
Review Not peer-reviewed version

Computational Architectures for

Precision Dairy Nutrition Digital Twins: A

Technical Review and Implementation

Framework

Shreya Rao and Suresh Neethirajan *

Posted Date: 30 June 2025

doi: 10.20944/preprints202506.2401.v1

Keywords: digital twin; precision dairy nutrition; livestock monitoring; edge computing in agriculture; hybrid

modeling; sensor fusion; smart farming; sustainable livestock systems; real-time data integration

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4561493
https://sciprofiles.com/profile/88013


 

 

Review 

Computational Architectures for Precision Dairy 

Nutrition Digital Twins: A Technical Review and 

Implementation Framework 

Shreya Rao 1 and Suresh Neethirajan 2,* 

1  Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS B3H 4R2, Canada 

2  Faculty of Agriculture, Dalhousie University, Truro, NS B3H 4R2, Canada 

*  Correspondence: sureshraja@dal.ca 

Abstract 

Sensor‐enabled digital twins (DTs) are reshaping precision dairy nutrition by seamlessly integrating 

real‐time barn telemetry with advanced biophysical simulations in the cloud. Drawing insights from 

122 peer‐reviewed studies spanning 2010–2025, this systematic review reveals how DT architectures 

for dairy cattle are conceptualized, validated, and deployed. We introduce a novel five‐dimensional 

classification  framework—spanning  application  domain,  modeling  paradigms,  computational 

topology, validation protocols, and  implementation maturity—to provide a coherent comparative 

lens  across  diverse  DT  implementations.  Hybrid  edge‐cloud  architectures  emerge  as  optimal 

solutions, with lightweight CNN‐LSTM models embedded in collar or rumen‐bolus microcontrollers 

achieving  over  90%  accuracy  in  recognizing  feeding  and  rumination  behaviors.  Simultaneously, 

remote  cloud  systems  harness mechanistic  fermentation  simulations  and multi‐objective  genetic 

algorithms to optimize feed composition, minimize greenhouse gas emissions, and balance amino‐

acid  nutrition.  Field‐tested  prototypes  indicate  significant  agronomic  benefits,  including  15–20% 

enhancements  in feed conversion efficiency and water use reductions of up to 40%. Nevertheless, 

critical  challenges  remain:  effectively  fusing  heterogeneous  sensor  data  amid  high  barn  noise, 

ensuring  millisecond‐level  synchronization  across  unreliable  rural  networks,  and  rigorously 

verifying AI‐generated nutritional recommendations across varying genotypes, lactation phases, and 

climates. Overcoming these gaps necessitates integrating explainable AI with biologically grounded 

digestion models,  federated  learning protocols  for data privacy, and standardized PRISMA‐based 

validation approaches. The distilled implementation roadmap offers actionable guidelines for sensor 

selection, middleware integration, and model lifecycle management, enabling proactive rather than 

reactive  dairy  management—an  essential  leap  toward  climate‐smart,  welfare‐oriented,  and 

economically resilient dairy farming. 

Keywords:  digital  twin;  precision  dairy  nutrition;  livestock  monitoring;  edge  computing  in 

agriculture; hybrid modeling; sensor fusion; smart farming; sustainable livestock systems; real‐time 

data integration 

 

1. Introduction 

Digital transformation has emerged as a prominent global trend, spurring innovations across 

numerous technological domains. Among these, digital twin (DT) technology is particularly notable, 

having garnered  significant  interest due  to  its  transformative  capabilities  ([1–5]). A Digital Twin 

represents a dynamic, virtual counterpart of a physical entity or system, sustained by continuous, 

real‐time data integration and exchange between its digital and physical dimensions. 

Originally pioneered within manufacturing and aerospace industries, the digital twin concept 

has  rapidly expanded  into diverse sectors,  including agriculture, healthcare, urban planning, and 

smart infrastructure. More than a conventional simulation, a digital twin serves as an adaptive, data‐
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driven  model,  dynamically  mirroring  real‐world  conditions  to  facilitate  real‐time  monitoring, 

predictive analytics, and informed decision‐making. 

Grieves  and  Vickers  [6]  initially  defined  DTs  within  the  framework  of  product  lifecycle 

management, highlighting their significance in virtual representation and closed‐loop optimization. 

Extending  this perspective, Kritzinger  et  al.  [7]  characterized digital  twins  as  actively  connected 

virtual replicas, distinct from traditional, static simulations due to their continuous bidirectional data 

exchange and concurrent evolution. Negri et al. [8] further clarified distinctions between conceptual 

models,  digital  shadows,  and  true  digital  twins,  asserting  that  authentic  twins  necessitate 

synchronized, real‐time data streams coupled with feedback mechanisms. Figure 1 depicts a general 

digital  twin architecture adapted specifically  to dairy  farming applications,  illustrating sequential 

data flow from sensor‐based data acquisition through preprocessing, computational modeling, and 

simulation, culminating in actionable decision‐making and iterative system refinement. 

In agriculture, particularly dairy  farming, digital  twins are  increasingly  investigated  for real‐

time  modeling  of  animal  behavior,  metabolic  dynamics,  and  precision  feeding.  However,  few 

existing  deployments  satisfy  the  rigorous  technical  and  practical  criteria  necessary  for  robust 

commercial implementation. 

 

Figure 1. A high‐level schematic illustrating the fundamental components and processes of a digital twin (DT) 

system in dairy nutrition applications. The diagram depicts the continuous data exchange between real‐world 

sensors capturing animal and environmental data, and the virtual modeling environment that facilitates 

predictive simulations, real‐time analytics, and informed decision‐making. 

1.1. Evolution of Digital Twin Technology 

The Digital Twin paradigm has significantly evolved over the last two decades, shifting from 

offline simulation tools toward intelligent, autonomous systems. Originally conceptualized at NASA 

to manage spacecraft systems, DTs have since become foundational to Industry 4.0, underpinned by 

the integration of IoT sensors, big data analytics, AI and edge computing. 

In the early 2000s, DTs were primarily used for design‐time and post‐failure analysis. With the 

rise  of  virtual‐physical  systems,  DTs  transformed  into  real‐time  systems  capable  of  predictive 

diagnostics, anomaly detection and operational optimization. Jeong et al. [9] outlined this trajectory 

as  the  shift  from “descriptive”  to “prescriptive” digital  twins. Wu  et al.  [10] described a  layered 

framework describing the evolution of technology ranging from data acquisition and connectivity to 

autonomy and  self‐optimization. The  technological evolution  [11] of Digital Twins  from NASA’s 

early applications to AI‐integrated edge systems is depicted in Figure 2, highlighting key milestones 

that underpin the paradigm’s transition from simulation to autonomy. 
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Figure 2. Historical evolution of digital twin technology from initial conceptualizations in 2002 through 

progressive advancements to 2024. Key milestones indicate the transition from early offline simulations to 

contemporary edge‐AI integrated, real‐time predictive models, highlighting significant developments relevant 

to precision livestock systems. 

As DTs mature  into  intelligent  systems,  their  adaptation  to  livestock  applications  requires 

rethinking  their  computational  architecture  to  account  for  real‐time  biological  variability, 

heterogeneous  sources and on  farm edge  constraints. These  challenges  remain unexplored  in  the 

literature. 

1.2. Importance of Digital Twins in Various Sectors 

Digital  Twin  systems  are  central  to  digital  transformation  strategies  across many  domains 

including agriculture, manufacturing, healthcare and urban planning. Their ability to combine real‐

time  sensing,  simulation  and  integration  of  Artificial  Intelligence  enables  precise  control  and 

prediction  in  complex  environments. While  digital  twin  technology  has  gained  popularity  in 

healthcare, planning and manufacturing, this review concentrates on its emerging role in precision 

agriculture.  DTs  specially  in  dairy  systems  enables  real  time  monitoring  of  individual  cows, 

personalised nutrition and early disease prediction. 

In  agriculture, DTs are used  to model  livestock behaviour, optimize precision nutrition and 

reduce greenhouse gas emissions.  In dairy  farming, DTs simulate  individual cow physiology and 

behaviour to personalize feeding and predict health issues [12]. Figure 3 contrasts traditional dairy 

farming with DT‐enabled dairy farming, emphasizing how Digital Twins transform the system from 

reactive  and  siloed  to  proactive,  integrated,  and  personalized.  In  manufacturing,  DTs  support 

predictive  maintenance,  fault  detection  and  real‐time  production  optimization  [13],  while  in 

healthcare, emerging applications range from personalized medicine to mental health care [14] such 

as PsyDT [15] builds a digital twin of a psychological counselor using LLMs for adaptive counseling. 

Jones et al. [16] categorize the DT application domains across sectors such a urban planning, 

manufacturing and energy systems, and provides a structured framework to evaluate DT maturity 

in each based on real‐time responsiveness, integration level and decision automation. Similarly, Qi 

and Tao’s  [17] research underscores  the role of networking  infrastructure, cybersecurity and data 

interoperability in the effectiveness of a digital twin. 

While these insights offer valuable architectural blueprints, their direct application to livestock 

and dairy systems requires careful adaptation. Precision dairy farming introduces unique challenges 

ranging from biological variability and physiological dynamics to fragmented on‐farm connectivity 

and  stringent  ethical  considerations  related  to  animal  welfare  that  demand  a  context‐aware 

restructuring of existing DT frameworks. 
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Figure 3. A comparative representation of traditional versus digital twin‐enabled dairy farming systems. The 

diagram underscores how digital twins facilitate the shift from reactive, fragmented approaches towards 

integrated, proactive management strategies, enabling real‐time monitoring, personalized nutrition 

interventions, and predictive decision‐making. 

1.3. Objectives of the Review 

This review seeks to critically explores the current landscape of the digital twin technology, with 

a  particular  focus  on  computational  architectures,  modelling  techniques  and  deployment 

frameworks  for  precision  dairy  nutrition  and  sustainable  agriculture.  It  integrates  technological 

foundations and sector‐specific case studies from over 100 journal articles. 

Research Questions: 

1. What conceptual and architectural models define a digital twin across domains and how can 

they be tailored to livestock systems? 

2. How are digital twins implemented in agricultural and livestock contexts, particularly for 

nutrition and health prediction? 

3. What are the current technical limitations in dairy nutrition modeling? 

4. What are the key technical, infrastructural and ethical challenges in deploying digital twins on 

commercial dairy farms? 

5. What future opportunities exist for integrating AI, edge computing and simulation 

technologies into next generation dairy digital twins? 

The review aims  to bring together the key  technologies and frameworks that make  these DT 

systems possible, compare how they are applied across different sectors and highlight the major gaps, 

challenges  and  future  research  priorities  in  implementing  them.  It  provides  a  comprehensive 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2025 doi:10.20944/preprints202506.2401.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2401.v1
http://creativecommons.org/licenses/by/4.0/


  5  of  37 

 

synthesis  of  digital  twin  technologies  with  an  emphasis  on  computational  design,  modelling 

approaches and deployment strategies tailored to precision nutrition in dairy cows. 

2. Methodology 

This literature review paper follows a systematic methodology based on best practices. The goal 

was to identify, evaluate and synthesize scholarly work relevant to the application of DTs in precision 

dairy nutrition. 

2.1. Literature Classification Approach 

The review adopts a structured methodology to critically evaluate the current state of digital 

twin  technologies  as  applied  to  precision  dairy  nutrition.  In  contrast  to  the  lifecycle‐based 

classifications often used in industrial digital twin reviews, this work organizes the literature around 

computational and functional dimensions that directly impact modeling, implementation and real‐

time utility of dairy focused digital twin. The classification framework was iteratively developed after 

reviewing foundational literature across domains and then refined to align with the unique demands 

of  dairy  systems  particularly  the  need  for modeling  biological  variability,  feed  behaviour  and 

metabolic processes in livestock. 

Five interrelated classification dimensions guided the analysis. First, studies were categorized 

by  application  domain,  distinguishing  between  general  agriculture,  livestock‐focused work  and 

specifically dairy‐oriented applications. This ensured that conclusions drawn from industrial or crop‐

based DTs were not over‐generalized to biologically dynamic systems like dairy cows. The second 

dimension of classification was the modeling approach, which grouped works based on whether they 

relied on physics‐based models (like mechanistic digestion simulators), machine learning techniques 

(LSTMs for rumination detection) or hybrid approaches that integrate empirical and theoretical logic. 

The third dimension is computational architecture. This involved classifying systems according to 

their  data  infrastructure  including  centralized  cloud‐based  designs, modular  layered  systems  or 

edge‐enabled frameworks designed for intermittent connectivity typical in rural farm environments. 

This classification was crucial to understand how real‐time decision support scales across different 

dairy  farm  sizes.  The  fourth  axis  concerned  validation  methodology,  differentiating  between 

conceptual studies, simulation‐only validations and  field‐tested deployments with  real‐time  farm 

data. Finally, studies were classified by implementation maturity whether the proposed digital twin 

remained at the theoretical stage or was validated through prototypes or had been implemented in 

working farm environments with full feedback integration. 

