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Abstract: In this work, we consider the properties of the two-term Machin-like formula and develop an algorithm

for computing digits of π by using its rational approximation. In this approximation, both terms are constructed by

using a representation of 1/π in the binary form. This approach provides the squared convergence in computing

digits of π without any trigonometric functions and surd numbers. The Mathematica codes showing some

examples are presented.
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1. Preliminaries

In 1876, English astronomer and mathematician John Machin demonstrated an efficient method
to compute digits of π by using his famous discovery [1–4]

π

4
= 4 arctan

(
1
5

)
− arctan

(
1

239

)
. (1)

In particular, due to relatively rapid convergence of this formula, he was the first to compute more
than 100 digits of π. Nowadays, the equations of kind

π

4
=

J

∑
j=1

Aj arctan

(
1
Bj

)
,

where Aj and Bj are either integers or rational numbers, are named after him as the Machin-like
formulas for π [1–4].

Theorem 1 below shows the arctangent formula (2) for π. We can use this equation as a starting
point to generate the-two term Machin-like formula for π of kind

π

4
= 2k−1 arctan

(
1
x

)
+ arctan

(
1
y

)
,

where k, x ∈ N and y ∈ Q. Further, we will show the significance of the multiplier 2k−1 in this formula.

Theorem 1. There is a formula for π at any integer k ≥ 1 [5]:

π

4
= 2k−1 arctan

(√
2 − ak−1

ak

)
, (2)

where a0 = 0 and ak =
√

2 + ak−1 are nested radicals.

Proof of Theorem 1. Since
cos
( π

22

)
=

1
2

√
2 =

1
2

a1,
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from the identity
cos(2x) = 2 cos2(x)− 1,

it follows, by induction, that

cos
( π

23

)
=

1
2

√
2 +

√
2 =

1
2

a2,

cos
( π

24

)
=

1
2

√
2 +

√
2 +

√
2 =

1
2

a3,

cos
( π

25

)
=

1
2

√
2 +

√
2 +

√
2 +

√
2 =

1
2

a4,

...

cos
( π

2k+1

)
=

1
2

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

k square roots

=
1
2

ak.

Therefore, using

sin
( π

2k+1

)
=

√
1 − cos2

( π

2k+1

)
,

we obtain

π

2k+1 = arctan


√

1 − cos2
(

π
2k+1

)
cos
(

π
2k+1

)
 = arctan

(√
2 − ak−1

ak

)

and Equation (2) follows.

Lemma 1 and its proof below show how Equation (2) is related to the well-known limit (3) for π.

Lemma 1. There is a limit such that [6]

π = lim
k→∞

2k

√√√√√√√2 −

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

k−1 square roots

. (3)

Proof of Lemma 1. Let
lim
k→∞

ak = x.

Then, we can write
lim
k→∞

ak = lim
k→∞

√
2 + ak−1 =

√
2 + lim

k→∞
ak

or
x =

√
2 + x

or
x2 − x − 2 = 0.

Solving this quadratic equation leads to two solutions x = 2 and x = −1. Since ak cannot be negative,
we came to conclusion that

lim
k→∞

ak = 2.
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Consequently, this gives

lim
k→∞

√
2 − ak−1 =

√
2 − lim

k→∞
ak−1 =

√
2 − lim

k→∞
ak = 0.

Since the formula (2) is valid for any arbitrarily large k, we can write

π

4
= lim

k→∞
2k−1 arctan

(√
2 − ak−1

ak

)

As arctan(x) → x when x → 0, we have

π

4
= lim

k→∞
2k−1

√
2 − ak−1

ak
= lim

k→∞
2k−1√2 − ak−1/ lim

k→∞
ak

= lim
k→∞

2k−2√2 − ak−1 = lim
k→∞

2k−1
√

2 − ak

and Equation (3) follows. This completes the proof.

Lemma 2 and its proof below show how Equation (2) can be transformed into the two-term
Machin-like formula for π [7].

Lemma 2. In the following equation

π

4
= 2k−1 arctan

(
1⌊

ak/
√

2 − ak−1
⌋)+ arctan

(
1
βk

)
, (4)

the value βk is always a rational number.

Proof of Lemma 2. It is convenient to define

αk =
⌊

ak/
√

2 − ak−1

⌋
. (5)

Using the identity

arctan
(

1
x

)
=

1
2i

ln
(

x + i
x − i

)
and taking into consideration that

π

4
= arctan(1),

Equation (4) can be represented as

π

2
i = ln

(
αk + i
αk − i

)2k−1

ln
(

βk + i
βk − i

)
or

i =
(

αk + i
αk − i

)2k−1(
βk + i
βk − i

)
. (6)

It is not difficult to see by substitution that the following formula [7]

βk =
2(

αk+i
αk−i

)2k−1

− i
− i (7)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0554.v1

https://doi.org/10.20944/preprints202406.0554.v1


4 of 20

is a solution of the Equation (6). Since k is a positive integer greater than 1, we can see that the real and
imaginary parts of the expression

(
αk + i
αk − i

)2k−1

=

(
α2

k − 1
α2

k + 1
+ i

2αk

α2
k + 1

)2k−1

cannot be an irrational number if αk is an integer. This means that the real and imaginary parts of
the value βk must be both rational. Since the first arctangent term of Equation (4) is a real number,
the second arctangent term is also a real number. Therefore, we conclude that the imaginary part of
the value βk is equal to zero. This completes the proof.

