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Abstract: This paper introduces an innovative mobile-assisted language learning (MALL) system that 

harnesses deep learning technology to analyze pronunciation patterns and deliver real-time, 

personalized feedback. Drawing inspiration from how the human brain processes speech through 

neural pathways, our system analyzes multiple speech features spectrograms, mel-frequency cepstral 

coefficients (MFCCs), and formant frequencies in a manner that mirrors the auditory cortex's 

interpretation of sound. The core of our approach utilizes a convolutional neural network (CNN) to 

classify pronunciation patterns from user-recorded speech. To enhance assessment accuracy and 

provide nuanced feedback, we integrate a fuzzy inference system (FIS) that helps learners identify 

and correct specific pronunciation errors. Experimental results demonstrate that our multi-feature 

model achieves 87% accuracy in accent classification across diverse linguistic contexts. User testing 

revealed statistically significant improvements in pronunciation skills, with learners showing 5-20% 

enhancement in accuracy after using the system. The proposed MALL system offers a portable, 

accessible solution for language learners while establishing a foundation for future research in 

multilingual functionality and mobile platform optimization. By combining advanced speech 

analysis with intuitive feedback mechanisms, this system addresses a critical challenge in language 

acquisition and promotes more effective self-directed learning. 

Keywords: speech recognition; accent classification; convolutional neural networks; fuzzy inference 

systems 

 

1. Introduction 

In an increasingly globalized world, English has established itself as the primary language for 

international communication, attracting learners from various linguistic backgrounds. Language 

learning encompasses not only grammar and vocabulary, but also accent and pronunciation, which 

significantly affect communicative competence and speech standardization [1]. Regional accents, 

shaped by speakers’ native languages, often introduce challenges in achieving clear and 

comprehensible English. Recent advancements in deep learning technologies have accelerated the 

development of speech analysis systems, demonstrating their potential to enhance language learning 

outcomes. However, regional accents, often influenced by a speaker’s native language, introduce 

challenges in achieving clear and comprehensible English. Recent advances in deep learning 

technology have fueled the development of sophisticated speech analysis systems, offering potential 

for improving language learning outcomes through enhanced pronunciation feedback [2,4]. 

Furthermore, pronunciation is a fundamental component of effective communication, yet it remains 
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one of the most challenging aspects for language learners. nonnative speakers often substitute 

phonemes with those familiar from their native languages, producing distinct accents that can 

impede mutual understanding [1,7]. Addressing pronunciation through targeted learning tools not 

only enhances learners’ speech intelligibility but also fosters confidence and fluency in language use 

[2,6]. Convolutional neural networks (CNNs), in particular, have proven to be effective in feature 

extraction and classification tasks within speech recognition [3,6]. These models can discern intricate 

patterns in audio data, making them highly suitable for accent recognition and pronunciation 

analysis. Nevertheless, the majority of studies focus on major English accents, such as American and 

British, with limited exploration and application for a broader array of nonnative accents [4,5,8]. 

Machine learning techniques, including Mel frequency cepstral coefficients (MFCCs) and 

spectrogram-based feature extraction, have shown promise in classifying and assessing nonnative 

pronunciation [7,11]. Such approaches enable more precise identification of speech characteristics, 

contributing to personalized feedback systems designed to support accent improvement and 

language learning. Deep learning-powered speech analysis systems offer a refined approach to 

evaluating pronunciation and accent, providing feedback with greater accuracy. By utilizing models 

trained on diverse linguistic data, these systems offer feedback tailored to learners’ unique needs, 

encouraging an iterative learning process [8,9]. This focus on accent adaptation and enhancement is 

crucial for supporting language acquisition and reducing communication barriers among nonnative 

speakers. Despite substantial progress, current speech recognition and analysis systems encounter 

limitations, particularly in handling a wide range of accents with the same efficacy as native accents 

[5]. Most models are optimized for standard American and British English, leading to an 

underrepresentation of nonnative accents [4,11]. Additionally, noise sensitivity and variations in 

pronunciation reduce the effectiveness of these systems in real-world scenarios [3,5]. 

In a study by Ensslin et al. [6], deep learning was investigated for speech accent detection within 

video games, with a focus on sociolinguistic aspects, such as stereotypical accent usage and related 

social judgments. AlexNet was trained on the Speech Accent Archive data and applied to audio from 

a video game. To optimize the model, experiments were conducted with varying parameters, 

including epochs, batch sizes, time windows, and frequency filters, resulting in an optimal test 

accuracy of 61%. Following training, 75% accuracy was achieved on the Speech Accent Archive data 

and 52.7% accuracy on game audio samples, with accuracy improving to 60% in low-noise conditions. 

Limitations in speech analysis systems, which are typically optimized for American and British 

English, were addressed by Upadhyay and Lui [4]. A model capable of classifying nonnative accents 

was developed. Audio signals were pre-processed and converted to MFCCs. Four classification 

methods were tested: Random Forest, Gradient Boosting, CNN, and Multi-layer Perceptron (MLP). 

