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Abstract: This paper introduces an innovative mobile-assisted language learning (MALL) system that
harnesses deep learning technology to analyze pronunciation patterns and deliver real-time,
personalized feedback. Drawing inspiration from how the human brain processes speech through
neural pathways, our system analyzes multiple speech features spectrograms, mel-frequency cepstral
coefficients (MFCCs), and formant frequencies in a manner that mirrors the auditory cortex's
interpretation of sound. The core of our approach utilizes a convolutional neural network (CNN) to
classify pronunciation patterns from user-recorded speech. To enhance assessment accuracy and
provide nuanced feedback, we integrate a fuzzy inference system (FIS) that helps learners identify
and correct specific pronunciation errors. Experimental results demonstrate that our multi-feature
model achieves 87% accuracy in accent classification across diverse linguistic contexts. User testing
revealed statistically significant improvements in pronunciation skills, with learners showing 5-20%
enhancement in accuracy after using the system. The proposed MALL system offers a portable,
accessible solution for language learners while establishing a foundation for future research in
multilingual functionality and mobile platform optimization. By combining advanced speech
analysis with intuitive feedback mechanisms, this system addresses a critical challenge in language
acquisition and promotes more effective self-directed learning.

Keywords: speech recognition; accent classification; convolutional neural networks; fuzzy inference
systems

1. Introduction

In an increasingly globalized world, English has established itself as the primary language for
international communication, attracting learners from various linguistic backgrounds. Language
learning encompasses not only grammar and vocabulary, but also accent and pronunciation, which
significantly affect communicative competence and speech standardization [1]. Regional accents,
shaped by speakers’ native languages, often introduce challenges in achieving clear and
comprehensible English. Recent advancements in deep learning technologies have accelerated the
development of speech analysis systems, demonstrating their potential to enhance language learning
outcomes. However, regional accents, often influenced by a speaker’s native language, introduce
challenges in achieving clear and comprehensible English. Recent advances in deep learning
technology have fueled the development of sophisticated speech analysis systems, offering potential
for improving language learning outcomes through enhanced pronunciation feedback [2,4].
Furthermore, pronunciation is a fundamental component of effective communication, yet it remains

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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one of the most challenging aspects for language learners. nonnative speakers often substitute
phonemes with those familiar from their native languages, producing distinct accents that can
impede mutual understanding [1,7]. Addressing pronunciation through targeted learning tools not
only enhances learners’ speech intelligibility but also fosters confidence and fluency in language use
[2,6]. Convolutional neural networks (CNNSs), in particular, have proven to be effective in feature
extraction and classification tasks within speech recognition [3,6]. These models can discern intricate
patterns in audio data, making them highly suitable for accent recognition and pronunciation
analysis. Nevertheless, the majority of studies focus on major English accents, such as American and
British, with limited exploration and application for a broader array of nonnative accents [4,5,8].
Machine learning techniques, including Mel frequency cepstral coefficients (MFCCs) and
spectrogram-based feature extraction, have shown promise in classifying and assessing nonnative
pronunciation [7,11]. Such approaches enable more precise identification of speech characteristics,
contributing to personalized feedback systems designed to support accent improvement and
language learning. Deep learning-powered speech analysis systems offer a refined approach to
evaluating pronunciation and accent, providing feedback with greater accuracy. By utilizing models
trained on diverse linguistic data, these systems offer feedback tailored to learners” unique needs,
encouraging an iterative learning process [8,9]. This focus on accent adaptation and enhancement is
crucial for supporting language acquisition and reducing communication barriers among nonnative
speakers. Despite substantial progress, current speech recognition and analysis systems encounter
limitations, particularly in handling a wide range of accents with the same efficacy as native accents
[5]. Most models are optimized for standard American and British English, leading to an
underrepresentation of nonnative accents [4,11]. Additionally, noise sensitivity and variations in
pronunciation reduce the effectiveness of these systems in real-world scenarios [3,5].

In a study by Ensslin et al. [6], deep learning was investigated for speech accent detection within
video games, with a focus on sociolinguistic aspects, such as stereotypical accent usage and related
social judgments. AlexNet was trained on the Speech Accent Archive data and applied to audio from
a video game. To optimize the model, experiments were conducted with varying parameters,
including epochs, batch sizes, time windows, and frequency filters, resulting in an optimal test
accuracy of 61%. Following training, 75% accuracy was achieved on the Speech Accent Archive data
and 52.7% accuracy on game audio samples, with accuracy improving to 60% in low-noise conditions.
Limitations in speech analysis systems, which are typically optimized for American and British
English, were addressed by Upadhyay and Lui [4]. A model capable of classifying nonnative accents
was developed. Audio signals were pre-processed and converted to MFCCs. Four classification
methods were tested: Random Forest, Gradient Boosting, CNN, and Multi-layer Perceptron (MLP).
Among these methods, the CNN model demonstrated the highest accuracy, achieving rates between
80% and 88%, significantly outperforming traditional approaches.

