
Article Not peer-reviewed version

Redesigning Multimodal Interaction:

Adaptive Signal Processing and Cross-

Modal Interaction for Hands-Free

Computer Interaction

Bui Hong Quan , Dinh Tuan Anh Nguyen , Hoang Van Phi , Bui Trung Thanh *

Posted Date: 17 July 2025

doi: 10.20944/preprints202507.1514.v1

Keywords: human-computer interaction; hands-free interaction; vision/camera-based sensors; adaptive

signal processing; multimodal interaction; assistive technology

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4585210
https://sciprofiles.com/profile/4606919
https://sciprofiles.com/profile/4606600
https://sciprofiles.com/profile/1709766

Article

Redesigning Multimodal Interaction: Adaptive

Signal Processing and Cross‐Modal Interaction for

Hands‐Free Computer Interaction

Bui Hong Quan 1,†, Nguyen Dinh Tuan Anh 1,†, Hoang Van Phi 1 and Bui Trung Thanh 2,*

1 Faculty of Information Technology, VNU‐University of Engineering and Technology (VNU‐UET),

Hanoi 10000, Vietnam

2 Faculty of Mechanical Engineering, Hung Yen University of Technology and Education,

HungYen 16‐000, Vietnam

* Correspondence: buitrungthanh@utehy.edu.vn

† These authors contributed equally to this work.

Abstract

Hands‐free computer interaction is a key topic in assistive technology, with camera‐based and voice‐

based systems being the most common methods. Recent camera‐based solutions leverage facial

expressions or head movements to simulate mouse clicks or key presses, while voice‐based systems

enable control via speech commands, wake‐word detection, and vocal gestures. However, existing

systems often suffer from limitations in responsiveness and accuracy, especially under real‐world

conditions. In this paper, we present 3‐Modal Human‐Computer Interaction (3M‐HCI), a novel

interaction system that dynamically integrates facial, vocal, and eye‐based inputs through a new

signal processing pipeline and a cross‐modal coordination mechanism. This approach not only

enhances recognition accuracy but also reduces interaction latency. Experimental results demonstrate

that 3M‐HCI outperforms several recent hands‐free interaction solutions in both speed and precision,

highlighting its potential as a robust assistive interface.

Keywords: human‐computer interaction; hands‐free interaction; vision/camera‐based sensors;

adaptive signal processing; multimodal interaction; assistive technology

1. Introduction

Advances in artificial intelligence (AI) are rapidly improving machines’ ability to process and

understand visual data [1]. In addition, AI also promote progress in fields like robotics and education

[2]. These developments are creating new opportunities to support accessible human‐computer

interaction, especially for individuals with disabilities [3]. One of the main objectives of assitive

technology is supporting individuals with upper‐limb impairments [4–8]. This group includes people

with limb amputations, neuromuscular disorders such as amyotrophic lateral sclerosis (ALS),

cerebral palsy, muscular dystrophy, spinal cord injuries, and congenital limb differences. All of which

can significantly hinder the use of conventional input devices like the mouse or keyboard.

According to [9], as of 2019, there were approximately 552.45 million people living with

traumatic amputations. Additionally, nearly 33,000 people in the U.S. are currently living with ALS,

and that number is projected to reach 36,000 by 2030 [10]. These conditions make it difficult or nearly

impossible for individuals to use a computer mouse. However, the ability to move the head and eyes

is often retained, even in individuals living with severe disabilities; therefore, computer interfaces

based on head or eye movement are commonly employed as alternative input methods.

Recognizing this issue, many researchers have proposed solutions to support people with

disabilities in accessing and interacting with computers effectively. Chen [11] invented a head‐

controlled computer mouse for people with disabilities using tilt sensors. This system includes two

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 20

tilt sensors embedded in a headset to detect head position: one sensor detects horizontal movement

to control the mouse left or right, while the other detects vertical movement to move the mouse up

or down. A touch switch was also designed to allow users to gently tap their cheek to perform a click

action. Some studies [12,13] employed a dual‐axis accelerometer to control the mouse. Another

approach used a combination of a gyro sensor and an optical sensor to perform clicking actions [14].

Additionally, Pereira et al. [15] developed a system for people with disabilities to control a computer

mouse. This system includes a camera, computer software, and a target mounted on the front of a

cap worn on the userʹs head, simulating cursor movements. Lin et al. [16] combined eye tracking and

head gestures, using a light source mounted on the user. These methods have demonstrated

particularly fast and accurate results. However, they all rely on sensor devices. This increases

deployment costs, making it difficult for users in low‐income areas or those without access to

advanced technology. Furthermore, installing and calibrating sensors often requires a certain level of

technical skill, which not all users may possess. Additionally, wearing sensor devices on the head for

extended periods can cause discomfort, neck fatigue, or a sense of heaviness, negatively affecting the

user experience.

In addition to solutions that utilize specialized sensors, using standard RGB cameras such as

built‐in webcams on laptops has also become a promising approach. With the rapid advancement of

computer vision algorithms, RGB cameras not only help reduce deployment costs but also offer a

more convenient and accessible contactless mouse control experience. Earlier solutions used classic

computer vision techniques such as template matching [17,18], or color‐based segmentation [19,20],

presented a ʺcamera mouseʺ system that uses a timer for left‐click, a technique later known as ʹdwell

clickʹ, and eye blinking for right‐click. Previous studies [4,21] combined head motion with voice

commands to trigger mouse clicks. In another direction, [22] used a camera to analyze head

orientation for cursor control, integrating eye blinks to execute commands. Recently, many solutions

rely on deep learning to directly map visual input to screen coordinates [23,24] or to predict facial

landmarks and expressions for interaction control [6,8,25].

While many approaches have been proposed to help individuals with disabilities control

computers using camera input, most still suffer from response latency, primarily due to noisy visual

input and inefficient signal processing filters. Furthermore, recent systems typically rely on a limited

set of input modalities and support only a few discrete facial gestures (e.g., smiling, mouth opening,

eyebrow raising), which restricts flexibility and user engagement [6,8]. These expressive gestures can

also interfere with precise cursor control, as they are not always distinguishable from involuntary

facial movements during natural interaction. Moreover, many existing systems treat input modalities

in isolation and lack flexible multimodal integration. A promising direction is to incorporate

contextual cues, such as using visual detection of mouth opening to validate voice commands, in

order to reduce false positives. However, this form of cross‐modal verification remains underutilized

in prior work [4,26].