Among these methods, the CNN model demonstrated the highest accuracy, achieving rates between 

80% and 88%, significantly outperforming traditional approaches. 

Foreign-accented English classification was explored by Russell and Najafian [5] to determine 

speakers’ countries of origin. A corpus of 30 speakers from six countries was developed, and MFCC 

features were used with a Deep Belief Network (DBN) classifier. After noise cancellation and 

normalization, the DBN model, consisting of two hidden layers with 1000 nodes 90 each, achieved 

90.2% accuracy for two accents and 71.9% for six accents, outperforming conventional classifiers like 

SVM, k-NN, and Random Forest. Pronunciation quality in English learners was assessed by Nicolao 

et al. [10] using deep neural network features and phoneme-specific discriminative classifiers. A 

system was introduced to provide phoneme-level scoring based on teacher-annotated error patterns. 

Learner pronunciation was compared with a reference, and pronunciation scores were generated 

based on phoneme duration and similarity. 

For mobile-assisted pronunciation learning, the Smartphone-Assisted Pronunciation Learning 

Technique (SAPT) was proposed by Lee et al. [9]. Pronunciation errors were detected, and words 

were recommended for practice. Processing was offloaded to an Internet of Things (IoT) system to 

address the constraints of low-computation devices. Through a seven-step process, user speech was 

analyzed, phoneme correlations were evaluated, and practice words were suggested. Finally, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2025 doi:10.20944/preprints202504.2459.v1

https://doi.org/10.20944/preprints202504.2459.v1


 3 of 19 

 

pronunciation variation across English varieties was addressed by Kasahara et al. [8]. A structure-

based method to predict pronunciation distances was proposed. Support Vector Regression (SVR) 

and Bhattacharyya Distances (BDs) were used to represent pronunciation differences. Local contrasts 

and phonetic class features were identified as significant contributors to accurate pronunciation 

distance predictions, as indicated by high correlation scores. In [26], MALL was proposed as a tool to 

enhance student motivation and readiness, promoting flexibility and engagement in language 

learning for achieving positive outcomes. However, the study faced limitations, including a restricted 

sample from Indian universities, hardware constraints affecting speaking and listening tasks, a 

narrow focus on English. Liu et al. [27] proposed a knowledge based intelligence program to address 

pronunciation challenges. The proposed methods achieved significant accuracy in classifying correct 

and incorrect pronunciations. However, the study’s limitations include a small dataset and its 

generalizability to other phonemes and real-world contexts. Recently, Rukwong and Pongpinigpinyo 

[28] introduced an innovative approach to computer-assisted pronunciation training (CAPT) for Thai 

vowel recognition, leveraging CNN and acoustic features such as Mel spectrograms. Their system 

effectively addresses key challenges in Thai vowel pronunciation training, including the reliance on 

expert intervention and the complexity of traditional manual methods. While the system 

demonstrated impressive accuracy of 98.61%, its limitations include a reliance on a narrowly focused 

dataset of standard Thai speakers in controlled environments, raising concerns about its adaptability 

and robustness in diverse real-world scenarios. 

Although significant progress has been demonstrated in accent classification and pronunciation 

analysis, several limitations remain. Most systems prioritize American and British English accents, 

with limited application to nonnative or regional varieties. Few studies address the challenges of 

deploying these systems on resource-constrained mobile platforms [9]. Additionally, current systems 

rarely accommodate multiple languages or integrate multimodal inputs, which limits their 

adaptability. 

Pronunciation, a fundamental component of language proficiency, remains one of the most 

challenging aspects for nonnative speakers to master. Current speech feedback systems often lack the 

precision, accessibility, and personalization needed to significantly improve pronunciation skills. 

This study addresses these limitations by introducing a novel Mobile-Assisted Language Learning 

(MALL) application that leverages deep learning technology to analyze nonnative English accents 

with unprecedented accuracy. Our system employs advanced pre-processing techniques and 

multiple feature extraction methods, including mel-frequency cepstral coefficients (MFCCs) and 

spectrograms, to create a robust framework for accent identification and customized pronunciation 

feedback. By prioritizing inclusivity and accuracy within a user-friendly mobile interface, the 

proposed MALL application bridges the critical gap between self-guided learning and professional 

pronunciation training. The system's interactive and adaptive approach enables learners to practice 

independently while receiving clear, actionable feedback that facilitates continuous improvement. 

This research not only enhances the technological capabilities of pronunciation assessment but also 

transforms the learning experience for nonnative speakers by making expert-level guidance 

accessible anytime and anywhere through mobile technology. 

2. Materials and Methods 

2.1. System Architecture 

The proposed system adopts a client-server architecture tailored to support efficient speech 

processing and analysis. The client component, a mobile application developed using React Native, 

enables users to record their speech and submit audio files to the server for processing. This design 

ensures cross-platform compatibility on both iOS and Android devices. On the server side, a Python-

based framework facilitates comprehensive audio pre-processing, feature extraction, and analysis 

using deep learning models. The server leverages Flask, a lightweight web framework, to efficiently 

manage data requests and audio processing tasks. Figure 1 provides a visual representation of the 
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system’s architecture, detailing the data flow between the client and server. This illustration 

highlights the transfer, processing, and analysis of audio files, culminating in the delivery of real-

time feedback to the user. Such a configuration fosters a seamless user experience, enhancing 

engagement in language learning by delivering instant feedback on pronunciation and accent 

classification. 