By mapping each article to these five dimensions, the review creates a comparative framework 

that  highlights  technical  gaps,  architectural  bottlenecks  and  domain‐specific  trade‐offs  in  the 

deployment of digital twin systems for precision nutrition in dairy cattle. 

2.2. Search Strategy for Identifying Relevant Papers 

The review followed a multi‐phase process designed to ensure both comprehensive coverage as 

well as relevance to the review’s specific computational focus. The first stage involved a systematic 

search of academic databases including IEEE Xplore, Scopus, SpringerLink, Web of Science, arXiv, 

and PubMed, with a search window spanning from 2010 to early 2025. Search queries were structured 

around  combinations  of  terms  such  as  “digital  twin”,  “livestock monitoring”,  “precision  dairy 

nutrition”,  “cow  behaviour  modeling”,  “feed  optimization  algorithms”,  “sensor  fusion  in 

agriculture” and “edge computing in farm environments”. Boolean search strings were constructed 

to combine key thematic terms for example‐ (“digital twin” OR “DT”) AND (“livestock” OR “dairy” 

OR “precision feeding” OR “cow behavior” OR “rumination monitoring” OR “feed optimization”) 

AND (“sensor fusion” OR “IoT” OR “edge computing” OR “real‐time system”). These queries were 

tailored slightly across databases based on syntax requirements and were refined iteratively to reduce 

noise while ensuring inclusivity across domains. 
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An  initial  pool  of  300+  papers was  retrieved, which was  then  narrowed down  to  280  after 

removing duplicates. In the second stage, titles and abstracts were read to assess whether the work 

addressed digital twin systems in a technical or application‐driven manner. This left a refined set of 

200 candidate papers. The third phase involved a detailed full‐text analysis to determine fit with the 

review’s scope. Papers were retained if they provided insight into modeling rumination and feeding 

patterns,  data  integration  architectures,  metabolic  simulation  frameworks  or  real‐time  decision 

processes  in  livestock  environments.  In  the  final phase,  122 papers were  included  for  structured 

analysis. These were organized thematically according to the classification framework in Section 2.1. 

Figure  4  shows  the  PRISMA‐based  flowchart  summarizing  this  screening  and  selection process, 

including detailed exclusion criteria. 

This methodological approach balances breadth with technical specificity, offering a rigorous 

foundation for evaluating the architectural, computational and deployment challenges in designing 

digital twins for precision dairy nutrition. 

 

Figure 4. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses) 2020 flow diagram 

summarizing the methodological approach used in this systematic review. It outlines the literature 

identification, screening, eligibility assessment, and inclusion phases, resulting in the selection of 122 peer‐

reviewed articles relevant to digital twins in precision dairy nutrition. 

2.3. Overview of the Data Sources 

The literatures surveyed in this review draws from a diverse array of data sources, both real‐

world  and  simulated,  reflecting  the  interdisciplinary  nature  of  digital  twin  systems.  Within 

agriculture most of  the diary  focused research relies on sensor‐driven datasets collected either on 

commercial  farms  or  controlled  experimental  platforms.  These  include  motion  data  from 

accelerometers,  rumination  logs  from bolus or collar  sensors, ambient  temperature and humidity 

readings,  and  synchronized  feeding  events  recorded  through  IoT‐enabled  feeders  and milking 

systems. 

Public datasets  like the MMCows [18] provide annotated time‐series  logs from accelerometer 

devices, while platforms such as SmartCow (Zenodo) offer multimodal sensor streams combining 
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rumen temperature, motion, and feed intake metrics. Several high‐impact studies like IUMENTA [19] 

and Feeding Behaviour DT [20] use a mix of real‐farm telemetry and synthetic data modeled through 

Bluetooth or LoRaWAN‐based edge infrastructure to simulate biologically accurate digital twins. 

Beyond dairy, broader agri‐digital twin systems such as AgriLoRa [21] uses telemetry collected 

from GPS‐tagged tractors, irrigation control systems and weather stations. These typically operate at 

minute‐to‐hour resolution and are often integrated with environmental data such as soil moisture or 

temperature gradients. 

The  data  formats  across  the  reviewed  studies  are  heterogeneous,  including  structured 

CSV/JSON time‐series, SQL relational logs for health or production cycles, and unstructured data like 

thermal images or video feeds in animal behaviour modeling. Advanced systems like IUMENTA [19] 

or  FIWARE‐based  twins  [22]  use  semantic  models  to  represent  relationships  between  farm 

components such as animals, devices and environmental variables. 

Data frequencies vary by domain. Dairy DTs tend to operate on hourly or daily cycles tied to 

feeding, rumination and milking. Manufacturing twins typically  log at sub‐second  intervals while 

environmental or health‐related twins may operate episodically or asynchronously. Several studies 

emphasize preprocessing requirements such as temporal alignment, sensor fusion and filtering for 

noise.  For  instance,  the  Feeding Behaviour DT  [20] project  employs Kalman  smoothing  to  clean 

accelerometer data, while others use interpolation methods to harmonize bolus, thermal and motion 

data streams. 

Overall,  digital  twin  systems  in  dairy  nutrition must  accommodate  a wide  variety  of  data 

formats and resolutions. Their computational pipelines must be designed to support both low‐latency 

decision‐making  (like  in  real‐time  feeding  adjustments)  and  high‐resolution  historical modeling 

(nutrition vs performance trends across lactation cycles). This diversity underscores the architectural 

flexibility required for deploying digital twins at scale in dairy environments. 

3. Digital Twin Architecture 

3.1. Overview of DT Architecture 

The  foundational architecture of a Digital Twin  (DT) comprises  three  interdependent  layers‐ 

data acquisition, virtual modeling and real‐time connectivity. These components serve as the pillars 

of  the  digital  twin  system  that  allows  real‐time monitoring,  simulation  and  optimization  of  the 

physical entities. In the context of dairy systems, these architectures must be adapted to handle high‐

frequency, biologically variable and spatially distributed data sources while ensuring responsiveness 

and  scalability  under  resource  constraints. According  to Grieves  and Vickers  [6],  the DT model 

should be grounded in a closed‐loop feedback structure where the digital model mirrors the physical 

asset and responds dynamically to changes in its state. 

Tao et al. [23] and Wu et al. [10] propose that digital twins evolve through five layers: physical 

layer where data is collected via sensors and actuators, the communication layer which is responsible 

for transmitting this data via LoRaWAN, Bluetooth or Wi‐Fi, the data infrastructure layer where raw 

data is filtered, integrated and stored, the modeling layer which performs the simulation, prediction 

and inferences and finally the decision or application layer where insights are converted into actions 

such as feed ration adjustments, health alerts or farm level reports. 

In  industrial applicational, DTs often rely on centralized cloud‐based platforms. However,  in 

agricultural  and  dairy  contexts  hybrid  edge‐cloud  architectures  are  increasingly  favored  due  to 

constraints in connectivity, latency sensitivity (for applications like health monitoring) and the need 

for  processing  the  data  real  time  and  on‐site.  Dairy  specific  DTs  typically  delegate  simple 

classification and preprocessing  tasks  to on‐farm edge devices  like embedded microcontrollers or 

Raspberry Pi board while offloading more complex metabolic simulations or optimization routines 

to cloud infrastructure. 

Figure 5 presents a reference architecture adapted for dairy digital twins, illustrating how data 

flows from cow‐mounted and environmental sensors through edge processing modules, cloud‐based 
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inference layers and finally to user interfaces or automated actuators. This layered approach enables 

modular  deployment,  which  is  essential  for  accommodating  diverse  farm  sizes  and  technical 

capabilities. 

 

Figure 5. Layered computational architecture of a digital twin system specifically designed for precision dairy 

nutrition. This detailed schematic illustrates the sequential integration of four operational layers: (1) 

multimodal sensor infrastructure collecting animal, environmental, and feed data; (2) data pipeline responsible 

for secure ingestion, preprocessing, storage, and fusion; (3) computational module performing real‐time 

modeling, metabolic simulations, and predictive analytics; and (4) feedback mechanisms delivering actionable 

insights and facilitating continuous model refinement to optimize dairy production outcomes. 

These layered frameworks have since been adopted across domains including manufacturing, 

urban  infrastructure  and  agriculture  to  enable  increasingly  autonomous,  intelligent  and  scalable 

systems. 

Recent implementations, such as Digital Twin as a Service (DTaaS), modularize these layers into 

plug‐and‐play  services  for  faster  deployment  and  reuse,  especially  in  simulation‐heavy 

environments like autonomous driving and digital livestock systems. Frameworks like IUMENTA 

[19] are designed for animal digital twins to exemplify a new generation of DT platforms where each 

component can be independently configured and scaled across species, environments and resolution 

levels. 

3.2. Components of Dairy Nutrition Digital Twin 

A digital  twin designed  for precision dairy nutrition  integrates multiple  system components 

across several layers, each responsible for handling a specific aspect of data acquisition, processing, 

modeling, or intervention. Figure 5 presents a five‐layer reference architecture designed to meet the 

unique  requirements  of  real‐time  dairy  environment  like  multimodal  sensor  integration, 

physiological modeling and feedback mechanisms. 

The  Sensor  Infrastructure  Layer  captures  real‐time  data  from  various  sources  within  the 

physical  farm  environment. Animal  sensors,  such  as wearable RFID  tag  collars,  rumen  boluses, 
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accelerometers and thermal cameras measure motion, rumination and physiological responses. Feed 

sensors such as weighing scales and NIR spectrometers collect data on ration intake. Environmental 

sensors monitor barn climate, air quality and thermal conditions. Milk analyzers track milk yield and 

composition.  Together,  these  inputs  provide  the  raw  observational  basis  for  the  digital  twinʹs 

functioning.  Livestock‐oriented  systems  like  IUMENTA  [19]  and  dairy  behaviour  recognition 

frameworks [24] demonstrated effective use of multi‐sensor fusion by integrating data from various 

embedded and environmental devices. In industrial setups like Siemens PLM [4] or AutoDRIVE [25], 

various sensors monitor motion,  temperature, vibration and energy consumption,  feeding data at 

millisecond‐level resolution. 

The Data Pipeline Layer handles the ingestion, preprocessing and storage of sensor data. Data 

ingestion components include IoT gateways and message queues that receive data streams from the 

field. Data processing modules perform noise filtering (e.g., Kalman smoothing), normalization, and 

feature extraction to prepare the data for modeling. This layer handles data integration tasks such as 

temporal alignment across sensors and applies encryption and authentication mechanisms to ensure 

data security and privacy before they are input into modeling layers. 

At  the  core  of  the  system  lies  the  Computational Module  Layer, where  real‐time  system 

behaviour is simulated, predicted or optimized. This layer is composed of four main modules. The 

Nutrition  Models  ([26–28])  simulate  digestion,  fermentation  and  feed  efficiency  using 

compartmental  or mechanistic models.  The AI/ML  Engine  includes  neural  networks,  ensemble 

methods and deep  learning models trained to predict feeding behaviour or detect anomalies. The 

Digital Twin Core orchestrates real‐time simulations of virtual cows, combining inputs from both 

nutrition models and live sensor data. Finally, an analytics module conducts trend detection, pattern 

recognition and predictive modeling for performance benchmarking. 

Traditional physics‐based models are commonly employed in engineering‐focused twins such 

as Smart Manufacturing systems [29], where machine behaviour is mathematically deterministic [30]. 

In contrast, agriculture and healthcare applications favor data‐driven and hybrid modeling due to 

biological variability. Techniques include BiLSTM and GANs [31] (COVID‐19 twins), reinforcement 

learning  and  neural  implicit  representations  [32]  for  behaviour  prediction  and  optimization. 

Recently,  Digital  Twin‐Driven  Teat  Localization  and  Shape  Identification  [33]  proposed  using 

convolutional networks  to  locate  and  segment  anatomical  features  in dairy  cows,  improving  the 

precision  of  robotic  milking  systems.  Similarly,  Cow  Daily  Behaviour  Recognition  Based  on 

Multimodal Data  [34]  employed  thermal  imaging  and  accelerometry  to  classify  behaviour  states 

using deep CNNs and attention modules. In swine farming, the Digital Twin Application: Making a 

Virtual  Pig  House  [35]  integrates  temperature,  light  and  sound  feedback  into  the  behaviour 

simulation loop to enhance comfort‐based automation. These developments collectively reinforce the 

shift  toward more adaptive, self‐calibrating twin models, particularly  in biological systems where 

behaviour and response are context dependent. 

Hybrid models  leverage  both  first‐principles  physics  and  learned  behaviours  to maximize 

predictive accuracy while  retaining  interpretability. Conceptual Digital Twin Modeling Based on 

TRIZ  Function  Model  [10]  provides  a  methodology  for  innovation‐driven  modeling,  bridging 

conventional  control  theory  with  inventive  problem  solving.  Digital  Twin:  Generalization, 

Characterization  and  Implementation  [36]  emphasizes  adaptability  by  enabling  component‐wise 

modeling across biological and engineered systems. Such flexibility is essential in environments like 

dairy farming, where both routine and stochastic events impact outcomes. 