To overcome these limitations, we propose a novel hands‐free control system, namely 3‐Modal

Human‐Computer Interaction (3M‐HCI), that integrates three input modalities: head movement with

facial expressions, voice commands, and eye gaze. A new adaptive filtering mechanism is introduced

to suppress signal noise while maintaining low‐latency responsiveness. Furthermore, the mapping

strategy from input signals to cursor movements is redefined to improve accuracy. In addition, cross‐

modal information is used to enhance the system’s overall reliability and precision.

The main contribution of this work is the development of a low‐cost, responsive hands‐free

interface that enables individuals with upper‐limb disabilities to interact with computers using head

movements, facial expressions, voice commands, and eye gaze. The proposed system is lightweight

and customizable, designed to run efficiently even on low‐end hardware. By ensuring compatibility

with standard hardware, the system improves access and interaction for users with motor

impairments. To evaluate the system, two types of tests were conducted: (a) functional tests under

various technical and environmental conditions, and (b) user evaluations to assess usability,

responsiveness, and perceived effectiveness.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 20

The remainder of this paper is organized as follows. Section 2 introduces the system architecture

and input modalities. Section 3 outlines the materials used and the evaluation methodology. Section

4 presents experimental results and discussions. Finally, Section 5 concludes the paper and suggests

future research.

2. System Architecture

The 3‐Model Human‐Computer Interaction (3M‐HCI) system employs a callback‐based

architecture that fundamentally separates processing logic from user interface components, ensuring

optimal performance, maintainability, and scalability. The core processing pipeline operates

independently in separate threads, with results delivered to the GUI for display. To achieve

maximum efficiency, the system implements a multi‐threaded architecture within a single process,

with mechanisms for safe thread coordination and termination. By using primarily I/O‐bound

operations, the system maintains significantly lower resource overhead compared to existing

solutions.

The main processing pipeline operates through synchronous and asynchronous callbacks as

illustrated in Figure 1. The computer vision thread continuously captures frames from the camera

input. Through the callback mechanism, each frame is delivered to the face processor module. The

face processor offers two processing modes: the IMAGE mode processes each frame separately and

synchronously, while the smooth mode handles frames asynchronously. Upon successful processing,

the extracted facial landmarks and blendshape data are forwarded through the pipeline to calculate

and execute mouse movements as well as keyboard actions.

Figure 1. The core processing pipeline of the system.

The voice processor functions as an independent module running in its own dedicated thread.

It captures microphone input and processes it through its recognition engine to identify pre‐

configured voice commands. To enhance user experience and prevent false activations from external

audio sources, the system incorporates an intelligent gating mechanism that cross‐references facial

expression data from the face processor module before executing voice commands.

This architecture demonstrates significant optimization advantages compared to existing

solutions like Google Project Gameface [6], which utilizes a busy‐waiting pipeline that tightly couples

GUI and processing components. Googleʹs implementation continuously captures and processes

images at extremely high frequencies (sub‐millisecond intervals), resulting in substantial resource

consumption and redundant frame processing. In contrast, our event‐driven approach with

controlled frame rates delivers superior resource efficiency while maintaining real‐time

responsiveness. The detailed implementation of each module is described in the subsequent sections.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 20

2.1. Video Processing Module

2.1.1. Face Processing

The Face Processing modules’ main function is to detect and track the user’s face and return

facial landmarks, eye gaze, and expressions, which makes them the most critical component in the

entire system pipeline. The face processing algorithm must meet several requirements: it should be

fast, deliver high accuracy, and ideally operate efficiently without requiring a GPU.

Previous systems [4] have typically used the Dlib library [27], the Haar Cascade algorithm [28], or

custom‐built CNNs for face detection and tracking [23,24,29]. Recent systems [6,8] increasingly adopt

MediaPipe [30] due to its superior performance and the wide range of built‐in features it provides. We

compare several lightweight face processing algorithms. All algorithms below were evaluated on a

single laptop with a Ryzen 5 5500U CPU, 12 GB RAM, and AMD Radeon Vega 7 integrated graphics to

ensure consistent performance comparison. The result can be found in Table 1.

Table 1. Face processing algorithm comparison.

Algorithm/

Library

Number

of

Landmarks

Detection

Time

(second)

Detection

Rate1
Facial Expression

Iris

Tracking

Dlib [27] 68 0.036 0.78
Some facial expressions can be

computed manually2
No

Mediapipe [30] 478 0.0037 1 52 built‐in blendshapes Yes

Haar Cascade [28] 0 0.0056 0.65 No No

MTCNN [31] 5 0.215 1 No No

YuNet [32] 5 0.026 0.93 No No

1 Percentage of faces correctly detected among all images containing a face. 2 Follow [4], we can

calculate mouth open, for example.

Based on the comparison results shown in the table above, we decided to use MediaPipe as the

core tool for developing our system. MediaPipe [30] provides 478 facial landmarks (Figure 2),

including key regions such as the eyes, eyebrows, mouth, nose, and jawline, which are essential for

precise facial expression analysis.

Figure 2. Mediapipe 478 landmarks. Each landmark point corresponds to a specific part of the face.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 20

2.1.2. Mapping Feature to Mouse Coordinate

Camera‐based head‐mouse systems typically use landmarks such as the nose tip [4,8], forehead

[6], or mouth [19] as anchors. However, landmark instability during facial expressions can introduce

unwanted cursor drift. For example, raising an eyebrow, as seen in Google’s Project GameFace, can

shift the forehead anchor, while actions like nose sneer or performing gestures such as “mouse left”

and “mouse right” can alter the nose tip position, leading to unintentional pointer movement. A

simple way to mitigate this issue is to avoid using facial expressions that can distort the anchor points

altogether. Therefore, our solution is to use the two inner eye corners (medial canthi) as anchor points

instead. After thorough testing, we found that the medial canthi remain stable across various facial

expressions. Therefore, we chose them as reliable reference points for pointer movement (Figure 3).

The movement vector formed by tracking these two inner eye corners is then converted into mouse

pointer movement signals.

Formally, let PL = (XL, YL) and PR = (XR, YR) be the coordinates of the left and right medial canthus,

respectively. We computed the midpoint at frame t:

𝐶௧ ൌ ሺ
𝑋௅ ൅ 𝑋ோ

2
,
𝑌௅ ൅ 𝑌ோ

2
ሻ (1)

Finally, we have cursor displacement vector Vt:

𝑉௧ ൌ 𝐶௧ െ 𝐶௧ିଵ ൌ ሺ𝛥௫,𝛥௬ሻ (2)

Figure 3. Two inner eye corners (p133 and p362 in Mediapipe).