Foreign-accented English classification was explored by Russell and Najafian [5] to determine
speakers’ countries of origin. A corpus of 30 speakers from six countries was developed, and MFCC
features were used with a Deep Belief Network (DBN) classifier. After noise cancellation and
normalization, the DBN model, consisting of two hidden layers with 1000 nodes 90 each, achieved
90.2% accuracy for two accents and 71.9% for six accents, outperforming conventional classifiers like
SVM, k-NN, and Random Forest. Pronunciation quality in English learners was assessed by Nicolao
et al. [10] using deep neural network features and phoneme-specific discriminative classifiers. A
system was introduced to provide phoneme-level scoring based on teacher-annotated error patterns.
Learner pronunciation was compared with a reference, and pronunciation scores were generated
based on phoneme duration and similarity.

For mobile-assisted pronunciation learning, the Smartphone-Assisted Pronunciation Learning
Technique (SAPT) was proposed by Lee et al. [9]. Pronunciation errors were detected, and words
were recommended for practice. Processing was offloaded to an Internet of Things (IoT) system to
address the constraints of low-computation devices. Through a seven-step process, user speech was
analyzed, phoneme correlations were evaluated, and practice words were suggested. Finally,
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pronunciation variation across English varieties was addressed by Kasahara et al. [8]. A structure-
based method to predict pronunciation distances was proposed. Support Vector Regression (SVR)
and Bhattacharyya Distances (BDs) were used to represent pronunciation differences. Local contrasts
and phonetic class features were identified as significant contributors to accurate pronunciation
distance predictions, as indicated by high correlation scores. In [26], MALL was proposed as a tool to
enhance student motivation and readiness, promoting flexibility and engagement in language
learning for achieving positive outcomes. However, the study faced limitations, including a restricted
sample from Indian universities, hardware constraints affecting speaking and listening tasks, a
narrow focus on English. Liu et al. [27] proposed a knowledge based intelligence program to address
pronunciation challenges. The proposed methods achieved significant accuracy in classifying correct
and incorrect pronunciations. However, the study’s limitations include a small dataset and its
generalizability to other phonemes and real-world contexts. Recently, Rukwong and Pongpinigpinyo
[28] introduced an innovative approach to computer-assisted pronunciation training (CAPT) for Thai
vowel recognition, leveraging CNN and acoustic features such as Mel spectrograms. Their system
effectively addresses key challenges in Thai vowel pronunciation training, including the reliance on
expert intervention and the complexity of traditional manual methods. While the system
demonstrated impressive accuracy of 98.61%, its limitations include a reliance on a narrowly focused
dataset of standard Thai speakers in controlled environments, raising concerns about its adaptability
and robustness in diverse real-world scenarios.

Although significant progress has been demonstrated in accent classification and pronunciation
analysis, several limitations remain. Most systems prioritize American and British English accents,
with limited application to nonnative or regional varieties. Few studies address the challenges of
deploying these systems on resource-constrained mobile platforms [9]. Additionally, current systems
rarely accommodate multiple languages or integrate multimodal inputs, which limits their
adaptability.

Pronunciation, a fundamental component of language proficiency, remains one of the most
challenging aspects for nonnative speakers to master. Current speech feedback systems often lack the
precision, accessibility, and personalization needed to significantly improve pronunciation skills.
This study addresses these limitations by introducing a novel Mobile-Assisted Language Learning
(MALL) application that leverages deep learning technology to analyze nonnative English accents
with unprecedented accuracy. Our system employs advanced pre-processing techniques and
multiple feature extraction methods, including mel-frequency cepstral coefficients (MFCCs) and
spectrograms, to create a robust framework for accent identification and customized pronunciation
feedback. By prioritizing inclusivity and accuracy within a user-friendly mobile interface, the
proposed MALL application bridges the critical gap between self-guided learning and professional
pronunciation training. The system's interactive and adaptive approach enables learners to practice
independently while receiving clear, actionable feedback that facilitates continuous improvement.
This research not only enhances the technological capabilities of pronunciation assessment but also
transforms the learning experience for nonnative speakers by making expert-level guidance
accessible anytime and anywhere through mobile technology.

2. Materials and Methods

2.1. System Architecture

The proposed system adopts a client-server architecture tailored to support efficient speech
processing and analysis. The client component, a mobile application developed using React Native,
enables users to record their speech and submit audio files to the server for processing. This design
ensures cross-platform compatibility on both iOS and Android devices. On the server side, a Python-
based framework facilitates comprehensive audio pre-processing, feature extraction, and analysis
using deep learning models. The server leverages Flask, a lightweight web framework, to efficiently
manage data requests and audio processing tasks. Figure 1 provides a visual representation of the
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system’s architecture, detailing the data flow between the client and server. This illustration
highlights the transfer, processing, and analysis of audio files, culminating in the delivery of real-
time feedback to the user. Such a configuration fosters a seamless user experience, enhancing
engagement in language learning by delivering instant feedback on pronunciation and accent
classification.

