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Abstract 

Hands‐free computer interaction is a key topic in assistive technology, with camera‐based and voice‐

based  systems  being  the most  common methods. Recent  camera‐based  solutions  leverage  facial 

expressions or head movements to simulate mouse clicks or key presses, while voice‐based systems 

enable control via speech commands, wake‐word detection, and vocal gestures. However, existing 

systems often suffer from  limitations  in responsiveness and accuracy, especially under real‐world 

conditions.  In  this  paper, we  present  3‐Modal Human‐Computer  Interaction  (3M‐HCI),  a  novel 

interaction  system  that dynamically  integrates  facial, vocal, and eye‐based  inputs  through a new 

signal  processing  pipeline  and  a  cross‐modal  coordination mechanism.  This  approach  not  only 

enhances recognition accuracy but also reduces interaction latency. Experimental results demonstrate 

that 3M‐HCI outperforms several recent hands‐free interaction solutions in both speed and precision, 

highlighting its potential as a robust assistive interface. 

Keywords:  human‐computer  interaction;  hands‐free  interaction;  vision/camera‐based  sensors; 

adaptive signal processing; multimodal interaction; assistive technology 

 

1. Introduction 

Advances in artificial intelligence (AI) are rapidly improving machines’ ability to process and 

understand visual data [1]. In addition, AI also promote progress in fields like robotics and education 

[2].  These  developments  are  creating  new  opportunities  to  support  accessible  human‐computer 

interaction,  especially  for  individuals with disabilities  [3]. One of  the main objectives  of  assitive 

technology is supporting individuals with upper‐limb impairments [4–8]. This group includes people 

with  limb  amputations,  neuromuscular  disorders  such  as  amyotrophic  lateral  sclerosis  (ALS), 

cerebral palsy, muscular dystrophy, spinal cord injuries, and congenital limb differences. All of which 

can significantly hinder the use of conventional input devices like the mouse or keyboard. 

According  to  [9],  as  of  2019,  there  were  approximately  552.45 million  people  living  with 

traumatic amputations. Additionally, nearly 33,000 people in the U.S. are currently living with ALS, 

and that number is projected to reach 36,000 by 2030 [10]. These conditions make it difficult or nearly 

impossible for individuals to use a computer mouse. However, the ability to move the head and eyes 

is often retained, even in individuals living with severe disabilities; therefore, computer interfaces 

based on head or eye movement are commonly employed as alternative input methods. 

Recognizing  this  issue, many  researchers  have  proposed  solutions  to  support  people with 

disabilities  in  accessing  and  interacting with  computers  effectively. Chen  [11]  invented  a  head‐

controlled computer mouse for people with disabilities using tilt sensors. This system includes two 
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tilt sensors embedded in a headset to detect head position: one sensor detects horizontal movement 

to control the mouse left or right, while the other detects vertical movement to move the mouse up 

or down. A touch switch was also designed to allow users to gently tap their cheek to perform a click 

action.  Some  studies  [12,13]  employed  a  dual‐axis  accelerometer  to  control  the mouse. Another 

approach used a combination of a gyro sensor and an optical sensor to perform clicking actions [14]. 

Additionally, Pereira et al. [15] developed a system for people with disabilities to control a computer 

mouse. This system includes a camera, computer software, and a target mounted on the front of a 

cap worn on the userʹs head, simulating cursor movements. Lin et al. [16] combined eye tracking and 

head  gestures,  using  a  light  source  mounted  on  the  user.  These  methods  have  demonstrated 

particularly  fast  and  accurate  results. However,  they  all  rely  on  sensor  devices.  This  increases 

deployment  costs, making  it  difficult  for  users  in  low‐income  areas  or  those without  access  to 

advanced technology. Furthermore, installing and calibrating sensors often requires a certain level of 

technical skill, which not all users may possess. Additionally, wearing sensor devices on the head for 

extended periods can cause discomfort, neck fatigue, or a sense of heaviness, negatively affecting the 

user experience. 

In addition to solutions that utilize specialized sensors, using standard RGB cameras such as 

built‐in webcams on laptops has also become a promising approach. With the rapid advancement of 

computer vision algorithms, RGB cameras not only help reduce deployment costs but also offer a 

more convenient and accessible contactless mouse control experience. Earlier solutions used classic 

computer vision techniques such as template matching [17,18], or color‐based segmentation [19,20], 

presented a ʺcamera mouseʺ system that uses a timer for left‐click, a technique later known as ʹdwell 

clickʹ, and  eye blinking  for  right‐click. Previous  studies  [4,21]  combined head motion with voice 

commands  to  trigger  mouse  clicks.  In  another  direction,  [22]  used  a  camera  to  analyze  head 

orientation for cursor control, integrating eye blinks to execute commands. Recently, many solutions 

rely on deep learning to directly map visual input to screen coordinates [23,24] or to predict facial 

landmarks and expressions for interaction control [6,8,25]. 

While many  approaches  have  been  proposed  to  help  individuals  with  disabilities  control 

computers using camera input, most still suffer from response latency, primarily due to noisy visual 

input and inefficient signal processing filters. Furthermore, recent systems typically rely on a limited 

set of input modalities and support only a few discrete facial gestures (e.g., smiling, mouth opening, 

eyebrow raising), which restricts flexibility and user engagement [6,8]. These expressive gestures can 

also interfere with precise cursor control, as they are not always distinguishable from involuntary 

facial movements during natural interaction. Moreover, many existing systems treat input modalities 

in  isolation  and  lack  flexible  multimodal  integration.  A  promising  direction  is  to  incorporate 

contextual cues, such as using visual detection of mouth opening  to validate voice commands,  in 

order to reduce false positives. However, this form of cross‐modal verification remains underutilized 

in prior work [4,26]. 