This is not the only method to generate the two-term Machin-like formulas for π of kind (4).
Recently, Gasull et all. proposed a different method to derive the same equation (see Table 2 in [8]).
Lemma 3 and its proof below show how the Equation (4) can be represented in a trigonometric form [7].

Lemma 3. Equation (4) can be expressed as

π

4
= 2k−1 arctan

(
1
αk

)
+ arctan

1 − sin
(

2k−1 arctan
(

2αk
α2

k−1

))
cos
(

2k−1 arctan
(

2αk
α2

k−1

))
 (8)

Proof of Lemma 3. Define

κ1 =
α2

k − 1
α2

k + 1

and
λ1 =

2αk

α2
k + 1

such that
βk =

2

(κ1 + iλ1)
2k−1 − i

− i, (9)

in accordance with Equation (7). Then, using de Moivre’s formula we can write the complex number
in polar form as

(κ1 + iλ1)
2k−1

=
(

κ2
1 + λ2

1

)2k−2(
cos
(

2k−1Arg(κ1 + iλ1)
))

+ i sin
(

2k−1Arg(κ1 + iλ1)
)

.

Thus, substituting this equation into Equation (9), we obtain

βk =
cos
(

2k−1Arg(κ1 + iλ1)
)

1 − sin
(
2k−1Arg(κ1 + iλ1)

) =
cos
(

2k−1Arg
(

αk+i
αk−i

))
1 − sin

(
2k−1Arg

(
αk+i
αk−i

)) . (10)

Using the relation

Arg(x + iy) = arctan
( y

x

)
, x > 0,

we can write

Arg(κ1 + iλ1) = arctan

(
2αk

α2
k − 1

)
. (11)
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Consequently, from the identities (10) and (11), we get

βk =

cos
(

2k−1 arctan
(

2αk
α2

k−1

))
1 − sin

(
2k−1 arctan

(
2αk

α2
k−1

)) (12)

and Equation (8) follows.

It should be noted that computation of the constant βk by using Equation (7) is not optimal.
Specifically, at lager values of the integer k its application slows down the computation. Application
of the Equation (12) for computation of the constant βk is also not desirable due to presence of the
trigonometric functions. Theorem 2 and its proof show how this problem can be effectively resolved [7].

Theorem 2. The rational number βk is given by

βk =
κk

1 − λk
, (13)

where the coefficients κk and λk can be found by a two-step iteration{
κn = κ2

n−1 − λ2
n−1

λn = 2κn−1λn−1,
n = 2, 3, 4, . . . , k (14)

with initial values

κ1 =
α2

k − 1
α2

k + 1

and
λ1 =

2αk

α2
k + 1

.

Proof of Theorem 2. We notice that the following power reduction

(κ1 + iλ1)
2k−1 =

k−1 powers of 2︷ ︸︸ ︷((
(κ1 + iλ1)

2
)2 ···

)2
=

k−2 powers of 2︷ ︸︸ ︷((
(κ2 + iλ2)

2
)2 ···

)2

=

k−3 powers of 2︷ ︸︸ ︷((
(κ3 + iλ3)

2
)2 ···

)2
=

k−n powers of 2︷ ︸︸ ︷((
(κn + iλn)

2
)2 ···

)2

=
(
(κk−2 + iλk−2)

2
)2

= (κk−1 + iλk−1)
2 = κk + iλk,

where the numbers κn and λn can be found by two-step iteration (14), leads to

βk =
2

κk − iλk − i
− i =

2κk

κ2
k + (λk − 1)2 + i

(
2(1 − λk)

κ2
k + (λk − 1)2 − 1

)
,

according to the Equation (10).
From the Lemma 2 it follows that the imaginary part of the value βk is equal to zero. Consequently,

the equation above can be simplified as

βk =
2κk

κ2
k + (λk − 1)2 . (15)
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However, since

i

(
2(1 − λk)

κ2
k + (λk − 1)2 − 1

)
= 0

it follows that
2(1 − λk)

κ2
k + (λk − 1)2 = 1 ⇔ κ2

k + (λk − 1)2 = 2(1 − λk).

Substituting this result into the denominator of Equation (15), we obtain Equation (13). This completes
the proof.

There is an interesting relation between βk and nested radicals ak−1 and ak. Specifically, comparing
Equation (4) with Equation (18) from the Lemma 4 below, one can see that

arctan
(

1
βk

)
= −2k−1 arctan

( {
ak/
√

2 − ak−1
}

1 +
⌊

ak/
√

2 − ak−1
⌋(

ak/
√

2 − ak−1
)),

where {
ak/
√

2 − ak−1

}
= ak/

√
2 − ak−1 −

⌊
ak/
√

2 − ak−1

⌋
denotes the fractional part.

Lemma 4. There is a limit such that

lim
k→∞

arctan
(

1
βk

)
= 0.

