Pre prints.org

Article Not peer-reviewed version

Redesigning Multimodal Interaction:
Adaptive Signal Processing and Cross-
Modal Interaction for Hands-Free
Computer Interaction

Bui Hong_Quan, Dinh Tuan Anh Nguyen , Hoang Van Phi, Bui Trung Thanh i

Posted Date: 17 July 2025
doi: 10.20944/preprints2025071514.v1

Keywords: human-computer interaction; hands-free interaction; vision/camera-based sensors; adaptive
signal processing; multimodal interaction; assistive technology

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4585210
https://sciprofiles.com/profile/4606919
https://sciprofiles.com/profile/4606600
https://sciprofiles.com/profile/1709766

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Redesigning Multimodal Interaction: Adaptive
Signal Processing and Cross-Modal Interaction for
Hands-Free Computer Interaction

Bui Hong Quan ', Nguyen Dinh Tuan Anh 't, Hoang Van Phi ! and Bui Trung Thanh 2*

! Faculty of Information Technology, VNU-University of Engineering and Technology (VNU-UET),
Hanoi 10000, Vietham

2 Faculty of Mechanical Engineering, Hung Yen University of Technology and Education,
HungYen 16-000, Vietnam

* Correspondence: buitrungthanh@utehy.edu.vn

t These authors contributed equally to this work.

Abstract

Hands-free computer interaction is a key topic in assistive technology, with camera-based and voice-
based systems being the most common methods. Recent camera-based solutions leverage facial
expressions or head movements to simulate mouse clicks or key presses, while voice-based systems
enable control via speech commands, wake-word detection, and vocal gestures. However, existing
systems often suffer from limitations in responsiveness and accuracy, especially under real-world
conditions. In this paper, we present 3-Modal Human-Computer Interaction (3M-HCI), a novel
interaction system that dynamically integrates facial, vocal, and eye-based inputs through a new
signal processing pipeline and a cross-modal coordination mechanism. This approach not only
enhances recognition accuracy but also reduces interaction latency. Experimental results demonstrate
that 3M-HCI outperforms several recent hands-free interaction solutions in both speed and precision,
highlighting its potential as a robust assistive interface.

Keywords: human-computer interaction; hands-free interaction; vision/camera-based sensors;
adaptive signal processing; multimodal interaction; assistive technology

1. Introduction

Advances in artificial intelligence (Al) are rapidly improving machines’ ability to process and
understand visual data [1]. In addition, Al also promote progress in fields like robotics and education
[2]. These developments are creating new opportunities to support accessible human-computer
interaction, especially for individuals with disabilities [3]. One of the main objectives of assitive
technology is supporting individuals with upper-limb impairments [4-8]. This group includes people
with limb amputations, neuromuscular disorders such as amyotrophic lateral sclerosis (ALS),
cerebral palsy, muscular dystrophy, spinal cord injuries, and congenital limb differences. All of which
can significantly hinder the use of conventional input devices like the mouse or keyboard.

According to [9], as of 2019, there were approximately 552.45 million people living with
traumatic amputations. Additionally, nearly 33,000 people in the U.S. are currently living with ALS,
and that number is projected to reach 36,000 by 2030 [10]. These conditions make it difficult or nearly
impossible for individuals to use a computer mouse. However, the ability to move the head and eyes
is often retained, even in individuals living with severe disabilities; therefore, computer interfaces
based on head or eye movement are commonly employed as alternative input methods.

Recognizing this issue, many researchers have proposed solutions to support people with
disabilities in accessing and interacting with computers effectively. Chen [11] invented a head-
controlled computer mouse for people with disabilities using tilt sensors. This system includes two

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

2 of 20

tilt sensors embedded in a headset to detect head position: one sensor detects horizontal movement
to control the mouse left or right, while the other detects vertical movement to move the mouse up
or down. A touch switch was also designed to allow users to gently tap their cheek to perform a click
action. Some studies [12,13] employed a dual-axis accelerometer to control the mouse. Another
approach used a combination of a gyro sensor and an optical sensor to perform clicking actions [14].
Additionally, Pereira et al. [15] developed a system for people with disabilities to control a computer
mouse. This system includes a camera, computer software, and a target mounted on the front of a
cap worn on the user's head, simulating cursor movements. Lin et al. [16] combined eye tracking and
head gestures, using a light source mounted on the user. These methods have demonstrated
particularly fast and accurate results. However, they all rely on sensor devices. This increases
deployment costs, making it difficult for users in low-income areas or those without access to
advanced technology. Furthermore, installing and calibrating sensors often requires a certain level of
technical skill, which not all users may possess. Additionally, wearing sensor devices on the head for
extended periods can cause discomfort, neck fatigue, or a sense of heaviness, negatively affecting the
user experience.