To overcome these limitations, we propose a novel hands‐free control system, namely 3‐Modal 

Human‐Computer Interaction (3M‐HCI), that integrates three input modalities: head movement with 

facial expressions, voice commands, and eye gaze. A new adaptive filtering mechanism is introduced 

to suppress signal noise while maintaining low‐latency responsiveness. Furthermore, the mapping 

strategy from input signals to cursor movements is redefined to improve accuracy. In addition, cross‐

modal information is used to enhance the system’s overall reliability and precision. 

The main  contribution of  this work  is  the development of a  low‐cost,  responsive hands‐free 

interface that enables individuals with upper‐limb disabilities to interact with computers using head 

movements, facial expressions, voice commands, and eye gaze. The proposed system is lightweight 

and customizable, designed to run efficiently even on low‐end hardware. By ensuring compatibility 

with  standard  hardware,  the  system  improves  access  and  interaction  for  users  with  motor 

impairments. To evaluate the system, two types of tests were conducted: (a) functional tests under 

various  technical  and  environmental  conditions,  and  (b)  user  evaluations  to  assess  usability, 

responsiveness, and perceived effectiveness. 
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The remainder of this paper is organized as follows. Section 2 introduces the system architecture 

and input modalities. Section 3 outlines the materials used and the evaluation methodology. Section 

4 presents experimental results and discussions. Finally, Section 5 concludes the paper and suggests 

future research. 

2. System Architecture 

The  3‐Model  Human‐Computer  Interaction  (3M‐HCI)  system  employs  a  callback‐based 

architecture that fundamentally separates processing logic from user interface components, ensuring 

optimal  performance,  maintainability,  and  scalability.  The  core  processing  pipeline  operates 

independently  in  separate  threads,  with  results  delivered  to  the  GUI  for  display.  To  achieve 

maximum efficiency, the system implements a multi‐threaded architecture within a single process, 

with mechanisms  for  safe  thread  coordination  and  termination.  By  using  primarily  I/O‐bound 

operations,  the  system  maintains  significantly  lower  resource  overhead  compared  to  existing 

solutions. 

The main processing pipeline operates  through  synchronous  and asynchronous  callbacks  as 

illustrated in Figure 1. The computer vision thread continuously captures frames from the camera 

input. Through the callback mechanism, each frame is delivered to the face processor module. The 

face processor offers two processing modes: the IMAGE mode processes each frame separately and 

synchronously, while the smooth mode handles frames asynchronously. Upon successful processing, 

the extracted facial landmarks and blendshape data are forwarded through the pipeline to calculate 

and execute mouse movements as well as keyboard actions. 

 

Figure 1. The core processing pipeline of the system. 

The voice processor functions as an independent module running in its own dedicated thread. 

It  captures microphone  input  and  processes  it  through  its  recognition  engine  to  identify  pre‐

configured voice commands. To enhance user experience and prevent false activations from external 

audio sources, the system incorporates an intelligent gating mechanism that cross‐references facial 

expression data from the face processor module before executing voice commands. 

This  architecture  demonstrates  significant  optimization  advantages  compared  to  existing 

solutions like Google Project Gameface [6], which utilizes a busy‐waiting pipeline that tightly couples 

GUI  and  processing  components. Googleʹs  implementation  continuously  captures  and  processes 

images at extremely high  frequencies  (sub‐millisecond  intervals), resulting  in substantial resource 

consumption  and  redundant  frame  processing.  In  contrast,  our  event‐driven  approach  with 

controlled  frame  rates  delivers  superior  resource  efficiency  while  maintaining  real‐time 

responsiveness. The detailed implementation of each module is described in the subsequent sections. 
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2.1. Video Processing Module   

2.1.1. Face Processing   

The Face Processing modules’ main  function  is  to detect and track the user’s  face and return 

facial landmarks, eye gaze, and expressions, which makes them the most critical component in the 

entire system pipeline. The face processing algorithm must meet several requirements: it should be 

fast, deliver high accuracy, and ideally operate efficiently without requiring a GPU. 

Previous systems [4] have typically used the Dlib library [27], the Haar Cascade algorithm [28], or 

custom‐built CNNs for face detection and tracking [23,24,29]. Recent systems [6,8] increasingly adopt 

MediaPipe [30] due to its superior performance and the wide range of built‐in features it provides. We 

compare several  lightweight  face processing algorithms. All algorithms below were evaluated on a 

single laptop with a Ryzen 5 5500U CPU, 12 GB RAM, and AMD Radeon Vega 7 integrated graphics to 

ensure consistent performance comparison. The result can be found in Table 1. 

Table 1. Face processing algorithm comparison. 

Algorithm/ 

Library 

Number 

of 

Landmarks 

Detection 

Time 

(second) 

Detection 

Rate1 
Facial Expression 

Iris   

Tracking 

Dlib [27]  68  0.036  0.78 
Some facial expressions can be 

computed manually2 
No 

Mediapipe [30]  478  0.0037  1  52 built‐in blendshapes  Yes 

Haar Cascade [28]  0  0.0056  0.65  No  No 

MTCNN [31]  5  0.215  1  No  No 

YuNet [32]  5  0.026  0.93  No  No 

1 Percentage of  faces  correctly detected  among  all  images  containing  a  face.  2 Follow  [4], we  can 

calculate mouth open, for example. 