Table  1  consolidates  representative modeling  techniques  from  both  agricultural  and  cross‐

domain digital twin systems, summarizing their purpose, algorithmic type and the domains in which 

they are applied. 

Table 1. Summary of representative modeling techniques used in digital twin implementations across domains. 

Each entry specifies the model type, application domain, and its specific functional role within the digital twin 

pipeline. 
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Reference  Model Type 
Application   

Domain 

Purpose of DT 

[31]  BiLSTM + GAN  Public Health  Time‐Series prediction of disease 

spread 

[33]  CNN  Animal Husbandry  Feature extraction from images   

[37]  XGBoost  Smart Farming  Feed conversion Prediction 

[34]  GAN  Behavioural Modeling  Generate training data for rare 

events 

[21]  RL (Q‐ learning)  Crop and Livestock  Optimize irrigation and feeding 

[4]  Physics + ML  Manufacturing  Fault detection and predictive 

control   

The Feedback Mechanisms Layer closes the loop by transforming insights into actions. Decision 

support tools generate recommendations for ration adjustments or health alerts. Interfaces such as 

dashboards  or  mobile  applications  can  deliver  these  insights  to  farmers  and  veterinarians. 

Automated  control  systems may directly operate  feed mixers,  climate  control  systems or dosing 

equipment based on model output. Finally, a dedicated module handles feedback loops, ensuring 

continuous model adaptation through parameter updates and performance monitoring. 

Feedback  loops  in  digital  twins  for  dairy  nutrition  are  essential  for maintaining  real‐time 

coherence between the physical cow and its virtual representation. Various studies ([12–37]) illustrate 

the deployment of real‐time data from wearable sensors feeding back into the virtual model, which 

in turn informs feeding decisions or health alerts. Similarly, the IUMENTA architecture [19] employs 

a loop where bolus sensor input modulates digestion models to fine‐tune nutrient delivery. 

This modular breakdown of the architecture ensures that the digital twin can support both short‐

term  decisions  like  feed  adjustments  and  long‐term  planning  like  herd  health  optimization. 

Moreover,  the  layered  architecture  enables  scalability  across  different  dairy  farm  sizes  and 

infrastructure levels, making it adaptable from research stations to commercial farm deployments. 

3.3. Computational Requirements of a Dairy Digital Twin System 

The  deployment  of  digital  twin  systems  in  dairy  farming  requires  careful  consideration  of 

computational trade‐offs, particularly because of the need for architecture that is capable of handling 

heterogeneous data streams, supporting real‐time inference, and operating under the infrastructural 

constraints typical of agricultural environments. Unlike industrial digital twins that are deployed in 

high‐connectivity and resource‐rich settings, dairy digital twins must address the realities of rural 

deployment  like  variable  network  connectivity,  limited  on‐site  computational  power  and  the 

biological  variability  inherent  in  livestock  systems.  This  section  delineates  the  computational 

demands of various digital twin components in terms of memory requirements, update frequency, 

processing complexity and deployment topology. 

Modules  responsible  for  real‐time  behaviour monitoring,  such  as  rumination  detection  and 

feeding activity classification, are generally deployed at the edge due to latency constraints. These 

models  process  high‐frequency  data  from  the  accelerometer  and  bolus  sensors  and  require 

lightweight  architectures  to  operate  efficiently  on  embedded  systems with  limited memory  and 

connectivity. Zhang et al. [20] proposed a behaviour recognition framework method using a time‐

series neural network architecture trained on a single collar mounted sensor per cow. The system 

achieved  high  classification  accuracy  (above  94%)  using  5‐second  windows  and  demonstrated 

effective performance in a lightweight hardware‐software configurations which is also suitable for 

small  scale  farms.  The  authors  emphasize  on  the  platforms  low  cost,  ease  of  deployment  and 

compatibility  with  real  time  monitoring  in  real  farm  environments  with  limited  technological 

infrastructure making it relevant for scalable digital twin applications in livestock systems. 

Similarly,  Han  et  al.  [37]  implemented  a  hybrid  CNN‐LSTM  architecture  to  classify  cow 

behaviours  (standing,  sitting,  lying or walking) based on  time  series data  from wearable motion 
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sensors. The model was systematically optimized for key hyperparameters, including hidden neuron 

count and number of LSTM layers, to balance predictive accuracy and computational efficiency. Their 

experimental  results  validated  using  real‐world  sensor  data  collected  from  cows  in  commercial 

settings and demonstrated that the system could achieve accurate classification while maintaining a 

low average test loss under a modest model complexity of 128 hidden units and 2 LSTM layers. The 

authors highlighted  the modelʹs  suitability  for use  in  IoT‐enabled  livestock environments and  its 

potential for edge deployment in smart farming scenarios where continuous behaviour recognition 

and low‐latency inference are essential. While explicit latency figures were not reported, the work 

provides  a  framework  for  real‐time,  resource‐constrained behaviour  classification  in digital  twin 

systems for cattle management. 

Conversely,  computationally  intensive  components  such as metabolic process modeling and 

feed  optimization  are  typically  centralized  and  executed  in  cloud  environments. These modules 

require access to historical datasets, integration of external factors such as environmental conditions 

and inventory data as well as the execution of computationally demanding algorithms. For instance, 

in the IUMENTA [19] framework the authors implement a cloud‐hosted optimization engine using 

genetic algorithms that simulate multiple feeding scenarios based on a cow’s energy expenditure. 

The pipeline  architecture  supports modular data merging  across  inputs  from multiple  channels, 

model training, and report generation. The paper details the pipeline’s scalability and the system’s 

ability to operate distributed components both locally and on the cloud. These architectural choices 

ensure  flexibility  and  extensibility  of  digital  twin  models  across  different  animal  species  and 

hardware configurations. Tzachor et al. [38] highlights the role of reinforcement learning agents in 

agri‐food digital twins for optimizing agricultural inputs and decision‐making across the agri‐food 

supply  chain.  Their  system‐level  perspective  emphasizes  the  potential  of DTs  to  simulate  crop‐

environment  interactions,  reduce greenhouse gas emissions and manage  food waste  through AI‐

enhanced control strategies. While the work focuses more on policy and environmental optimization 

than on dairy‐specific nutritional modeling, its framework provides a conceptual basis integrating 

decision intelligence into livestock‐oriented digital twins. 

Zhang et al. [34] describe a multimodal behavioral recognition system that integrates thermal 

imaging  and  accelerometer  data  to  classify  daily  activities  in  dairy  cows.  Their model  pipeline 

incorporates temporal alignment, Kalman filtering and feature‐level sensor fusion, enabling robust 

interpretation of complex animal behaviors  in varying environmental conditions. The architecture 

supports efficient deployment for continuous monitoring in livestock environments. 

Latency  and  communication  overhead  are  persistent  bottlenecks  in  digital  twin 

implementations,  particularly  in  rural  agricultural  settings.  Menges  et  al.  [39]  address  these 

challenges through a thermal imaging‐based predictive digital twin framework that leverages edge 

devices  to  perform  local  inference.  This  approach  enhances  responsiveness  and minimizes  data 

transfer delays, allowing for real‐time alert generation and on‐site decision‐making. 

The computational profiles of  these modules differ not only  in  their  function but also  in  the 

required  frequency and  immediacy of updates. Behavior monitoring and health alerts operate on 

low‐latency  intervals  and  demand  continuous  data  ingestion, while  optimization  and  analytics 

processes such as lactation curve tracking or performance benchmarking typically function on longer 

cycles, cloud‐based data warehouse and can be executed asynchronously via batch processing. 

Table  2  presents  an  overview  of  the  computational  requirements  across major modules  in 

precision  dairy  digital  twins.  These  estimates  are  derived  from  reported  system  specifications 

([24,34,39,40]) and  technical parameters  identified  in digital  twin pilot  implementations  for cattle 

behavior, nutrition modeling and environmental monitoring. While exact resource usage depends on 

implementation  and  hardware  variation,  the  ranges  here  reflect  consensus  values  from  field‐

deployed  systems  and  benchmarks. Complexity measures  follow  standard  algorithmic  profiling 

based on input size (n), while memory and data rates are based on sensor resolution and sampling 

frequencies reported in practice. 
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The heterogeneity of these demands necessitates a modular deployment strategy. Smaller farms 

may prioritize  localized  infrastructure with batch synchronization, whereas  large‐scale operations 

benefit from distributed edge‐cloud ecosystems. Designing these systems requires careful alignment 

of computational efficiency, inference latency and model interpretability with practical limitations in 

bandwidth,  energy  use,  and  technical  capacity.  Precision  dairy  digital  twins  must  function  as 

distributed, modular systems, combining the immediacy of edge inference with the analytical depth 

of cloud platforms. Successful  implementation depends on the coordinated execution of memory‐

aware  modeling,  adaptive  scheduling  mechanisms,  and  robust  data  communication  protocols 

tailored  to  farm‐scale  environments.  Precision  dairy  digital  twins  must  be  engineered  not  as 

monolithic platforms but as distributed systems, optimized for real‐time responsiveness at the edge 

and analytical depth  in  the  cloud. A  successful deployment hinges on  the  seamless  coordination 

between  memory‐aware  modeling,  context‐sensitive  scheduling,  and  adaptive  communication 

protocols. 

Table 2. Computational characteristics of key functional modules in digital twin systems for precision livestock 

nutrition.  The  table  compares  algorithmic  complexity,  data  throughput,  processing  environments, memory 

needs and update frequency. 

Component  Computation

al Complexity 

Data Volume Processing 

Location 

Memory   

Requirement

s 

Update   

Frequency 

Reference

s 

Feeding 

Behavior 

Analysis 

O(n) for basic 

metrics 

O(n²) for 

pattern 

recognition 

 

100MB‐

1GB/cow/day 

from   

accelerometer

s 

Edge 

devices   

with ML   

capabilities 

250MB RAM 

for real‐time 

processing 

Every 5‐15 minutes  [20,34] 

Metabolic 

State 

Estimation 

O(nlogn) for 

multi‐

parameter 

integration 

10–

50MB/cow/da

y from 

ruminal   

sensors 

 

Farm 

server 

with 

dedicated 

GPU 

2‐4GB RAM 

for model 

execution 

Hourly updates  [41] 

Feed 

Optimization 

Engine 

O(n³) for 

multi‐

constraint 

optimization 

 

5MB/day for 

nutritional 

databases 

Cloud 

service 

with 

distributed 

computing 

 

8GB RAM for 

population‐

level 

modeling 

Daily or on‐demand  [40] 

Environment

al Integration 

Module 

O(n) for 

sensor fusion 

O(nlogn) for 

correlative 

analysis 

 

1GB/day for 

farm‐level 

environmenta

l data 

Hybrid 

edge‐cloud 

architectur

e 

1GB RAM for 

contextual 

processing 

Environmental 

triggers 

[42] 

Health 

Monitoring & 

Alerting 

CNN & rule‐

based alerting 

Biometric + 

behavior 

indicators 

(~500MB/day) 

Edge + 

central DB 

sync 

1‐2GB RAM Continuous/triggere

d 

[39] 

3.4. Communication, Middleware and Standards 

Effective communication  infrastructure and middleware form the operational spine of digital 

twin  ecosystems,  enabling  seamless  data  exchange  between  physical  systems,  edge  analytics 
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modules, and centralized computational services. In dairy‐specific digital twins, these requirements 

are heightened by the need to maintain low‐latency synchronization across heterogeneous devices 

deployed in bandwidth‐limited rural environments. 

Middleware protocols such as MQTT (Message Queuing Telemetry Transport), OPC‐UA (Open 

Platform  Communications  ‐  Unified  Architecture)  and  DDS  (Data  Distribution  Service)  are 

commonly used due  to  their  lightweight footprint, publish‐subscribe architecture and support for 

asynchronous updates. These  frameworks  facilitate real‐time  telemetry  integration  from wearable 

livestock  sensors, milking  robots  as well  as  environmental monitors  into  central  or  edge‐based 

models.  In  the  context  of  smart  agriculture,  systems  such  as  AgriLoRa  [21]  and  SmartCow 

demonstrate the use of LoRaWAN‐based communication for connecting distributed sensor networks 

across vast pastures, while urban‐scale digital twins like Herrenberg rely on 5G and NB‐IoT networks 

to coordinate higher‐bandwidth modalities like video and LiDAR feeds. 

From  a  software  abstraction  standpoint,  communication middleware  is  often  coupled with 

semantic  integration  frameworks,  including  FIWARE  and  IUMENTA  [19],  which  utilize  RDF 

(Resource  Description  Framework)  and  OWL‐based  ontologies  to  maintain  machine‐readable 

representations of physical farm entities. Despite this progress, the lack of universally adopted open 

standards and  inconsistent data schemas continues  to  limit  interoperability and scalability across 

platforms and domains. 