The results of this research are presented through a system consisting of both client-side and 

server-side components, implemented in a simple client-server architecture, as shown in Figure 2. 

The mobile application captures the user’s voice input, which is then sent to the server as a .wav file. 

Once the server processes the input signal, the analyzed results are returned to both the mobile and 

desktop applications. 

 

Figure 1. Client-server architecture of the proposed system. 

 

Figure 2. System overview of the proposed method. 

The diagram delineates the step-by-step workflow from initial user input through server-side 

processing, emphasizing a modular architecture that facilitates straightforward updates and the 

integration of additional features. This design enhances scalability and supports the maintenance of 

real-time interactions, which are essential for mobile-assisted language learning applications. The 

proposed system was implemented using Python within the PyCharm 2018.1 development 

environment. A variety of libraries, detailed in Table 1, were utilized during the implementation 

process. The development and experimental evaluations were performed on a personal computer 

with the following specifications: Intel Core i5-8400 CPU (2.80 GHz), 24 GB of RAM, and a 64-bit 

operating system. 

Table 1. Libraries utilized in the implementation process. 

Library Version Purpose 

TensorFlow 1.13.1 Machine learning library 

Keras 2.2.4 High-level neural network API written in Python 

SciPy 1.10 Data management and computation 

PythonSpeechFeatures 0.6 Extraction of MFCCs and filterbank energies 

Matplotlib 3.0.0 Plotting library for generating figures 

Fuzzy Inference System

(FIS)

Time-Freqency Spectrogram

[ , ]S n k

[ ]C m

0
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CNN

Convolution & Pooling
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Input Speech: 
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Flask 1.0.2 RESTful request dispatching 

NumPy 2.0 Core library for scientific computing 

2.2. Pre-Processing Techniques 

The primary goal of these pre-processing techniques is to standardize the recorded speech into 

a consistent input format, thereby minimizing variability that could interfere with accurate analysis. 

By aligning the input format across all audio samples, pre-processing reduces fluctuations caused by 

inconsistencies in the recording environment, speaker volume, or background noise. Additionally, 

achieving a clean, noise-free condition is crucial to focus the model on the essential features of the 

speech itself rather than irrelevant environmental artifacts. This uniformity and clarity in the input 

data enhance the reliability and accuracy of feature extraction, model training, and subsequent 

analysis. Therefore, in this study, these pre-processing techniques employed the following processes. 

2.2.1. Speech Signal Normalization 

This ensures consistency across audio samples, preventing variations in amplitude from 

impacting analysis. The initial pre-processing step involves adjusting the audio signal so that its mean 

value is zero. This stabilization minimizes baseline fluctuations that could interfere with feature 

extraction. Amplitude normalization scales the audio signal to a standardized range, typically 

between -1 and 1, by dividing each value by the signal’s maximum absolute value. This process 

removes any baseline offset, centering the signal around zero to stabilize it for further analysis. 

2.2.2. Speech Segmentation 

To ensure consistency and optimize neural network processing, the speech signal is 

standardized to a predetermined length, creating uniform input data. Signal power calculation aids 

in isolating significant speech segments by distinguishing vocalized parts from silence, allowing the 

analysis to focus on relevant portions of the speech. This process involves computing the standard 

deviation within a fixed window size (e.g., 256 samples) to identify speech segments. A threshold is 

applied to exclude non-speech portions, retaining only meaningful speech for feature extraction. 

Segments with standard deviation values above the threshold are classified as speech. Speech 

segmentation further divides the signal into smaller, analyzable units based on these thresholding 

criteria. Additionally, an error-removal step eliminates small, noisy sections mistakenly classified as 

speech. This refinement produces cleaner and more accurate inputs for feature extraction, thereby 

enhancing the reliability of model training and the overall analysis process. 

2.3. Feature Extraction and Model Training 

The pre-processed speech data allowed for precise extraction of salient features, enabling the 

construction of both one-dimensional and two-dimensional arrays tailored for specific analytical 

objectives. Our approach is informed by neuroscientific understanding of human speech processing, 

where the auditory cortex interprets sound through complex neural pathways using time-frequency 

representations [20]. This biological inspiration directly influenced our feature extraction 

methodology. 

2.3.1. Spectrogram Analysis 

Spectrograms provide time-frequency representations of audio signals through Short Time 

Fourier Transform (STFT). This method captures both temporal and spectral characteristics of speech 

by segmenting the signal into smaller sections (N=256 samples per segment in our implementation) 

and calculating frequency components over time [9]. The mathematical representation of STFT is: 
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magnitude squared of the STFT: 
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2.3.2. Mel-Frequency Cepstral Coefficients 

MFCCs mimic human auditory perception by mapping the power spectrum onto the mel scale, 

which approximates how humans perceive pitch. The computation involves three primary steps. 

