool (WHWP), which characterized SSTs south of the US, exhibited the
most widespread dominant link with mean and extreme temperatures throughout the western US
and portions of the East. Dominant links with ENSO were also identified, though these were limited
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to a thin region extending along the entire West Coast. Dominant links to SSTs southeast of the US
(as characterized by the AMO, NTA, TNA, and TSA) within the northern and southern tropical At-
lantic Ocean were found in all cases throughout the northern and southern Great Plains as well as
the Great Lakes regions. Temperatures within large portions of the Northeast and Southeast were
linked to changes in atmospheric patterns over the northern Atlantic as characterized by the AO,
NAO, and EAWR. This is not surprising as the locations of atmospheric conditions characterized
three Cls are adjacent to each other, though previous research has focused on the AO and NAO while
devoting little attention to the EAWR. Proposed ideas with regard to potential mechanisms were
proposed, but additional research is required to confirm the level of causality regarding all links that
were identified.

The results from the current study were then compared to similar results from previous studies
that were focused on long-term precipitation and sea levels in order to determine the extent to which
similar links were found. The dominance of the WHWP and ENSO in the West was shared by the
temperature and sea level analyses, while the MJO revealed stronger links with precipitation. An
additional similarity that was found was the dominance of the EAWR in the Northeast for both
weather parameters as well as long-term sea levels. These results, as well as the current lack of re-
search related to any effects of the EAWR on weather and climate in the US, stress the need for future
research focused in this area.
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