Proof of Lemma 4. It is not difficult to see that using change of the variable

y → y
1 + (x + y)x

in the trigonometric identity

arctan(x) + arctan(y) = arctan
(

x + y
1 − xy

)
leads to

arctan(x + y) = arctan(x) + arctan
(

y
1 + (x + y)x

)
. (16)

Define for convenience the fractional part as

γk =
{

ak/
√

2 − ak−1

}
.

Then, from Equation (2) it follows that

π

4
= 2k−1 arctan

(
1

αk + γk

)
Solving the equation

1
αk + γk

=
1
αk

+ z,

we get

z = − γk
αk(αk + γk)

.
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Therefore, we have
π

4
= 2k−1 arctan

(
1
αk

− γk
αk(αk + γk)

)
. (17)

Using the identity (16), we can rewrite Equation (17) as

π

4
= 2k−1

(
arctan

(
1
αk

)
− arctan

(
γk

1 + αk(αk + γ)

))
or

π

4
= 2k−1

(
arctan

(
1⌊

ak/
√

2 − ak−1
⌋)

− arctan

( {
ak/
√

2 − ak−1
}

1 +
⌊

ak/
√

2 − ak−1
⌋(

ak/
√

2 − ak−1
))).

(18)

As the fractional part {
ak/
√

2 − ak−1

}
< 1

while
lim
k→∞

(
1 +

⌊
ak/
√

2 − ak−1

⌋(
ak/
√

2 − ak−1

))
= ∞,

we conclude that

lim
k→∞

− 2k−1 arctan

( {
ak/
√

2 − ak−1
}

1 +
⌊

ak/
√

2 − ak−1
⌋(

ak/
√

2 − ak−1
))

= lim
k→∞

arctan
(

1 − λk
κk

)
= lim

k→∞
arctan

(
1
βk

)
= 0.

The Lemma 5 and its proof below show how to obtain a single-term rational approximation (33)
for π by truncating Equation (19).

Lemma 5. There is a limit such that

π

4
= lim

k→∞

2k−1⌊
ak/
√

2 − ak−1
⌋ . (19)

Proof of Lemma 5. From the Lemma 4 it immediately follows that

π

4
= lim

k→∞
2k−1 arctan

(
1⌊

ak/
√

2 − ak−1
⌋). (20)

According to Lemma 1
lim
k→∞

√
2 − ak−1 = 0

and
lim
k→∞

ak = 2.

Therefore, we can infer that
lim
k→∞

⌊
ak/
√

2 − ak−1

⌋
= ∞

or
lim
k→∞

1⌊
ak/
√

2 − ak−1
⌋ = 0.
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This limit implies that the argument of the arctangent function in Equation (20) tends to zero with
increasing the integer k. Consequently, the limit (19) follows from the limit (20) and the proof is
completed.

Motivated by recent publications [8–13] in connection to our works [5,7,14,15], we proposed a
methodology for determination of the coefficients αk without computing nested square roots of 2 (see
Equation (5)) and developed an algorithm providing squared convergence per iteration in computing
the digits of π. To the best of our knowledge, this approach is new and have never been reported.

2. Methodologies

2.1. Arctangent Function

There are different efficient methods to compute the arctangent function in the Machin-like
formulas. We will consider a few of them.

In our previous publications [16] we show how the two-term Machin-like formula for π repre-
sented in form (8) is used to derive an iterative formula

θn,k =
1

1
θn−1,k

+ 1
2k

(
1 − tan

(
2k−1

θn−1,k

)) , k ≥ 1, (21)

where initial value can be taken as
θ1,k = 2−k

such that
π

4
= 2k−1 lim

n→∞

1
θn,k

. (22)

This iterative formula provides a squared convergence in computing digits of π (see Mathematica code
in [16]).

Taking change of the variable θn → 1/θn in Equation (21) yields a more convenient form

θn,k = θn−1,k + 2−k
(

1 − tan
(

2k−1θn−1,k

))
, k ≥ 1.

Consequently, the limit (22) can be rearranged now as

π

4
= 2k−1 lim

n→∞
θn,k.

Comparing this limit with Equation (2), we can see that this iteration procedure results in

lim
n→∞

θn,k = arctan
(

1
αk

)
and is used de facto for determination of the arctangent function. The detailed procedure showing how
to implement the computation with high convergence rate is given in our recent publication [17].

Alternatively, we can transform the two-term into multi-term Machin-like formulas for π consist-
ing of only the integer reciprocals. In order to do this, we can use the following equation [14]

π

4
= 2k−1 arctan

(
1
αk

)
+

(
M

∑
m=1

arctan

(
1⌊

µm,k
⌋))+ arctan

(
1

µM+1,k

)
, (23)

where

µm,k =
1 +

⌊
µm−1,k

⌋
µm−1,k⌊

µm−1,k
⌋
− µm−1,k

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0554.v1

https://doi.org/10.20944/preprints202406.0554.v1


9 of 20

with an initial value
µ1,k = βk.

For example, by taking k = 2 in the Equation (23), we can construct

π

4
= 22−1 arctan

(
1
α2

)
+ arctan

(
1

µ1,2

)
= 2 arctan

(
1
2

)
− arctan

(
1
7

)
.

