Pre prints.org

Article Not peer-reviewed version

A Rational Approximation of the Two-
Term Machin-Like Formula for 1

Sanjar M. Abrarov *, Rehan Siddiqui, Rajinder Kumar Jagpal , Brendan M. Quine

Posted Date: 10 June 2024
doi: 10.20944/preprints202406.0554 v1

Keywords: constant pi; iteration; nested radicals; rational approximation

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/1728248
https://sciprofiles.com/profile/169854
https://sciprofiles.com/profile/2756186

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2024 d0i:10.20944/preprints202406.0554.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Rational Approximation of the Two-Term
Machin-Like Formula for 7=

Sanjar M. Abrarov 23*, Rehan Siddiqui >**(), Rajinder Kumar Jagpal >*

and Brendan M. Quine 134

1 Thoth Technology Inc., Algonquin Radio Observatory, Achray Rd., RR6, Pembroke, ON K8A 6W7, Canada

Epic College of Technology, 5670 McAdam Rd., Mississauga, ON L4Z 1T2, Canada

Department Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3] 1P3, Canada
Department Physics and Astronomy, York University, 4700 Keele St., Toronto, ON M3] 1P3, Canada

Correspondence: sanjar@thothx.ca

oo N

Abstract: In this work, we consider the properties of the two-term Machin-like formula and develop an algorithm
for computing digits of 7r by using its rational approximation. In this approximation, both terms are constructed by
using a representation of 1/ 7t in the binary form. This approach provides the squared convergence in computing
digits of 7t without any trigonometric functions and surd numbers. The Mathematica codes showing some

examples are presented.
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1. Preliminaries

In 1876, English astronomer and mathematician John Machin demonstrated an efficient method
to compute digits of 7 by using his famous discovery [1-4]

T 1 1
i 4arctan<5) — arctan<239). (1)

In particular, due to relatively rapid convergence of this formula, he was the first to compute more
than 100 digits of 7t. Nowadays, the equations of kind

/ 1
% = Zl Aj arctan <B]> ,
]:

where A; and B; are either integers or rational numbers, are named after him as the Machin-like
formulas for 7 [1-4].

Theorem 1 below shows the arctangent formula (2) for 7r. We can use this equation as a starting
point to generate the-two term Machin-like formula for 7r of kind

T 2k-1 arctan<1> ~+ arctan <1> ,
4 x y

where k, x € Nand y € Q. Further, we will show the significance of the multiplier 2¢~1 in this formula.

Theorem 1. There is a formula for 7t at any integer k > 1 [5]:

\/2— ap_
g = 21 arctan (ak ! ) ’ 2)

Ak
where ay = 0 and ay = /2 + ay_q are nested radicals.
Proof of Theorem 1. Since

() 1= o
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from the identity
cos(2x) = 2cos?(x) — 1,

it follows, by induction, that

T 1 \/ 1
Cos<2k+1)—2\/2—|— 2+\/2+---+\f2_§ak.

k square roots

sin(zk—ﬁl) =4/1— cos2<2k%),

1-— cosz(i>
T 2k+1 /2 —ap_
= arctan(“)

—— = arctan
k+1 T a
2 cos <—2k+1 ) k

Therefore, using

we obtain

and Equation (2) follows. O

Lemma 1 and its proof below show how Equation (2) is related to the well-known limit (3) for 7.

Lemma 1. There is a limit such that [6]

7 = lim 2 2—\/2+\/2+\/2+~~+ﬁ. ©)

k—o0

k—1 square roots

Proof of Lemma 1. Let

lim a; = x.
k— 00

Then, we can write

lim a = kh_r}r.}o V2+a = \/2+]}ergoak

k—o0
or
xX=v2+x
or
2—x—2=0.
Solving this quadratic equation leads to two solutions x = 2 and x = —1. Since a; cannot be negative,

we came to conclusion that

lim aj = 2.
k—o00
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Consequently, this gives

fm V2t = 2 fim e = (2 fim e =0
Since the formula (2) is valid for any arbitrarily large k, we can write

/2 — a_
% = lim 2F1 arctan(akl>

k—o00 ay

As arctan(x) — x when x — 0, we have

/2 —a,_
% — lim 2k 1 V20 gy o1 2 a1/ lim ay

k—oc0 ajy k—oc0
= lim 2522 —ap_; = lim 2F"1/2 — 4,
k—o0 k—o0

and Equation (3) follows. This completes the proof. [

Lemma 2 and its proof below show how Equation (2) can be transformed into the two-term
Machin-like formula for 7 [7].