Displacement vector Vt serves as the raw cursor moving signal in our system.

2.1.3. Adaptive Movement Signal Filtering and Acceleration

With signals measured from sensors or cameras (since a camera itself is a type of sensor), there

is always some noise present in the data. To eliminate this noise, we apply filtering techniques.

Depending on the characteristics of the signal, different filtering methods can be used, such as: i) for

signals with significant “salt‐and‐pepper” noise, a median filter can be applied to remove outliers; ii)

for signals affected by Gaussian noise, a low‐pass filter or a Gaussian filter may be used.

In our specific case, the movement signals extracted from facial landmarks often contain

Gaussian noise. This causes the cursor movement to appear jittery. To address this issue, some

systems use a simple region‐based technique, where a virtual window is overlaid on the user’s face

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 20

and the cursor only moves when the tracked landmark crosses the boundary of this window [4].

Additionally, previous systems have applied low‐pass filters as a basic solution to smooth the pointer

motion [8,17]. A more optimized approach is to use a Hamming filter, which offers better frequency

response characteristics [6].

Although these techniques help smooth the cursor movement, they can also affect the pointer

speed and responsiveness. Conventional low‐pass filters have a fixed cutoff frequency, which creates

a trade‐off between smoothness and responsiveness. If the cutoff is too low, the cursor becomes stable

but sluggish; if it is too high, unwanted jitter may persist. To address this limitation, we employed

the 1€ filter [33], an adaptive filter that dynamically adjusts its cutoff frequency according to the

signalʹs speed. This allows the system to remain smooth during slow movements while still being

responsive during rapid changes. Note that, instead of applying the 1€ filter directly to the x and y

coordinates separately, we apply the 1€ filter to the cursor displacement magnitude to get the

smoothing factor α. This approach avoids the issue of having different cutoff frequencies on each

axis, which could cause asynchronous pointer behavior.

We define 𝐷𝑡 ൌ ඥΔxଶ ൅ Δyଶ to be the cursor displacement magnitude, and using 1€ filter to

get the smoothing factor:

𝐷௧෢ ,α௧ ൌ 1€_filterሺ𝐷௧ሻ (3)

After that, we calculate the filtered displacement vector, using adaptive smoothing factor α௧:

𝑉௧෡ ൌ α௧𝑉௧ ൅ ሺ1 െ α௧ሻ𝑉෠௧ିଵ (4)

Finally, we apply a pointer acceleration function to improve the responsiveness and usability of

the system. This allows small head movements to result in fine cursor control, while larger or faster

movements produce quicker pointer displacement, enhancing both precision and efficiency. Pointer

acceleration is typically based on sigmoid functions. Previous work [6,34–36] has demonstrated that

sigmoid‐based pointer acceleration achieves smoother transitions between precise and rapid

movements, while avoiding excessive jitter or drift. It also improves ergonomics and precision of the

system. We adopted the following function:

𝐺ሺ𝑥ሻ ൌ
𝐾

1 ൅ 𝑒ି௦௟௢௣௘∗ሺ௫ି௢௙௙௦௘௧ሻ
 (5)

Where: K controls the maximum gain, determining how fast the pointer can move at high speeds;

slope defines the steepness of the transition between low and high gain; larger values make the

transition sharper; offset sets the inflection point on the input axis, i.e., the point at which the gain

starts to increase significantly.

In our system, we set K = 1.2, slope = 0.1, and offset = 12. The resulting acceleration curve is

illustrated in Figure 4, showing a smooth transition from low to high gain as input speed increases.

Figure 4. Acceleration curve.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 20

2.1.4. Mapping Facial Expressions to Mouse and Keyboard Actions

Early studies employed sensors [11,14] or dwell‐click mechanisms [20], combined with a limited

set of simple actions or expressions [4,19] to trigger mouse events. More recent approaches have

shifted toward using more intuitive and user‐friendly expressions such as smiling, raising eyebrows,

or opening the mouth to enhance usability and reduce fatigue [4,6,8]. However, these systems

typically utilize only a small number of facial expressions [4,8], as some expressions have been

reported to be difficult to perform or maintain and may cause facial fatigue. In addition, certain

expressions can be easily confused with one another, reducing the reliability of the input [6,25].

A straightforward way to address this issue is to use only easily recognizable and

distinguishable facial expressions that are less likely to be confused with others. However, this

approach inherently limits the number of distinct actions the system can support. To overcome this

limitation, we introduce a priority‐based triggering mechanism, which favors less distinguishable

expressions over more easily recognizable ones when multiple expressions are detected

simultaneously. By using this mechanism, our system supports a wider range of actions compared to

existing systems (Table 2), while also reducing false positives and confusion.

Table 2. Comparison of our system with facial expression control interfaces.

System
#Facial

Expression

Mouse

Control

Keyboard

Control

System

Control

Triggering

Mechanism

EMKEY [19] 1 ‐ ‐ x
Predefined

Threshold

CameraMouseAI

[22]
2 x ‐ ‐ User‐Defined Threshold

Project Gameface

[23]
8 x x ‐ User‐Defined Threshold

Zelinskyi et al.

[33]
8 x ‐ ‐

Predefined

Threshold

3M‐HCI (Ours) 13 x x x
User‐Defined Threshold

with Priority

Moreover, in our system, we also utilized directional eye gaze (left, right, up, down) as a form

of expressive input, similar to facial expressions.

2.2. Voice Processing Module

The Voice Processing Module utilizes command recognition to handle basic interactive

instructions and accessibility controls. It serves as a complementary input method to the facial

expression control system, providing users with multiple interaction modalities. The module should

use a pretrained model, support offline functionality, and offer high processing speed. To meet these

criteria, we employ Microsoft’s native Speech API (SAPI5) [37] via the Dragonfly library. SAPI5
delivers consistent performance and low latency, with all processing performed locally. This ensures

that the feature operates without requiring an internet connection, thereby enhancing privacy and

system reliability. Figure 5 illustrates the general execution flow of the speech recognition module.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 20

Figure 5. Voice Processor Architecture.