Based on the comparison results shown in the table above, we decided to use MediaPipe as the 

core  tool  for  developing  our  system. MediaPipe  [30]  provides  478  facial  landmarks  (Figure  2), 

including key regions such as the eyes, eyebrows, mouth, nose, and jawline, which are essential for 

precise facial expression analysis. 

 

Figure 2. Mediapipe 478 landmarks. Each landmark point corresponds to a specific part of the face. 
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2.1.2. Mapping Feature to Mouse Coordinate 

Camera‐based head‐mouse systems typically use landmarks such as the nose tip [4,8], forehead 

[6], or mouth [19] as anchors. However, landmark instability during facial expressions can introduce 

unwanted cursor drift. For example, raising an eyebrow, as seen in Google’s Project GameFace, can 

shift the forehead anchor, while actions like nose sneer or performing gestures such as “mouse left” 

and “mouse  right” can alter  the nose  tip position,  leading  to unintentional pointer movement. A 

simple way to mitigate this issue is to avoid using facial expressions that can distort the anchor points 

altogether. Therefore, our solution is to use the two inner eye corners (medial canthi) as anchor points 

instead. After thorough testing, we found that the medial canthi remain stable across various facial 

expressions. Therefore, we chose them as reliable reference points for pointer movement (Figure 3). 

The movement vector formed by tracking these two inner eye corners is then converted into mouse 

pointer movement signals. 

Formally, let PL = (XL, YL) and PR = (XR, YR) be the coordinates of the left and right medial canthus, 

respectively. We computed the midpoint at frame t: 

𝐶௧ ൌ ሺ
𝑋௅ ൅ 𝑋ோ

2
,
𝑌௅ ൅ 𝑌ோ

2
ሻ  (1)

Finally, we have cursor displacement vector Vt: 

𝑉௧  ൌ  𝐶௧ െ 𝐶௧ିଵ ൌ  ሺ𝛥௫,𝛥௬ሻ  (2)

 

Figure 3. Two inner eye corners (p133 and p362 in Mediapipe). 

Displacement vector Vt serves as the raw cursor moving signal in our system. 

2.1.3. Adaptive Movement Signal Filtering and Acceleration 

With signals measured from sensors or cameras (since a camera itself is a type of sensor), there 

is  always  some noise present  in  the data. To  eliminate  this noise, we  apply  filtering  techniques. 

Depending on the characteristics of the signal, different filtering methods can be used, such as: i) for 

signals with significant “salt‐and‐pepper” noise, a median filter can be applied to remove outliers; ii) 

for signals affected by Gaussian noise, a low‐pass filter or a Gaussian filter may be used. 

In  our  specific  case,  the movement  signals  extracted  from  facial  landmarks  often  contain 

Gaussian  noise. This  causes  the  cursor movement  to  appear  jittery. To  address  this  issue,  some 

systems use a simple region‐based technique, where a virtual window is overlaid on the user’s face 
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and  the cursor only moves when  the  tracked  landmark crosses  the boundary of  this window  [4]. 

Additionally, previous systems have applied low‐pass filters as a basic solution to smooth the pointer 

motion [8,17]. A more optimized approach is to use a Hamming filter, which offers better frequency 

response characteristics [6]. 

Although these techniques help smooth the cursor movement, they can also affect the pointer 

speed and responsiveness. Conventional low‐pass filters have a fixed cutoff frequency, which creates 

a trade‐off between smoothness and responsiveness. If the cutoff is too low, the cursor becomes stable 

but sluggish; if it is too high, unwanted jitter may persist. To address this limitation, we employed 

the 1€  filter  [33], an adaptive  filter  that dynamically adjusts  its  cutoff  frequency according  to  the 

signalʹs speed. This allows the system to remain smooth during slow movements while still being 

responsive during rapid changes. Note that, instead of applying the 1€ filter directly to the x and y 

coordinates  separately, we  apply  the  1€  filter  to  the  cursor  displacement magnitude  to  get  the 

smoothing factor α. This approach avoids the  issue of having different cutoff frequencies on each 

axis, which could cause asynchronous pointer behavior. 

We define 𝐷𝑡 ൌ  ඥΔxଶ  ൅  Δyଶ  to be the cursor displacement magnitude, and using 1€ filter to 

get the smoothing factor: 

𝐷௧෢ ,α௧  ൌ  1€_filterሺ𝐷௧ሻ  (3)

After that, we calculate the filtered displacement vector, using adaptive smoothing factor  α௧: 

𝑉௧෡ ൌ α௧𝑉௧ ൅ ሺ1 െ α௧ሻ𝑉෠௧ିଵ  (4)

Finally, we apply a pointer acceleration function to improve the responsiveness and usability of 

the system. This allows small head movements to result in fine cursor control, while larger or faster 

movements produce quicker pointer displacement, enhancing both precision and efficiency. Pointer 

acceleration is typically based on sigmoid functions. Previous work [6,34–36] has demonstrated that 

sigmoid‐based  pointer  acceleration  achieves  smoother  transitions  between  precise  and  rapid 

movements, while avoiding excessive jitter or drift. It also improves ergonomics and precision of the 

system. We adopted the following function: 

𝐺ሺ𝑥ሻ ൌ
𝐾

1 ൅ 𝑒ି௦௟௢௣௘∗ሺ௫ି௢௙௙௦௘௧ሻ
  (5)

Where: K controls the maximum gain, determining how fast the pointer can move at high speeds; 

slope defines  the  steepness  of  the  transition  between  low  and  high  gain;  larger  values make  the 

transition sharper; offset sets the inflection point on the input axis, i.e., the point at which the gain 

starts to increase significantly. 