Lemma 2. In the following equation

T _ 2T arctan .t + arctan <1) 4)
4 lax/ /2 = a1 Bc)’
the value By is always a rational number.

Proof of Lemma 2. It is convenient to define

w = |a/ /2= a1 (5)

(1) 1 (x—i—i)
arctan| - | = —=1n .
X 2i x—1i

g = arctan(1),

Using the identity

and taking into consideration that

Equation (4) can be represented as

.\ 2k-1 .
ni:ln<ak+l.> ln(ﬁk_H.)
2 ap — 1 Bx —i

(i Bt
1_<0¢k—i> <5k—i>' ©

It is not difficult to see by substitution that the following formula [7]

or

Bi= ——— i %

Oék+i Y
(“k*l) !
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is a solution of the Equation (6). Since k is a positive integer greater than 1, we can see that the real and
imaginary parts of the expression

k-1 2
ap+1\? 0 —1 . 2a
: = 5 +ti5
Qx —1 ap+1 ap+1
cannot be an irrational number if ; is an integer. This means that the real and imaginary parts of
the value By must be both rational. Since the first arctangent term of Equation (4) is a real number,

the second arctangent term is also a real number. Therefore, we conclude that the imaginary part of
the value B is equal to zero. This completes the proof. [J

k—1

This is not the only method to generate the two-term Machin-like formulas for 7t of kind (4).
Recently, Gasull ef all. proposed a different method to derive the same equation (see Table 2 in [8]).
Lemma 3 and its proof below show how the Equation (4) can be represented in a trigonometric form [7].

1—sin (Zk ~larctan (é“kl ) )
: (8)
cos <2k1 arctan ( 20 ) )
ap—1

Lemma 3. Equation (4) can be expressed as

1
= 21 arctan () ~+ arctan
1193

LR

Proof of Lemma 3. Define

a2 —1
_ Tk
R S
k
and )
x
M= o? —:1
k
such that )
Br = - —1i, 9)
(k1 +iA)> —i

in accordance with Equation (7). Then, using de Moivre’s formula we can write the complex number

in polar form as
k=2

(k1 +iA)2 = (K% + /\%) (cos (Zk_lArg(Kl - i/\l)))
+isin <2k*1Arg(K1 + i)\l)).

Thus, substituting this equation into Equation (9), we obtain

cos (2k_1Arg(K1 + 17\1)) cos (2k—lArg(zit§)>
P T i@ TArg(n T iA)) 1 sin (2 1Arg (54) ) "

Using the relation
Arg(x +1iy) = arctan(%), x>0,

we can write

. 206k
A A1) = arct . 11
rg(xq +iAy) = arc an(zxi—l) (11)
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Consequently, from the identities (10) and (11), we get
cos (Zkl arctan < ﬂ;"ﬂ‘l ) )
Br = ; (12)
1—sin <2k1 arctan( 20 ) >
ai—1

and Equation (8) follows. O

It should be noted that computation of the constant f; by using Equation (7) is not optimal.
Specifically, at lager values of the integer k its application slows down the computation. Application
of the Equation (12) for computation of the constant B is also not desirable due to presence of the
trigonometric functions. Theorem 2 and its proof show how this problem can be effectively resolved [7].