The Voice Processor Module creates a self‐contained, thread‐safe service that listens for user‐

defined voice commands. When a command is recognized by the SAPI5 engine, it executes the

corresponding keyboard or mouse action via the pyautogui. Furthermore, it interfaces with other

modules within the application, allowing voice commands to modify their behavior. This multimodal

approach also enhances the user experience. For instance, by implementing a check to see if the userʹs

mouth is open during command recognition, the system can avoid misinterpreting external ambient

sounds as commands, leading to more reliable activation. Voice commands can also be used to

dynamically adjust mouse movement speed, enabling users to fine‐tune control in real time without

relying on manual input.

3. Materials and Methods

This section outlines the development environment and the methodology used to evaluate the

performance and usability of our multimodal interaction system. The evaluation comprises two types

of tests. The first is an experimental test designed to examine system stability and responsiveness

under various environmental and hardware conditions, including different CPU generations,

operating systems, lighting environments, and background noise. The purpose is to determine the

minimum requirements necessary for smooth operation. The second test involves task‐based

usability testing, in which users are asked to perform a series of predefined actions such as cursor

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 20

movement and target selection. Objective performance metrics, including latency, accuracy, jitterness,

and task completion time, are recorded and compared across systems. In addition, we conducted a

short survey to collect subjective feedback from participants who had experienced all three systems,

with the results presented in Section 4.This approach allows for a comprehensive analysis of both

technical efficiency and user experience.

3.1. Development Platform

We used two different laptops during the development process to ensure stable software

performance under varying hardware conditions. The first laptop was equipped with a Ryzen 5

5500U CPU, 12 GB RAM, AMD Radeon Vega 7 integrated graphics, a built‐in 720p 30fps camera, and

an integrated microphone. The second laptop featured an Intel(R) Core(TM) i7‐13650HX CPU, 16 GB

RAM, a dedicated NVIDIA GeForce RTX 4060 GPU with 8 GB DDR6 VRAM, a built‐in 720p 15fps

camera, and an integrated microphone.

The system was developed through iterative prototyping, combined with regular internal

testing and feedback from university instructors and experts with experience in assistive

technologies. This feedback loop allowed us to continuously improve the system while keeping it

accessible and practical. To implement our application, we chose Python as the primary

programming language due to its extensive ecosystem, cross‐platform compatibility, and active

developer community. Python also simplifies rapid prototyping and integration with computer

vision and audio processing tools, which are central to our system. The key Python libraries utilized

include: i) OpenCV for video capture and preprocessing; ii) Mediapipe for extracting facial

landmarks and facial expression analysis; iii) Customtkinter for building modern and customizable

graphical user interfaces (GUIs); iv) dragonfly2 for a voice control framework that maps spoken

commands to computer actions; v) pyautogui for accessing the mouse and keyboard functionalities;

and vi) numpy for efficient numerical computations.

Figure 6. 3M‐HCI Graphical User Interfaces built with Customtkinter.

3.2. Testing Methodology

Following the evaluation of methodology proposed in [4], we assess the minimum operating

requirements of our system under various environmental and technical conditions, such as lighting,

background noise, and hardware configurations, as follows: a) different environmental lighting

conditions; b) more than one face detected by the camera; c) background noise; and d) different

hardware and software features of the computer. In addition to these tests, we also conduct a task‐

based usability testing with existing systems, in order to highlight the effectiveness of the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 20

improvements proposed in our study: a) jitterness; b) responsiveness (task completion time); and c)

accuracy.

Before performing the tasks, participants were given time to freely explore and adjust the mouse

control system to ensure maximum comfort. They were instructed to select two facial expressions of

their choice and assign them to left and right click actions, based on what they found most intuitive

and easy to perform. Once these settings were configured, participants received clear instructions on

how to interact with the testing application.

The first task involved a sequence‐based interaction test, where users were required to move the

cursor to predefined targets on the screen, perform either a left or right click as instructed, and

proceed to the next target (Figure 7). This process continued until all targets were completed. The

task was used to assess accuracy and responsiveness, based on metrics such as completion time and

cursor deviation.

Figure 7. Moving and clicking task.

The second task required users to keep their head still for a fixed duration while the system was

running. This allowed us to measure unintended cursor movement or drift, providing insight into

the system’s stability when idle.

Finally, a short post‐test survey was conducted to gather subjective feedback from users who

had experienced all three systems (Table 3). All questions are evaluated on a numeric rating scale

from 1 (Very Bad) to 10 (Excellent). The results of this evaluation, as well as the code and

configurations used in the testing application, are available in our public GitHub repository.

Table 3. List of survey questions.

Question Description

Q1 Does it take a lot of time to master the application?

Q2 Is the response of left/right mouse click fast?

Q3 Is the cursor movement responsive?

Q4 Is it difficult to click the left/right mouse button?

Q5 Is it difficult to move the cursor precisely?

Q6 Is it difficult to move the cursor vertically?

Q7 Is it difficult to move the cursor horizontally?

Q8 Does moving the cursor cause fatigue?

Q9 Do you think this mouse system can be applied for people with disabilities?

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 20

4. Results and Discussion

4.1. Robustness Testing Under Environmental and Hardware Variations

We evaluate the system’s functionality and performance under varied lighting, multiple faces,

and different hardware and operating systems, as well as identify the minimum hardware and

environmental requirements necessary for stable operation.

4.1.1. Lighting Condition Test

To assess the robustness of 3M‐HCI under real‐world usage, we conducted experiments in four

different lighting environments, with corresponding results shown in Figure 8 (a–d). In each scenario,

we visualized the 147 facial landmarks used by MediaPipe Face Mesh to detect expressions, enabling

a detailed qualitative assessment of detection stability under varying illumination conditions. From

our experiments, we can conclude that:

 Bright Environment (Figure 8a, 8b): Whether in a brightly lit room or a dim room with high

screen brightness, the system performed flawlessly. Facial landmarks were immediate and

accurate. Mouse control operated smoothly without any jitter or delay. This represents the

optimal environment for system usage.

 Dim Room with Medium Screen Brightness (Figure 8c): Under significantly darker conditions,

where only moderate screen brightness was present, the system remained functional. Facial

landmarks still worked, but occasional instability in mouse movement was observed. The

system was still usable with minor degradation.