In addition to solutions that utilize specialized sensors, using standard RGB cameras such as
built-in webcams on laptops has also become a promising approach. With the rapid advancement of
computer vision algorithms, RGB cameras not only help reduce deployment costs but also offer a
more convenient and accessible contactless mouse control experience. Earlier solutions used classic
computer vision techniques such as template matching [17,18], or color-based segmentation [19,20],
presented a "camera mouse" system that uses a timer for left-click, a technique later known as 'dwell
click', and eye blinking for right-click. Previous studies [4,21] combined head motion with voice
commands to trigger mouse clicks. In another direction, [22] used a camera to analyze head
orientation for cursor control, integrating eye blinks to execute commands. Recently, many solutions
rely on deep learning to directly map visual input to screen coordinates [23,24] or to predict facial
landmarks and expressions for interaction control [6,8,25].

While many approaches have been proposed to help individuals with disabilities control
computers using camera input, most still suffer from response latency, primarily due to noisy visual
input and inefficient signal processing filters. Furthermore, recent systems typically rely on a limited
set of input modalities and support only a few discrete facial gestures (e.g., smiling, mouth opening,
eyebrow raising), which restricts flexibility and user engagement [6,8]. These expressive gestures can
also interfere with precise cursor control, as they are not always distinguishable from involuntary
facial movements during natural interaction. Moreover, many existing systems treat input modalities
in isolation and lack flexible multimodal integration. A promising direction is to incorporate
contextual cues, such as using visual detection of mouth opening to validate voice commands, in
order to reduce false positives. However, this form of cross-modal verification remains underutilized
in prior work [4,26].

To overcome these limitations, we propose a novel hands-free control system, namely 3-Modal
Human-Computer Interaction (3M-HCI), that integrates three input modalities: head movement with
facial expressions, voice commands, and eye gaze. A new adaptive filtering mechanism is introduced
to suppress signal noise while maintaining low-latency responsiveness. Furthermore, the mapping
strategy from input signals to cursor movements is redefined to improve accuracy. In addition, cross-
modal information is used to enhance the system’s overall reliability and precision.

The main contribution of this work is the development of a low-cost, responsive hands-free
interface that enables individuals with upper-limb disabilities to interact with computers using head
movements, facial expressions, voice commands, and eye gaze. The proposed system is lightweight
and customizable, designed to run efficiently even on low-end hardware. By ensuring compatibility
with standard hardware, the system improves access and interaction for users with motor
impairments. To evaluate the system, two types of tests were conducted: (a) functional tests under
various technical and environmental conditions, and (b) user evaluations to assess usability,
responsiveness, and perceived effectiveness.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

3 of 20

The remainder of this paper is organized as follows. Section 2 introduces the system architecture
and input modalities. Section 3 outlines the materials used and the evaluation methodology. Section
4 presents experimental results and discussions. Finally, Section 5 concludes the paper and suggests
future research.

2. System Architecture

The 3-Model Human-Computer Interaction (3M-HCI) system employs a callback-based
architecture that fundamentally separates processing logic from user interface components, ensuring
optimal performance, maintainability, and scalability. The core processing pipeline operates
independently in separate threads, with results delivered to the GUI for display. To achieve
maximum efficiency, the system implements a multi-threaded architecture within a single process,
with mechanisms for safe thread coordination and termination. By using primarily I/O-bound
operations, the system maintains significantly lower resource overhead compared to existing
solutions.