1. Applying a mel-scale filter bank to map the linear frequency scale onto a non-linear mel scale. 

2. Taking the logarithm of the mel-filtered spectrum to compress dynamic range. 

3. Applying Discrete Cosine Transform (DCT) to obtain the final coefficients. 

The mathematical representation for the DCT calculation of MFCCs is: 

1

0

( 1 / 2)
[ ] [ ]cos

L

k

c k
C m L k

L

−

=

 +
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 
     (3) 

where [ ]C m  is the c-th MFCC, L is the number of Mel filters, and L[k] is the log Mel-filtered 

spectrum. The result is a set of MFCCs, which represent the frequency content of the signal in a 

form that is more closely aligned with human auditory perception. 

2.3.3. Formant Frequency Analysis 

Formant frequencies represent the resonant frequencies of the vocal tract and are crucial for 

identifying vowel and consonant sounds. By extracting the first three formants (
0
F ,

1
F ,

2
F ), we 

complement the information from spectrograms and MFCCs, creating a more comprehensive feature 

set that better characterizes pronunciation patterns. 

2.3.4. Model Training and Optimization 

Our dataset comprised audio recordings from both native and nonnative English speakers with 

diverse accent profiles. To enhance model generalization and mitigate overfitting, we applied data 

augmentation techniques including pitch shifting and time stretching [18]. These methods improved 

the model's adaptability to varied speech inputs and enhanced classification performance. 

The training configuration consisted of: 

- Loss function: Cross-entropy 

- Optimizer: Adam (learning rate: 0.001) 

- Epochs: 50 

- Batch size: 32 

- Dataset split: 75% training, 15% validation, 15% testing 

Hyperparameters were optimized through grid search to balance processing efficiency and 

model performance. This methodical optimization process resulted in a model configuration that 

achieved optimal accuracy while maintaining reasonable training time requirements. 
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3. Results 

The pre-processing phase is essential for enhancing the quality and consistency of audio signals 

before feature extraction and classification. Figure 3 shows the preprocessing stages, how the original 

audio signal undergoes transformations such as zero-mean normalization, fixed-length 

segmentation, and noise removal to improve clarity and uniformity. 

 

 (a) (b) 

 

(c) (d) 

 

(e) (f) 

 

(g) (h) 
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Figure 3. Step-by-step preprocessing of the original speech signal to the segmented signal, they should be listed 

as: (a) Normalization; (b) Fixed-Length; (c) Power; (d) Window-based SD; (e) Speech Segmentation; (f) Removing 

Error; (g) Speech Reconstruction and (h) Pre-Processed Signal. 

Figure 4 highlights the impact of preprocessing on the audio signal, illustrating significant 

improvements in clarity and consistency. These enhancements directly affect the quality of extracted 

features, which form the basis of the classification model. 

 

Figure 4. Comparison of the original signal before and after preprocessing. 

Figure 5 provides an overview of the extracted features used for classification, including 

spectrograms, MFCCs, and formant frequencies. These features serve as critical inputs for the CNN 

model and contribute to its high classification accuracy, as demonstrated in [19]. The proposed 

method involves a feature extraction procedure aimed at identifying salient characteristics from a 

pre-processed signal to form a two-dimensional array with unique properties. These two-

dimensional representations-Spectrogram and MFCC-are then used as input data for the CNN 

model, both as array data and image data, formatted with a resolution of 640x480 pixels. 

 

  (a) (b) 

 

  (c) (d) 

Figure 5. Extracted features in this study, they should be listed as: (a) Pre-processed speech signal; (b) 

Spectrogram feature; (c) MFCC feature and (d) Formant Frequency. 

3.1. Data Preparation 
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The dataset used in this study was sourced from the OSCAAR (Open Speech Corpus for Accent 

270 Recognition), which contains a scripted reading scenario. In this scenario, participants clearly 

enunciated a scripted list of words one at a time. This dataset proved valuable during the pre-

processing step, where we segmented individual word utterances from the original speech recording. 

The segmentation produced a collection of word-level utterances, which were then used for further 

feature extraction and analysis. 

In addition to the Hoosier database of native and nonnative speech, this database includes 

digital audio recordings of both native and nonnative English speakers reading words, sentences, 

and paragraphs, providing a diverse range of speech samples for our study. The Hoosier Database1 

of Native and nonnative Speech consists of 27 speakers, representing the aforementioned seven 

native language backgrounds. These speakers produced a total of 1,139 recordings across the various 

tasks listed in Tables 2 and 3. 

Table 2. Number of recordings for each accent category. 

Category Number of recordings 

Native 2200 

French 2150 

German 1650 

Mandarin 2200 

Spanish 2200 

Japanese 2200 

Korean 2200 

Thai 2195 

Total 16995 

Table 3. Tasks in the Hoosier database of native and nonnative Speech. 