Theorem 2. The rational number By is given by

Kk
= , 13
Pr=1— " (13)
where the coefficients k. and Ay can be found by a two-step iteration
2 2
Kn =K,_1— A

el el 034,k (14)

An = 2Ky 1 -1,

with initial values

2
ar —1
Kl:tx§+1
k
and )
o
A=
zxk—i—l

Proof of Theorem 2. We notice that the following power reduction

k—1 powers of 2 k—2 powers of 2
2%-1 12\ 12\
(k1 +ir) 1 = (((K1+i)\1)) ) = (((K2+i)\2)) )
k—3 powers of 2 k—n powers of 2

_ (((K3 n i)\3)2)2 )2 _ (((Kn N i/\n>2)2 )2
B <(Kk—2 + i)\k—2>2)2 = (k-1 +idg1)? = K+ ik,

where the numbers x, and A, can be found by two-step iteration (14), leads to

5, 2 o 2%k +i< 2(1— ) _1>/

Cmcihc g =17\ (1)

according to the Equation (10).
From the Lemma 2 it follows that the imaginary part of the value By is equal to zero. Consequently,
the equation above can be simplified as

(15)
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However, since
2(1 —
i(z (L= ) - 1) =0
Ky + (/\k — 1)
2(1— Ag)
2
K% —+ (/\k — 1)

Substituting this result into the denominator of Equation (15), we obtain Equation (13). This completes
the proof. O

it follows that
=1e 4+ M-1)7=201-A).

There is an interesting relation between By and nested radicals a;_; and aj. Specifically, comparing
Equation (4) with Equation (18) from the Lemma 4 below, one can see that

1) = k-1 arctan( {ﬂk/m} )
1+ [ae/ V2=t ) (/2= a) )

arctan <
k

h
o O 2 BN e O 2y

denotes the fractional part.

Lemma 4. There is a limit such that .
lim arctan() =0.
k—o0 ‘Bk

Proof of Lemma 4. It is not difficult to see that using change of the variable

y

Y T I et yx

in the trigonometric identity

arctan(x) + arctan(y) = arctan( Xty >

1—xy
leads to
arctan(x + y) = arctan(x) + arctan <1—|—(xy—|—y)x> . (16)

Define for convenience the fractional part as

Tk = {ﬂk/M}-

Then, from Equation (2) it follows that

NE

= k-1 arctan< )
X+ Yk

Solving the equation

1 _l z
o+ o
we get
Tk
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Therefore, we have

T k-1 arctan(1 - rYk) (17)
4 ap (e + k)

Using the identity (16), we can rewrite Equation (17) as

T gk (arctan(1> — arctan(rn())
4 P 1+ ag(ag +7)

or
T k-1 1
1= 2 <arctan (Lak/ = ﬂk—lJ > s

ot VB,

As the fractional part

{a/vV2=a 1} <1

while

lim (14 |an/ V2= 0 | (ae/ V2= 1) ) = oo,
we conclude that

. _ ak—1 {ak/\/z_ak—l}
klglolo 2 arCtan(l—I— [ak/‘/Z—ak_lj (ak/,/Z—ak_1)>

. 1— A . 1
= lim arctan = lim arctan{ — ) = 0.
k—o0 Ki k—o0 ‘Bk

O

The Lemma 5 and its proof below show how to obtain a single-term rational approximation (33)

for 7 by truncating Equation (19).

Lemma 5. There is a limit such that

Ty 271 (19)
— = lim ————.
4 k—o00 Lak/ \/WJ
Proof of Lemma 5. From the Lemma 4 it immediately follows that
(20)

T lim 281 arctan ;
4 k—o0 Lak/ \/2— ﬂkflJ ’

According to Lemma 1

khm \/Z—Qk,l =0
—> 00

and

lim aj = 2.
k—roc0

fim [/ V2 | = o

Therefore, we can infer that

or 1
lim —————— =0.

k—o0 Lak/1 /2 — ak—lj
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This limit implies that the argument of the arctangent function in Equation (20) tends to zero with
increasing the integer k. Consequently, the limit (19) follows from the limit (20) and the proof is
completed. O

Motivated by recent publications [8-13] in connection to our works [5,7,14,15], we proposed a
methodology for determination of the coefficients a; without computing nested square roots of 2 (see
Equation (5)) and developed an algorithm providing squared convergence per iteration in computing
the digits of 7r. To the best of our knowledge, this approach is new and have never been reported.