A  comparative  evaluation by Kritzinger  et  al.  [7]  and  the  technical  review  “Connecting  the 

Twins” [43] explicitly benchmarked communication stacks based on latency,  jitter, and bandwidth 

trade‐offs, affirming the trade‐off between decentralized responsiveness and centralized robustness. 

As  dairy DTs  evolve  towards  real‐time  behavioural  prediction  and metabolic  decision  support, 

efficient,  fault‐tolerant  communication  architectures  will  be  critical  for  maintaining  continuous 

operation in the face of rural connectivity challenges. 

3.5. Integration with AI, Cloud, Edge and Big Data 

Modern digital twin implementations are hybrid systems that combine the distributed strengths 

of edge  computing,  cloud‐based analytics, and AI‐driven  reasoning models. Particularly  in dairy 

environments,  this  architecture  enables  computational  segmentation  by  placing  time‐sensitive 

behavioral  recognition  tasks  at  the  edge  (rumination  classification)  and  offloading  the  heavier 

population‐level optimization and historical trend analysis to the cloud. 

AI integration is reshaping digital twin intelligence. Studies by Zhang et al. [20] and Han et al. 

[37] have shown how LSTM, CNN, and hybrid CNN‐LSTM models can perform real‐time behavioral 

analysis from raw accelerometer data with over 85% accuracy. These models are deployed on edge 

devices with relatively less memory and low inference latency enabling responsive decision‐making 

in isolated farm environments. 

At the cloud layer, genetic algorithms and linear programming engines are used to solve multi‐

objective optimization problems, such as balancing feed composition against cost, availability, and 

animal metabolism. In more experimental systems like Real2Sim2Real [44] and AutoDRIVE [25], the 

bidirectional transfer of learning from simulation to real‐world contexts enables adaptive behavior 

modeling and autonomous control. This is still nascent in dairy applications but presents promising 

avenues for cross‐modal generalization and digital prototyping. 

The computational convergence of AI, edge analytics, and cloud services is enabling closed‐loop 

feedback architectures in digital twins and is linking sensing, reasoning, actuation, and learning in 

an adaptive cycle. 
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3.6. Strengths and Limitations of Current DT Architectures 

Digital  twin  architectures  offer  compelling  advantages  for  precision  livestock  farming, 

particularly  through  their modular,  layered design. This architecture allows different  subsystems 

such as behavior analysis, environmental sensing and feed optimization to operate asynchronously 

yet cooperatively. This modularity supports incremental deployment in farms with varying levels of 

technological readiness. 

However,  critical  limitations  persist.  Synchronization  between  various  asynchronous  data 

sources  such  as  bolus  sensors,  accelerometers  and  feed  intake  logs  remain  technically  complex, 

especially in the absence of standardized timestamps or sampling frequencies. Furthermore, many 

commercial  twin  frameworks  operate  as  closed  ecosystems,  restricting  interoperability  and 

increasing vendor lock‐in. 

From  a  computational  perspective,  high‐frequency models  such  as  those  used  for  behavior 

recognition impose energy and memory constraints when deployed at the edge, while cloud‐based 

optimization  engines  can  suffer  from  delayed  responsiveness  due  to  connectivity  gaps  in  rural 

infrastructure. The interpretability of AI models, especially deep neural networks, is also a concern. 

Current DT deployments often act as “black boxes” which reduces trust among veterinarians, farm 

managers and regulators. 

Addressing these challenges will require the use of open, interpretable architectures by using 

Explainable AI. It will require edge‐first deployment strategies and federated learning protocols to 

minimize  data  transfer  latency  while  retaining  predictive  accuracy.  Emerging  frameworks  like 

IUMENTA [19] advocate for open, standards‐based interfaces with reusable ontologies to encourage 

ecosystem‐wide integration and innovation. 

4. Computational Methods in Precision Dairy Digital Twins 

The  implementation  of  digital  twins  (DTs)  in  precision  dairy  nutrition  requires  a 

multidisciplinary  integration of biological models, data analytics and system level computing and 

hence  relies heavily on a diverse  set of  computational  techniques. These methods  span  real‐time 

behavior recognition, metabolic modeling, optimization of nutritional inputs and scalable edge‐cloud 

analytics frameworks. This section synthesizes the algorithmic and system‐level approaches used in 

contemporary research, focusing specifically on their utility and application within the dairy sector. 

4.1. Rumination and Feeding Behavior Recognition 

Accurate behavioral modeling  in dairy cows  is a critical first step  in constructing an accurate 

digital representation. Time‐series classification techniques especially those leveraging deep learning 

architectures like CNNs and LSTMs are commonly used for detecting rumination, eating and resting 

behaviors from accelerometer and bolus data. 

Zhang  et  al.  [20] proposed  a  lightweight CNN‐LSTM hybrid model  trained on multivariate 

sensor streams to classify eight core behaviors in dairy cows from tri‐axial accelerometer and bolus 

sensor data. Their architecture utilizes 5‐second sliding window intervals and is optimized for real‐

time inference on resource‐constrained edge devices and achieved accuracies over 90%. The study 

highlights the modelʹs edge suitability through low inference times, low memory utilization and low 

costs. 

Han et al.  [37] extended  this by using LSTM models  for multi‐behaviour classification using 

wearable sensors, with a focus on latency aware design architecture. The implementation supports 

real‐time  updates  from  the  custom  collar  around  the  cows’  neck,  allowing  for  dynamic  state 

transitions  to be captured without centralized cloud computation. These  techniques often  require 

preprocessing  steps  such  as  Kalman  filtering  [45],  signal  smoothing  and  feature  extraction  are 

essential for modeling behavioral state transitions that inform nutritional demand. 
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4.2. Metabolic Modeling Techniques 

A  core  component of digital  twin  frameworks  for dairy applications  lies  in  the modeling of 

metabolic  processes.  It  acts  as  the  nutritional  feedback  loop  in  a  DT  by  simulating  internal 

physiological states based on sensor input and historical patterns. They simulate feed intake, rumen 

fermentation  and  nutrient  partitioning  in  dairy  cattle.  Physics‐based  models  employing 

compartmental dynamics  and differential  equations  are widely used. They  reflect  the  structured 

dynamic flow of substances through the digestive and metabolic pathways. 

McNamara  [46]  provides  a  foundational  review  of  ruminant  systems  modeling  using 

compartmental differential  equations,  highlighting  their predictive utility  and  biological  fidelity. 

These models divide the ruminant body into subsystems integrating nutrient kinetics over time. The 

simulations can be executed iteratively in farms using inputs like feed intake, pH, rumen temperature 

and milk yield to maintain up to date metabolic states. The author also notes their utility not only in 

academic modeling but also in precision nutrition applications when combined with dynamic data 

and on‐site computing capacity. Similarly,  Johnson et al.  [47] demonstrated early use of dynamic 

simulation  to  teach  systemic metabolic  control, which  has  since  been  adapted  into  digital  twin 

contexts.  These  simulations  are  now  updated  hourly  using  live  data  inputs  ruminal  pH,  feed 

composition,  temperature, milk  yield  and  executed  on  farm‐side GPUs  to  enable  near‐real‐time 

updates 

Studies Kebreab et al. [48,49] and Muñoz‐Tamayo et al. [41] further advanced metabolic model 

modeling using mass balance frameworks and fermentation system dynamics. In particular, Muñoz 

proposed a multi compartmental rumen fermentation model that simulates substrate degradation, 

microbial  dynamics  and  volatile  fatty  acid  (VFA)  production  based  on  in  vitro  experimental 

validation. This model had been referenced as a strong candidate for real time digital twin integration 

because of its mechanistic fidelity and adaptability to sensor inputs. 

Further, González et al. [50] propose a Bayesian calibration approach for parameter estimation 

in metabolic models of ruminants, specifically to manage the biological variability between different 

cows. This method enables real‐time updating of model parameters using streaming data such as 

ruminal  pH,  body  temperature  and milk  components which  are  key  for  adaptive  digital  twin 

operations. 

Lastly, from an implementation perspective, these models are computationally expensive. Real‐

time implementation of these models typically occurs on local servers or edge devices equipped with 

GPUs, as seen in Zhang et al. [34] where thermal imaging and metabolic inference are fused to derive 

individualized twins that mirror behaviors. 

4.3. Optimization Algorithms for Feed Formulation 

Once  behavioral  and  metabolic  states  are  inferred,  optimization  algorithms  guide  the 

formulation of  feed rations giving actionable  feeding strategies. These algorithms are  tasked with 

formulating feed rations that not only satisfy nutritional needs but also account for operational costs, 

resource availability and environmental goals such as methane mitigation. Among the most widely 

adopted  techniques are  linear programming  (LP), dynamic programming and genetic algorithms 

(GAs). 

Linear programming has a long‐standing role in livestock nutrition optimization. It enables cost 

minimization under a set of nutrient constraints, relying on predefined feed composition values and 

predicted  animal  requirements.  These  systems  encode  nutritional  requirements  as  inequality 

constraints and solve for cost‐ minimizing feed blends using updated coefficients observed from the 

digital twin. Youseff et al. [19] describe a feed management subsystem where updated feed models 

are  automatically  triggered  by  behaviour  classification  outputs  and  physiological  indicators  like 

reduced chewing duration or anomalous rumen temperature fluctuations. 

Where  linear  models  struggle  with  nonlinear  interactions  and  incomplete  information, 

metaheuristic methods  like genetic algorithms  (GAs) offer a  flexible alternative. They can handle 

more complex and non‐linear optimization challenges. Atıcı and Elen  [40] developed a GA based 
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system  that minimized  feed  cost while  adhering  to nutritional  constraints  such  as metabolizable 

energy, crude protein, fiber fractions  (ADF, NDF), calcium and phosphorus. Their model selected 

from a library of feed components and demonstrated the GA’s ability to effectively navigate large 

combinatorial spaces. GAs is particularly suitable for digital twins requiring flexibility in objective 

functions and variable constraints, such as those factoring in methane emissions or feed availability. 

This adaptability makes them especially useful in cloud‐based digital twin architectures designed for 

multi‐farm or cooperative networks. 

Recent advances also explore hybrid approaches that couple reinforcement learning (RL) with 

classical solvers. These agents can simulate the long‐term metabolic and economic consequences of 

various feeding strategies in silico before applying them to real animals. Such pipelines are under 

exploration  in  several  academic prototypes  and  early  commercial deployments,  though publicly 

available documentation remains limited. 

These optimization engines typically operate on daily or on‐demand cycles, balancing the need 

for up‐to‐date nutrition decisions with computational overhead and latency considerations. In edge‐

deployed  scenarios,  lightweight  LP  solvers  are  favored  for  near‐real‐time  updates, while more 

computationally intensive GA‐based systems are run centrally and synchronized periodically. 

In  summary,  optimization modules  in  digital  twins  are  evolving  from  static  calculators  to 

intelligent,  self‐adaptive  systems.  They  serve  as  the  decision‐making  core  of  precision  nutrition 

pipelines, integrating continuous sensor feedback, behavioral forecasts and metabolic simulations to 

guide dietary interventions with increasing autonomy and precision. 

4.4. Edge Computing and Real‐Time Infrastructure 

Digital twins for precision dairy nutrition must operate in environments with stringent latency, 

bandwidth, and energy constraints. These limitations make edge computing essential for ensuring 

timely model inference, robust system responsiveness and reduced dependency on unreliable rural 

connectivity. 

A  representative  implementation  is  described  in  the  thermal  imaging‐based DT  system  by 

Menges et al. [39], where local edge devices were used for on‐site image processing and behavioral 

inference. Their architecture was designed specifically for livestock monitoring and reported a 70% 

latency  reduction  compared  to  traditional  cloud‐based  pipelines.  The  reduction  was  primarily 

achieved by deploying CNN‐based detection models directly on embedded GPUs located within the 

barn  infrastructure,  enabling  continuous  health  status monitoring  without  requiring  full  video 

upload to the cloud. In addition, data orchestration between devices is handled using robust event 

streaming  frameworks.  Technologies  such  as  Apache  Kafka  and  Apache  Spark  support  high‐

throughput, fault‐tolerant message passing and batch analytics. These are often deployed alongside 

lightweight  containerization platforms  like Docker, which  facilitate modular  service deployment 

across heterogeneous hardware environments ranging from NVIDIA Jetson modules at the edge to 

centralized data lakes in cloud clusters. 

Shen  et  al.  [51]  developed  an  edge‐based  system  capable  of  recognizing  cow  ruminating 

behavior  in  real  time using  a  custom  edge device  equipped with  a  three‐axis  accelerometer  and 

STM32  microcontroller.  This  system  processed  behavioral  data  locally  and  only  transmitted 

summarized results to the cloud every two hours, reducing network traffic by 99.9% compared to 

raw  data  uploads  and  achieving  an  accuracy  of  96.1%  for  behavior  classification  substantially 

improving  responsiveness  and  energy  efficiency  in  continuous  health  monitoring  scenarios. 