In our  system, we  set K = 1.2,  slope = 0.1, and  offset = 12. The  resulting acceleration  curve  is 

illustrated in Figure 4, showing a smooth transition from low to high gain as input speed increases. 

 

Figure 4. Acceleration curve. 
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2.1.4. Mapping Facial Expressions to Mouse and Keyboard Actions 

Early studies employed sensors [11,14] or dwell‐click mechanisms [20], combined with a limited 

set of simple actions or expressions  [4,19]  to  trigger mouse events. More  recent approaches have 

shifted toward using more intuitive and user‐friendly expressions such as smiling, raising eyebrows, 

or  opening  the mouth  to  enhance  usability  and  reduce  fatigue  [4,6,8]. However,  these  systems 

typically utilize  only  a  small  number  of  facial  expressions  [4,8],  as  some  expressions  have  been 

reported  to be difficult  to perform or maintain and may  cause  facial  fatigue.  In addition, certain 

expressions can be easily confused with one another, reducing the reliability of the input [6,25]. 

A  straightforward  way  to  address  this  issue  is  to  use  only  easily  recognizable  and 

distinguishable  facial  expressions  that  are  less  likely  to  be  confused with  others. However,  this 

approach inherently limits the number of distinct actions the system can support. To overcome this 

limitation, we  introduce a priority‐based  triggering mechanism, which  favors  less distinguishable 

expressions  over  more  easily  recognizable  ones  when  multiple  expressions  are  detected 

simultaneously. By using this mechanism, our system supports a wider range of actions compared to 

existing systems (Table 2), while also reducing false positives and confusion.   

Table 2. Comparison of our system with facial expression control interfaces. 

System 
#Facial   

Expression 

Mouse 

Control 

Keyboard 

Control 

System 

Control 

Triggering   

Mechanism 

EMKEY [19]  1  ‐  ‐  x 
Predefined   

Threshold 

CameraMouseAI 

[22] 
2  x  ‐  ‐  User‐Defined Threshold 

Project Gameface 

[23] 
8  x  x  ‐  User‐Defined Threshold 

Zelinskyi et al. 

[33] 
8  x  ‐  ‐ 

Predefined   

Threshold 

3M‐HCI (Ours)  13  x  x  x 
User‐Defined Threshold 

with Priority 

 

Moreover, in our system, we also utilized directional eye gaze (left, right, up, down) as a form 

of expressive input, similar to facial expressions. 

2.2. Voice Processing Module 

The  Voice  Processing  Module  utilizes  command  recognition  to  handle  basic  interactive 

instructions  and  accessibility  controls.  It  serves  as  a  complementary  input method  to  the  facial 

expression control system, providing users with multiple interaction modalities. The module should 

use a pretrained model, support offline functionality, and offer high processing speed. To meet these 

criteria, we  employ Microsoft’s native Speech API  (SAPI5)  [37] via  the Dragonfly  library. SAPI5 
delivers consistent performance and low latency, with all processing performed locally. This ensures 

that the feature operates without requiring an internet connection, thereby enhancing privacy and 

system reliability. Figure 5 illustrates the general execution flow of the speech recognition module.   
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Figure 5. Voice Processor Architecture. 

The Voice Processor Module creates a self‐contained, thread‐safe service that  listens for user‐

defined  voice  commands. When  a  command  is  recognized  by  the  SAPI5  engine,  it  executes  the 

corresponding keyboard or mouse action via  the pyautogui. Furthermore,  it  interfaces with other 

modules within the application, allowing voice commands to modify their behavior. This multimodal 

approach also enhances the user experience. For instance, by implementing a check to see if the userʹs 

mouth is open during command recognition, the system can avoid misinterpreting external ambient 

sounds  as  commands,  leading  to more  reliable  activation. Voice  commands  can  also  be  used  to 

dynamically adjust mouse movement speed, enabling users to fine‐tune control in real time without 

relying on manual input. 

3. Materials and Methods 

This section outlines the development environment and the methodology used to evaluate the 

performance and usability of our multimodal interaction system. The evaluation comprises two types 

of tests. The first  is an experimental test designed to examine system stability and responsiveness 

under  various  environmental  and  hardware  conditions,  including  different  CPU  generations, 

operating systems, lighting environments, and background noise. The purpose is to determine the 

minimum  requirements  necessary  for  smooth  operation.  The  second  test  involves  task‐based 

usability testing, in which users are asked to perform a series of predefined actions such as cursor 
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movement and target selection. Objective performance metrics, including latency, accuracy, jitterness, 

and task completion time, are recorded and compared across systems. In addition, we conducted a 

short survey to collect subjective feedback from participants who had experienced all three systems, 

with the results presented in Section 4.This approach allows for a comprehensive analysis of both 

technical efficiency and user experience. 

3.1. Development Platform 

We  used  two  different  laptops  during  the  development  process  to  ensure  stable  software 

performance under varying hardware  conditions. The  first  laptop was  equipped with a Ryzen  5 

5500U CPU, 12 GB RAM, AMD Radeon Vega 7 integrated graphics, a built‐in 720p 30fps camera, and 

an integrated microphone. The second laptop featured an Intel(R) Core(TM) i7‐13650HX CPU, 16 GB 

RAM, a dedicated NVIDIA GeForce RTX 4060 GPU with 8 GB DDR6 VRAM, a built‐in 720p 15fps 

camera, and an integrated microphone.   