2. Methodologies

2.1. Arctangent Function

There are different efficient methods to compute the arctangent function in the Machin-like
formulas. We will consider a few of them.

In our previous publications [16] we show how the two-term Machin-like formula for 7t repre-
sented in form (8) is used to derive an iterative formula

1
O f = p k>1, (21)
/ 1 1 2k=1 -
gn—l,k + 2k (1 o tan(eﬂ—Lk ))
where initial value can be taken as
91,]( = 27k

such that 1

k1 Jim 22)

4 n—o0 6, i

This iterative formula provides a squared convergence in computing digits of 7 (see Mathematica code
in [16]).
Taking change of the variable 6,, — 1/6, in Equation (21) yields a more convenient form

O =01 +2°F (1 ~ tan (zkflen,l,k)), k>1.

Consequently, the limit (22) can be rearranged now as

T ok—1 1q;
g =2 Jim O

Comparing this limit with Equation (2), we can see that this iteration procedure results in

. 1
lim 6, = arctan| —
n—o0 ¢ {)(k

and is used de facto for determination of the arctangent function. The detailed procedure showing how
to implement the computation with high convergence rate is given in our recent publication [17].

Alternatively, we can transform the two-term into multi-term Machin-like formulas for 7 consist-
ing of only the integer reciprocals. In order to do this, we can use the following equation [14]

n 1 M 1 1
= =2 larctan (> + Z arctan| ——— + arctan <) , (23)
4 ay = i HM1k

T4 |-t Bm—1
Lum—l,kJ - ,um—l,k

where

Hm g =
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with an initial value
Pk = B
For example, by taking k = 2 in the Equation (23), we can construct
1 1
T — 22 1arctan <> + arctan <)
4 %) M2
(24)

= 2arctan 1 — arctan 1
o 2 7)

This equation is commonly known as the Hermann’s formula for 7r [18,19].
By taking k = 3, the Equation (23) gives

1 1
il = 23" 1arctan <) — arctan <>
4 a3 H13

representing the original Machin’s formula (1) for 7.
The case k = 4 requires more calculations to obtain the multi-term formula for 7t consisting of
only integer reciprocals. In particular, at M = 1 we get

1 1
i =241 arctan() + arctan()
4 K4 M4

= 8arctan i — arctan M
- 10 147153121

At M =2 and M = 3 Equation (23) yields

=2 antan( ) artan( 1 ) actan ()
— =2 arctan| — ) + arctan + arctan| —
4 oy [#11,4] M4

= 8arctan LR arctan L arctan __ 57275
R 10 84 12362620883

and
=2 acan () +arctn ) arcten( ) vt ()
— =2 arctan( — | +arctan| —— | + arctan| ——— | + arctan|{ —
4 K4 |#1,4) | p2,4] H34
= 8arctan 1 — arctan i — arctan L
N 10 84 21342
_ arctan 266167
N 263843055464261 )
respectively.

Repeating this procedure over and over again, at M = 5 we end up with 7-term Machin-like
formula for 7t consisting of only integer reciprocals

5
i = 2*larctan <1) + Z arctan ( ! ) ~+ arctan <1>
4 oy = Ltm,a)] He 41

— 8arctan — | —arctan( — | —arctan =1
= 8arctan 10 arctan 31 arctan 21342

1
B 1y (25)
arctan (991268848 ) arctan ( 193018008592515208050 )

1
— arctan ( 197967899896401851763240424238758988350338 )

— arctan l
Q 7
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where
) =11757386816817535293027775284419412676799191500853701 . . .

8836932014293678271636885792397,

is the largest integer (see the Mathematica code in [17] that validates this seven-term Machin-like
formula for 7).

As we can see, Hermann's (24), Machin’s (1) and derived (25) formulas for 7t belong to the same
generic group as all of them can be constructed from the same equation-template (23).