Complementing  this, Alonso  et  al.  [52]  introduced  the  SmartDairyTracer  platform  based  on  the 

Global  Edge  Computing  Architecture  (GECA),  which  integrates  IoT,  edge  and  blockchain 

technologies  in  a  modular,  multi‐layered  setup.  Their  system  demonstrated  effective  real‐time 

monitoring of both livestock and feed grain, enhanced data traceability, and reduced latency through 

edge‐local AI‐driven analytics on mixed dairy farms in Spain. 

Collectively, these systems illustrate a paradigm shift from cloud‐centric to edge‐first strategies 

in digital twins. The cumulative advantage of edge computing lies not only in reduced latency but 
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also in enhanced system autonomy and fault tolerance. By offloading the bulk of computation to on‐

site infrastructure, farms become less dependent on external servers and gain the ability to sustain 

critical operations during cloud service outages or network instability. 

4.5. System Integration and Middleware Design 

Effective deployment of DTs depends on seamless integration with farm management systems 

and  bridge  heterogeneous  data  sources,  legacy  infrastructure  and modern  analytics  platforms. 

Middleware architecture plays a critical role in bridging these technical layers. 

FIWARE‐based frameworks and IUMENTA provide API‐first designs that ensure compatibility 

across devices  and  vendors. These platforms  support modular  extension, where  new devices  or 

subsystems  such  as  milking  robots  or  feeding  control  units  can  be  integrated  without  major 

reconfiguration  like a plug and play model. The IUMENTA framework provides a semantic layer 

that supports data standardization and knowledge modeling for multi‐domain interoperability when 

combining behavioral, nutritional and health data streams. 

Communication  protocols  like MQTT  [53]  and  OPC‐UA  support  asynchronous messaging 

between modules. These  allow  system  components  to operate  semi  independently  and maintain 

functionality  during  network  disruptions.  This  middleware  is  often  bundled  with  lightweight 

brokers like ioBroker and Node‐RED to manage real time control and dashboard visualization with 

minimal computational overhead. 

The ASABE  study  by  Treiber  et  al.  [54]  presents  a  compelling  case  for middleware‐driven 

integration using a digital broker model implemented at the TUM dairy research farm. Their setup 

integrates a wide array of wireless sensor networks  (WSNs), actuator systems, and external  farm 

management  systems  (FMIS)  into a single  interface. This model utilizes Raspberry Pi‐based  local 

brokers to unify data from multiple proprietary systems via API connectors, and it supports real‐time 

control, historical storage and dashboard visualization through Node‐RED and custom UI layers. 

Connectivity and interoperability remain a challenge, especially in rural or resource‐constrained 

regions.  To  address  synchronization  issues  under  intermittent  connectivity  middleware  must 

support fault‐tolerant communication. Lightweight messaging protocols such as AMQP and MQTT 

ensure queued delivery and retransmission of missed packets, while semantic representations using 

RDF/OWL  enable  data  contextualization  across modules.  These  ontologies  define  inter‐variable 

relationships and power rule‐based alert systems and predictive models. 

Security  architecture  for  digital  twins  in  precision  livestock  farming must  align with  both 

information  security  best  practices  and  the  unique  constraints  of  operational  technology  [58]. 

Authentication  and  encryption  standards  such  as  TLS  1.3,  secure  device  provisioning  via X.509 

certificates, and role‐based access control are becoming standard within platforms like Azure IoT and 

AWS Greengrass. These measures ensure end‐to‐end  integrity and confidentiality, particularly  in 

systems transmitting biometric and health data. [59] 

Legacy system integration presents another major technical challenge. Many farms still rely on 

proprietary herd management software or siloed data storage solutions. Middleware bridges such as 

OPC‐UA gateways or schema translation modules have been proposed to convert legacy data into 

standardized ontologies like SAREF‐Agri or SSN/SOSA. These can be implemented via ETL (Extract, 

Transform, Load) processes that run in background intervals, ensuring backward compatibility while 

enabling integration into modern DT pipelines. 

To understand the computational methods used in precision dairy nutrition, we compare four 

key modeling approaches in Table 3. Each approach has its strengths and weaknesses depending on 

the  application,  data  requirements,  and  computational  efficiency.  Together,  these  middleware 

strategies  ensure  that  the  digital  twin  ecosystems  remain  resilient,  secure  and  extensible  across 

varying farm sizes, infrastructure maturity levels and evolving hardware landscapes. 
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Table  3. Comparative Assessment  of Modeling Approaches Used  in Digital  Twins  for  Precision  Livestock 

Nutrition. The table evaluates four major modeling paradigms across dimensions such as data requirements, 

computational efficiency, prediction accuracy, interpretability and implementation complexity. 

Modeling 

Approach 

Mathematica

l Foundation 

Data 

Requireme

nts 

Computatio

nal 

Efficiency 

Prediction 

Accuracy 

Interpretabil

ity 

Implementati

on 

Complexity 

Referenc

es 

Physics‐

based 

Metabolic 

Models 

Differential 

equations, 

Compartmen

tal models 

Moderate:   

Feed intake, 

pH, 

Temperatur

e, milk yield 

Moderate to 

High 

(depends on 

simulation 

resolution) 

70‐80% R2 

for energy 

balance 

High: Clear 

causal 

relationships 

and 

biologically 

grounded 

Medium: 

Requires 

biological 

expertise and 

parameter 

calibration 

[41] 

Machine 

Learning 

(Neural 

Networks

) 

CNN for 

behavior, 

LSTM for 

temporal 

patterns, 

SVM 

High:   

Labeled 

acceleromet

er & intake 

data; 

image/video 

streams 

Low for   

training 

Fast during   

inference 

Up to 94% 

for intake 

prediction; 

85‐93 % for 

behaviour 

classificati

on 

Low: Black‐

box 

predictions 

High: 

Requires ML 

expertise for 

tuning and 

substantial 

labeled 

training data 

[51,55] 

Hybrid 

Models 

Combined 

empirical 

and 

mechanistic 

Moderate‐

High: 

sensor, 

historical 

data   

Medium: 

Modular 

Components 

85‐90% 

under 

stable 

conditions 

(NIR+ 

regression) 

Moderate    High (multi‐

model 

integration) 

[48,56]   

Agent‐

Based 

Simulatio

ns 

Individual 

cow agents 

with decision 

rules 

Moderate: 

Behavioral 

observation

s and 

historical 

patterns 

Low for large 

herds; scales 

poorly 

60‐75% for 

individual 

behavior 

(better for 

aggregate 

patterns) 

High: 

Emergent 

behavior 

from clear 

rules 

Medium: 

Conceptually 

straightforwar

d but difficult 

to 

parameterize 

accurately 

[50,57] 

5. Digital Twin Integration Framework for Farm Management System 

The successful deployment of Digital Twin  (DT) systems  in precision dairy  farming requires 

more than modeling accuracy. It relies on robust integration with heterogeneous on‐farm systems, 

modular architecture and staged implementation. This section outlines a comprehensive integration 

framework while embedding a phased  implementation roadmap aligned with current field‐tested 

practices. 

Modern  DT  platforms  for  dairy  are  increasingly  adopting  modular  API‐first  designs  that 

support seamless  interoperability with  farm management  information systems  (FMIS),  IoT sensor 

networks, and cloud analytics platforms. These ensure that services can interact dynamically across 

different layers of the DT architecture, even under variable network conditions. 

Phase 1: Infrastructure and Interoperability Setup 

Initial implementation focuses on establishing foundational connectivity. Lightweight brokers 

such as ioBroker or Node‐RED, deployed on devices like Raspberry Pi, allow for local integration of 

milking units, collar‐based sensors, and feed controllers into a unified middleware layer. Protocols 

like  MQTT  and  OPC‐UA  provide  fault‐tolerant  communication,  buffering  messages  during 

disconnections and ensuring reliable delivery a critical capability in low‐connectivity rural areas. 

Phase 2: Semantic Modeling and Synchronization 
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Once data pipelines are operational, the system must support meaningful data integration. This 

is accomplished through ontology‐based data modeling using RDF/OWL standards. Ontologies like 

SAREF‐Agri and SSN/SOSA offer a formal schema to encode domain knowledge, enabling multi‐

domain interoperability across behavior, health, and nutrition monitoring systems. These semantic 

layers empower rule‐based alerts and automated decision‐making, allowing the DT to reason about 

contextual changes in animal physiology or environment. 

Phase 3: Edge‐Cloud Optimization and Data Governance 

Edge computing strategies are then introduced to reduce latency and bandwidth usage. Case 

studies such as Menges et al. [39] demonstrate how edge‐based thermal imaging DTs achieve over 

70%  latency  reduction  compared  to  cloud‐centric models by  executing  inferences  locally. At  this 

stage, data governance policies must also be defined ensuring farm data sovereignty, secure access 

(TLS 1.3, X.509), and privacy‐preserving analytics via federated learning[60]. 

Phase 4: Feedback Loop and Farm‐Centric Customization 

The  final  stage  involves  creating  a  bi‐directional  feedback  system where DT  insights  drive 

actionable  interventions,  personalized  feed  allocation,  early  disease  alerts  or  labor  reallocation. 

Middleware like OPC‐UA serves as a bridge for  legacy herd management software, enabling ETL 

processes  that  convert  proprietary  formats  into  standardized  digital  twin  schemas  without 

disrupting existing workflows. 

Overall, the ideal system architecture for DT‐enabled dairy farms is hybrid: combining loosely 

coupled services at the edge for time‐sensitive operations, with centralized cloud‐based orchestration 

([61]) for long‐term analytics and cross‐farm coordination. Resilience, scalability, and interoperability 

are  achieved  through  containerized deployment  of APIs,  semantic data modeling,  and  adaptive 

middleware that can negotiate synchronization, security, and translation across diverse farm assets. 

6. Validation Methodologies for Precision Dairy Nutrition Digital Twins 

Robust validation  is  critical  for  ensuring  the  reliability  safety, and generalizability of digital 

twins in precision dairy nutrition. Unlike static modeling efforts, DTs operate continuously with real‐

time  data  streams,  requiring multidimensional  evaluation  protocols  that  assess  both  predictive 

performance and operational resilience. Validation frameworks must be tailored to both the temporal 

complexity and physiological nuances of livestock nutrition. 

Recent studies have emphasized the importance of both offline and online validation methods 

to  ensure  the  fidelity  of  digital  twin  models  throughout  their  lifecycle.  Traditional  statistical 

validation  methods  fall  short  in  capturing  transient  or  localized  mismatches  between  digital 

representations  and  real‐world  dairy  system  behaviors.  Consequently,  hybrid  approaches  that 

combine  data‐driven  inference,  simulation  realism,  and  dynamic  trace  comparison  have  gained 

traction. 

6.1. Benchmark Datasets and Performance Metrics 

Effective DT validation begins with access to standardized datasets representative of real‐world 

farm variability. Public datasets such as the SmartCow project and the ISAEW 2021 proceedings data 

archive provide labeled behavior and physiological data for cows across regions and seasons. These 

datasets include synchronized rumen pH, feed intake, milk yield, and accelerometer data, offering 

suitable  inputs  for  evaluating  feeding  behavior  recognition  and  metabolic  modeling  modules. 

Metrics must be  chosen based on module  function. Behavior detection models  [34] are validated 

using  F1‐score,  precision‐recall  and  confusion matrices  across  behavior  classes  like  rumination, 

feeding,  and  lying. Metabolic  simulators  are  validated  using  root  mean  square  error  (RMSE), 

normalized mean bias (NMB) and Pearson correlation coefficients comparing simulated vs. measured 

milk yield, nitrogen balance, or methane production ([41,48]). Feed optimization engines using linear 

programming or genetic algorithms are evaluated using cost‐efficiency ratios, nutrient compliance 

scores and predicted vs. actual productivity response curves. 
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Lugaresi et al. [62] propose validation using inter‐departure time sequences and material flow 

traces in manufacturing systems. This approach can be adapted to dairy settings by substituting KPIs 

with  nutrition‐specific  outputs  like milk  protein  or  fat  yield  and  rumen  fermentation  profiles. 

Measuring similarity between these real and simulated time‐series enables the detection of anomalies 

or model drift even with limited data availability. 

6.2. Comparative Evalaution Protocols 

Validation of dairy DTs should include ablation studies to isolate the contribution of individual 

subsystems  (e.g.,  removing  pH  input  from  the  rumen model  or  disabling  accelerometer‐based 

behavior  detection). Comparative  baselines  can  be  drawn  from  rule‐based  or  empirical models, 

allowing digital twins to be benchmarked against simpler but widely used alternatives. They can also 

be assessed using sequence‐based similarity  indicators such as Levenshtein [63] or Dynamic Time 

Warping distances between real‐world dairy performance and simulated outputs. As advocated by 

Lugaresi et al. [62] validation should distinguish between input accuracy (e.g., ration composition) 

and model logic fidelity (e.g., digestion kinetics, nutrient partitioning models) to locate the source of 

discrepancies effectively. 

Additionally, cross‐platform benchmarking is recommended where cloud‐based vs. edge‐based 

deployments are compared under identical data streams, evaluating not only accuracy but latency, 

data throughput and inference power draw ([39,57,64]). 