The results of this research are presented through a system consisting of both client-side and
server-side components, implemented in a simple client-server architecture, as shown in Figure 2.
The mobile application captures the user’s voice input, which is then sent to the server as a .wav file.
Once the server processes the input signal, the analyzed results are returned to both the mobile and
desktop applications.

é

sent input signal

in wav format
—

B ———
g respond with
the result
Input signal _ B

Server

Mobile Device

Figure 1. Client-server architecture of the proposed system.
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Figure 2. System overview of the proposed method.

The diagram delineates the step-by-step workflow from initial user input through server-side
processing, emphasizing a modular architecture that facilitates straightforward updates and the
integration of additional features. This design enhances scalability and supports the maintenance of
real-time interactions, which are essential for mobile-assisted language learning applications. The
proposed system was implemented using Python within the PyCharm 2018.1 development
environment. A variety of libraries, detailed in Table 1, were utilized during the implementation
process. The development and experimental evaluations were performed on a personal computer
with the following specifications: Intel Core i5-8400 CPU (2.80 GHz), 24 GB of RAM, and a 64-bit
operating system.

Table 1. Libraries utilized in the implementation process.

Library Version Purpose
TensorFlow 1.13.1 Machine learning library
Keras 2.24 High-level neural network API written in Python
SciPy 1.10 Data management and computation

PythonSpeechFeatures 0.6  Extraction of MFCCs and filterbank energies
Matplotlib 3.0.0 Plotting library for generating figures
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Flask 1.0.2 RESTful request dispatching
NumPy 2.0  Core library for scientific computing

2.2. Pre-Processing Techniques

The primary goal of these pre-processing techniques is to standardize the recorded speech into
a consistent input format, thereby minimizing variability that could interfere with accurate analysis.
By aligning the input format across all audio samples, pre-processing reduces fluctuations caused by
inconsistencies in the recording environment, speaker volume, or background noise. Additionally,
achieving a clean, noise-free condition is crucial to focus the model on the essential features of the
speech itself rather than irrelevant environmental artifacts. This uniformity and clarity in the input
data enhance the reliability and accuracy of feature extraction, model training, and subsequent
analysis. Therefore, in this study, these pre-processing techniques employed the following processes.

2.2.1. Speech Signal Normalization

This ensures consistency across audio samples, preventing variations in amplitude from
impacting analysis. The initial pre-processing step involves adjusting the audio signal so that its mean
value is zero. This stabilization minimizes baseline fluctuations that could interfere with feature
extraction. Amplitude normalization scales the audio signal to a standardized range, typically
between -1 and 1, by dividing each value by the signal’s maximum absolute value. This process
removes any baseline offset, centering the signal around zero to stabilize it for further analysis.

2.2.2. Speech Segmentation

To ensure consistency and optimize neural network processing, the speech signal is
standardized to a predetermined length, creating uniform input data. Signal power calculation aids
in isolating significant speech segments by distinguishing vocalized parts from silence, allowing the
analysis to focus on relevant portions of the speech. This process involves computing the standard
deviation within a fixed window size (e.g., 256 samples) to identify speech segments. A threshold is
applied to exclude non-speech portions, retaining only meaningful speech for feature extraction.
Segments with standard deviation values above the threshold are classified as speech. Speech
segmentation further divides the signal into smaller, analyzable units based on these thresholding
criteria. Additionally, an error-removal step eliminates small, noisy sections mistakenly classified as
speech. This refinement produces cleaner and more accurate inputs for feature extraction, thereby
enhancing the reliability of model training and the overall analysis process.

2.3. Feature Extraction and Model Training

The pre-processed speech data allowed for precise extraction of salient features, enabling the
construction of both one-dimensional and two-dimensional arrays tailored for specific analytical
objectives. Our approach is informed by neuroscientific understanding of human speech processing,
where the auditory cortex interprets sound through complex neural pathways using time-frequency
representations [20]. This biological inspiration directly influenced our feature extraction
methodology.

2.3.1. Spectrogram Analysis

Spectrograms provide time-frequency representations of audio signals through Short Time
Fourier Transform (STFT). This method captures both temporal and spectral characteristics of speech
by segmenting the signal into smaller sections (N=256 samples per segment in our implementation)
and calculating frequency components over time [9]. The mathematical representation of STFT is:
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X[n, k] = ﬁ:x[m]w[m - n]eiﬂﬁ%

M

where X[n,k| is the STFT of the signal at time frame 7 and frequency bin &, x[m)] is the discrete-

time signal at sample m, w[m —n] is the rectangular window function applied to the segment

km
— 27[7
TN

centered atn, e is the complex exponential for the frequency bin k, and N is the total number

of samples in one windowed segment. The spectrogram, S[n,k|, is commonly represented as the

magnitude squared of the STFT:
2
S[n, k] = |X[n, k] )

2.3.2. Mel-Frequency Cepstral Coefficients

MEFCCs mimic human auditory perception by mapping the power spectrum onto the mel scale,
which approximates how humans perceive pitch. The computation involves three primary steps.
1.  Applying a mel-scale filter bank to map the linear frequency scale onto a non-linear mel scale.
2. Taking the logarithm of the mel-filtered spectrum to compress dynamic range.