The  system was  developed  through  iterative  prototyping,  combined  with  regular  internal 

testing  and  feedback  from  university  instructors  and  experts  with  experience  in  assistive 

technologies. This feedback  loop allowed us to continuously  improve the system while keeping  it 

accessible  and  practical.  To  implement  our  application,  we  chose  Python  as  the  primary 

programming  language  due  to  its  extensive  ecosystem,  cross‐platform  compatibility,  and  active 

developer  community.  Python  also  simplifies  rapid  prototyping  and  integration with  computer 

vision and audio processing tools, which are central to our system. The key Python libraries utilized 

include:  i)  OpenCV  for  video  capture  and  preprocessing;  ii)  Mediapipe  for  extracting  facial 

landmarks and facial expression analysis; iii) Customtkinter for building modern and customizable 

graphical user  interfaces  (GUIs);  iv) dragonfly2  for a voice  control  framework  that maps  spoken 

commands to computer actions; v) pyautogui for accessing the mouse and keyboard functionalities; 

and vi) numpy for efficient numerical computations.   

 

Figure 6. 3M‐HCI Graphical User Interfaces built with Customtkinter. 

3.2. Testing Methodology 

Following the evaluation of methodology proposed  in [4], we assess the minimum operating 

requirements of our system under various environmental and technical conditions, such as lighting, 

background  noise,  and  hardware  configurations,  as  follows:  a)  different  environmental  lighting 

conditions; b) more  than one  face detected by  the  camera;  c) background noise; and d) different 

hardware and software features of the computer. In addition to these tests, we also conduct a task‐

based  usability  testing  with  existing  systems,  in  order  to  highlight  the  effectiveness  of  the 
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improvements proposed in our study: a) jitterness; b) responsiveness (task completion time); and c) 

accuracy. 

Before performing the tasks, participants were given time to freely explore and adjust the mouse 

control system to ensure maximum comfort. They were instructed to select two facial expressions of 

their choice and assign them to left and right click actions, based on what they found most intuitive 

and easy to perform. Once these settings were configured, participants received clear instructions on 

how to interact with the testing application. 

The first task involved a sequence‐based interaction test, where users were required to move the 

cursor  to predefined  targets on  the  screen, perform  either  a  left or  right  click  as  instructed,  and 

proceed to the next target (Figure 7). This process continued until all targets were completed. The 

task was used to assess accuracy and responsiveness, based on metrics such as completion time and 

cursor deviation. 

 

Figure 7. Moving and clicking task. 

The second task required users to keep their head still for a fixed duration while the system was 

running. This allowed us to measure unintended cursor movement or drift, providing insight into 

the system’s stability when idle. 

Finally, a short post‐test survey was conducted to gather subjective feedback from users who 

had experienced all three systems (Table 3). All questions are evaluated on a numeric rating scale 

from  1  (Very  Bad)  to  10  (Excellent).  The  results  of  this  evaluation,  as  well  as  the  code  and 

configurations used in the testing application, are available in our public GitHub repository. 

Table 3. List of survey questions. 

Question  Description 

Q1  Does it take a lot of time to master the application? 

Q2  Is the response of left/right mouse click fast? 

Q3  Is the cursor movement responsive? 

Q4  Is it difficult to click the left/right mouse button? 

Q5  Is it difficult to move the cursor precisely? 

Q6  Is it difficult to move the cursor vertically? 

Q7  Is it difficult to move the cursor horizontally? 

Q8  Does moving the cursor cause fatigue? 

Q9  Do you think this mouse system can be applied for people with disabilities? 
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4. Results and Discussion 

4.1. Robustness Testing Under Environmental and Hardware Variations 

We evaluate the system’s functionality and performance under varied lighting, multiple faces, 

and  different  hardware  and  operating  systems,  as well  as  identify  the minimum  hardware  and 

environmental requirements necessary for stable operation. 

4.1.1. Lighting Condition Test 

To assess the robustness of 3M‐HCI under real‐world usage, we conducted experiments in four 

different lighting environments, with corresponding results shown in Figure 8 (a–d). In each scenario, 

we visualized the 147 facial landmarks used by MediaPipe Face Mesh to detect expressions, enabling 

a detailed qualitative assessment of detection stability under varying illumination conditions. From 

our experiments, we can conclude that: 

 Bright Environment  (Figure 8a, 8b): Whether  in a brightly  lit room or a dim room with high 

screen  brightness,  the  system  performed  flawlessly.  Facial  landmarks were  immediate  and 

accurate. Mouse  control  operated  smoothly without  any  jitter  or  delay.  This  represents  the 

optimal environment for system usage.   

 Dim Room with Medium Screen Brightness (Figure 8c): Under significantly darker conditions, 

where only moderate  screen brightness was present,  the  system  remained  functional. Facial 

landmarks  still worked,  but  occasional  instability  in mouse movement was  observed.  The 

system was still usable with minor degradation. 