6.3. Cross Validation with Biological Variability 

In dairy systems, physiological variation due  to  lactation stage, parity or genotype demands 

validation  that  generalizes  across  heterogeneous  cohorts. Hua  et  al.  [65]  stress  on  the  need  for 

continuous and probabilistic validation frameworks that incorporate real‐time IoT‐derived data to 

dynamically update and test model performance. Bayesian calibration and trace‐driven simulations 

allow model parameters to adapt to incoming data while preserving biological realism. Furthermore, 

they  recommend  coupling  data‐driven  calibration with  logic‐based  anomaly  detection  to  guard 

against model overfitting or conceptual drift. 

6.4. Continuous Model Improvement Frameworks 

Digital twins in dairy nutrition are not static artifacts but evolving systems. Lugaresi et al. [62] 

recommend real‐time model updates via online validation that distinguishes short‐term deviations 

from structural errors. For instance, a sudden drop in predicted milk urea levels, uncorrelated with 

feed nitrogen inputs, may signal model degradation or sensor misalignment. Incorporating sliding 

window‐based validation metrics ensures models maintain predictive accuracy over time. 

For ongoing validation and  continuous  improvement,  feedback  loops must be  implemented 

using live farm telemetry. This includes monitoring of deviations between predicted and observed 

values,  automatic  reweighting  of  training  data,  and  re‐triggering  of  calibration  workflows.  In 

precision nutrition, where feed costs and cow health are tightly coupled, such mechanisms are not 

only beneficial but essential to ensuring model trustworthiness and avoiding economic losses due to 

misestimation. 

7. Applications of Digital Twin 

Digital  Twin  (DT)  technology  has  found  diverse  applications  across  sectors,  ranging  from 

industrial  automation  to  agriculture,  healthcare  and  urban  planning.  Digital  Twins  enable 

continuous monitoring,  simulation  and  control  by  integrating  real‐time  sensing with AI  driven 

modeling, visualization and feedback systems. Additionally,  its flexibility enables domain‐specific 

customization. This section critically analyzes the breadth and depth of DT applications by domain, 

drawing  from  various  published  works  and  highlighting  specific  technologies,  outcomes  and 

implementation strategies. 
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7.1. Industrial Applications 

Manufacturing  is  the most mature  domain  for DT  implementations,  particularly  under  the 

umbrella of Industry 4.0 initiatives and cyber physical integration. The earliest DTs were conceived 

for machine health diagnostics and virtual commissioning of production lines. 

Predictive maintenance and machine optimization were among the first use cases. Studies by 

Tao  et  al.  [29]  and  Khajavi  et  al.  [4]  demonstrated  the  use  of DTs  for  predictive maintenance, 

production optimization and real‐time machine monitoring. Digital twins of industrial lines, such as 

Siemens PLM [4] support fault diagnosis and asset lifecycle management with remote supervision. 

The  AutoDRIVE  ecosystem  [25]  and  Digital  Twin‐based  virtual  commissioning  [66]  highlight 

advanced simulation and control strategies integrated with cyber‐physical systems. The AutoDRIVE 

Digital Twin Platform is a fully integrated and extensible cyber‐physical testbed designed to simulate 

autonomous  driving  in  realistic  smart‐city  environments.  It  has  been  deployed  in  field‐like 

educational and  experimental  scenarios,  combining  real‐time SLAM, V2X  communication, multi‐

agent coordination, and vehicle‐in‐the‐loop (VIL) simulation using RViz. The platform emphasizes 

reproducibility  and hybrid  cloud‐edge orchestration  through ROS‐based APIs  and  containerized 

modules, validated through 10+ test deployments in autonomous parking, obstacle avoidance, and 

traffic signal response. 

Other  implementations,  such  as  the  Smart  Factory  case  studies  ([17,67])  documented  the 

integration  of  SCADA,  OPC‐UA middleware  and  digital  replicas  for  energy  optimization  and 

logistics  planning.  Applications  to  electric  mobility  and  mechanical  systems  have  also  been 

demonstrated [68]. 

Most recent DTs are focused on energy efficiency, supply chain coordination and quality control. 

Energy Digital Twins  in  smart manufacturing Systems  [69] use  IoT  energy meters  and  real‐time 

analytics to reduce downtime and carbon emissions. Smart Manufacturing with DT [70] deploys ML 

models to detect defects, optimize task sequences and simulate environmental impact. Digital twin 

for Smart Grid Lifecycle Management [71] connects energy infrastructure to broader industrial DTs 

for fault prediction and load balancing. These industrial examples reflect the transition from static 

models to autonomous, AI augmented control systems. 

7.2. Healthcare Applications 

Digital twins in healthcare are less mature but rapidly expanding. Healthcare digital twins are 

emerging for both personalized medicine and population‐level public health. PsyDT [15] is one of 

the first examples of a LLM‐powered digital counsellor. It applies large language models to simulate 

psychological counselors, enabling personalized digital  therapy. Digital Twins  in Precision Public 

Health by Boulos and Zhang  [72] demonstrated how DTs ca be used to model  the progression of 

chronic diseases like diabetes or cardiovascular illness by integrated EHRs, genomics and wearable 

data. Digital Twin  for COVID‐19 Forecasting  [31] predicted  infection  trajectories using real world 

epidemiological data using BiLSTM and GANs. This DT combined a modified SEIRS epidemiological 

model with Bidirectional LSTM (BiLSTM) and Generative Adversarial Networks (GANs) to simulate 

and forecast pandemic spread in an idealized UK town. The BiLSTM was trained to learn infection 

dynamics  from  real  UK  virus  transmission  data,  while  the  GAN  generated  realistic  infection 

trajectories.  These  AI‐enhanced  digital  twins  provided  fast,  adaptive,  and  spatially‐aware 

simulations that outperformed static epidemiological models in both prediction accuracy and speed 

an approach that could be extended to new pandemics or applied at municipal levels. 

Hospital  Resource  Optimization  Twins  (Minerva  et  al.  [2])  model  hospital‐level 

implementations to optimize bed occupancy, ventilator usage and emergency routing. 

These  systems  often  integrate wearable  IoT  data with  clinical  databases  to  enable dynamic 

patient‐specific simulations. Healthcare DTs often use multimodal data (like EHRs, wearable sensor 

logs,  NLP  outputs),  time‐series  prediction  (symptom  escalation,  medication  compliance)  and 

synthetic  patient  generation  for  testing  clinical  workflows  or  AI  models.  Challenges  include 

regulatory constraints, interpretability, and patient privacy. Digital Twins in Healthcare: Theory and 
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Practice [73] outlines these in detail and proposes solutions involving federated learning and edge 

AI. 

7.3. Urban Planning and Smart Cities 

Urban digital  twins are revolutionizing how cities plan, simulate and manage  infrastructure. 

The Herrenberg case study [74] utilized real‐time citizen feedback loops for smart traffic and mobility 

systems. The system was rendered in virtual reality and integrated with COVISE for collaborative 

planning, enabling residents and stakeholders to interact with and modify urban planning scenarios 

in real time. This participatory model reduced the gap between technical planners and non‐experts 

and enhanced democratic engagement in the town’s 2030 mobility plan. 

Sensors embedded in traffic signals, buses and air quality monitors are fed into a unified control 

dashboard. Studies from Bogotá [75] and AEC‐FM industry reviews [17] illustrate how BIM and GIS 

integration  allowing planners  to model  energy demand under different  infrastructure proposals. 

CitySim [76] uses a drone based vehicle trajectory dataset for vehicle behaviour modeling which is 

useful for mobility planning and traffic safety policy testing. The project collected over 23 hours of 

video  across  six diverse urban  intersections using UAVs,  extracting more  than  5 million vehicle 

trajectories.  The  digital  twin  simulates  real‐time  interactions  among  vehicles, mapping  turning 

patterns, speed distributions, and near‐miss events. It supports safety‐oriented urban planning, such 

as evaluating the effectiveness of redesigned intersections or speed calming interventions. CitySimʹs 

architecture  integrates  edge‐based  video  processing  with  cloud‐based  scenario  simulations, 

demonstrating the role of digital twins in enabling proactive, data‐driven traffic policy decisions. The 

dataset and platform are openly accessible, encouraging reproducibility and cross‐city comparison. 

A  review  of DT  in  the AEC‐FM  industry  [77]  discussed  the  use  of DTs  in  smart  building 

management, predictive maintenance and energy budgeting. The projects used 3D scanning, BIM 

and  thermal  mapping  to  create  DTs  for  municipal  buildings.  Smart  grid  and  transportation 

integrations  ([71,78]) outlined  the  interaction between electric vehicle charging and public  transit 

demand. Urban DTs  integrate  sensor  networks  (traffic,  pollution,  energy meters,  noise),  citizen 

feedback portals and high resolution 3D modelling using LiDAR. 

Limitations  in  this domain  include  scaling  infrastructure, data governance  and  inter‐agency 

interoperability. 

7.4. Agricultural Applications 

Agricultural applications, particularly  in  livestock management,  leverage DTs  for behaviour 

analysis,  precision  feeding  and  sustainability  tracking.  Several  emerging  works  illustrate  this 

evolution toward multi‐layered, cyber‐physical farm intelligence. 

Livestock DTs include systems like IUMENTA [19] offers a species‐agnostic DT framework that 

simulates physiological status, behaviour and welfare metrics using multimodal senor inputs. Smart 

Livestock Farms using DT  [12] explored wearables  like rumen sensors, accelerometers to monitor 

feed  intake,  locomotion  and  temperature.  Its  plugin‐based  architecture  supports  cross‐device 

compatibility and promotes generalizability across species, addressing a major scalability bottleneck 

in livestock DT deployment. Feeding Behaviour DTs [20] use deep learning and edge processing to 

detect anomalies in chewing and rumination patters which is crucial for early disease detection. AI 

based  DT  for  Cattle  Caring  [37]  models  each  cow’s  stress,  hydration  and  feed  efficiency  to 

dynamically adjust rations via smart feeding systems. Digital Twin Perception for Cattle Feeding [34] 

uses thermal and motion fusion for assessing group behaviour under variable climate conditions. 

A notable real‐world implementation is the Digital Twin Pig House developed by Jeong et al. 

[35], which virtually replicates a commercial pig facility and synchronizes it with live sensor data to 

dynamically optimize HVAC systems. By simulating various environmental conditions and actuator 

responses, the DT reduced energy usage by up to 26.8% while maintaining optimal thermal comfort 

for the pigs. This system integrates weather forecasts, behavioral patterns, and indoor environmental 
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feedback, and demonstrates how DTs can be used not only for monitoring but also automated control 

and predictive operation in livestock infrastructure. 

For crop and Infrastructure DTs, AgriLoRa [21]  integrated LoRaWAN sensors, reinforcement 

learning and local climate data to simulate crop and soil health. It supports precision irrigation and 

fertilizer scheduling. Digital Twin Assisted Greenhouse Irrigation [79] uses soil moisture and weather 

forecasting to optimize irrigation cycles and reduce water waste. Emerging horticulture‐focused DTs 

extend these methods to root‐zone monitoring [80] From Bytes to Farm [81] describes the adaptation 

of  industrial  twins  to  farming  applications  using  open  source  telemetry  platforms  and modular 

machine learning models. 

These case studies confirm digital twin supported systems help  in reducing methane output, 

improving  feed  to milk ratios,  lowering veterinary  interventions,  forecasting yields under climate 

variability. However, key challenges include connectivity in rural zones, sensor accuracy and farmer 

training. Solutions like FIWARE‐based twins, semantic APIs [19] and low power LoRa [21] devices 

are being tested to address the barriers. 

Table 4 presents additional agriculture‐focused DT frameworks, demonstrating the diversity of 

design and scope across livestock and crop systems. 

Table 4. Overview of Digital Twin Frameworks in Agriculture and Livestock. The table summarizes key research 

and  implementation  frameworks,  highlighting  their  primary  focus,  applicable  species  or  crops  and 

distinguishing technical features. 

Framework  Focus Area  Species/Crop  Key Features 

IUMENTA  Animal Behaviour  Cow, Pig   Modular,  sensor  agnostic,  real‐

time 

SmartCow Data  Behaviour Modeling  Dairy Cows   Annotated data for ML training 
AgriLoRa  Feed and Integration  Dairy, Crops   RL + LoRa based decision 

support 
Digital Pig House  Housing Optimization  Swine   Simulated barn layout and 

climate 
Horticulture DT  Root zone analysis  Greenhouse crops   Multi-sensor plant health DT 
Bytes to Farm  Transferability  All   Industry-to-farm digital twin 

migration 

These  case  studies  confirm  that  the  industries  are moving  from  traditional data  analysis  to 

proactive,  twin‐driven decision  support  systems. However,  each  sector  continues  to  face unique 

barriers, ranging from rural connectivity  in agriculture to data governance in urban planning and 

regulatory  constraints  in  healthcare.  Table  5  presents  a  comparative  overview  of  digital  twin 

applications across major  sectors, outlining  their primary  functional  roles,  representative  studies, 

data sources, and implementation challenges. This highlights how each domain tailors digital twin 

design based on specific infrastructure maturity, sensor types, and operational demands. 