3.  Applying Discrete Cosine Transform (DCT) to obtain the final coefficients.
The mathematical representation for the DCT calculation of MFCCs is:

Clm] = ]f:_; L[k]cos (Mj 3)

where C[m] is the c-th MFCC, L is the number of Mel filters, and L[k] is the log Mel-filtered

spectrum. The result is a set of MFCCs, which represent the frequency content of the signal in a
form that is more closely aligned with human auditory perception.

2.3.3. Formant Frequency Analysis

Formant frequencies represent the resonant frequencies of the vocal tract and are crucial for

identifying vowel and consonant sounds. By extracting the first three formants ( F, F|, F, ), we

complement the information from spectrograms and MFCCs, creating a more comprehensive feature
set that better characterizes pronunciation patterns.

2.3.4. Model Training and Optimization

Our dataset comprised audio recordings from both native and nonnative English speakers with
diverse accent profiles. To enhance model generalization and mitigate overfitting, we applied data
augmentation techniques including pitch shifting and time stretching [18]. These methods improved
the model's adaptability to varied speech inputs and enhanced classification performance.

The training configuration consisted of:

- Loss function: Cross-entropy

- Optimizer: Adam (learning rate: 0.001)

- Epochs: 50

- Batch size: 32

- Dataset split: 75% training, 15% validation, 15% testing

Hyperparameters were optimized through grid search to balance processing efficiency and
model performance. This methodical optimization process resulted in a model configuration that
achieved optimal accuracy while maintaining reasonable training time requirements.
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The pre-processing phase is essential for enhancing the quality and consistency of audio signals
before feature extraction and classification. Figure 3 shows the preprocessing stages, how the original

audio signal undergoes transformations such as

segmentation, and noise removal to improve clarity and uniformity.
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Figure 3. Step-by-step preprocessing of the original speech signal to the segmented signal, they should be listed
as: (a) Normalization; (b) Fixed-Length; (c) Power; (d) Window-based SD; (e) Speech Segmentation; (f) Removing

Error; (g) Speech Reconstruction and (h) Pre-Processed Signal.

Figure 4 highlights the impact of preprocessing on the audio signal, illustrating significant
improvements in clarity and consistency. These enhancements directly affect the quality of extracted
features, which form the basis of the classification model.

Original Signal Speech Reconstruction

Amplitude
Amplitude

0 5000 10000 15000 20000 o 5000 10000 15000 20000
Samples Samples

Figure 4. Comparison of the original signal before and after preprocessing.

Figure 5 provides an overview of the extracted features used for classification, including
spectrograms, MFCCs, and formant frequencies. These features serve as critical inputs for the CNN
model and contribute to its high classification accuracy, as demonstrated in [19]. The proposed
method involves a feature extraction procedure aimed at identifying salient characteristics from a
pre-processed signal to form a two-dimensional array with unique properties. These two-
dimensional representations-Spectrogram and MFCC-are then used as input data for the CNN
model, both as array data and image data, formatted with a resolution of 640x480 pixels.
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Figure 5. Extracted features in this study, they should be listed as: (a) Pre-processed speech signal; (b)
Spectrogram feature; (c) MFCC feature and (d) Formant Frequency.

3.1. Data Preparation
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The dataset used in this study was sourced from the OSCAAR (Open Speech Corpus for Accent
270 Recognition), which contains a scripted reading scenario. In this scenario, participants clearly
enunciated a scripted list of words one at a time. This dataset proved valuable during the pre-
processing step, where we segmented individual word utterances from the original speech recording.
The segmentation produced a collection of word-level utterances, which were then used for further
feature extraction and analysis.

In addition to the Hoosier database of native and nonnative speech, this database includes
digital audio recordings of both native and nonnative English speakers reading words, sentences,
and paragraphs, providing a diverse range of speech samples for our study. The Hoosier Database!
of Native and nonnative Speech consists of 27 speakers, representing the aforementioned seven
native language backgrounds. These speakers produced a total of 1,139 recordings across the various
tasks listed in Tables 2 and 3.

Table 2. Number of recordings for each accent category.

Category Number of recordings
Native 2200
French 2150
German 1650
Mandarin 2200
Spanish 2200
Japanese 2200
Korean 2200
Thai 2195
Total 16995

Table 3. Tasks in the Hoosier database of native and nonnative Speech.