Category Number of recordings 

160 Hearing in Noise Test for Children sentences 

10 Digit words 

48 Multi-syllabic Lexical Neighborhood Test words 

50 Northwestern University-Children’s Perception of Speech words 

100 Lexical Neighborhood Test words 

50 Lexical Neighborhood Sentence Test sentences 

40 Pediatric Speech Intelligibility sentences 

20 Pediatric Speech Intelligibility words 

339 Bamford-Kowal-Bench sentences 

150 Phonetically Balanced Kindergarten words 

72 Spondee words 

100 Word Intelligibility by Picture Identification words 

This study also includes a group of Chinese-accented subjects who participated in the 

experiment. A total of 50 participants were selected (25 male and 25 female), with ages ranging from 

18 to 30 years. None of the subjects had any prior background in English proficiency tests. The audio 

signals were recorded in a soundproof studio, ensuring a high signal-to-noise ratio (SNR) of 60 dB or 

higher, in line with the standard for high-quality studio sound recordings. The recordings were 

captured at Dali University, where all participants gave their informed consent to take part in the 

study. The inclusion of this additional accent category serves two primary purposes: first, to explore 

the development of a system designed to help native Chinese speakers learn other languages, and 

second, to investigate how variations in the dataset may influence the performance of deep learning 

models. This research aims to measure the impact of these differences on the model’s accuracy and 

robustness. The participants were selected from a group of native Chinese individuals with no history 
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of exposure to environments that might influence their pronunciation, such as attending international 

schools from a young age or engaging in prolonged daily interactions with foreigners. For the 

recordings, a sampling rate of 44,100 Hz was used. The recordings were made in a mono-channel 

configuration, with a 16-bit resolution, ensuring high-quality, precise sound capture. 

3.2. Model Training and Test Results 

The approach employed in this study leverages deep learning techniques to develop a reference-

based model for word pronunciation. This model functions as a classifier to analyze, assess, and 

classify pronunciation accuracy from speech or word input. The proposed method utilizes a CNN 

model to achieve this task. The data used to train the deep learning model consists of the extracted 

features from the pronunciation audio of words or speech, which are represented through 

corresponding spectrograms, MFCCs, and formant frequencies. The CNN model was trained with 

different feature sets, including MFCCs, spectrograms, and formant frequencies. 

The results, summarized in Tables 4, highlight the effectiveness of MFCCs and spectrograms, 

with test accuracies peaking at 73.89% and 74.27%, respectively. As demonstrated by previous 

research, MFCCs can achieve high precision when used for accent classification. In this study, we aim 

to investigate how the chosen dataset and pre-processing methods impact the classification results 

across eight distinct accent classes. 

Table 4. Tasks in the Hoosier database of native and nonnative Speech. 

            MFCC: 28×28 MFCC: 64×48 MFCC: 128×48 

Iter. Test Acc. [%] Time [s]  Test Acc. [%] Time [s]  Test Acc. [%] Time [s] 

1 40.48 26  45.37 123  45.21 552 

5 57.73 130  60.16 612  60.43 2734 

10 64.21 261  65.54 1231  63.94 5467 

15 67.67 391  69.45 1830  66.40 8251 

20 70.29 522  70.72 2421  67.05 11024 

30 73.89 781  74.27 3636  67.51 16591 

Figure 6 (a) illustrates the average accuracy across all parameters during the training of the 

classification model using the MFCC dataset with a 0.005 threshold over 30 epochs. After the 15th 

epoch, the model began to overfit: while the training accuracy continued to improve, the testing 

accuracy plateaued and remained stagnant. Figure 6 (b) presents the confusion matrix for the MFCC-

based model. The distribution of correctly predicted accents is relatively uniform across the different 

accent classes, with most classes having a prediction frequency exceeding 300 instances in the test 

dataset. This discrepancy is attributed to the unequal distribution of data, as the German-accented 

speech data were approximately 20% less than other accent data, leading to a slight imbalance in 

predictions. The spectrogram-based model demonstrated superior performance, achieving a peak 

test accuracy of 79% when optimized network parameters were applied, as shown in Table 4. This 

underscores the ability of spectrograms to capture more detailed temporal and frequency-related 

information, providing a more comprehensive representation of the speech signal compared to 

MFCCs alone. 
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 (a) (b) 

Figure 6. Training Results for MFCC and Confusion Matrix for MFCC with 0.005 Threshold (a) Training Results 

for MFCC, (b) Confusion Matrix for MFCC. 

In Table 5, the highest precision achieved by the model was 0.829, while the lowest precision 

across all parameters derived from MFCC-based data was 0.7878. These results indicate that the 

spectrogram approach consistently outperformed the MFCC method. 

Table 5. Tasks in the Hoosier database of native and nonnative Speech. 