Table  5.  Comparative Overview  of Digital  Twin Applications Across  Sectors.  This  table  outlines  the  key 

functional roles, representative case studies, data sources and domain‐specific challenges in deploying digital 

twins in manufacturing, healthcare, smart cities and agriculture. 

Sector  Key Functions  Representative Works  Data Sources 
Unique 

Challenges 

Manufacturing 

Predictive 

maintenance, virtual 

commissioning,   

optimization 

Siemens DT [82],   

AutoDRIVE [25],   

Virtual Commissioning   

Sensors 

(vibration, 

temp), PLCs, 

SCADA logs 

Integration with 

legacy systems,   

Cost of setup 
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Healthcare 

Personalized 

medicine, mental 

health simulation, 

public health 

forecasting 

PsyDT [15],   

COVID‐19 DT [31],   

Precision Public Health 

Wearables, 

EHRs,   

genomics,   

chat logs 

Privacy,   

Interpretability,   

Regulation 

Smart Cities 

Traffic simulation, 

infrastructure 

monitoring, citizen 

feedback 

CitySim [75],   

Herrenberg DT [74],   

Bogotá Smart City[75]   

Drones,   

GIS,   

sensor grids,   

BIM 

Data 

heterogeneity, 

real‐time latency 

Agriculture 

Precision feeding, 

animal behaviour 

modeling, crop 

forecasting 

IUMENTA[19],   

AgriLoRa [21],   

SmartAgriFood [22]   

RFID,   

GPS,   

bolus sensors, 

weather, s 

oil data 

Rural 

connectivity, 

sensor failures,   

low‐cost needs 

8. Challenges and Limitations 

Despite  their  transformative  potential, Digital  Twin  systems  face  numerous  challenges  that 

hinder their widespread adoption and effective deployment. These challenges are both technical and 

contextual including issues like ‐ data privacy, computational complexity, legacy system integration 

and  real‐time  analytics.  They  range  from  technical  and  infrastructural  limitations  to  regulatory, 

ethical and cost related concerns. This section critically assesses these limitations based on an analysis 

of key papers and real‐world case studies. 

8.1. Data Privacy and Security Concerns 

One of the most cited concerns is data security and user privacy, especially in healthcare and 

livestock DTs where  sensitive  biological  and  behavioural  data  are  involved. The  continuous  bi‐

directional data exchange that defines a DT raises substantial privacy risks. 

In SmartAgriFood and Fractals [22] demonstrated that data governance and ownership disputes 

are  common  in  cooperative  agricultural  systems.  Farmers  are  often wary  of  cloud‐based  twins, 

fearing  data misuse  by  equipment  vendors  or  government  agencies.  PsyDT  [15], which models 

psychological interactions using LLMs, had to rely on generated datasets to avoid violating patient 

confidentiality.  In smart cities  like Herrenberg  [74], personal mobility  traces and audio data  from 

sensors could reveal identities, necessitating differential privacy mechanism. 

Cybersecurity  attacks on DT  infrastructure  are  also  increasing. Digital Twin  for Smart Grid 

Lifecycle Management [71] highlights how compromised DTs could misreport [83] energy loads or 

divert critical flows, creating cascading blackouts. Digital Twins: State of the Art [29] says that health 

telemetry streams can be intercepted unless secured with end to end encryption and access control 

protocols. Cybersecurity frameworks are still evolving to match the scale and heterogeneity of DT 

ecosystems [17], including Federated digital twin models, blockchain secured audit trails and edge 

AI for privacy preserving inference. 

8.2. Real‐time Data Processing and Analysis 

DTs depend on the continuous flow of real‐time data, yet processing this information at high 

speeds  remains difficult particularly  for  complex  environments  like  cities or  farms. Latency  and 

bandwidth constraints in edge‐to‐cloud pipelines [4] hinder real‐time feedback. Solutions like edge 

analytics and federated learning are being tested but require further standardization. Computational 

demands  also  grow  with  data  volume,  requiring  scalable  infrastructure  and  high‐performance 

computing platforms. 

AgriLoRa [21] uses LoRaWAN and edge devices to enable low‐bandwidth, asynchronous data 

delivery but even this had limitations during high‐throughput or event based scenarios. Digital Twin 

architecture evaluation for intelligent fish farms [83] showed that data lags caused by rural LTE and 
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underwater  sensors  impaired  the  ability  of  DTs  to  predict  behaviour.  Digital  twin  in  Smart 

Manufacturing [82] papers highlight the use of Apache Kafka, DDS and Spark to handle millisecond 

resolution data, but these require heavy infrastructure investments. 

In  From  Bytes  and  Farm  [81]  the  transferability  of  industrial DT  tools  to  rural  agricultural 

environments was constrained by the lack of real time edge gateways. Weather data, cow rumination 

logs  and  greenhouse CO2  levels  often  arrive with  significant  temporal misalignment degrading 

model performance. 

8.3. Integration with Legacy Systems 

Many  industrial  and  agricultural  facilities  operate  on  legacy  control  systems  that were  not 

designed for digital interfacing. Traditional farms, hospitals and factories were not designed for real‐

time telemetry, modular APIs or semantic data models. 

Digital Twin: Proof of concept [84] discusses the mismatch between domain specific operational 

workflows and cross domain DT models. Studies like ʹDigital Twin Architecture Evaluation for Fish 

Farmsʹ [83] and ʹConnecting the Twinsʹ [43] reveal frequent incompatibility between DT middleware 

and old PLCs or SCADA systems. 

Bridging  this  gap  requires  middleware  adapters  [19],  API  translation  layers,  or  complete 

infrastructure upgrades‐each with its own constraints. Shaping the DT for Design and Production 

Engineering [30] recommends ontology‐based abstraction layers for legacy data mapping. 

8.4. High Cost and Complexity 

DT  implementation  demands  significant  upfront  investment  in  sensors,  computing 

infrastructure, modeling software and human expertise. This is particularly burdensome for SMEs 

and small‐scale farmers. 

Recent studies have estimated the cost of implementing digital twins in agriculture across 4 main 

configurations.  These  figures, while  not  standardized  across  geographies,  are  extrapolated  from 

prototype implementations and academic trial deployments rather than commercial‐scale rollouts. 

Basic IoT systems with wireless sensors can be deployed for $1000‐$4000 making them accessible to 

small medium farms [85]. In contrast, cloud integrated DT platforms with continuous data streaming, 

cloud analytics and SaaS support can go above $10,00 in setup costs. Edge AI hybrid systems, which 

allow  real‐time  inference on  farm,  incur higher  costs around  $20,000 due  to advanced hardware 

requirements. These costs are highly variable and depend on factors such as region, data granularity, 

and infrastructure maturity. Table 6 summarizes the estimated costs and infrastructure requirements 

for  different  digital  twin  deployment models  in  precision  livestock  farming,  extrapolated  from 

sources. Modular, open source deployments can reduce the cost but often at the expense of accuracy 

and reliability [86]. 

Table 6. Estimated Costs and  Infrastructure Requirements  for Different Digital Twin Deployment Models  in 

Precision Livestock Farming. The table compares various deployment approaches based on initial investment, 

infrastructure needs, scalability, and potential barriers for small‐scale farms. 

Deployment Type  Initial Investment 

(USD) 

Required Infrastructure  Scalability 

Basic IoT Feed Sensors  $1,000–$4,000  Local data logger, wireless sensors  High 

Cloud‐based DT System  $10,000–$18,000  Cloud API, stable internet, SaaS  Medium 

Edge‐AI Hybrid System  $15,000–$25,000  Edge device, local inference  High 

Open‐source Modular 

DT 

$2,500–$6,000  On‐premises CPU, MQTT, OSS 

pipelines 

Medium 

Papers such as ́Digital Twin Technology Challenges and Applicationsʹ [87] discuss the economic 

barrier to adoption. Although no explicit figures are reported, studies such as From Bytes to Farm 

[81] and AgriLoRa indicate that the combined expenses of drone based imaging, IoT infrastructure, 
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and predictive analytics in precision farming can exceed $20,000 per deployment depending on scale 

and resolution requirements. 

In Digital Twins in Sustainable Forestry [88], implementation was delayed due to lack of funding 

for permanent sensors towers and real‐time meteorological integration. Forest Digital Twin [89] and 

Smart Farming platforms ([90–92]) show  that pilot deployments often remain  isolated due to cost 

constraints. Furthermore, AutoRetail Checkout DT [93] and Product Manufacturing DTs reveal that 

training ML models for object recognition or assembly fault lines often requires thousands of labeled 

samples, which are expensive to curate. 

Simplified DT toolkits and open‐source platforms may help mitigate these issues. Promisingly, 

recent  advances  in  federated  learning,  low‐power  edge AI,  and  open‐source model  libraries  are 

beginning to reduce setup costs and ease deployment for resource‐constrained farms, especially in 

low‐and middle‐income countries (LMICs), where traditional infrastructure is limited. [60,94]) 

8.5. Model Interpretability and Stakeholder Trust 

In  the  sectors  like  healthcare,  agriculture  and  governance,  decision‐making  needs  to  be 

explainable and transparent. However, ML‐driven DTs especially those using deep learning often act 

as black boxes. Digital Twins in Healthcare: Challenges and Future Directions [95] argues that clinics 

will not adopt opaque models unless  they are  interpretable, auditable and  regulated.  In  farming, 

Digital Twin Perception of Cattle Behaviour [34] notes that while CNNs accurately classify motion 

states, farmers struggle to understand why a cow was flagged as “stressed”. In smart cities, Citizen‐

Centered  Urban  Twins  ([74,75])  [Herrenberg,  Bogotá]  reported  resistance  from  residents  when 

recommendations were unexplained or seemingly biased. 

To address these issues, several solutions have been proposed. Digital Twin for Psychological 

Counseling  (PsyDT)  [15]  integrates  attention‐based  visualizations  to  explain  language  model 

decisions. IUMENTA [19] provides feedback loops where farmers can annotate system predictions 

to train more human‐aligned models. Researchers propose hybrid twins that combine rules + ML, 

allowing stakeholders  to  trace  logic chains while preserving adaptability. Recently,  Jox et al.  [96] 

proposed a conceptual framework for predictive digital twins in dairy, emphasizing hybrid modeling 

architectures and explainable AI layers to balance real‐time predictive performance with stakeholder 

interpretability. Their design uses modular  logic  chains  that  can  be  traced  and  audited  by  farm 

operators while remaining adaptive to new sensor inputs. 

Beyond  interpretability,  it  is  also  important  to  recognize  that  several  architectural  choices 

directly  respond  to  the broader systemic adoption challenges outlined above. While architectural 

elements  like edge computing, middleware, and modular APIs have been mentioned  in domain‐

specific  contexts  above,  they merit  cross‐domain  reflection  as  deliberate  responses  to  systemic 

barriers. Edge‐cloud balance mitigates real‐time data bottlenecks and reduces connectivity demands 

in  rural  zones. Middleware  frameworks  like  FIWARE  and OPC UA  address  legacy  integration 

challenges  while  modular,  open‐source  architectures  reduce  cost  and  increase  customization 

flexibility. These strategies highlight a shift from monolithic DT implementations to scalable, layered 

architectures that align with stakeholder constraints. Rather than being just technical optimizations, 

such choices enable ethical, affordable, and maintainable deployments across diverse sectors. 

In conclusion, Digital Twin systems face substantial hurdles related to data integrity, real‐time 

synchronization, legacy integration, cost and trust. However, the ecosystem is maturing. Low‐cost 

sensor packages, edge  inference and open DT frameworks (like FIWARE, IUMENTA) are making 

adoption  easier. Explainable AI,  federated  learning  and  semantic  ontologies  are  closing  the  gap 

between automation and human judgment. Addressing these challenges is not optional it is critical 

to  ethical,  scalable  and  sustainable  deployment  of  DTs  across  domains.  To  consolidate  these 

challenges,  Table  7  summarizes  the major  technical  implementation  barriers  identified  in  recent 

literature, their effects on system performance, existing solutions and future research directions. 
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Table  7.  Technical  Barriers,  Current  Mitigation  Strategies  and  Research  Opportunities  in  Digital  Twin 

Deployment. This table outlines core technical limitations impacting system performance and summarizes both 

current solutions and emerging research directions as identified in recent literature. 