 Near‐total Darkness with Low Screen Brightness (Figure 8d): In the most extreme case, with no

external light and very low screen brightness, the system struggled. Although the Mediapipe

framework could still detect the facial landmarks. However, the detection was inconsistent and

unreliable. Landmarks often flickered or were lost entirely, making interaction with the system

ineffective in this condition

Figure 8. Mediapipe facial landmarks detection in different light conditions.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 20

From the experiments above, we conclude that the most critical factor for the systemʹs

performance is the clarity of the captured facial image. While ambient lighting conditions have a

limited impact on the overall outcome, ensuring a well‐defined face is essential. Notably, MediaPipe

demonstrated impressive robustness. It was able to detect facial landmarks even in extremely low‐

light scenarios where the human eye struggles to distinguish facial features.

4.1.2. Multiple Faces in a Frame

This test evaluates Mediapipe’s behavior when multiple faces appear in the frame. When

configured to detect only a single face, Mediapipe selects the one it detects with the highest

confidence. In practice, this is often the face closest to the camera, which typically belongs to the user.

However, the most confidently detected face is not always the intended user’s face, especially in

dynamic or crowded environments. Our experiments show that when two faces are present in the

frame, Mediapipe may occasionally select the one farther from the camera, which disrupts the

system’s operation.

A simple strategy to address this issue is to enable Mediapipe’s multi‐face detection mode. In

this configuration, the system detects all visible faces and compares them to the face identified in the

previous frame, selecting the one with the most consistent position or landmark pattern. While this

improves the accuracy of user tracking in multi‐face scenarios, it also introduces a higher

computational load, which may reduce real‐time performance, particularly on lower‐end devices.

For this reason, we did not adopt this approach in our implementation, as it caused noticeable lag

during runtime, making the interaction experience less smooth and responsive.

4.1.3. Background Noise

In contrast to previous systems that relied solely on voice recognition, making them vulnerable

to ambient noise and unintended speech, 3M‐HCI integrates a mouth‐open detection mechanism

using facial landmarks. To evaluate its robustness, we conducted a test scenario where two people

held a conversation near the system. While earlier studies [4] reported performance degradation due

to microphone sensitivity and background noise, our method was unaffected. Since voice commands

in our system are only executed when the user’s mouth has been recently detected as open,

environmental noise or nearby conversations had no impact on command triggering. This approach

significantly reduces false positives and enhances reliability in shared or noisy environments.

However, this feature relies on the system’s ability to consistently detect the user’s full face. If

the face is partially occluded, out of frame, or poorly lit, the mouth‐open detection may fail to activate,

thus preventing valid voice commands from being registered. Ensuring a clear and stable view of the

userʹs face is therefore essential for maintaining the robustness of this mechanism.

4.1.4. Different Hardware and Software Features of the Computer

We evaluated the software performance across different machines and conducted a comparative

analysis of three applications: 3M‐HCI, Project GameFace, and CameraMouseAI. The results are

summarized in Table 4 below:

Table 4. Software performance on different laptops.

Laptop CPU RAM OS
Overall

Performance

Computational

Cost (3M‐HCI)

Computational

Cost [6]

Computational

Cost [7]

Dell Inspiron

15 3530

Intel Core i7‐

1355U
16GB

Windows

11
Excellent 12.7% 15.1% 26.7%

Dell XPS 13

9360

Intel Core i7‐

7660U
16GB

Windows

10

OK. The microphone

takes time to boot
49.9% 60.3% Unable to run

Dell G15 5530
Intel Core i7‐

13650HX
16GB

Windows

11
Excellent 10.7% 23% 8.5%

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 20

Lenovo

ThinkPad

T480

Intel Core i5‐

8350U
8GB

Windows

11

OK. The program is a

bit laggy
52.8% 57.7% 31.2%

Dell Precision

7510

Intel Core i7‐

6820HQ
16GB

Windows

10
Excellent 37.9% 41.5% 18.8%

MSI GF63

Thin 11UD

Intel Core i7‐

11800H
16GB

Windows

11

OK. The microphone

takes time to boot
19.7% 28.3% Unable to run

Dell Inspiron

16 5620

Intel Core i5‐

1240P
16GB

Windows

11
Excellent 6.1% 20.56% 16.2%

HP Laptop

16‐d0xxx

Intel Core i5‐

11400H
8GB

Windows

11
Excellent 24.7% 19.1% 11.05%

ASUS TUF

Gaming F15

Intel Core i5‐

10300H
16GB

Windows

11

Some commands

cannot be recognized.
41.88% 47.37% 23.4%

MSI Modern

15

AMD Ryzen 5

5500U
12GB

Windows

11

Voice command runs

badly.
34.6% 47.4% 17.2%

Compared to other applications, our software runs efficiently and stably. Despite integrating

voice commands, our system still consumes fewer computational resources than Googleʹs solution.

CameraMouseAI exhibits lower computational cost than ours, likely because it is a simpler tool,

supporting only 2–3 basic mouse actions.

Based on Table 4, we recommend the following minimum system requirements: Windows 10

or higher, a CPU equivalent to Intel Core i5‐10th Gen or above, no dedicated GPU is required, a

functional camera and microphone, and at least 8GB of RAM. These are very lightweight

requirements, making the system compatible with nearly all modern laptops.

4.2. Empirical Task‐Based Test

We conducted a pilot user study involving eight participants to empirically evaluate the

usability, responsiveness, and precision of the proposed 3M‐HCI system in real‐world interaction

scenarios. All participants provided informed consent prior to the study. The objective of this test

was to assess how effectively users could perform common cursor‐based tasks using hands‐free

input, in comparison with traditional mouse input and two baseline systems: Project GameFace and

CameraMouseAI. Each participant was asked to complete a set of target selection and click tasks

under identical conditions across all systems. Key performance metrics, including pointer accuracy,

latency, jitter, and number of successful clicks, were recorded. Additionally, a post‐test survey was

conducted to capture user satisfaction and perceived usability. The findings from this pilot study

provide preliminary insights into the practical viability and comparative advantages of our system

in assistive computing contexts.

4.2.1. System Accuracy

We measured the system’s accuracy by calculating the deviation of four systems

(CameraMouseAI, Project GameFace ‐ Google, Our Method (3M‐HCI), and Normal Mouse) from the

optimal path (straight path) to the target, along with the number of clicks required to complete the

task. The results are presented in Figure 9 and Figure 10 below.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 20

Figure 9. Deviation from Optimal Path.

Figure 10. Number of clicks.