Our empirical results show that two arctangent series expansions can be used for computation
with rapid convergence. The first equation is Euler’s expansion series given by [20]

00 22"(71!)2 x2n+1

arctan(x) = r;) 211! i x2)"+1' (26)
The second equation is [7,21]
arctan(x) = 2; 2111_ - g%(xéinixz%(x) ) (27)
where
n(x) = gu_1(x) (1 - 4/x2) +4h, 1(x)/x
and

ha(x) = hy—1(x) (1 — 4/x2> —49, 1(x)/x
with initial values
g1(x)=2/x
and
hl (X ) =1
Computational test we performed shows that Equation (27) is faster in convergence than Equation

(26). Recently, we proposed the generalization of the arctangent series expansion (27) [21].

2.2. Tangent Function

Generally, transformation of the two-terms to multi-terms formulas for 7t with integer reciprocals
is not required. In particular, we can use Newton—-Raphson iteration method [15]. For example, both
arctangent terms in the two-term Machin-like formula (4) for 7t can be computed directly by using the
following iterative formulas

e 1_( 2tan(0y,_1/2) )2 ( 2tan(0y,_1/2) _1)
me ol 1+ tan?(0;,_1/2) 1—tan?(0;,1/2) g

ez o [1- ( 2tan(t,_1/2) >2 ( 2tan(t,_1/2) _1)
n = Th—1 1+ tanz(Tnfl /2) 1— tanz(Tn,l/Z) ,Bk

with initial values

and

o= —
1=

and
1
’1_’1 = —

Br
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such that .
arctan(> = lim oy,
U(k n—oo
and
1 .
arctan| — | = lim T,.
ﬁk n—o0

Since the convergence of the Newton—-Raphson iteration is quadratic [25], with proper implemen-
tation of the tangent function we may achieve an efficient computation.
The tangent function can be expanded as

ante = £ U o

xj+g N 17x7 N 62x7
3 ' 15 ' 315 ' 2835

(28)
=x+

_|_...,

where By, are the Bernoulli numbers, defined by the contour integral

B _ nl 7{ z dz
" 2mi J et — 10t
However, application of Equation (28) is not desirable since the computation of the Bernoulli numbers

By, itself is a big challenge [22-24,26].
In order to resolve this problem, we proposed the following limit [17]
2
tan(x) = lim M, (29)
n—oo g,(x)
where
pn(x) = pu—1(x) +1u-1(x),
gn(x) = gu-1(2) + 22"y (2),

such that ;
(_1) x2n+1
(2n+1)! ’

T =

with initial values

po(x) =0,
qo(x) = 0.

Specifically, it has been shown that at k = 27 application of Equation (29) results in more than 17 digits
of 7t per increment 7 (see the Mathematica codes in [17]).

3. Algorithmic Implementation
In our recent publication we have shown that [16]
2
:Bk N
1 —tan (zk : )

X

Consequently, in accordance with Equation (4), we obtain the following approximation

k—1
E ~ 21 arctan l + 1 1—tan 2— .
4 2975 2 1973
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At sufficiently large k the value 1/a; << 1. Therefore, according to the the Lemma 5, in this
equation we can replace the first arctangent term by a rational number 28~1 /. This gives

T k-1 1 k-1
-~ —+ |1t — ]
4 K +2 an K

Unfortunately, we cannot compute efficiently the tangent function in this approximation since
its argument 2€~1 /a; is not a small number as it tends to 71/4 with increasing k. However, again by
taking into consideration that 1/a; << 1 from which it follows that

1 < 1 >
— &~ arctan| — |,
105 Xk
k-1 1
n ~——+—-(1—-tan 21 arctan | — .
4 K 2 K

Now we can take advantage from the fact that the multiplier 25! is continuously divisible by 2.
Therefore, we can use the trigonometric identity

we can write

2x

tan(2arctan(x)) = =2

k — 1 times over and over again. Thus, this leads to the following iterative formula

Zﬂnfl(x)
M(x) = — 5~ (30)
" 1- 77;%—1(95)
with an initial value
2x
) =12

such that

1y k-1 1
k-1 ("‘k) = tan(Z arctan(ak>).