(24)

This equation is commonly known as the Hermann’s formula for π [18,19].
By taking k = 3, the Equation (23) gives

π

4
= 23−1 arctan

(
1
α3

)
− arctan

(
1

µ1,3

)
representing the original Machin’s formula (1) for π.

The case k = 4 requires more calculations to obtain the multi-term formula for π consisting of
only integer reciprocals. In particular, at M = 1 we get

π

4
= 24−1 arctan

(
1
α4

)
+ arctan

(
1

µ1,4

)
= 8 arctan

(
1

10

)
− arctan

(
1758719

147153121

)
At M = 2 and M = 3 Equation (23) yields

π

4
= 24−1 arctan

(
1
α4

)
+ arctan

(
1

⌊µ1,4⌋

)
+ arctan

(
1

µ2,4

)
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
579275

12362620883

)
and

π

4
= 24−1 arctan

(
1
α4

)
+ arctan

(
1

⌊µ1,4⌋

)
+ arctan

(
1

⌊µ2,4⌋

)
+ arctan

(
1

µ3,4

)
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
266167

263843055464261

)
,

respectively.
Repeating this procedure over and over again, at M = 5 we end up with 7-term Machin-like

formula for π consisting of only integer reciprocals

π

4
= 24−1 arctan

(
1
α4

)
+

(
5

∑
m=1

arctan
(

1
⌊µm,4⌋

))
+ arctan

(
1

µ6,41

)
= 8 arctan

(
1
10

)
− arctan

(
1

84

)
− arctan

(
1

21342

)
− arctan

(
1

991268848

)
− arctan

(
1

193018008592515208050

)
− arctan

(
1

197967899896401851763240424238758988350338

)
− arctan

(
1
Ω

)
,

(25)
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where
Ω = 11757386816817535293027775284419412676799191500853701 . . .

8836932014293678271636885792397,

is the largest integer (see the Mathematica code in [17] that validates this seven-term Machin-like
formula for π).

As we can see, Hermann’s (24), Machin’s (1) and derived (25) formulas for π belong to the same
generic group as all of them can be constructed from the same equation-template (23).

Our empirical results show that two arctangent series expansions can be used for computation
with rapid convergence. The first equation is Euler’s expansion series given by [20]

arctan(x) =
∞

∑
n=0

22n(n!)2

(2n + 1)!
x2n+1

(1 + x2)
n+1 . (26)

The second equation is [7,21]

arctan(x) = 2
∞

∑
n=1

1
2n − 1

gn(x)
g2

n(x) + h2
n(x)

, (27)

where
gn(x) = gn−1(x)

(
1 − 4/x2

)
+ 4hn−1(x)/x

and
hn(x) = hn−1(x)

(
1 − 4/x2

)
− 4gn−1(x)/x

with initial values
g1(x) = 2/x

and
h1(x) = 1.

Computational test we performed shows that Equation (27) is faster in convergence than Equation
(26). Recently, we proposed the generalization of the arctangent series expansion (27) [21].

2.2. Tangent Function

Generally, transformation of the two-terms to multi-terms formulas for π with integer reciprocals
is not required. In particular, we can use Newton–Raphson iteration method [15]. For example, both
arctangent terms in the two-term Machin-like formula (4) for π can be computed directly by using the
following iterative formulas

σn = σn−1 −
(

1 −
(

2 tan(σn−1/2)
1 + tan2(σn−1/2)

)2
)(

2 tan(σn−1/2)
1 − tan2(σn−1/2)

− 1
αk

)
and

τn = τn−1 −
(

1 −
(

2 tan(τn−1/2)
1 + tan2(τn−1/2)

)2
)(

2 tan(τn−1/2)
1 − tan2(τn−1/2)

− 1
βk

)
with initial values

σ1 =
1
αk

and
τ1 =

1
βk
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such that

arctan
(

1
αk

)
= lim

n→∞
σn

and

arctan
(

1
βk

)
= lim

n→∞
τn.

Since the convergence of the Newton–Raphson iteration is quadratic [25], with proper implemen-
tation of the tangent function we may achieve an efficient computation.

The tangent function can be expanded as

tan(x) =
∞

∑
n=1

(−1)n−122n(22n − 1
)

B2n

(2n)!
x2n−1

= x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · ,

(28)

where B2n are the Bernoulli numbers, defined by the contour integral

Bn =
n!

2πi

∮ z
ez − 1

dz
zn+1 .

However, application of Equation (28) is not desirable since the computation of the Bernoulli numbers
B2n itself is a big challenge [22–24,26].

In order to resolve this problem, we proposed the following limit [17]

tan(x) = lim
n→∞

2p2
n(x)

qn(x)
, (29)

where
pn(x) = pn−1(x) + rn−1(x),

qn(x) = qn−1(x) + 22n−1rn−1(x),

such that

rn =
(−1)n

(2n + 1)!
x2n+1,

with initial values
p0(x) = 0,

q0(x) = 0.

Specifically, it has been shown that at k = 27 application of Equation (29) results in more than 17 digits
of π per increment n (see the Mathematica codes in [17]).

3. Algorithmic Implementation

In our recent publication we have shown that [16]

βk ≈
2

1 − tan
(

2k−1

αk

) .