The main processing pipeline operates through synchronous and asynchronous callbacks as
illustrated in Figure 1. The computer vision thread continuously captures frames from the camera
input. Through the callback mechanism, each frame is delivered to the face processor module. The
face processor offers two processing modes: the IMAGE mode processes each frame separately and
synchronously, while the smooth mode handles frames asynchronously. Upon successful processing,
the extracted facial landmarks and blendshape data are forwarded through the pipeline to calculate
and execute mouse movements as well as keyboard actions.

Main Application

Core Pipeline H Gul ‘

¥

Camera Thread Voice Thread

Frame Capture From Face Processor
Camera (Mediapipe Model)

Voice Input Acquisition

i

Facial Landmarks }—b{ Facial Blendshapes }»

Mouse Position
Calculation

v ! !

Cursor Movement Blendshapes Binding Mouth-Open Condition
Execution Actions Execution Evaluation

Voice Command
Execution

Speech Processing

Blendshapes Mapping Command Mapping ‘

Figure 1. The core processing pipeline of the system.

The voice processor functions as an independent module running in its own dedicated thread.
It captures microphone input and processes it through its recognition engine to identify pre-
configured voice commands. To enhance user experience and prevent false activations from external
audio sources, the system incorporates an intelligent gating mechanism that cross-references facial
expression data from the face processor module before executing voice commands.

This architecture demonstrates significant optimization advantages compared to existing
solutions like Google Project Gameface [6], which utilizes a busy-waiting pipeline that tightly couples
GUI and processing components. Google's implementation continuously captures and processes
images at extremely high frequencies (sub-millisecond intervals), resulting in substantial resource
consumption and redundant frame processing. In contrast, our event-driven approach with
controlled frame rates delivers superior resource efficiency while maintaining real-time
responsiveness. The detailed implementation of each module is described in the subsequent sections.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 do0i:10.20944/preprints202507.1514.v1

4 of 20

2.1. Video Processing Module

2.1.1. Face Processing

The Face Processing modules’ main function is to detect and track the user’s face and return
facial landmarks, eye gaze, and expressions, which makes them the most critical component in the
entire system pipeline. The face processing algorithm must meet several requirements: it should be
fast, deliver high accuracy, and ideally operate efficiently without requiring a GPU.

Previous systems [4] have typically used the Dlib library [27], the Haar Cascade algorithm [28], or
custom-built CNNSs for face detection and tracking [23,24,29]. Recent systems [6,8] increasingly adopt
MediaPipe [30] due to its superior performance and the wide range of built-in features it provides. We
compare several lightweight face processing algorithms. All algorithms below were evaluated on a
single laptop with a Ryzen 5 5500U CPU, 12 GB RAM, and AMD Radeon Vega 7 integrated graphics to
ensure consistent performance comparison. The result can be found in Table 1.

Table 1. Face processing algorithm comparison.

Algorithm/ Number Detfectlon Detection . . Iris

Library of Time Rate! Facial Expression Tracking
Landmarks (second)
Dlib [27] 68 0.036 078 Some facial expressions can be No
computed manually?

Mediapipe [30] 478 0.0037 1 52 built-in blendshapes Yes

Haar Cascade [28] 0 0.0056 0.65 No No

MTCNN [31] 5 0.215 1 No No

YuNet [32] 5 0.026 0.93 No No

! Percentage of faces correctly detected among all images containing a face. 2 Follow [4], we can

calculate mouth open, for example.

Based on the comparison results shown in the table above, we decided to use MediaPipe as the
core tool for developing our system. MediaPipe [30] provides 478 facial landmarks (Figure 2),
including key regions such as the eyes, eyebrows, mouth, nose, and jawline, which are essential for
precise facial expression analysis.

Figure 2. Mediapipe 478 landmarks. Each landmark point corresponds to a specific part of the face.