Overall, our system demonstrated higher accuracy compared to CameraMouseAI and Project

GameFace. Overshooting was not observed in our system, in contrast to CameraMouseAI, where it

occurred frequently during cursor movement. Regarding the clicking mechanism, both

CameraMouseAI and Project Gameface experienced unintended cursor movement during facial

expression activation, leading to incorrect clicks. Our system did not encounter this issue due to a

more optimal selection of anchor points.

4.2.2. System Responsiveness.

We also measured the time taken to complete the first task as an indicator of system

responsiveness. The result is shown in Figure 11.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 20

Figure 11. Movement Latency.

As shown in the figure, our method consistently outperformed both CameraMouseAI and

Project GameFace in terms of movement latency. Across all target transitions (e.g., 1→2, 2→3, etc.),

our system maintained latency values around 2 to 3 seconds, with minimal fluctuation. In contrast,

CameraMouseAI exhibited the highest latency, with several spikes exceeding 6 seconds—most

notably in the 5→6 transition. Project GameFace also showed relatively high latency, particularly

during transitions 4→5 and 6→7.

Moreover, the total average latency of our system (green dashed line) is clearly lower than that

of CameraMouseAI (blue dashed line) and Project GameFace (orange dashed line), indicating faster

and more consistent performance. While traditional mouse input (red line) remains the fastest as

expected, our method shows a strong balance between speed and usability, especially considering its

hands‐free nature.

4.2.3. System Jitterness

As illustrated in Figure 12, our method achieved significantly lower jitter deviation compared

to other hands‐free systems. Specifically, the CameraMouseAI showed the highest instability with a

jitter deviation of over 120 pixels, followed by Project GameFace with approximately 80 pixels. In

contrast, our method maintained a low deviation of under 10 pixels, indicating stable and precise

cursor control. As expected, traditional mouse usage yielded the lowest jitter, serving as a

performance baseline.

This finding highlights the importance of incorporating adaptive filter algorithms and activation

mechanisms in hands‐free systems. By minimizing cursor jitter, our approach improves not only task

precision but also user comfort and trust, which are critical for sustained use, especially among

individuals with motor impairments.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 20

Figure 12. Jitter Deviation of Different Systems.

4.3. Survey Results

The survey results provide insights into the subjective usability, responsiveness, and comfort of

our system compared to existing solutions, including CameraMouseAI, Project GameFace, and

traditional mouse control. We present the result below in Table 5.

Table 5. Survey Results.

Question Description CameraMouseAI
Project

GameFace

3M‐HCI

(Ours)
Mouse

Q1 Does it take a lot of time to master the application? 3.5 ± 1.87 6.75 ± 1.98 7.25 ± 1.71 10.0 ± 0.0

Q2 Is the response of left/right mouse click fast? 3.5 ± 2.35 7.5 ± 1.58 8.25 ± 1.09 10.0 ± 0.0

Q3 Is the cursor movement responsive? 5.38 ± 2.06 6.62 ± 1.11 8.88 ± 0.6 10.0 ± 0.0

Q4 Is it difficult to click the left/right mouse button? 4 ± 2.55 6.25 ± 1.56 7 ± 1.87 10.0 ± 0.0

Q5 Is it difficult to move the cursor precisely? 3.5 ± 2.45 6.87 ± 1.17 8.37 ± 0.7 10.0 ± 0.0

Q6 Is it difficult to move the cursor vertically? 4.5 ± 2.18 7.5 ± 1.41 8.37 ± 0.86 10.0 ± 0.0

Q7 Is it difficult to move the cursor horizontally? 4.5 ± 2.18 7.5 ± 1.41 8.37 ± 0.86 10.0 ± 0.0

Q8 Does moving the cursor cause fatigue? 2.62 ± 1.93 7 ± 1.87 7.25 ± 1.79 9.87 ± 0.33

Q9
Do you think this mouse system can be applied for

people with disabilities?
4 ± 3.53 7.12 ± 2.52 7.85 ± 2.71 7.75 ± 3.9

The results in the table indicate that our proposed 3M‐HCI system achieved high subjective

ratings across all categories. Notably, it received an average score of 8.25 ± 1.09 for the responsiveness

of left/right mouse clicks and 8.88 ± 0.6 for overall cursor responsiveness, comparable to the

traditional mouse and outperforming both CameraMouseAI and Project GameFace.

In terms of ease of use, participants reported that our system required relatively little time to

master (7.25 ± 1.71), and clicking actions were less difficult (7 ± 1.87) compared to other hands‐free

systems. One contributing factor is that our system allows users to choose from multiple facial

expressions for click activation. Since different users may find certain expressions easier or more

natural to perform, this flexibility improves comfort and accessibility. Additionally, our system

maintains cursor stability during facial expression recognition, avoiding unintended cursor jumps—

an issue observed in other systems such as CameraMouseAI and Project GameFace. Precision and

directional control (both vertical and horizontal) were also rated higher than alternatives, indicating

more stable and accurate performance.

Fatigue levels while using the system were moderate (7.25 ± 1.79), significantly better than

CameraMouseAI (2.62 ± 1.93) and slightly better than Project GameFace (7 ± 1.87), showing the

ergonomic advantages of our approach. Importantly, our system received the highest rating (7.85 ±

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 20

2.71) in terms of perceived applicability for people with disabilities, suggesting strong user

confidence in its real‐world assistive potential.

4.4. Limitations

Despite the overall positive results, several limitations were identified based on user feedback

during testing. One notable issue was the lack of intuitive parameter tuning, as users found it difficult

to adjust the minCutoff and beta values of the 1‐Euro filter. This difficulty stems from the technical

definitions of minCutoff and beta, making it challenging to grasp their impact on the filtering

process. Consequently, this limitation significantly hinders accessibility and the ability to optimize

the filterʹs performance. Another concern was microphone instability on low‐end devices, where

users reported delays in microphone initialization or instances where speech was not recognized,

particularly during system startup or under constrained hardware conditions.

5. Conclusions

This paper presents 3M‐HCI, a novel, low‐cost, and hands‐free human‐computer interaction

system that integrates facial expressions, head movements, eye gaze, and voice commands through

a unified processing pipeline. The central contribution of 3M‐HCI lies in its unified processing

architecture, which integrates three key components: 1) a cross‐modal coordination mechanism that

synchronizes facial, vocal, and eye‐based inputs to enhance reliability and reduce false triggers; 2) an

adaptive signal filtering method that suppresses input noise while maintaining low‐latency

responsiveness; and 3) a refined input‐to‐cursor mapping strategy that improves control accuracy

and minimizes jitter.