Consequently, in accordance with Equation (4), we obtain the following approximation

π

4
≈ 2k−1 arctan

(
1
αk

)
+

1
2

(
1 − tan

(
2k−1

αk

))
.
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At sufficiently large k the value 1/αk << 1. Therefore, according to the the Lemma 5, in this
equation we can replace the first arctangent term by a rational number 2k−1/αk. This gives

π

4
≈ 2k−1

αk
+

1
2

(
1 − tan

(
2k−1

αk

))
.

Unfortunately, we cannot compute efficiently the tangent function in this approximation since
its argument 2k−1/αk is not a small number as it tends to π/4 with increasing k. However, again by
taking into consideration that 1/αk << 1 from which it follows that

1
αk

≈ arctan
(

1
αk

)
,

we can write
π

4
≈ 2k−1

αk
+

1
2

(
1 − tan

(
2k−1 arctan

(
1
αk

)))
.

Now we can take advantage from the fact that the multiplier 2k−1 is continuously divisible by 2.
Therefore, we can use the trigonometric identity

tan(2 arctan(x)) =
2x

1 − x2

k − 1 times over and over again. Thus, this leads to the following iterative formula

ηn(x) =
2ηn−1(x)

1 − η2
n−1(x)

(30)

with an initial value
η1(x) =

2x
1 − x2

such that

ηk−1

(
1
αk

)
= tan

(
2k−1 arctan

(
1
αk

))
.

Since the left side of the equation above provides an exact value without (tangent and arctangent)
trigonometric functions, we can regard this equation

π

4
≈ 2k−1

αk
+

1
2

(
1 − ηk−1

(
1
αk

))
(31)

as a rational approximation.
This rational approximation of the two-term Machin-like formula for π can be used in an algorithm

providing a quadratic convergence. This can be achieved with help of the Theorem 3.

Theorem 3. There is a formula for 1/π with binary output

1
π

= lim
k→∞

k

∑
n=1

1
10n+1 (αn mod 2) = [0.01010001011111001100 . . .]2, (32)

Proof of Theorem 3. The proof is related to the parity of the integer αk. According to the Lemma 5,
we can write

π

4
≈ 2k−1

αk
(33)
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or
1
π

≈ αk

4 × 2k−1 .

Consequently, if the integer αk is even, then

αk

4 × 2k−1 − αk−1

4 × 2k−2 = 02.

However, if the integer αk is odd, then

αk

4 × 2k−1 − αk−1

4 × 2k−2 = 0.00 . . . 00︸ ︷︷ ︸
k+1 zeros

12.

This means that αk contributes a binary digit 0.00 . . . 00︸ ︷︷ ︸
k+1 zeros

12 to the previous value αk−1 if and only if αk is

odd. This completes the proof.

Consider an example. There are four consecutive values α4 = 10, α5 = 20 and α6 = 40 and
α7 = 81. Since the first three values are even, we have

α4

4 × 24−1 =
α5

4 × 25−1 =
α6

4 × 26−1 = 0.01012.

However, since α7 = 81 is odd, we obtain

α7

4 × 27−1 = 0.01012 + 0.000000012 = 0.010100012.

Consider how number of digits of π can be doubled without computing square roots for the
nested radicals ak. We can take, for example, k = 7. This yields

α7 =

⌊
a7√

2 − a7−1

⌋

=



√√√√√2 +

√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 +

√
2√√√√√2 −

√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 +

√
2


= 81.

(34)

However, it is not reasonable to compute the square roots of 2 so many times to obtain this number.
Instead, we can simplify computation considerably by using the value of the 1/π in the binary form
according to the Theorem 3. Thus, ignoring the first two initial zeros in the binary output of the
Equation (32), we have a corresponding sequence

(s)∞
k = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, . . .). (35)

This sequence can be obtained by using the built-in Mathematica directly using 1/π. For example,
the following code:

RealDigits[
ImportString[ToString[BaseForm[N[1/\[Pi],20],2]],

"Table"][[1]][[1]]][[1]][[1;;20]]

returns the first 20 digits from the sequence (35):

{1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0}
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From this sequence, we choose the sub-sequence (say, up to seventh element)

(s)7
k = (1, 0, 1, 0, 0, 0, 1)

and apply it accordingly as

αk =

{
2αk−1, if kth binary digit is 0

2αk−1 + 1, if kth binary digit is 1.

Explicitly, this step-by-step procedure results in

α1 = 2α0 + 1 = (2 × 0 + 1) = 1,

α2 = 2α1 + 0 = (2 × 1 + 0) = 2,

α3 = 2α2 + 1 = (2 × 2 + 1) = 5,

α4 = 2α3 + 0 = (2 × 5 + 0) = 10,

α5 = 2α4 + 0 = (2 × 10 + 0) = 20,

α6 = 2α5 + 0 = (2 × 20 + 0) = 40,

α7 = 2α6 + 1 = (2 × 40 + 1) = 81.

Thus, we can see how a very simple procedure can be used to determine the value of the rational
number α7 = 81 without using a sophisticated Equation (34) consisting of 14 nested square roots of 2.