Category Number of recordings
160 Hearing in Noise Test for Children sentences
10 Digit words
48 Multi-syllabic Lexical Neighborhood Test words
50 Northwestern University-Children’s Perception of Speech words
100 Lexical Neighborhood Test words
50 Lexical Neighborhood Sentence Test sentences
40 Pediatric Speech Intelligibility sentences
20 Pediatric Speech Intelligibility words
339 Bamford-Kowal-Bench sentences
150 Phonetically Balanced Kindergarten words
72 Spondee words
100 Word Intelligibility by Picture Identification words

This study also includes a group of Chinese-accented subjects who participated in the
experiment. A total of 50 participants were selected (25 male and 25 female), with ages ranging from
18 to 30 years. None of the subjects had any prior background in English proficiency tests. The audio
signals were recorded in a soundproof studio, ensuring a high signal-to-noise ratio (SNR) of 60 dB or
higher, in line with the standard for high-quality studio sound recordings. The recordings were
captured at Dali University, where all participants gave their informed consent to take part in the
study. The inclusion of this additional accent category serves two primary purposes: first, to explore
the development of a system designed to help native Chinese speakers learn other languages, and
second, to investigate how variations in the dataset may influence the performance of deep learning
models. This research aims to measure the impact of these differences on the model’s accuracy and
robustness. The participants were selected from a group of native Chinese individuals with no history
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of exposure to environments that might influence their pronunciation, such as attending international
schools from a young age or engaging in prolonged daily interactions with foreigners. For the
recordings, a sampling rate of 44,100 Hz was used. The recordings were made in a mono-channel
configuration, with a 16-bit resolution, ensuring high-quality, precise sound capture.

3.2. Model Training and Test Results

The approach employed in this study leverages deep learning techniques to develop a reference-
based model for word pronunciation. This model functions as a classifier to analyze, assess, and
classify pronunciation accuracy from speech or word input. The proposed method utilizes a CNN
model to achieve this task. The data used to train the deep learning model consists of the extracted
features from the pronunciation audio of words or speech, which are represented through
corresponding spectrograms, MFCCs, and formant frequencies. The CNN model was trained with
different feature sets, including MFCCs, spectrograms, and formant frequencies.

The results, summarized in Tables 4, highlight the effectiveness of MFCCs and spectrograms,
with test accuracies peaking at 73.89% and 74.27%, respectively. As demonstrated by previous
research, MFCCs can achieve high precision when used for accent classification. In this study, we aim
to investigate how the chosen dataset and pre-processing methods impact the classification results
across eight distinct accent classes.

Table 4. Tasks in the Hoosier database of native and nonnative Speech.

MECC: 28x28 MEFCC: 64x48 MFCC: 128x48
Iter. Test Acc.[%] Time [s] Test Acc.[%] Time [s] Test Acc. [%] Time [s]

1 40.48 26 45.37 123 45.21 552

5 57.73 130 60.16 612 60.43 2734
10 64.21 261 65.54 1231 63.94 5467
15 67.67 391 69.45 1830 66.40 8251
20 70.29 522 70.72 2421 67.05 11024
30 73.89 781 74.27 3636 67.51 16591

Figure 6 (a) illustrates the average accuracy across all parameters during the training of the
classification model using the MFCC dataset with a 0.005 threshold over 30 epochs. After the 15th
epoch, the model began to overfit: while the training accuracy continued to improve, the testing
accuracy plateaued and remained stagnant. Figure 6 (b) presents the confusion matrix for the MFCC-
based model. The distribution of correctly predicted accents is relatively uniform across the different
accent classes, with most classes having a prediction frequency exceeding 300 instances in the test
dataset. This discrepancy is attributed to the unequal distribution of data, as the German-accented
speech data were approximately 20% less than other accent data, leading to a slight imbalance in
predictions. The spectrogram-based model demonstrated superior performance, achieving a peak
test accuracy of 79% when optimized network parameters were applied, as shown in Table 4. This
underscores the ability of spectrograms to capture more detailed temporal and frequency-related
information, providing a more comprehensive representation of the speech signal compared to
MEFCCs alone.
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Figure 6. Training Results for MFCC and Confusion Matrix for MFCC with 0.005 Threshold (a) Training Results
for MFCC, (b) Confusion Matrix for MFCC.

In Table 5, the highest precision achieved by the model was 0.829, while the lowest precision
across all parameters derived from MFCC-based data was 0.7878. These results indicate that the
spectrogram approach consistently outperformed the MFCC method.

Table 5. Tasks in the Hoosier database of native and nonnative Speech.