© 2025 by the author(s). Distributed under a Creative Co s CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

5 of 20

2.1.2. Mapping Feature to Mouse Coordinate

Camera-based head-mouse systems typically use landmarks such as the nose tip [4,8], forehead
[6], or mouth [19] as anchors. However, landmark instability during facial expressions can introduce
unwanted cursor drift. For example, raising an eyebrow, as seen in Google’s Project GameFace, can
shift the forehead anchor, while actions like nose sneer or performing gestures such as “mouse left”
and “mouse right” can alter the nose tip position, leading to unintentional pointer movement. A
simple way to mitigate this issue is to avoid using facial expressions that can distort the anchor points
altogether. Therefore, our solution is to use the two inner eye corners (medial canthi) as anchor points
instead. After thorough testing, we found that the medial canthi remain stable across various facial
expressions. Therefore, we chose them as reliable reference points for pointer movement (Figure 3).
The movement vector formed by tracking these two inner eye corners is then converted into mouse
pointer movement signals.

Formally, let P = (X1, Y1) and Pr = (X, Yr) be the coordinates of the left and right medial canthus,
respectively. We computed the midpoint at frame t:

= 1
t 2) 2 ()
Finally, we have cursor displacement vector V&
Ve = C—Coy = (A, 4y) 2)

D Hands-Free Computer Interaction

Mouse Control: OFF Blendshape Control: OFF Voice Command: OFF

Figure 3. Two inner eye corners (p133 and p362 in Mediapipe).
Displacement vector V: serves as the raw cursor moving signal in our system.

2.1.3. Adaptive Movement Signal Filtering and Acceleration

With signals measured from sensors or cameras (since a camera itself is a type of sensor), there
is always some noise present in the data. To eliminate this noise, we apply filtering techniques.
Depending on the characteristics of the signal, different filtering methods can be used, such as: i) for
signals with significant “salt-and-pepper” noise, a median filter can be applied to remove outliers; ii)
for signals affected by Gaussian noise, a low-pass filter or a Gaussian filter may be used.

In our specific case, the movement signals extracted from facial landmarks often contain
Gaussian noise. This causes the cursor movement to appear jittery. To address this issue, some
systems use a simple region-based technique, where a virtual window is overlaid on the user’s face

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

6 of 20

and the cursor only moves when the tracked landmark crosses the boundary of this window [4].
Additionally, previous systems have applied low-pass filters as a basic solution to smooth the pointer
motion [8,17]. A more optimized approach is to use a Hamming filter, which offers better frequency
response characteristics [6].

Although these techniques help smooth the cursor movement, they can also affect the pointer
speed and responsiveness. Conventional low-pass filters have a fixed cutoff frequency, which creates
a trade-off between smoothness and responsiveness. If the cutoff is too low, the cursor becomes stable
but sluggish; if it is too high, unwanted jitter may persist. To address this limitation, we employed
the 1€ filter [33], an adaptive filter that dynamically adjusts its cutoff frequency according to the
signal's speed. This allows the system to remain smooth during slow movements while still being
responsive during rapid changes. Note that, instead of applying the 1€ filter directly to the x and y
coordinates separately, we apply the 1€ filter to the cursor displacement magnitude to get the
smoothing factor a. This approach avoids the issue of having different cutoff frequencies on each
axis, which could cause asynchronous pointer behavior.

We define Dt = /Ax? + Ay? to be the cursor displacement magnitude, and using 1€ filter to
get the smoothing factor:

D;,a, = 1€ filter(D,) 3)
After that, we calculate the filtered displacement vector, using adaptive smoothing factor a;:
Ve=aVi+(1—a)l,y 4)

Finally, we apply a pointer acceleration function to improve the responsiveness and usability of
the system. This allows small head movements to result in fine cursor control, while larger or faster
movements produce quicker pointer displacement, enhancing both precision and efficiency. Pointer
acceleration is typically based on sigmoid functions. Previous work [6,34-36] has demonstrated that
sigmoid-based pointer acceleration achieves smoother transitions between precise and rapid
movements, while avoiding excessive jitter or drift. It also improves ergonomics and precision of the
system. We adopted the following function:

K

G(x) = 1 + e—slopex(x—offset)

©)

Where: K controls the maximum gain, determining how fast the pointer can move at high speeds;
slope defines the steepness of the transition between low and high gain; larger values make the
transition sharper; offset sets the inflection point on the input axis, i.e., the point at which the gain
starts to increase significantly.

In our system, we set K = 1.2, slope = 0.1, and offsef = 12. The resulting acceleration curve is
illustrated in Figure 4, showing a smooth transition from low to high gain as input speed increases.