At α7 = 81 the corresponding Machin-like formula is

π

4
= 27−1 arctan

(
1
α7

)
+ arctan

(
1
β7

)

= 64 arctan
(

1
81

)
− arctan


111 digits︷ ︸︸ ︷

2154947582 . . . 4298183679
4599489202 . . . 6981324801︸ ︷︷ ︸

113 digits

,
(36)

where the constant

β7 = −

113 digits︷ ︸︸ ︷
4599489202 . . . 6981324801
2154947582 . . . 4298183679︸ ︷︷ ︸

111 digits

can be computed either by using Equation (7) or, more efficiently, by using Equation (13) based on
two-step iteration (14).

The following Mathematica code:

(* String for long number \[Beta]_7 *)
strBeta7=

ToString[StringJoin[
"21549475820057881611210311984288158234143531212163819254",

"1568712000964806160594022446140062110943660584298183679/",
"459948920218008069525744651226752553899687099736076594466",

"78719072620659988130828378620624183170066256006981324801"
]];

(* Verification *)
Print[\[Pi]/4==64*ArcTan[1/81]-ArcTan[ToExpression[strBeta7]]];

validates the Equation (36) by returning True.
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Suppose that we do not know the sequence other than (s)7
1. However, with help of the Equation

(31) we can find other digits of π in the iterative process. In particular, using Equation (30), we have

η7−1

(
1

81

)
=

113 digits︷ ︸︸ ︷
2310519339 . . . 5639754240
2288969863 . . . 1341570561︸ ︷︷ ︸

113 digits

≈ 1.00941448647564092749

Substituting this value into Equation (31), we can find a significantly better approximation of π.
The following is the Mathematica code:

Print["Equation (33) at k = 7: ",
MantissaExponent[N[\[Pi]-4*(64/81),20]][[2]]//Abs,

" digits of \[Pi]"];

Print["Equation (31) at k = 7: ",
MantissaExponent[

N[\[Pi]-4*(64/81+1/2*(1-1.00941448647564092749)),
20]][[2]]//Abs," digits of \[Pi]"];

produces the following output:

Equation~(33) at k = 7: 1 digits of π
Equation~(31) at k = 7: 4 digits of π

Initial sequence (s)7
1 helped us to find the value α7 = 81. Now due to higher accuracy of Equation

(31) we can generate the sequence in which its upper index is doubled

(s)14
1 = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0)

and with help of this sequence we can find the corresponding value α14 = 10430.
Unfortunately, doubling the upper index k does not always work. For example, if we attempt to

double the upper index by using the initial sequence (s)8
1, then we get α16 = 41722 instead of correct

value α16 = 41721. Therefore, the upper index of the sequence should be slightly less than two.
The two-terms approximation (31) doubles the number of digits of π as compared to the single-

term approximation (33). This means that using the sequence (s)k
1 we can obtain all sequences (s)k+1

1 ,
(s)k+2

1 , (s)k+3
1 , etc. up to (s)k0

1 , where k0 is an integer slightly smaller than 2k. Our numerical results
show that doubling value k does not always provide the correct sequence as a few binary digits at
the end of the sequence (s)2k

1 occasionally may not be correct. However, when we use the empirical
equation

k0 =

⌊(
2 − 1

32

)
k
⌋

,

then the corresponding sequence (s)k0
1 is a sub-sequence of the infinite sequence (35) and, therefore,

it is appeared to be correct. It is interesting to note that the number 32 in this equation is the largest
integer that we found on the basis of our numerical results.

The following is a Mathematica code that shows number of digits of π at given iteration number
n and integer k:

Clear[str,sps,k,\[Gamma],\[Alpha],lst,\[Eta]]

(* String for conversion of 1/\[Pi] to sequence *)
str="ImportString[ToString[BaseForm[N[1/piAppr,k0],2]],

\"Table\"][[1]][[1]]";

(* String for space separation *)
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sps[n_]:=Module[{m=1,sps=" "},
While[m<n,sps=StringJoin[sps," "];m++];If[m==n,sps]];

(* Converting number to string with length q *)
cnv2str[p_,q_]:=Module[{},StringTake[StringJoin[ToString[p],sps[q]],q]]

(* Defining \[Eta]-function *)
\[Eta][n_,x_,k_]:=Module[{K=k/1.5,y=x},y=N[(2*y)/(1-y^2),K];cntr = 1;

While[cntr<n,y=(2*y)/(1-y^2);cntr++];y];

(* Define \[Alpha]_1, \[Alpha]_2 and \[Alpha]_3] *)
\[Alpha][1]=1;
\[Alpha][2]=2;
\[Alpha][3]=5;

(* Input values *)
k=3;\[Gamma]=\[Alpha][3];

(* Heading *)
Print["-------------------------------"];
Print["Iteration | k", sps[5], "| Digits of \[Pi]"];
Print["-------------------------------"];

n=1;
While[n<=12,

intR=1/\[Gamma];
k0=\[LeftFloor](2-1/32)*k\[RightFloor];

piAppr=4*(2^(k-1)*intR+1/2*(1-\[Eta][k-1,intR,k0]));

(* Extracting the sequence {1,0,1,0,0,0,1...} *)
lst=RealDigits[ToExpression[str]][[1]][[1;;k0]];