Technical 

Barrier 

Impact on 

System 

Performance 

Current Solutions  Technical 

Limitations 

Research 

Opportunities 

Reference

Rural 

Connectivity 

Limitations 

Delayed model 

synchronization, 

loss of real‐time 

actuation 

signals 

Edge computing, 

LoRaWAN based 

networks, Asynchronous 

update scheduling 

Limited ML 

computing 

capabilities at 

edge, 

Fragmented 

data, 

Unreliable 

sync 

Federated edge 

inference, 

adaptive 

compression 

protocols, DT 

aware 

synchronization 

[97,98] 

Sensor Data 

Quality Issues 

False alarms, 

inaccurate 

behaviour 

detection, 

temporal 

misalignment 

Multi‐sensor fusion, 

Anomaly detection 

algorithms, Sensor 

calibration pipeline 

Sensor drift, 

energy limits, 

coverage 

variability 

Transfer 

learning for 

sensor profiles, 

calibration on 

the fly 

mechanisms   

[20,37] 

Computational 

Resource 

Constraints 

Inability to run 

complex models 

locally, latency 

in cloud only 

setups 

Model compression, 

Hardware accelerated 

edge devices, Scheduled 

analytics 

Energy limits 

on devices, 

cloud cost, 

training offline 

Lightweight 

CNN 

deployment, 

GPU 

virtualization 

for farms, 

Modular DL 

runtimes   

[39,97] 

Data 

Integration 

Heterogeneity 

Errors in multi 

modal fusion, 

inability to scale 

across farms 

Semantic data layers 

(RFD, OWL),   

Open APIs,   

ETL pipeline 

Lack of 

standards, 

vendor specific 

schemas, high 

maintenance   

Auto‐schema 

matching, 

distributed 

linked data 

infrastructure, 

blockchain‐

backed audit 

trails 

[65,99]   

Biological 

Variability 

Modeling 

Poor 

generalizability 

of models across 

cows or herds 

Baseline calibration per 

cow,   

Hierarchical Bayesian 

models,   

Dynamic parameter 

adjustment 

Slow 

convergence, 

requires large 

initial dataset 

Real time 

Bayesian 

correction, 

embedded 

ensemble 

learning, 

biologically 

informed 

explainable AI 

[100] 

Legacy System 

Compatibility 

DT cannot 

access historical 

or infrastructure 

bound datasets 

API wrappers,   

Middleware bridges like 

MQTT,   

FIWARE adapters 

Inconsistent 

metadata, slow 

update cycles, 

proprietary 

lock in   

Plug and play 

adapters, NLP 

bases data 

harmonization 

[42] 
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9. Ethical Considerations 

The implementation of DT systems in precision livestock nutrition raises complex ethical issues 

that require attention beyond their technological potential. A major concern involves data ownership 

and governance, especially as sensor‐driven DTs collect continuous, high‐resolution data streams 

from animals, equipment, and environmental systems. Without clear frameworks, data rights may 

default to technology providers rather than farmers, potentially undermining producer autonomy 

and creating dependencies [85]. Additionally, the increased reliance on algorithmic decision‐making 

in feeding systems can diminish the role of farmer intuition and experiential knowledge. This raises 

questions of agency and accountability, particularly when recommendations are not transparent and 

difficult  to  interpret  due  to  black‐box  AI models  ([101,102]).The  transparency  of  decision  logic 

becomes even more critical in high‐stakes scenarios, such as ration formulation, where nutritional 

errors can harm animal health. Ensuring that these systems are built on explainable AI (XAI) and 

include human‐in‐the‐loop override capacity  is essential  to maintaining  trust and responsible use 

[103]. 

Further,  there  are  concerns of  farms with  limited  access  to  connectivity,  capital or  technical 

literacy which may be excluded  from DT‐enabled benefits, exacerbating  inequality across regions 

and operation scales [104]. Ethical deployment must therefore consider scalability, affordability and 

inclusivity in DT design. 

Finally, there are ecological and welfare trade‐offs. DTs designed to optimize feed efficiency and 

productivity may unintentionally promote over‐intensive systems,  ignoring broader sustainability 

concerns  such  as  methane  emissions,  nutrient  runoff,  or  long‐term  soil  degradation  [105].  A 

responsible DT framework must integrate multi‐objective goals that focus on economic optimization 

as well as environmental benefits and ethical treatment of animals. 

10. Current Trends and Future Directions 

As Digital Twin technology evolves, emerging trends and innovations continue to expand its 

capabilities and applicability. They focused on virtual monitoring and failure prediction, and are now 

progressing toward self‐learning, autonomous systems that evolve in real‐time, adapt to contextual 

data  and  enable  closed‐loop  optimization  across  biological, mechanical  and  social  systems. This 

section explores how recent developments in artificial intelligence (AI), edge computing, simulation 

techniques and integration with Industry 4.0 are shaping the future of DT systems. Additionally, it 

highlights open research gaps and proposes future research directions to address existing limitations 

and maximize the potential of DTs. 

10.1. The Role of Artificial Intelligence and Machine Learning 

On of the most significant shifts in DT systems is their growing reliance on AI/ML models for 

perception, prediction and control. These are increasingly central to the development of intelligent, 

predictive digital twins. 

DTs  are  evolving  from  deterministic  rule  bases  systems  to  data  driven models  that  learn 

behaviours from experience. AI models such as LSTM, GANs and transformers are being used to 

model complex time‐series behaviours, forecast anomalies and guide autonomous decision‐making. 

In livestock, AI powered DT for cattle caring and Feeding behaviour DT [20] use CNNs to predict 

stress, optimize feed schedules and detect anomalies. PsyDT [15] is a breakthrough in healthcare DTs 

and Real2Sim2Real for autonomous vehicle simulation and deployment. 

Recent literature [96]emphasizes the need for and importance of explainable and generalizable 

AI to improve trust, stakeholder aligned model design and usability across sectors. 
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10.2. Edge Computing in Digital Twins 

Edge computing is a major enabler for real‐time DTs by reducing latency and bandwidth usage. 

Edge architectures are particularly effective in remote environments such as dairy farms and smart 

greenhouses where real‐time decisions (e.g., feeding, irrigation) are critical. 

Studies such as AutoDRIVE  [25], real time vehicular  feedback  loops are handled by onboard 

microcontrollers and fog gateways ([106,107]), pushing alerts upstream only when needed. Digital 

Twin  for  Smart  Farming  [21]  leverage  edge  devices  to  support  low‐power,  high‐frequency  data 

processing closer to the data source. 

Challenges  in deploying such architectures persist. Edge hardware  is constrained by power, 

memory and processing capabilities. Furthermore, managing distributed models across cloud and 

edge devices  introduces complexity  in  terms of version control as well as security. However,  the 

trade‐off  between  responsiveness  and  centralization  is  increasingly  favoring  fog  and  edge‐based 

designs for real‐world agricultural digital twins. 

Several recent papers emphasize the importance of hybrid deployment, where the edge node 

preprocesses data‐ noise  filtering  and  anomaly detection,  then  forwards  enriched,  lower‐volume 

payloads to cloud layers. This architecture not only reduces bandwidth consumption but also ensures 

more data privacy by minimizing  the  exposure of  the  raw data. As 5G, LoRaWAN and  satellite 

internet  become  more  accessible,  the  edge‐cloud  divide  may  become  increasingly  seamless, 

empowering  more  farms  to  deploy  high‐fidelity  DTs  without  requiring  industrial‐grade 

infrastructure. 

10.3. Advanced Simulation Techniques 

Simulation  technologies  are  advancing  toward  greater  realism  and  interactivity.  Tools  like 

Unity, Unreal Engine and Simulink are being integrated with DT platforms for immersive training 

and  high‐fidelity  testing  environments. Neural  implicit  representations  by Wang  et  al.  [32]  and 

procedural digital  humans  are  being used  in  applications  such  as  psychological  counseling  and 

rehabilitation modeling. 

In disease and public health contexts, the use of GANs (Generative Adversarial Networks) and 

LSTM  models  to  simulate  alternate  trajectories,  as  seen  in  COVID‐19  twin  studies  [31],  has 

implications  for  livestock  health  modeling.  For  example,  stress‐induced  illness  progression  or 

nutritional deficiency onset could be pre‐simulated in a virtual cow. This would allow farmers to test 

ʺwhat‐ifʺ scenarios before implementing costly or risky real‐world interventions. These techniques 

allow more nuanced simulations of non‐linear systems. 

Despite their potential, simulation‐based digital twins face considerable limitations. Generating 

realistic virtual  environments  require massive,  labeled datasets which are usually unavailable or 

expensive to collect [108]. Synthetic simulation also raises concerns about model validity if the virtual 

twin  is  trained  on  unrepresented  data,  its  recommendations  may  be  misleading.  Moreover, 

integrating simulation engines with  real‐time operational data streams, especially  in multi‐modal 

input systems (vision, temperature, pH, behaviour) presents architectural challenges. 

10.4. Industry 4.0 and the Future of Digital Twin Systems 

The convergence of DTs with  Industry 4.0  technologies  such as  IoT, cyber‐physical  systems, 

cloud platforms and blockchain is driving a new era of intelligent infrastructure. Standardized DT 

toolchains and open‐source frameworks (e.g, FIWARE [22], IUMENTA [19]) are expected to reduce 

barriers  to  adoption.  Research  is  also  exploring  integration with  generative AI  for  autonomous 

system design and scenario exploration [109]. Key priorities moving forward include cross‐domain 

interoperability, ethical governance, sustainability metrics and democratized access  for small and 

medium enterprises. 
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11. Conclusions 

Digital  Twin  (DT)  technology  represents  a  transformative  innovation  across  diverse  sectors 

including manufacturing, healthcare, urban  infrastructure, and notably, agriculture and  livestock 

management. In particular, DTs have demonstrated substantial potential in precision dairy farming, 

significantly advancing the ability to monitor animal behaviour, optimize individualized nutrition, 

and  reduce  environmental  impacts  such  as  greenhouse  gas  emissions.  Central  architectural 

advancements—comprising  robust  sensing  capabilities,  sophisticated  data‐driven modeling,  and 

efficient  connectivity  through  integrated  edge‐cloud  frameworks—have  positioned  DTs  as 

indispensable tools for real‐time, predictive management of complex biological systems. 

Despite  these advances, several critical challenges remain unresolved.  Interoperability across 

platforms continues to hinder the seamless integration of heterogeneous systems, particularly in rural 

settings where network infrastructure is limited. High implementation costs and the complexity of 

real‐time data synchronization further complicate widespread adoption, especially among resource‐

constrained small and medium enterprises. Ethical concerns surrounding data privacy, governance, 

and  transparent  decision‐making  processes  also  persist,  necessitating  frameworks  that  balance 

technological advancement with stakeholder trust and animal welfare. 

Future research must prioritize the development of lightweight, interpretable AI models suitable 

for  deployment  in  constrained  farm  environments.  Progress  toward  standardized,  cross‐domain 

interoperability protocols and the establishment of open‐source, modular DT frameworks is crucial 

to  enable widespread,  equitable  adoption.  Additionally,  rigorous  quantitative  validation  of  DT 

technologies in active farming environments—with tangible metrics for performance, usability, and 

sustainability—is  essential  for  transitioning  from  theoretical  or  experimental  prototypes  toward 

reliable, commercial‐scale implementations. 

Industry  stands  to  benefit  significantly  from  DT  adoption  through  enhanced  predictive 

maintenance, optimized operational processes, and the ability to deliver highly tailored products and 

services. In the agricultural sector, the integration of DTs promises substantial improvements in feed 

efficiency and significant reductions in methane emissions per animal, aligning closely with critical 

global sustainability objectives such as Zero Hunger, Responsible Consumption, and Climate Action 

outlined by the United Nations Sustainable Development Goals. Academia will play a pivotal role in 

this transformation, responsible for providing interdisciplinary education, developing open‐access 

data  repositories,  and  fostering  collaborative  platforms  for  robust  validation  and  knowledge 

dissemination. 

Ultimately,  digital  twins  have  transcended  their  conceptual  origins,  emerging  as  integral 

components  of  digital  infrastructure  essential  for  sustainable  development  and  intelligent 

management  of  physical  systems.  To  fully  realize  their  promise, DT  technologies must  become 

universally accessible, overcoming barriers of complexity and cost, and thereby enabling sustainable, 

equitable, and intelligent solutions across sectors. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI  Artificial Intelligence   

CNN  Convolutional Nueral Network   

DDS    Data Distribution Service 

DT  Digital Twin 

DTaaS  Digital Twin as a Service 

ETL  Extract Transform and Load 

FMS  Farm Management Systems   

GAN  Generative Adversarial Network   

GECA  Global Edge Computing Architecture   

GPU  Graphics Processing Unit 

IoT  Internet of Things 

KPI  Key Performance Indicators 

LMIC  low‐and middle‐income countries   

LP  Linear Programming 

LSTM  Long Short‐Term Memory 

ML  Machine Learning 

MQTT  Message Queuing Telemetry Transport 

NLP  Natural Language Processing 

NMB  normalized mean bias 

OPC‐UA    Open Platform Communications ‐ Unified Architecture 

RAM  Random Access Memory 

RDF  Resource Description Framework   

RL  Reinforcement Learning 

RMSE  root mean square error   

SVM    Support Vector Machineʹ 

VFA  Volatile Fatty Acid 

VIL  Vehicle‐in‐the‐loop 

WAN  Wide Area Network 

WSN  Wireless Sensor Networks   

XAI  Explainable Artificial Intelligence   

XGBoost  Extreme Gradient Boost 
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