Although experimental results demonstrate that 3M‐HCI outperforms several recent baseline

models in both accuracy and responsiveness, the system still requires further refinement. User

feedback revealed areas where usability and flexibility can be significantly improved, particularly in

terms of parameter customization and robustness on low‐end devices. We aim to simplify the tuning

of the One Euro Filter by introducing a real‐time interface that abstracts away low‐level parameters

like minCutoff and beta, allowing users to adjust the filterʹs responsiveness through more intuitive

controls.

In this paper, the voice command component was not explored in depth. We selected a

lightweight and general‐purpose voice recognition module to ensure broad compatibility and

minimal computational overhead. The primary design criteria were simplicity, low latency, and ease

of integration. However, more advanced alternatives could be considered. For instance, integrating

modern speech recognition frameworks such as OpenAI Whisper [38] may offer improved

robustness, especially in noisy environments. In addition, exploring non‐speech voice command

systems [39] could further enhance responsiveness, particularly beneficial for gamers. Additionally,

our system currently underutilizes eye input. While eye direction is used as a gesture trigger, the

system does not yet leverage richer gaze data for pointer control or attention estimation. Enhancing

eye‐tracking integration could significantly improve precision and interaction depth, especially for

users with limited facial mobility. This direction will be further investigated in our future work to

improve the adaptability and inclusiveness of the system.

Author Contributions: Conceptualization, B.H.Q.; methodology, B.H.Q. and N.D.T.A.; software, B.H.Q. and

N.D.T.A.; validation, B.H.Q., N.D.T.A., H.V.P., and B.T.T.; writing—original draft preparation, B.H.Q., H.V.P.,

and N.D.T.A.; writing—review and editing, B.T.T.; visualization, B.H.Q. and H.V.P.. All authors have read and

agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 20

Data Availability Statement: The data supporting the findings of this study are available from the

corresponding author upon request.

Acknowledgments: We would like to acknowledge the technical support from Human‐Machine Interaction Lab

(VNU‐UET).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
3M‐HCI 3‐Modal Human‐Computer Interaction

ALS Amyotrophic Lateral Sclerosis (ALS)

AI Artificial Intelligence

CNN Convolution Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

RGB Red Green Blue

OS Operating System

References

1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real‐time object detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas,

NV, USA, 27–30 June 2016; pp. 779–788. https://doi.org/10.1109/CVPR.2016.91.

2. Ramachandra, C.K.; Joseph, A. IEyeGASE: An Intelligent Eye Gaze‐Based Assessment System for Deeper

Insights into Learner Performance. Sensors 2021, 21(20), 6783. https://doi.org/10.3390/s21206783.

3. Walle, H.; De Runz, C.; Serres, B.; Venturini, G. A Survey on Recent Advances in AI and Vision‐Based

Methods for Helping and Guiding Visually Impaired People. Appl. Sci. 2022, 12(5), 2308.

https://doi.org/10.3390/app12052308.

4. Ramos, P.; Zapata, M.; Valencia, K.; Vargas, V.; Ramos‐Galarza, C. Low‐Cost Human–Machine Interface

for Computer Control with Facial Landmark Detection and Voice Commands. Sensors 2022, 22(23), 9279.

https://doi.org/10.3390/s22239279.

5. Zapata, M.; Valencia‐Aragón, K.; Ramos‐Galarza, C. Experimental Evaluation of EMKEY: An Assistive

Technology for People with Upper Limb Disabilities. Sensors 2023, 23(8), 4049.

https://doi.org/10.3390/s23084049.

6. Project Gameface. Available online: https://blog.google/technology/ai/google‐project‐gameface/ (accessed

on 14 July 2025).

7. MacLellan, L.E.; Stepp, C.E.; Fager, S.K.; Mentis, M.; Boucher, A.R.; Abur, D.; Cler, G.J.

Evaluating Camera Mouse as a computer access system for augmentative and alternative communication

in cerebral palsy: a case study. Assist. Technol. 2024, 36(3), 217–223.

https://doi.org/10.1080/10400435.2023.2242893

8. Karimli, F.; Yu, H.; Jain, S.; Akosah, E.S.; Betke, M.; Feng, W. Demonstration of CameraMouseAI: A

Head‐Based Mouse‐Control System for People with Severe Motor Disabilities. In Proceedings of the 26th

ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2024), Atlanta, GA, USA, 7–10

October 2024; pp. 124:1–124:6. https://doi.org/10.1145/3663548.3688499

9. Yuan, B.; Hu, D.; Gu, S.; Xiao, S.; Song, F. The global burden of traumatic amputation in 204 countries and

territories. Front. Public Health 2023, 11, 1258853. https://doi.org/10.3389/fpubh.2023.1258853

10. Mehta, P.; Raymond, J.; Nair, T.; Han, M.; Berry, J.; Punjani, R.; Larson, T.; Mohidul, S.; Horton, D.K.

Amyotrophic lateral sclerosis estimated prevalence cases from 2022 to 2030, data from the National ALS

Registry. Amyotroph. Lateral Scler. Frontotemporal Degener. 2025, 26(3‐4), 290‐295,

https://doi.org/10.1080/21678421.2024.2447919

11. Chen, Y.‐L. Application of tilt sensors in human–computer mouse interface for people with disabilities.

IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9(3), 289–294. https://doi.org/10.1109/7333.948457

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 19 of 20

12. Mishra, M.; Bhalla, A.; Kharad, S.; Yadav, D. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5(5),

576–583.