(* Main computation *)
K=k+1;
While[K<=k0,\[Gamma]=

2*\[Gamma]+lst[[K]];\[Alpha][K]=\[Gamma];K++];k=k0;

(* Aligned output" *)
Print[cnv2str[n,5],sps[4]," | ",cnv2str[k,5]," | ",

MantissaExponent[N[\[Pi]-piAppr,k0]][[2]]//Abs];

n++];

This code generates the output:

------------------------------
Iteration | k | Digits of π
------------------------------
1 | 5 | 1
2 | 9 | 2
3 | 17 | 4
4 | 33 | 9
5 | 64 | 20
6 | 126 | 38
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7 | 248 | 75
8 | 488 | 149
9 | 960 | 293
10 | 1890 | 577
11 | 3720 | 1137
12 | 7323 | 2240

As we can see from the third column, the number of digits of π doubles at each iteration.
The Mathematica code below shows the values of αk at given k:

(*Heading*)
Print["-----------------"];
Print["k",sps[5],"| \[Alpha][k]"];
Print["-----------------"];

k=2;
While[k<=25,

(*Aligned output" *)
Print[cnv2str[k,5], " | ", \[Alpha][k]];
k++];

This code returns the following output:

-----------------
k | αk
-----------------
2 | 2
3 | 5
4 | 10
5 | 20
6 | 40
7 | 81
8 | 162
9 | 325
10 | 651
11 | 1303
12 | 2607
13 | 5215
14 | 10430
15 | 20860
16 | 41721
17 | 83443
18 | 166886
19 | 333772
20 | 667544
21 | 1335088
22 | 2670176
23 | 5340353
24 | 10680707
25 | 21361414

As we can see, all numbers αk are the same as those reported in [9].
Since the constants αk have been computed already, we can use them to validate the formula (32)

for 1/π in the binary form. The Mathematica code below:

f[K_]:=N[Sum[(1/10^(k+1))*Mod[\[Alpha][k],2],{k,1,K}],K];
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Print["-------------------------------------------------------------"]
Print[k,sps[2]," | Binary output"];
Print["-------------------------------------------------------------"]

k := 1;
While[k<=5,Print[10*k,sps[2],"| ",Subscript[f[10*k],2]];k++]

Print["-------------------------------------------------------------"]

Print["Built-in Mathematica:"]
Print["1/\[Pi]=",

Subscript[StringJoin["[",
StringSplit[ToString[BaseForm[N[1/Pi,15],2]]][[1]], "...]"],
2]];

returns the output:

-------------------------------------------------------------
k | Binary output
-------------------------------------------------------------
10 | 0.00010001011002

20 | 0.000100010111110011000002

30 | 0.0001000101111100110000011011011002

40 | 0.00010001011111001100000110110111001001110002

50 | 0.000100010111110011000001101101110010011100100010000002

-------------------------------------------------------------
Built-in Mathematica:
1/π = [0.010100010111110011000001101101110010011100100010000...]2

according to the Equation (32). The original binary representation of the number 1/π generated by
built-in Mathematica is also shown for comparison (see also [27] for binary sequence for 1/π).

4. Conclusions

We consider the properties of the two-term Machin-like formula for π and propose its two-term
rational approximation (31). Using this approach, we developed an efficient algorithm for computing
digits of π with squared convergence. The constants αk in this approximation are computed without
nested square roots of 2.

Author Contributions: S.M.A. developed the methodology, wrote the codes and prepared a draft version of the
manuscript. R.S., R.K.J. and B.M.Q. verified, reviewed and edited the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work was supported by National Research Council Canada, Thoth Technology Inc., York
University and Epic College of Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0554.v1

https://doi.org/10.20944/preprints202406.0554.v1


19 of 20

References

1. Beckmann, P. A History of Pi; Golem Press: New York, NY, USA, 1971.
2. Berggren, L; Borwein, J; Borwein, P. Pi: A Source Book, 3rd ed.; Springer-Verlag: New York, NY, USA, 2004.
3. Borwein J.; Bailey, D. Mathematics by Experiment—Plausible Reasoning in the 21st Century, 2nd ed.; Taylor &

Francis Group: Abingdon, UK, 2008.
4. Agarwal, R.P.; Agarwal, H.; Sen, S.K. Birth, growth and computation of pi to ten trillion digits. Adv. Differ.

Equ. 2013, 2023, 100. https://doi.org/10.1186/1687-1847-2013-100
5. Abrarov, S.M.; Quine, B.M. A formula for pi involving nested radicals. Ramanujan J. 2018, 46, 657–665.

https://doi.org/10.1007/s11139-018-9996-8
6. Servi, L.D. Nested square roots of 2. Amer. Math. Mon. 2003, 110(4), 326–330. 326-330. https://dx.doi.org/10

.2307/3647881
7. Abrarov, S.M.; Quine, B.M. An iteration procedure for a two-term Machin-like formula for pi with small

Lehmer’s measure. arXiv 2017, htpps://arxiv.org/1706.08835.
8. Gasull, A.; Luca, F.; Varona, J.L. Three essays on Machin’s type formulas. Indag. Math. 2023, 34, 1373–1396.