MEFCC: 28x28 MEFCC: 64x48 MFCC: 128x48
Iter. Test Acc. [%] Time [s] Test Acc. [%] Time [s] Test Acc.[%] Time [s]
1 34.21 26 38.51 122 38.29 552
5 63.48 130 71.62 615 68.43 2734
10 70.45 260 76.19 1231 77.13 5467
15 75.11 390 78.35 1846 80.84 8251
20 76.83 520 79.97 2459 81.94 11024
30 78.78 780 81.16 3690 82.86 16591

Figure 7 (a) illustrates the average accuracy across all parameters while training the classification
model using the spectrogram dataset with a threshold of 0.005 and 30 epochs. After approximately
the 24th epoch, the accuracy stabilized and ceased to improve. Figure 7 (b) shows the prediction map
for all classes from the classification model trained using spectrograms. The pattern is consistent
across all classes, with a very high prediction rate, except for the German accent, which showed lower
accuracy. The highest classification accuracy, approximately 87%, was achieved by combining
MFCCs and spectrograms. This approach leverages both the frequency emphasis from MFCCs and
the temporal detail from spectrograms, optimizing the model’s classification capabilities for accent
detection.
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3.3. Period of Phonetic (PoP)

PoP approach begins by segmenting the phonetic components of the sample signal using a
preprocessing method. The resulting PoP value represents the time (in seconds) of each segmented
part of the sample signal, as compared to each corresponding template segment. During the
segmentation process, a single threshold is insufficient to achieve optimal segmentation results.
Therefore, an adaptive thresholding method is employed, which spans values from 0.001 to 0.017.
The PoP values are constrained within a range of 0 to 1 second. PoP is converted into five sets of
fuzzy since its value can distinguish the range of similarity better including poor, mediocre, average,
decent, and good.

3.4. Dynamic Time Warping (DTW)

DTW is used to extract features from the MFCCs of both the template and sample signals. DTW
measures the similarity between the temporal sequences of the signals, producing a normalized
distance value. DTW is converted into three sets of fuzzy due to the large boundary of its value
including poor, average, and good.

3.5. Knowledge Base

This section stores IF-THEN rules in the format illustrated in Table 6, which represents a matrix
of DTW values and PoP values. In Figure 9 (d), the score obtained from evaluation is shown. The
centroid estimation method, used to find the center of the graph area, computes the result. For this
example, the final decision using the center of gravity is approximately 79.39.

Table 6. DTW and PoP features for the rule-based FIS decision.

Poor Mediocre (20- Average (40- Decent (60- Good
DTW \ PoP
\Fo (0-20) 40) 60) 80) (80-100)
Poor
(0-33) F F D D D
Average C C B A A
(34-66)
Good
(67-100) C B A A A

The proposed system features a server monitoring interface, as shown in Figure 8, which
presents overview of the entire processing. This includes the preprocessing and feature extraction
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steps, ensuring that the system not only provides immediate feedback to the user but also performs
real-time assessment and analysis in the background. This integrated approach helps maintain the
accuracy and consistency of the pronunciation evaluation throughout the process.

Requests Pre-Processing Feature Extraction
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Figure 8. Server Monitoring Interface of the Proposed System. This interface provides a comprehensive overview
of the entire processing workflow, including preprocessing and feature extraction steps. It enables real-time

evaluation and feedback of pronunciation accuracy while maintaining system performance and consistency in

analysis.
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Figure 9. Membership functions and final score evaluation: (a) DTW, (b) PoP, (c) Score, and (d) Final score after

evaluation.

3.6. Mobile-Assisted Language Learning (MALL)
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To implement a mobile platform interface showcasing the system’s workflow, we utilized the
React Native framework, a hybrid mobile development framework that enables -efficient
development while ensuring compatibility with both Android and iOS platforms. Figure 10 (a)
presents the main page, where users can interact with the MALL system by pressing the microphone
button to record audio. The recorded audio is automatically sent to the server for processing. Figure
10 (b) displays the list of available words that can be assessed using the proposed method.

Words stete’

You just said “Spider” right ?
Words J g g

Bread Mushroom rating campare to native accent

College Nanny

Desk Pancake 85%

Flag Rainbow
Football School
your accent sounds like

Ice-cream shirt French

Tap to Record Jester Spider

Tap to see more detail

Tap for evaluation result

< | «»

Meat Under

(a) (b) (© (d)

Figure 10. Overview of the MALL system, highlighting its main functionalities: (a) audio recording, (b) word
selection, (c) result processing, and (d) detailed feedback.

Figure 11 illustrates the results of 10 selected subjects, chosen from a total of 50 participants, who
attempted to pronounce 10 words with 5 trials per word. The scores range from 55 to 80, compared
to the native speakers’ scores, which range from 80 to 100. The standard deviations are represented
by the error bars. Notably, all selected subjects had studied in an international program, which may
have contributed to their relatively high initial scores.

100

75

Average

50

25

s1  s2 s3 sS4 S5 S6 S7 SB  S9  S10
Figure 11. Assessment results showing pronunciation average scores in percentage.