            MFCC: 28×28 MFCC: 64×48 MFCC: 128×48 

Iter. Test Acc. [%] Time [s]  Test Acc. [%] Time [s]  Test Acc. [%] Time [s] 

1 34.21 26  38.51 122  38.29 552 

5 63.48 130  71.62 615  68.43 2734 

10 70.45 260  76.19 1231  77.13 5467 

15 75.11 390  78.35 1846  80.84 8251 

20 76.83 520  79.97 2459  81.94 11024 

30 78.78 780  81.16 3690  82.86 16591 

Figure 7 (a) illustrates the average accuracy across all parameters while training the classification 

model using the spectrogram dataset with a threshold of 0.005 and 30 epochs. After approximately 

the 24th epoch, the accuracy stabilized and ceased to improve. Figure 7 (b) shows the prediction map 

for all classes from the classification model trained using spectrograms. The pattern is consistent 

across all classes, with a very high prediction rate, except for the German accent, which showed lower 

accuracy. The highest classification accuracy, approximately 87%, was achieved by combining 

MFCCs and spectrograms. This approach leverages both the frequency emphasis from MFCCs and 

the temporal detail from spectrograms, optimizing the model’s classification capabilities for accent 

detection. 
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Figure 7. Training Results for Spectrogram and Confusion Matrix for Spectrogram with a Threshold of 0.005, (a) 

Training Results for Spectrogram, (b) Confusion Matrix for Spectrogram. 

3.3. Period of Phonetic (PoP) 

PoP approach begins by segmenting the phonetic components of the sample signal using a 

preprocessing method. The resulting PoP value represents the time (in seconds) of each segmented 

part of the sample signal, as compared to each corresponding template segment. During the 

segmentation process, a single threshold is insufficient to achieve optimal segmentation results. 

Therefore, an adaptive thresholding method is employed, which spans values from 0.001 to 0.017. 

The PoP values are constrained within a range of 0 to 1 second. PoP is converted into five sets of 

fuzzy since its value can distinguish the range of similarity better including poor, mediocre, average, 

decent, and good. 

3.4. Dynamic Time Warping (DTW) 

DTW is used to extract features from the MFCCs of both the template and sample signals. DTW 

measures the similarity between the temporal sequences of the signals, producing a normalized 

distance value. DTW is converted into three sets of fuzzy due to the large boundary of its value 

including poor, average, and good. 

3.5. Knowledge Base 

This section stores IF-THEN rules in the format illustrated in Table 6, which represents a matrix 

of DTW values and PoP values. In Figure 9 (d), the score obtained from evaluation is shown. The 

centroid estimation method, used to find the center of the graph area, computes the result. For this 

example, the final decision using the center of gravity is approximately 79.39. 

Table 6. DTW and PoP features for the rule-based FIS decision. 

DTW \ PoP 
Poor  

(0-20) 

Mediocre (20-

40) 

Average (40-

60) 

Decent (60-

80) 

Good  

(80-100) 

Poor  

(0-33) 
F F D D D 

Average  

(34-66) 
C C B A A 

Good  

(67-100) 
C B A A A 

The proposed system features a server monitoring interface, as shown in Figure 8, which 

presents overview of the entire processing. This includes the preprocessing and feature extraction 
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steps, ensuring that the system not only provides immediate feedback to the user but also performs 

real-time assessment and analysis in the background. This integrated approach helps maintain the 

accuracy and consistency of the pronunciation evaluation throughout the process. 

 

Figure 8. Server Monitoring Interface of the Proposed System. This interface provides a comprehensive overview 

of the entire processing workflow, including preprocessing and feature extraction steps. It enables real-time 

evaluation and feedback of pronunciation accuracy while maintaining system performance and consistency in 

analysis. 

 

 (a) (b) 

 

 (c) (d) 

Figure 9. Membership functions and final score evaluation: (a) DTW, (b) PoP, (c) Score, and (d) Final score after 

evaluation. 

3.6. Mobile-Assisted Language Learning (MALL) 
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To implement a mobile platform interface showcasing the system’s workflow, we utilized the 

React Native framework, a hybrid mobile development framework that enables efficient 

development while ensuring compatibility with both Android and iOS platforms. Figure 10 (a) 

presents the main page, where users can interact with the MALL system by pressing the microphone 

button to record audio. The recorded audio is automatically sent to the server for processing. Figure 

10 (b) displays the list of available words that can be assessed using the proposed method. 

 

 (a) (b) (c) (d) 

Figure 10. Overview of the MALL system, highlighting its main functionalities: (a) audio recording, (b) word 

selection, (c) result processing, and (d) detailed feedback. 

Figure 11 illustrates the results of 10 selected subjects, chosen from a total of 50 participants, who 

attempted to pronounce 10 words with 5 trials per word. The scores range from 55 to 80, compared 

to the native speakers’ scores, which range from 80 to 100. The standard deviations are represented 

by the error bars. Notably, all selected subjects had studied in an international program, which may 

have contributed to their relatively high initial scores. 

 

Figure 11. Assessment results showing pronunciation average scores in percentage. 