13. Ribas‐Xirgo, L.; López‐Varquiel, F. Accelerometer‐Based Computer Mouse for People with Special Needs.

J. Access. Des. All. 2017, 7, 1–20. https://doi.org/10.17411/jacces.v7i1.113

14. Kim, S.; Park, M.; Anumas, S.; Yoo, J. Head Mouse System Based on Gyro‐ and Opto‐Sensors. In

Proceedings of the International Conference on Biomedical Engineering and Informatics, Yantai, China,

16–18 October 2010. https://doi.org/10.1109/BMEI.2010.5639399

15. Pereira, C.A.M.; Bolliger Neto, R.; Reynaldo, A.C.; Luzo, M.C.M.; Oliveira, R.P. Development and

evaluation of a head‐controlled human‐computer interface with mouse‐like functions for physically

disabled users. Clinics 2009, 64(10), 975–981. https://doi.org/10.1590/S1807‐59322009001000007

16. Lin, C.‐S.; Ho, C.‐W.; Chan, C.‐N.; Chau, C.‐R.; Wu, Y.‐C.; Yeh, M.‐S. An Eye‐Tracking and Head‐Control

System Using Movement Increment‐Coordinate Method. Opt. Laser Technol. 2007, 39(6), 1218–1225.

https://doi.org/10.1016/j.optlastec.2006.08.002

17. Betke, M.; Gips, J.; Fleming, P. The Camera Mouse: Visual Tracking of Body Features to Provide Computer

Access for People with Severe Disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10(1), 1–10.

https://doi.org/10.1109/TNSRE.2002.1021581

18. Su, M.C.; Su, S.Y.; Chen, G.D. A low‐cost vision‐based human‐computer interface for people with severe

disabilities. Biomed. Eng. Appl. Basis Commun. 2005, 17, 284–292. https://doi.org/10.4015/S1016237205000433

19. Naizhong, Z.; Jing, W.; Jun, W. Hand‐free head mouse control based on mouth tracking. In Proceedings of

the IEEE International Conference on Computational Science and Education (ICCSE 2015), Cambridge, UK,

22–24 July 2015. https://doi.org/10.1109/ICCSE.2015.7250337

20. Arai, K.; Mardiyanto, R. Camera as Mouse and Keyboard for Handicap Person with Troubleshooting

Ability, Recovery, and Complete Mouse Events. Int. J. Hum. Comput. Interact. 2010, 1(3), 46–56.

21. Ismail, A.; Al Hajjar, A.E.S.; Hajjar, M. A prototype system for controlling a computer by head movements

and voice commands. arXiv 2011, arXiv:1109.1454. https://doi.org/10.48550/arXiv.1109.1454

22. Sawicki, D.; Kowalczyk, P. Head Movement Based Interaction in Mobility. Int. J. Hum.‐Comput. Interact.

2017, 34, 653–665. https://doi.org/10.1080/10447318.2017.1392078

23. Abiyev, R.H.; Arslan, M. Head mouse control system for people with disabilities. Expert Syst. 2019, 37(1),

e12398. https://doi.org/10.1111/exsy.12398

24. Rahmaniar, W.; Ma’Arif, A.; Lin, T.‐L. Touchless Head‐Control (THC): Head Gesture Recognition for

Cursor and Orientation Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1817–1828.

https://doi.org/10.1109/TNSRE.2022.3187472

25. Zelinskyi, S.; Boyko, Y. Using Facial Expressions for Custom Actions: Development and Evaluation of a

Hands‐Free Interaction Method. Computer Syst. Inf. Technol. 2024, 4, 116‐125. https://doi.org/10.31891/csit‐

2024‐4‐14

26. Zhang, H.; Yin, L.; Zhang, H. A real‐time camera‐based gaze‐tracking system involving dual interactive

modes and its application in gaming. Multimed. Syst. 2024, 30, 15. https://doi.org/10.1007/s00530‐023‐01204‐

9

27. Dlib. Available online: https://dlib.net/python/ (accessed on 17 July 2025)

28. Viola, P.A.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings

of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001),

Kauai, HI, USA, 8–14 December 2001; pp. 511–518. https://doi.org/10.1109/CVPR.2001.990517

29. Singh, J.; Modi, N. A robust, real‐time camera‐based eye gaze tracking system to analyze users’ visual

attention using deep learning. Interact. Learn. Environ. 2022, 30, 409–430.

https://doi.org/10.1080/10494820.2022.2088561

30. Mediapipe. Available online: https://ai.google.dev/edge/mediapipe/solutions/guide (accessed on 15 July

2025)

31. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded

Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503.

https://doi.org/10.1109/LSP.2016.2603342

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

 20 of 20

32. Wu, W.; Peng, H.; Yu, S. YuNet: A Tiny Millisecond‐level Face Detector. Mach. Intell. Res. 2023, 20, 656–665.

https://doi.org/10.1007/s11633‐023‐1423‐y

33. Casiez, G.; Roussel, N.; Vogel, D. 1 € Filter: A Simple Speed‐based Low‐pass Filter for Noisy Input in

Interactive Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI ’12), Austin, TX, USA, 5–10 May 2012; pp. 2527–2530. https://doi.org/10.1145/2207676.2208639

34. Wang, H.; Sidenmark, L.; Weidner, F.; Newn, J.; Gellersen, H. HeadShift: Head Pointing with Dynamic

Control‐Display Gain. ACM Trans. Comput.‐Hum. Interact. 2025, 32(1), Article 2.

https://doi.org/10.1145/3689434

35. Voelker, S.; Hueber, S.; Corsten, C.; Remy, C. HeadReach: Using Head Tracking to Increase Reachability

on Mobile Touch Devices. In Proceedings of the 2020 ACM SIGCHI Conference on Human Factors in

Computing Systems (CHI ’20), Honolulu, HI, USA, 25–30 April 2020; pp. 739:1–739:12.

https://doi.org/10.1145/3313831.3376868

36. Nancel, M.; Chapuis, O.; Pietriga, E.; Yang, X.‐D.; Irani, P.P.; Beaudouin‐Lafon, M. High‐Precision Pointing

on Large Wall Displays Using Small Handheld Devices. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ʹ13), Paris, France, 27 April–2 May 2013; pp. 831–840.

https://doi.org/10.1145/2470654.2470773

37. SAPI5 (Dragonfly). Available online: https://dragonfly2.readthedocs.io/en/latest/index.html (accessed on

15 July 2025)

38. Radford, A.; Kim, J.W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via

Large‐Scale Weak Supervision. In Proceedings of the 40th International Conference on Machine Learning

(ICML 2023), Baltimore, MD, USA, 23–29 July 2023, pp. 28492–28518.

39. Harada, S.; Wobbrock, J.O.; Landay, J.A. Voice Games: Investigation Into the Use of Non‐speech Voice

Input for Making Computer Games More Accessible. In Proceedings of the 13th IFIP TC 13 International

Conference on Human‐Computer Interaction (INTERACT 2011), Lisbon, Portugal, 5–9 September 2011;

Lecture Notes in Computer Science, Vol. 6946, pp. 11–29. https://doi.org/10.1007/978‐3‐642‐23774‐4_4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 doi:10.20944/preprints202507.1514.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