Before using the MALL proposed system, the subjects’ pronunciation correctness was
significantly lower, with scores trailing the native speech data by 5% to 20%. After utilizing the MALL
system, which provided real-time feedback and detailed pronunciation assessments, all subjects
showed notable improvement in their pronunciation accuracy. The increased scores highlight the
system’s effectiveness in bridging the gap between nonnative and native pronunciation,
demonstrating its potential as a powerful tool for language learning and accent refinement.
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4. Discussion

This study makes several significant contributions to the field of mobile-assisted language
learning and pronunciation analysis. First, we demonstrate that combining multiple complementary
feature extraction methods—spectrograms, MFCCs, and formant frequencies—achieves superior
accent classification accuracy (87%) compared to single-feature approaches. Second, we introduce a
novel integration of fuzzy inference systems with deep learning models to provide nuanced,
interpretable feedback that accommodates natural speech variability. Third, our mobile
implementation makes sophisticated pronunciation assessment accessible outside traditional
learning environments, addressing a critical gap in self-directed language learning. Fourth, our
experimental results confirm that this approach leads to measurable improvements in pronunciation
accuracy (5-20%), validating the practical effectiveness of our system. These advances collectively
represent a meaningful step forward in making pronunciation training more personalized, accessible,
and effective for nonnative language learners. The following sections examine these contributions in
the context of existing research and practical applications.

4.1. Comparison of Study Findings with Existing Literature

The findings of this study align closely with existing research on the application of deep learning
techniques in speech analysis, particularly within MALL contexts. The high accuracy rates achieved
by the CNN model in this study are consistent with prior work emphasizing CNNs’ effectiveness in
speech classification tasks. For example, Lesnichaia et al. [18] demonstrated that CNNs excel at
managing complex speech patterns and distinguishing subtle pronunciation variations due to their
capacity to extract hierarchical features from input data. Similarly, Mikhailava et al. [19] highlighted
the robustness of CNN models in handling sparse and crowd sourced speech data, further validating
their applicability in diverse linguistic settings. The use of spectrograms and MFCCs as input features
corroborates established literature on the effectiveness of combining time-frequency representations
with perceptually relevant spectral data. Sejdic et al. [7] and Zhang and Liu [2] demonstrated that the
integration of MFCCs with spectrograms significantly enhances classification performance, as the
two feature types provide complementary information. This study confirmed these findings,
showing that the combination of spectrograms and MFCCs increased model accuracy to
approximately 87%, outperforming the individual contributions of each feature set.

Furthermore, the inclusion of formant frequencies added phonetic depth to the analysis,
particularly for distinguishing vowel sounds. This finding aligns with Kasahara et al. [8], who
emphasized the importance of formant frequencies in differentiating phonetic elements. While
formants alone did not achieve the accuracy of spectrograms or MFCCs, their integration into a multi-
feature approach enhanced overall robustness, reinforcing the argument that combining diverse
features yields more comprehensive results. The application of fuzzy logic for pronunciation
assessment represents a novel contribution to the fuzzy logic in managing uncertainty in speech
processing tasks [17]. The FIS implemented in this study facilitated flexible, interpretable
pronunciation feedback, making it well-suited for user-centric language learning applications. By
enabling context-aware evaluations, the system provided a more nuanced alternative to rigid scoring
mechanisms. In summary, this study validates and extends existing literature by demonstrating that
a well-integrated approach, i.e.,, combining CNN models, multi-feature extraction methods, and
fuzzy logic assessment, can substantially enhance pronunciation analysis

4.2. System Potential and Challenges in Practical Application

The system developed in this study demonstrates significant potential for enhancing language
learning by providing personalized feedback and real-time pronunciation analysis. By leveraging
deep learning models, such as CNNs, the system effectively classifies accents and delivers targeted
improvement recommendations. The mobile-assisted approach enhances accessibility, enabling
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users to practice pronunciation anytime and anywhere, thereby supporting the democratization of
language education [18, 19].

However, challenges persist in real-world deployment. One primary concern is the system’s
performance in noisy environments, which can impact the accuracy of speech recognition and
classification. While pre-processing techniques such as noise reduction and signal normalization help
mitigate these issues, achieving consisten[18,19t performance across varied real-world scenarios
remains complex. Johnson and Wang [22] noted similar challenges, emphasizing the need for robust
noise-handling mechanisms.

Another challenge involves addressing variability in user accents and speech rates, requiring the
model to handle diversity effectively to provide reliable feedback [2]. Incorporating advanced data
augmentation techniques and expanding the training dataset to include more diverse accents could
further improve model performance in this regard. User engagement and feedback interpretability
are also critical considerations. Ensuring users understand and act on the system’s feedback
necessitates clear, intuitive interfaces, as demonstrated in Figures 5 and 3, which illustrate how
processed results and detailed analyses are presented. Overcoming these challenges is essential for
the practical adoption and sustained use of pronunciation learning tools.