Since the left side of the equation above provides an exact value without (tangent and arctangent)
trigonometric functions, we can regard this equation

w21 1 1

—r —+ (1= | — 31

4 +2( T 1(“1«)) ey
as a rational approximation.

This rational approximation of the two-term Machin-like formula for 7t can be used in an algorithm
providing a quadratic convergence. This can be achieved with help of the Theorem 3.

Theorem 3. There is a formula for 1/ with binary output

1 &
= =1lim ) W(“ﬂ mod 2) = [0.01010001011111001100. . .],, (32)

7T k—o0 =1

Proof of Theorem 3. The proof is related to the parity of the integer a;. According to the Lemma 5,

we can write -
T 2
1 ~ Tk (33)
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or
1 -~ K
4 x 2k
Consequently, if the integer «y, is even, then
o Qg
k k-1 0,

4x 21 gxok2

However, if the integer «y is odd, then

Xk Xk—1
- =0.00...001,.
4 x k=1 4 x2k-2 2

k+1 zeros
This means that aj contributes a binary digit 0.00...00 1, to the previous value a;_; if and only if ay is
——

k+1 zeros

odd. This completes the proof. O

Consider an example. There are four consecutive values oy = 10, a5 = 20 and a4 = 40 and
a7 = 81. Since the first three values are even, we have
X4 X5 X6

— — — 0.0101,.
4x 28T 7 4251 4261 2

However, since a7 = 81 is odd, we obtain

(194

i1 0.0101, + 0.00000001, = 0.01010001,.

Consider how number of digits of 7t can be doubled without computing square roots for the
nested radicals a;. We can take, for example, k = 7. This yields

a
ay = 7
LV2—a7 1

2+ 2+\/2+\/2+m (34)
2 2+\/2+\/2+\/2+\/ﬁ

However, it is not reasonable to compute the square roots of 2 so many times to obtain this number.
Instead, we can simplify computation considerably by using the value of the 1/ in the binary form
according to the Theorem 3. Thus, ignoring the first two initial zeros in the binary output of the
Equation (32), we have a corresponding sequence

(s)® = (1,0,1,0,0,0,1,0,1,1,1,1,1,0,0,...). (35)

This sequence can be obtained by using the built-in Mathematica directly using 1/7. For example,
the following code:

RealDigits[
ImportString[ToString[BaseForm[N[1/\[Pi],20],2]1],
"Table"] [[1]11[[1111[[111[[1;;20]]

returns the first 20 digits from the sequence (35):

{t,0,1,0,0,0,1,0,1,1,1,1,1,0,0,1,1, 0,0, 0}
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From this sequence, we choose the sub-sequence (say, up to seventh element)
(s)7 = (1,0,1,0,0,0,1)
and apply it accordingly as

204, if KM binary digitis 0
X, —
201+ 1, if k' binary digitis 1.

Explicitly, this step-by-step procedure results in

o =200+1=02x0+1)=1,
=201 +0=(2x140) =2,
a3 =20+1=(2x2+41) =5,

) =10,

a5 =204 +0=(2x10+0) = 20,
tg = 205+ 0 = (2 x 20+ 0) = 40,

(
(
(
g =203+0=(2x5+0
(
(
ay =20+1=(2x40+1) =81

Thus, we can see how a very simple procedure can be used to determine the value of the rational
number a7 = 81 without using a sophisticated Equation (34) consisting of 14 nested square roots of 2.
At a7 = 81 the corresponding Machin-like formula is

1 1
T 271 arctan () + arctan <>
4 a7 Bz
111 digits

= etanctan( L) arean | 2154947582 4298183679
- orarctan g N | 1599489202 ... 6981324801 |’
113 digits