https://doi.org/10.1016/j.indag.2023.07.002
9. Wolfram Cloud. A Wolfram Notebook Playing with Machin-Like Formulas. Available online: https:

//www.wolframcloud.com/obj/exploration/MachinLike.nb (accessed on 5 June 2024).
10. Campbell, J. Nested radicals obtained via the Wilf–Zeilberger method and related results. Maple Trans. 2023,

3, 16011. https://doi.org/10.5206/mt.v3i3.16011
11. Maritz, M.F. Extracting pi from chaos. Coll. Math. J., 2024, 55(2), 86–99. https://doi.org/10.1080/07468342.2

023.2265282
12. Spíchal, L. Using the golden section to approximate π, Math. Mag. (2024). https://doi.org/10.1080/002557

0X.2024.2336868
13. Alferov, O. A rapidly converging Machin-like formula for π, https://arxiv.org/2403.09654.
14. Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. A new form of the Machin-like formula for π by

iteration with increasing integers. J. Integer Seq. 2022, 25, 22.4.5. https://cs.uwaterloo.ca/journals/JIS/VOL2
5/Abrarov/abrarov5.html

15. Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. Unconditional applicability of Lehmer’s measure to
the two-term Machin-like formula for π. Math. J. 2021, 23, 1–23. https://doi.org/10.3888/tmj.23-2

16. Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. Algorithmic determination of a large integer in the
two-term Machin-like formula for pi. Mathematics 2021, 9, 2162. https://doi.org/10.3390/math9172162

17. Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. An iterative method for computing π by argument
reduction of the tangent function. Math. Comput. Appl. 2024, 29(2), 17. https://doi.org/10.3390/mca29020017

18. Borwein, J.M.; Borwein, P.B. Pi and the AGM—A Study in Analytic Number Theory and Computational Complexity;
Wiley & Sons Inc.: Hoboken, NJ, USA, 1987.

19. Chien-Lih, H. More Machin-type identities. Math. Gaz. 1997, 81, 120–121. https://doi.org/10.2307/3618793
20. Chien-Lih, H. An elementary derivation of Euler’s series for the arctangent function. Math. Gaz. 2005, 89,

469–470. https://doi.org/10.1017/S0025557200178404
21. Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A generalized series expansion of the arctangent

function based on the enhanced midpoint integration. AppliedMath 2023, 3, 395–405. https://doi.org/10.339
0/appliedmath3020020

22. Knuth, D.E.; Buckholtz, T.J. Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 1967, 21,
663–688. https://doi.org/10.1090/S0025-5718-1967-0221735-9

23. Harvey, D. A multimodular algorithm for computing Bernoulli numbers. Math. Comput. 2010, 79, 2361–2370.
https://www.jstor.org/stable/20779149

24. Bailey, D.H.; Bauschke, H.H.; Borwein, P.; Garvan, F.; Vanderwerff, M.T.J.D.; Wolkowicz, H. Computational
and Analytical Mathematics; Springer: New York, NY, USA, 2013.

25. Ypma, T.J. Historical development of the Newton–Raphson method. SIAM Rev. 1995, 37(4), 531-551.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0554.v1

https://doi.org/10.1186/1687-1847-2013-100
https://doi.org/10.1007/s11139-018-9996-8
https://dx.doi.org/10.2307/3647881
https://dx.doi.org/10.2307/3647881
arXiv:1706.08835
https://doi.org/10.1016/j.indag.2023.07.002
https://www.wolframcloud.com/obj/exploration/MachinLike.nb
https://www.wolframcloud.com/obj/exploration/MachinLike.nb
https://doi.org/10.5206/mt.v3i3.16011
https://doi.org/10.1080/07468342.2023.2265282
https://doi.org/10.1080/07468342.2023.2265282
https://doi.org/10.1080/0025570X.2024.2336868
https://doi.org/10.1080/0025570X.2024.2336868
arXiv:2403.09654
https://cs.uwaterloo.ca/journals/JIS/VOL25/Abrarov/abrarov5.html
https://cs.uwaterloo.ca/journals/JIS/VOL25/Abrarov/abrarov5.html
https://doi.org/10.3888/tmj.23-2
https://doi.org/10.3390/math9172162
https://doi.org/10.3390/mca29020017
https://doi.org/10.2307/3618793
https://doi.org/10.1017/S0025557200178404
https://doi.org/10.3390/appliedmath3020020
https://doi.org/10.3390/appliedmath3020020
https://doi.org/10.1090/S0025-5718-1967-0221735-9
https://www.jstor.org/stable/20779149
https://doi.org/10.20944/preprints202406.0554.v1


20 of 20

26. Beebe, N.H.F. The Mathematical Function Computation Handbook; Springer International Publishing AG: New
York, NY, USA, 2017.

27. The on-line encyclopedia of integer sequences. Expansion of 1/Pi in base 2. OEIS: A127266. Available online:
https://oeis.org/A127266 (accessed on 5 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 June 2024                   doi:10.20944/preprints202406.0554.v1

https://oeis.org/A127266
https://doi.org/10.20944/preprints202406.0554.v1

	Preliminaries
	Methodologies
	Arctangent Function
	Tangent Function

	Algorithmic Implementation
	Conclusions
	References