4.3. Importance of Improved Pronunciation Feedback

The proposed system demonstrates remarkable accuracy in classifying nonnative English
accents. By leveraging spectrograms and MFCCs as core features, the model achieved classification
accuracies exceeding more than 80%, aligning with prior studies that emphasize the effective ness of
these features in speech analysis [3,18]. The integration of adaptive thresholding and advanced
feature extraction techniques bolstered the model’s robustness, enabling reliable differentiation
across eight accent classes, including a newly introduced class of Chinese-accented English speakers.
This outcome validates the system’s potential for practical applications in accent classification,
comparable to findings in existing literature on robust speech systems [23].

The study highlights the complementary effectiveness of spectrograms, MFCCs, and formant
frequencies in accent classification. Spectrogram-based features, known for capturing intricate
temporal and frequency nuances, delivered superior classification performance compared to MFCCs
alone. Additionally, the integration of DTW enhanced the system’s ability to align speech features
across varying speaking speeds, improving the identification of subtle pronunciation variations [18].
These findings underscore the importance of combining diverse feature extraction methods for
higher accuracy and consistency in pronunciation analysis [24].

The system’s real-time feedback mechanism, inspired by neural and cognitive processes of the
human brain, significantly contributed to users’ improvement in pronunciation skills. By offering
detailed assessments and visual feedback on phoneme accuracy and intonation patterns, users could
iteratively refine their pronunciation [20]. Experimental results revealed that subjects improved their
pronunciation correctness by 5% to 20% after using the system, corroborating neuroscientific findings
on the auditory cortex’s role in processing time-frequency representations, similar to those in
spectrograms [22,25]. This study effectively bridges cognitive neuroscience principles with
technological applications, facilitating impactful language learning outcomes.

4.4. Limitations and Future Directions

A primary limitation of the system lies in its adaptability to different languages. Although the
model was trained on a diverse dataset encompassing various English accents, its performance may
not be as robust for languages with significantly different phonetic structures, such as Mandarin or
Thai. The system’s reliance on feature extraction methods optimized for English pronunciation, such
as MFCCs and spectrograms, could restrict its effectiveness in languages requiring distinct acoustic
emphases [18]. Additionally, the feedback mechanism, fine-tuned for English-specific pronunciation
nuances, may need reconfiguration to cater to other languages. Addressing these challenges would
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necessitate adapting feature extraction techniques and retraining the model on multilingual datasets
to broaden its applicability beyond English [23].

Another limitation is related to the dataset’s scale and diversity, which could impact the
generalizability of the model’s performance. While the dataset includes a variety of English accents,
its relatively constrained size and controlled recording conditions may not fully represent real-world
scenarios [19]. Incorporating larger datasets with more speakers and a broader range of
pronunciation variations, including data from nonnative speakers with varying proficiency levels,
would improve the model’s robustness and practical utility [24]. Expanding the dataset to include
recordings from diverse languages, dialects, and real-life settings is a critical step for future research
[20].

Deploying deep learning models, such as CNNs, on mobile platforms also presents challenges
related to processing power and energy consumption. Mobile devices, while convenient for language
learning, often have limited computational resources compared to desktops. Running complex
models on mobile devices can lead to increased battery usage and longer response times potentially
affecting user interface and experience. Techniques such as model pruning, quantization, and cloud-
based processing could help optimize the model for mobile use, balancing resource efficiency and
model complexity [17].

5. Conclusions

This study introduces a comprehensive mobile-assisted pronunciation analysis system that
leverages convolutional neural networks and fuzzy inference to provide personalized, real-time
feedback for language learners. Through the integration of advanced pre-processing techniques and
multiple complementary feature extraction methods—spectrograms, MFCCs, and formant
frequencies—our system effectively analyzes and classifies pronunciation patterns across diverse
accent profiles. The incorporation of a fuzzy inference system enables context-aware assessment that
accommodates the natural variability inherent in human speech, providing feedback that is both
precise and interpretable.

Our experimental results demonstrate the power of feature fusion in improving classification
accuracy, achieving approximately 87% when combining spectrograms and MFCCs —significantly
outperforming single-feature approaches. User testing confirmed the system's practical effectiveness,
with participants showing measurable improvements in pronunciation accuracy after using the
application. These findings align with existing research on the importance of robust feature extraction
while extending the practical application of deep learning in educational technology.

The mobile platform implementation addresses accessibility needs in language education,
allowing learners to practice pronunciation independently and receive immediate feedback
regardless of location. Despite its current capabilities, limitations in multilingual support and
computational efficiency on mobile platforms indicate promising directions for future research.
Expanding the system to support additional languages, incorporating adaptive learning mechanisms
that personalize feedback based on learner progress, and optimizing performance on resource-
constrained devices represent important next steps. These advancements would further enhance the
system's impact as an effective tool for self-directed language learning in our increasingly globalized
world.
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