 Near‐total Darkness with Low Screen Brightness (Figure 8d): In the most extreme case, with no 

external light and very low screen brightness, the system struggled. Although the Mediapipe 

framework could still detect the facial landmarks. However, the detection was inconsistent and 

unreliable. Landmarks often flickered or were lost entirely, making interaction with the system 

ineffective in this condition   

 

Figure 8. Mediapipe facial landmarks detection in different light conditions. 
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From  the  experiments  above,  we  conclude  that  the  most  critical  factor  for  the  systemʹs 

performance  is  the clarity of  the captured  facial  image. While ambient  lighting conditions have a 

limited impact on the overall outcome, ensuring a well‐defined face is essential. Notably, MediaPipe 

demonstrated impressive robustness. It was able to detect facial landmarks even in extremely low‐

light scenarios where the human eye struggles to distinguish facial features. 

4.1.2. Multiple Faces in a Frame 

This  test  evaluates Mediapipe’s  behavior when multiple  faces  appear  in  the  frame. When 

configured  to  detect  only  a  single  face, Mediapipe  selects  the  one  it  detects  with  the  highest 

confidence. In practice, this is often the face closest to the camera, which typically belongs to the user. 

However,  the most confidently detected  face  is not always  the  intended user’s  face, especially  in 

dynamic or crowded environments. Our experiments show that when two faces are present in the 

frame, Mediapipe may  occasionally  select  the  one  farther  from  the  camera, which  disrupts  the 

system’s operation. 

A simple strategy to address this issue is to enable Mediapipe’s multi‐face detection mode. In 

this configuration, the system detects all visible faces and compares them to the face identified in the 

previous frame, selecting the one with the most consistent position or landmark pattern. While this 

improves  the  accuracy  of  user  tracking  in  multi‐face  scenarios,  it  also  introduces  a  higher 

computational  load, which may reduce real‐time performance, particularly on  lower‐end devices. 

For this reason, we did not adopt this approach in our implementation, as it caused noticeable lag 

during runtime, making the interaction experience less smooth and responsive. 

4.1.3. Background Noise 

In contrast to previous systems that relied solely on voice recognition, making them vulnerable 

to ambient noise and unintended speech, 3M‐HCI  integrates a mouth‐open detection mechanism 

using facial landmarks. To evaluate its robustness, we conducted a test scenario where two people 

held a conversation near the system. While earlier studies [4] reported performance degradation due 

to microphone sensitivity and background noise, our method was unaffected. Since voice commands 

in  our  system  are  only  executed  when  the  user’s  mouth  has  been  recently  detected  as  open, 

environmental noise or nearby conversations had no impact on command triggering. This approach 

significantly reduces false positives and enhances reliability in shared or noisy environments. 

However, this feature relies on the system’s ability to consistently detect the user’s full face. If 

the face is partially occluded, out of frame, or poorly lit, the mouth‐open detection may fail to activate, 

thus preventing valid voice commands from being registered. Ensuring a clear and stable view of the 

userʹs face is therefore essential for maintaining the robustness of this mechanism. 

4.1.4. Different Hardware and Software Features of the Computer 

We evaluated the software performance across different machines and conducted a comparative 

analysis  of  three  applications:  3M‐HCI, Project GameFace,  and CameraMouseAI. The  results  are 

summarized in Table 4 below: 

Table 4. Software performance on different laptops. 

Laptop  CPU  RAM  OS 
Overall 

Performance 

Computational 

Cost (3M‐HCI) 

Computational 

Cost [6] 

Computational 

Cost [7] 

Dell Inspiron 

15 3530 

Intel Core i7‐

1355U 
16GB 

Windows 

11 
Excellent  12.7%  15.1%  26.7% 

Dell XPS 13 

9360 

Intel Core i7‐

7660U 
16GB 

Windows 

10 

OK. The microphone 

takes time to boot 
49.9%  60.3%  Unable to run 

Dell G15 5530 
Intel Core i7‐

13650HX 
16GB 

Windows 

11 
Excellent  10.7%  23%  8.5% 
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Lenovo 

ThinkPad 

T480 

Intel Core i5‐

8350U 
8GB 

Windows 

11 

OK. The program is a 

bit laggy 
52.8%  57.7%  31.2% 

Dell Precision 

7510 

Intel Core i7‐

6820HQ 
16GB 

Windows 

10 
Excellent  37.9%  41.5%  18.8% 

MSI GF63 

Thin 11UD 

Intel Core i7‐

11800H 
16GB 

Windows 

11 

OK. The microphone 

takes time to boot 
19.7%  28.3%  Unable to run 

Dell Inspiron 

16 5620 

Intel Core i5‐

1240P 
16GB 

Windows 

11 
Excellent  6.1%  20.56%  16.2% 

HP Laptop 

16‐d0xxx 

Intel Core i5‐

11400H 
8GB 

Windows 

11 
Excellent  24.7%  19.1%  11.05% 

ASUS TUF 

Gaming F15 

Intel Core i5‐

10300H 
16GB 

Windows 

11 

Some commands 

cannot be recognized. 
41.88%  47.37%  23.4% 

MSI Modern 

15 

AMD Ryzen 5 

5500U 
12GB 

Windows 

11 

Voice command runs 

badly. 
34.6%  47.4%  17.2% 

Compared to other applications, our software runs efficiently and stably. Despite  integrating 

voice commands, our system still consumes fewer computational resources than Googleʹs solution. 

CameraMouseAI  exhibits  lower  computational  cost  than ours,  likely because  it  is a  simpler  tool, 

supporting only 2–3 basic mouse actions.   