(36)

where the constant
113 digits

4599489202 ... 6981324801
B7 = ~ 3154947582 ... 4298183679
111 digits

can be computed either by using Equation (7) or, more efficiently, by using Equation (13) based on
two-step iteration (14).
The following Mathematica code:

(* String for long number \[Betal_7 *)
strBeta7=
ToString[StringJoin[
"21549475820057881611210311984288158234143531212163819254",
"1568712000964806160594022446140062110943660584298183679/",
"459948920218008069525744651226752553899687099736076594466" ,
"78719072620659988130828378620624183170066256006981324801"
11;

(* Verification *)
Print [\ [Pi]/4==64*ArcTan[1/81]-ArcTan[ToExpression[strBeta7]]];

validates the Equation (36) by returning True.
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Suppose that we do not know the sequence other than (S)Z However, with help of the Equation
(31) we can find other digits of 7 in the iterative process. In particular, using Equation (30), we have

113 digits

1\ _ 2310519339...5639754240
-1\ 81 ) ~ 2288969863 . .. 1341570561
113 digits

~ 1.00941448647564092749

Substituting this value into Equation (31), we can find a significantly better approximation of 7.
The following is the Mathematica code:

Print ["Equation (33) at k = 7: ",
MantissaExponent [N[\ [Pi]-4%(64/81),20]1]1 [[2]1]1//Abs,
" digits of \[Pil"];

Print["Equation (31) at k = 7: ",
MantissaExponent [
N[\ [Pi]-4*(64/81+1/2%(1-1.00941448647564092749)),
2011[[2]1//Abs," digits of \[Pil"];

produces the following output:

Equation™(33) at k
Equation™(31) at k

7: 1 digits of n
7: 4 digits of n

Initial sequence (S)Z helped us to find the value a7 = 81. Now due to higher accuracy of Equation
(31) we can generate the sequence in which its upper index is doubled

(s)1* = (1,0,1,0,0,0,1,0,1,1,1,1,1,0)

and with help of this sequence we can find the corresponding value a4 = 10430.

Unfortunately, doubling the upper index k does not always work. For example, if we attempt to
double the upper index by using the initial sequence (s)?, then we get aj4 = 41722 instead of correct
value a1 = 41721. Therefore, the upper index of the sequence should be slightly less than two.

The two-terms approximation (31) doubles the number of digits of 7t as compared to the single-
term approximation (33). This means that using the sequence (s)]f we can obtain all sequences (s)]{H,
(s)]fH, (s)]f+3, etc. up to (s)’fo, where kg is an integer slightly smaller than 2k. Our numerical results
show that doubling value k does not always provide the correct sequence as a few binary digits at

the end of the sequence (s)%k occasionally may not be correct. However, when we use the empirical

equation
1
o= (w)d

then the corresponding sequence (s)’{0 is a sub-sequence of the infinite sequence (35) and, therefore,
it is appeared to be correct. It is interesting to note that the number 32 in this equation is the largest
integer that we found on the basis of our numerical results.

The following is a Mathematica code that shows number of digits of 7 at given iteration number
n and integer k:

Clear[str,sps,k,\ [Gamma] ,\ [Alphal,1lst,\[Etal]

(x String for conversion of 1/\[Pi] to sequence *)

str="ImportString[ToString[BaseForm[N[1/piAppr,k0],2]],
\"Table\"]1[[111[[111";

(* String for space separation *)
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sps[n_] :=Module [{m=1,sps=" "},
While[m<n,sps=StringJoin[sps," "l;m++];If [m==n,sps]];

(* Converting number to string with length q *)
cnv2strp_,q_]:=Module[{},StringTake[StringJoin[ToString[pl,spslqll,ql]

(* Defining \[Etal]-function *)
\[Eta] [n_,x_,k_] :=Module [{K=k/1.5,y=x},y=N[(2*y)/(1-y~2) ,K];cntr = 1;
Whilel[cntr<n,y=(2%y)/(1-y~2) ;cntr++];y];