Before using the MALL proposed system, the subjects’ pronunciation correctness was 

significantly lower, with scores trailing the native speech data by 5% to 20%. After utilizing the MALL 

system, which provided real-time feedback and detailed pronunciation assessments, all subjects 

showed notable improvement in their pronunciation accuracy. The increased scores highlight the 

system’s effectiveness in bridging the gap between nonnative and native pronunciation, 

demonstrating its potential as a powerful tool for language learning and accent refinement. 
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4. Discussion 

This study makes several significant contributions to the field of mobile-assisted language 

learning and pronunciation analysis. First, we demonstrate that combining multiple complementary 

feature extraction methods—spectrograms, MFCCs, and formant frequencies—achieves superior 

accent classification accuracy (87%) compared to single-feature approaches. Second, we introduce a 

novel integration of fuzzy inference systems with deep learning models to provide nuanced, 

interpretable feedback that accommodates natural speech variability. Third, our mobile 

implementation makes sophisticated pronunciation assessment accessible outside traditional 

learning environments, addressing a critical gap in self-directed language learning. Fourth, our 

experimental results confirm that this approach leads to measurable improvements in pronunciation 

accuracy (5-20%), validating the practical effectiveness of our system. These advances collectively 

represent a meaningful step forward in making pronunciation training more personalized, accessible, 

and effective for nonnative language learners. The following sections examine these contributions in 

the context of existing research and practical applications. 

4.1. Comparison of Study Findings with Existing Literature 

The findings of this study align closely with existing research on the application of deep learning 

techniques in speech analysis, particularly within MALL contexts. The high accuracy rates achieved 

by the CNN model in this study are consistent with prior work emphasizing CNNs’ effectiveness in 

speech classification tasks. For example, Lesnichaia et al. [18] demonstrated that CNNs excel at 

managing complex speech patterns and distinguishing subtle pronunciation variations due to their 

capacity to extract hierarchical features from input data. Similarly, Mikhailava et al. [19] highlighted 

the robustness of CNN models in handling sparse and crowd sourced speech data, further validating 

their applicability in diverse linguistic settings. The use of spectrograms and MFCCs as input features 

corroborates established literature on the effectiveness of combining time-frequency representations 

with perceptually relevant spectral data. Sejdic et al. [7] and Zhang and Liu [2] demonstrated that the 

integration of MFCCs with spectrograms significantly enhances classification performance, as the 

two feature types provide complementary information. This study confirmed these findings, 

showing that the combination of spectrograms and MFCCs increased model accuracy to 

approximately 87%, outperforming the individual contributions of each feature set. 

Furthermore, the inclusion of formant frequencies added phonetic depth to the analysis, 

particularly for distinguishing vowel sounds. This finding aligns with Kasahara et al. [8], who 

emphasized the importance of formant frequencies in differentiating phonetic elements. While 

formants alone did not achieve the accuracy of spectrograms or MFCCs, their integration into a multi-

feature approach enhanced overall robustness, reinforcing the argument that combining diverse 

features yields more comprehensive results. The application of fuzzy logic for pronunciation 

assessment represents a novel contribution to the fuzzy logic in managing uncertainty in speech 

processing tasks [17]. The FIS implemented in this study facilitated flexible, interpretable 

pronunciation feedback, making it well-suited for user-centric language learning applications. By 

enabling context-aware evaluations, the system provided a more nuanced alternative to rigid scoring 

mechanisms. In summary, this study validates and extends existing literature by demonstrating that 

a well-integrated approach, i.e., combining CNN models, multi-feature extraction methods, and 

fuzzy logic assessment, can substantially enhance pronunciation analysis 

4.2. System Potential and Challenges in Practical Application 

The system developed in this study demonstrates significant potential for enhancing language 

learning by providing personalized feedback and real-time pronunciation analysis. By leveraging 

deep learning models, such as CNNs, the system effectively classifies accents and delivers targeted 

improvement recommendations. The mobile-assisted approach enhances accessibility, enabling 
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users to practice pronunciation anytime and anywhere, thereby supporting the democratization of 

language education [18, 19]. 

However, challenges persist in real-world deployment. One primary concern is the system’s 

performance in noisy environments, which can impact the accuracy of speech recognition and 

classification. While pre-processing techniques such as noise reduction and signal normalization help 

mitigate these issues, achieving consisten[18,19t performance across varied real-world scenarios 

remains complex. Johnson and Wang [22] noted similar challenges, emphasizing the need for robust 

noise-handling mechanisms. 

Another challenge involves addressing variability in user accents and speech rates, requiring the 

model to handle diversity effectively to provide reliable feedback [2]. Incorporating advanced data 

augmentation techniques and expanding the training dataset to include more diverse accents could 

further improve model performance in this regard. User engagement and feedback interpretability 

are also critical considerations. Ensuring users understand and act on the system’s feedback 

necessitates clear, intuitive interfaces, as demonstrated in Figures 5 and 3, which illustrate how 

processed results and detailed analyses are presented. Overcoming these challenges is essential for 

the practical adoption and sustained use of pronunciation learning tools. 