Based on Table 4, we recommend the following minimum system requirements: Windows 10 

or higher, a CPU equivalent  to  Intel Core  i5‐10th Gen or above, no dedicated GPU  is  required, a 

functional  camera  and  microphone,  and  at  least  8GB  of  RAM.  These  are  very  lightweight 

requirements, making the system compatible with nearly all modern laptops. 

4.2. Empirical Task‐Based Test 

We  conducted  a  pilot  user  study  involving  eight  participants  to  empirically  evaluate  the 

usability, responsiveness, and precision of  the proposed 3M‐HCI system  in real‐world  interaction 

scenarios. All participants provided  informed consent prior to the study. The objective of this test 

was  to  assess how  effectively users  could perform  common  cursor‐based  tasks using hands‐free 

input, in comparison with traditional mouse input and two baseline systems: Project GameFace and 

CameraMouseAI. Each participant was asked  to complete a set of  target selection and click  tasks 

under identical conditions across all systems. Key performance metrics, including pointer accuracy, 

latency, jitter, and number of successful clicks, were recorded. Additionally, a post‐test survey was 

conducted  to capture user satisfaction and perceived usability. The  findings  from  this pilot study 

provide preliminary insights into the practical viability and comparative advantages of our system 

in assistive computing contexts. 

4.2.1. System Accuracy 

We  measured  the  system’s  accuracy  by  calculating  the  deviation  of  four  systems 

(CameraMouseAI, Project GameFace ‐ Google, Our Method (3M‐HCI), and Normal Mouse) from the 

optimal path (straight path) to the target, along with the number of clicks required to complete the 

task. The results are presented in Figure 9 and Figure 10 below.     
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Figure 9. Deviation from Optimal Path. 

 

Figure 10. Number of clicks. 

Overall, our system demonstrated higher accuracy compared to CameraMouseAI and Project 

GameFace. Overshooting was not observed in our system, in contrast to CameraMouseAI, where it 

occurred  frequently  during  cursor  movement.  Regarding  the  clicking  mechanism,  both 

CameraMouseAI  and  Project Gameface  experienced  unintended  cursor movement  during  facial 

expression activation, leading to incorrect clicks. Our system did not encounter this issue due to a 

more optimal selection of anchor points. 

4.2.2. System Responsiveness. 

We  also  measured  the  time  taken  to  complete  the  first  task  as  an  indicator  of  system 

responsiveness. The result is shown in Figure 11. 
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Figure 11. Movement Latency. 

As  shown  in  the  figure,  our method  consistently  outperformed  both CameraMouseAI  and 

Project GameFace in terms of movement latency. Across all target transitions (e.g., 1→2, 2→3, etc.), 

our system maintained latency values around 2 to 3 seconds, with minimal fluctuation. In contrast, 

CameraMouseAI  exhibited  the  highest  latency, with  several  spikes  exceeding  6  seconds—most 

notably  in  the 5→6  transition. Project GameFace also showed relatively high  latency, particularly 

during transitions 4→5 and 6→7. 

Moreover, the total average latency of our system (green dashed line) is clearly lower than that 

of CameraMouseAI (blue dashed line) and Project GameFace (orange dashed line), indicating faster 

and more consistent performance. While  traditional mouse  input  (red  line)  remains  the  fastest as 

expected, our method shows a strong balance between speed and usability, especially considering its 

hands‐free nature. 

4.2.3. System Jitterness 

As illustrated in Figure 12, our method achieved significantly lower jitter deviation compared 

to other hands‐free systems. Specifically, the CameraMouseAI showed the highest instability with a 

jitter deviation of over 120 pixels, followed by Project GameFace with approximately 80 pixels. In 

contrast, our method maintained a  low deviation of under 10 pixels, indicating stable and precise 

cursor  control.  As  expected,  traditional  mouse  usage  yielded  the  lowest  jitter,  serving  as  a 

performance baseline. 

This finding highlights the importance of incorporating adaptive filter algorithms and activation 

mechanisms in hands‐free systems. By minimizing cursor jitter, our approach improves not only task 

precision but  also user  comfort  and  trust, which  are  critical  for  sustained use,  especially  among 

individuals with motor impairments. 
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Figure 12. Jitter Deviation of Different Systems. 

4.3. Survey Results 

The survey results provide insights into the subjective usability, responsiveness, and comfort of 

our  system  compared  to  existing  solutions,  including  CameraMouseAI,  Project  GameFace,  and 

traditional mouse control. We present the result below in Table 5. 

Table 5. Survey Results. 

Question  Description  CameraMouseAI 
Project 

GameFace 

3M‐HCI 

(Ours) 
Mouse 

Q1  Does it take a lot of time to master the application?  3.5 ± 1.87  6.75 ± 1.98  7.25 ± 1.71  10.0 ± 0.0 

Q2  Is the response of left/right mouse click fast?  3.5 ± 2.35  7.5 ± 1.58  8.25 ± 1.09  10.0 ± 0.0 

Q3  Is the cursor movement responsive?  5.38 ± 2.06  6.62 ± 1.11  8.88 ± 0.6  10.0 ± 0.0 

Q4  Is it difficult to click the left/right mouse button?  4 ± 2.55  6.25 ± 1.56  7 ± 1.87  10.0 ± 0.0 

Q5  Is it difficult to move the cursor precisely?  3.5 ± 2.45  6.87 ± 1.17  8.37 ± 0.7  10.0 ± 0.0 

Q6  Is it difficult to move the cursor vertically?  4.5 ± 2.18  7.5 ± 1.41  8.37 ± 0.86  10.0 ± 0.0 