(* Define \[Alphal_1, \[Alphal_2 and \[Alphal_3] *)
\[Alpha] [1]=1;
\[Alpha] [2]=2;
\[Alpha] [3]=5;

(* Input values *)
k=3;\ [Gamma] =\ [Alpha] [3];

(* Heading *)

Print["-------m e "1;
Print["Iteration | k", sps[5], "| Digits of \[Pi]"];
Print["--————— -~ ",

n=1;

While [n<=12,

intR=1/\[Gamma] ;
k0=\[LeftFloor] (2-1/32) *k\ [RightFloor] ;

pilppr=4*(2~(k-1)*intR+1/2*(1-\[Eta] [k-1,intR,k0]));

(* Extracting the sequence {1,0,1,0,0,0,1...} %)
lst=RealDigits[ToExpression[str]] [[1]][[1;;k0]];

(* Main computation *)
K=k+1;
While [K<=kO,\ [Gamma]=
2\ [Gamma] +1st [[K]] ;\ [Alpha] [K]=\ [Gamma] ;K++] ;k=kO;

(* Aligned output" *)
Print[cnv2str([n,5],sps[4]," | ",cnv2str([k,5]," | ",
MantissaExponent [N[\ [Pi]-piAppr,k01][[2]]//Abs];

n++];

This code generates the output:

Iteration | k | Digits of w
1 | 5 1

2 | 9 | 2

3 | 17 | 4

4 | 33 I 9

5 | 64 | 20

6 | 126 | 38
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7 | 248 | 75

8 | 488 | 149

9 | 960 | 293

10 | 1890 | 577

11 | 3720 | 1137

12 | 7323 | 2240
As we can see from the third column, the number of digits of 7t doubles at each iteration.
The Mathematica code below shows the values of «; at given k:

(*Headingx)

Print["--------coo - "1,

Print["k",sps[5],"| \[Alpha] [k]"];

ST ",

k=2;

While [k<=25,

(*Aligned output" *)
Print[cnv2str[k,5], " | ", \[Alpha] [k]];
k++];

This code returns the following output:

k | oG

2 | 2

3 | 5

4 | 10

5 | 20

6 | 40

7 | 81

8 | 162

9 | 325

10 | 651

11 | 1303

12 | 2607

13 | 5215

14 | 10430
15 | 20860
16 | 41721
17 | 83443
18 | 166886
19 | 333772
20 | 667544
21 | 1335088
22 | 2670176
23 | 5340353
24 | 10680707
25 | 21361414

As we can see, all numbers . are the same as those reported in [9].
Since the constants a; have been computed already, we can use them to validate the formula (32)
for 1/ in the binary form. The Mathematica code below:

£[K_]1:=N[Sum[(1/10~(k+1))*Mod [\ [Alpha] [k],2],{k,1,K}],K];
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Print [M e e e e e - "]
Print[k,sps[2]," | Binary output"];

Print (M- e "]
k :=1;

While [k<=5,Print [10*k,sps[2],"| ",Subscript [f[10%k],2]1] ;k++]

Print (M- m e "]

Print["Built-in Mathematica:"]
Print["1/\[Pi]=",
Subscript [StringJoin["[",
StringSplit[ToString[BaseForm[N[1/Pi,16],2]111[(11], "...1"],
211;

returns the output:

| 0.0001000101100;
| 0.00010001011111001100000;
30 | 0.000100010111110011000001101101100;
| 0.0001000101111100110000011011011100100111000,
| 0.00010001011111001100000110110111001001110010001000000;

Built-in Mathematica:
1/7m = [0.010100010111110011000001101101110010011100100010000...],

according to the Equation (32). The original binary representation of the number 1/ 7 generated by
built-in Mathematica is also shown for comparison (see also [27] for binary sequence for 1/ 7).

4. Conclusions

We consider the properties of the two-term Machin-like formula for 7 and propose its two-term
rational approximation (31). Using this approach, we developed an efficient algorithm for computing
digits of 7t with squared convergence. The constants ay in this approximation are computed without
nested square roots of 2.
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