4.3. Importance of Improved Pronunciation Feedback 

The proposed system demonstrates remarkable accuracy in classifying nonnative English 

accents. By leveraging spectrograms and MFCCs as core features, the model achieved classification 

accuracies exceeding more than 80%, aligning with prior studies that emphasize the effective ness of 

these features in speech analysis [3,18]. The integration of adaptive thresholding and advanced 

feature extraction techniques bolstered the model’s robustness, enabling reliable differentiation 

across eight accent classes, including a newly introduced class of Chinese-accented English speakers. 

This outcome validates the system’s potential for practical applications in accent classification, 

comparable to findings in existing literature on robust speech systems [23]. 

The study highlights the complementary effectiveness of spectrograms, MFCCs, and formant 

frequencies in accent classification. Spectrogram-based features, known for capturing intricate 

temporal and frequency nuances, delivered superior classification performance compared to MFCCs 

alone. Additionally, the integration of DTW enhanced the system’s ability to align speech features 

across varying speaking speeds, improving the identification of subtle pronunciation variations [18]. 

These findings underscore the importance of combining diverse feature extraction methods for 

higher accuracy and consistency in pronunciation analysis [24]. 

The system’s real-time feedback mechanism, inspired by neural and cognitive processes of the 

human brain, significantly contributed to users’ improvement in pronunciation skills. By offering 

detailed assessments and visual feedback on phoneme accuracy and intonation patterns, users could 

iteratively refine their pronunciation [20]. Experimental results revealed that subjects improved their 

pronunciation correctness by 5% to 20% after using the system, corroborating neuroscientific findings 

on the auditory cortex’s role in processing time-frequency representations, similar to those in 

spectrograms [22,25]. This study effectively bridges cognitive neuroscience principles with 

technological applications, facilitating impactful language learning outcomes. 

4.4. Limitations and Future Directions 

A primary limitation of the system lies in its adaptability to different languages. Although the 

model was trained on a diverse dataset encompassing various English accents, its performance may 

not be as robust for languages with significantly different phonetic structures, such as Mandarin or 

Thai. The system’s reliance on feature extraction methods optimized for English pronunciation, such 

as MFCCs and spectrograms, could restrict its effectiveness in languages requiring distinct acoustic 

emphases [18]. Additionally, the feedback mechanism, fine-tuned for English-specific pronunciation 

nuances, may need reconfiguration to cater to other languages. Addressing these challenges would 
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necessitate adapting feature extraction techniques and retraining the model on multilingual datasets 

to broaden its applicability beyond English [23]. 

Another limitation is related to the dataset’s scale and diversity, which could impact the 

generalizability of the model’s performance. While the dataset includes a variety of English accents, 

its relatively constrained size and controlled recording conditions may not fully represent real-world 

scenarios [19]. Incorporating larger datasets with more speakers and a broader range of 

pronunciation variations, including data from nonnative speakers with varying proficiency levels, 

would improve the model’s robustness and practical utility [24]. Expanding the dataset to include 

recordings from diverse languages, dialects, and real-life settings is a critical step for future research 

[20]. 

Deploying deep learning models, such as CNNs, on mobile platforms also presents challenges 

related to processing power and energy consumption. Mobile devices, while convenient for language 

learning, often have limited computational resources compared to desktops. Running complex 

models on mobile devices can lead to increased battery usage and longer response times potentially 

affecting user interface and experience. Techniques such as model pruning, quantization, and cloud-

based processing could help optimize the model for mobile use, balancing resource efficiency and 

model complexity [17]. 

5. Conclusions 

This study introduces a comprehensive mobile-assisted pronunciation analysis system that 

leverages convolutional neural networks and fuzzy inference to provide personalized, real-time 

feedback for language learners. Through the integration of advanced pre-processing techniques and 

multiple complementary feature extraction methods—spectrograms, MFCCs, and formant 

frequencies—our system effectively analyzes and classifies pronunciation patterns across diverse 

accent profiles. The incorporation of a fuzzy inference system enables context-aware assessment that 

accommodates the natural variability inherent in human speech, providing feedback that is both 

precise and interpretable. 

Our experimental results demonstrate the power of feature fusion in improving classification 

accuracy, achieving approximately 87% when combining spectrograms and MFCCs—significantly 

outperforming single-feature approaches. User testing confirmed the system's practical effectiveness, 

with participants showing measurable improvements in pronunciation accuracy after using the 

application. These findings align with existing research on the importance of robust feature extraction 

while extending the practical application of deep learning in educational technology. 

The mobile platform implementation addresses accessibility needs in language education, 

allowing learners to practice pronunciation independently and receive immediate feedback 

regardless of location. Despite its current capabilities, limitations in multilingual support and 

computational efficiency on mobile platforms indicate promising directions for future research. 

Expanding the system to support additional languages, incorporating adaptive learning mechanisms 

that personalize feedback based on learner progress, and optimizing performance on resource-

constrained devices represent important next steps. These advancements would further enhance the 

system's impact as an effective tool for self-directed language learning in our increasingly globalized 

world. 
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