Q7  Is it difficult to move the cursor horizontally?  4.5 ± 2.18  7.5 ± 1.41  8.37 ± 0.86  10.0 ± 0.0 

Q8  Does moving the cursor cause fatigue?  2.62 ± 1.93  7 ± 1.87  7.25 ± 1.79  9.87 ± 0.33 

Q9 
Do you think this mouse system can be applied for 

people with disabilities? 
4 ± 3.53  7.12 ± 2.52  7.85 ± 2.71  7.75 ± 3.9 

The  results  in  the  table  indicate  that our proposed 3M‐HCI  system achieved high  subjective 

ratings across all categories. Notably, it received an average score of 8.25 ± 1.09 for the responsiveness 

of  left/right  mouse  clicks  and  8.88  ±  0.6  for  overall  cursor  responsiveness,  comparable  to  the 

traditional mouse and outperforming both CameraMouseAI and Project GameFace. 

In terms of ease of use, participants reported that our system required relatively little time to 

master (7.25 ± 1.71), and clicking actions were less difficult (7 ± 1.87) compared to other hands‐free 

systems. One  contributing  factor  is  that  our  system  allows  users  to  choose  from multiple  facial 

expressions  for click activation. Since different users may  find certain expressions easier or more 

natural  to  perform,  this  flexibility  improves  comfort  and  accessibility. Additionally,  our  system 

maintains cursor stability during facial expression recognition, avoiding unintended cursor jumps—

an issue observed in other systems such as CameraMouseAI and Project GameFace. Precision and 

directional control (both vertical and horizontal) were also rated higher than alternatives, indicating 

more stable and accurate performance. 

Fatigue  levels while using  the  system were moderate  (7.25  ±  1.79),  significantly  better  than 

CameraMouseAI  (2.62  ±  1.93)  and  slightly  better  than Project GameFace  (7  ±  1.87),  showing  the 

ergonomic advantages of our approach. Importantly, our system received the highest rating (7.85 ± 
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2.71)  in  terms  of  perceived  applicability  for  people  with  disabilities,  suggesting  strong  user 

confidence in its real‐world assistive potential. 

4.4. Limitations 

Despite the overall positive results, several limitations were identified based on user feedback 

during testing. One notable issue was the lack of intuitive parameter tuning, as users found it difficult 

to adjust the minCutoff and beta values of the 1‐Euro filter. This difficulty stems from the technical 

definitions  of minCutoff  and  beta, making  it  challenging  to  grasp  their  impact  on  the  filtering 

process. Consequently, this limitation significantly hinders accessibility and the ability to optimize 

the  filterʹs performance. Another  concern was microphone  instability on  low‐end devices, where 

users reported delays  in microphone  initialization or  instances where speech was not recognized, 

particularly during system startup or under constrained hardware conditions. 

5. Conclusions 

This paper presents 3M‐HCI, a novel,  low‐cost, and hands‐free human‐computer  interaction 

system that integrates facial expressions, head movements, eye gaze, and voice commands through 

a  unified  processing  pipeline.  The  central  contribution  of  3M‐HCI  lies  in  its  unified  processing 

architecture, which integrates three key components: 1) a cross‐modal coordination mechanism that 

synchronizes facial, vocal, and eye‐based inputs to enhance reliability and reduce false triggers; 2) an 

adaptive  signal  filtering  method  that  suppresses  input  noise  while  maintaining  low‐latency 

responsiveness; and 3) a refined  input‐to‐cursor mapping strategy that  improves control accuracy 

and minimizes jitter. 

Although experimental results demonstrate  that 3M‐HCI outperforms several recent baseline 

models  in  both  accuracy  and  responsiveness,  the  system  still  requires  further  refinement. User 

feedback revealed areas where usability and flexibility can be significantly improved, particularly in 

terms of parameter customization and robustness on low‐end devices. We aim to simplify the tuning 

of the One Euro Filter by introducing a real‐time interface that abstracts away low‐level parameters 

like minCutoff and beta, allowing users to adjust the filterʹs responsiveness  through more  intuitive 

controls. 

In  this  paper,  the  voice  command  component  was  not  explored  in  depth. We  selected  a 

lightweight  and  general‐purpose  voice  recognition  module  to  ensure  broad  compatibility  and 

minimal computational overhead. The primary design criteria were simplicity, low latency, and ease 

of integration. However, more advanced alternatives could be considered. For instance, integrating 

modern  speech  recognition  frameworks  such  as  OpenAI  Whisper  [38]  may  offer  improved 

robustness,  especially  in noisy  environments.  In  addition,  exploring non‐speech voice  command 

systems [39] could further enhance responsiveness, particularly beneficial for gamers. Additionally, 

our system currently underutilizes eye  input. While eye direction  is used as a gesture trigger, the 

system does not yet leverage richer gaze data for pointer control or attention estimation. Enhancing 

eye‐tracking integration could significantly improve precision and interaction depth, especially for 

users with limited facial mobility. This direction will be further investigated in our future work to 

improve the adaptability and inclusiveness of the system. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
3M‐HCI  3‐Modal Human‐Computer Interaction 

ALS  Amyotrophic Lateral Sclerosis (ALS) 

AI  Artificial Intelligence 

CNN  Convolution Neural Network 

CPU  Central Processing Unit 

GPU  Graphics Processing Unit 

RAM  Random Access Memory 

RGB  Red Green Blue 

OS  Operating System 
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