08
06
04

02

Figure 4. Acceleration curve.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

7 of 20

2.1.4. Mapping Facial Expressions to Mouse and Keyboard Actions

Early studies employed sensors [11,14] or dwell-click mechanisms [20], combined with a limited
set of simple actions or expressions [4,19] to trigger mouse events. More recent approaches have
shifted toward using more intuitive and user-friendly expressions such as smiling, raising eyebrows,
or opening the mouth to enhance usability and reduce fatigue [4,6,8]. However, these systems
typically utilize only a small number of facial expressions [4,8], as some expressions have been
reported to be difficult to perform or maintain and may cause facial fatigue. In addition, certain
expressions can be easily confused with one another, reducing the reliability of the input [6,25].

A straightforward way to address this issue is to use only easily recognizable and
distinguishable facial expressions that are less likely to be confused with others. However, this
approach inherently limits the number of distinct actions the system can support. To overcome this
limitation, we introduce a priority-based triggering mechanism, which favors less distinguishable
expressions over more easily recognizable ones when multiple expressions are detected
simultaneously. By using this mechanism, our system supports a wider range of actions compared to
existing systems (Table 2), while also reducing false positives and confusion.

Table 2. Comparison of our system with facial expression control interfaces.

Svstem #Facial Mouse Keyboard System Triggering
y Expression Control Control Control Mechanism
Predefined
EMKEY [19] 1 - - X Threshold
Al
Camer[zlﬁouse 2 X - - User-Defined Threshold
Proj ect[S;]meface 8 X X - User-Defined Threshold
Zelinskyi et al. 8 N Predefined
[33] Threshold
3M-HCI (Ours) 13 N N N User-De:’fmed' lelreshold
with Priority

Moreover, in our system, we also utilized directional eye gaze (left, right, up, down) as a form
of expressive input, similar to facial expressions.

2.2. Voice Processing Module

The Voice Processing Module utilizes command recognition to handle basic interactive
instructions and accessibility controls. It serves as a complementary input method to the facial
expression control system, providing users with multiple interaction modalities. The module should
use a pretrained model, support offline functionality, and offer high processing speed. To meet these
criteria, we employ Microsoft’s native Speech API (SAPI5) [37] via the Dragonfly library. SAPI5
delivers consistent performance and low latency, with all processing performed locally. This ensures
that the feature operates without requiring an internet connection, thereby enhancing privacy and
system reliability. Figure 5 illustrates the general execution flow of the speech recognition module.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

8 of 20

N

Voice Processor

Inifiate Module
engine = SapifinProcEngine()

l

Load Command From Profile

l

Configure Microphone Seftings

No faice Command
Staried?
Yes

Create Rules, Load Grammar

l

Start Voice Processing Thread,
Voice Loop

No

[Pump Waiting Messages]

Command
Recognized?
Yes

Mouth-Open
Condition?

Yes
Execute Action

Wait For Start Signal

Exit Loop, Unlead Grammar,
Stop Thread

Facial Blendshapes

Figure 5. Voice Processor Architecture.

The Voice Processor Module creates a self-contained, thread-safe service that listens for user-
defined voice commands. When a command is recognized by the SAPI5 engine, it executes the
corresponding keyboard or mouse action via the pyautogui. Furthermore, it interfaces with other
modules within the application, allowing voice commands to modify their behavior. This multimodal
approach also enhances the user experience. For instance, by implementing a check to see if the user's
mouth is open during command recognition, the system can avoid misinterpreting external ambient
sounds as commands, leading to more reliable activation. Voice commands can also be used to
dynamically adjust mouse movement speed, enabling users to fine-tune control in real time without
relying on manual input.

3. Materials and Methods

This section outlines the development environment and the methodology used to evaluate the
performance and usability of our multimodal interaction system. The evaluation comprises two types
of tests. The first is an experimental test designed to examine system stability and responsiveness
under various environmental and hardware conditions, including different CPU generations,
operating systems, lighting environments, and background noise. The purpose is to determine the
minimum requirements necessary for smooth operation. The second test involves task-based
usability testing, in which users are asked to perform a series of predefined actions such as cursor

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

9 of 20

movement and target selection. Objective performance metrics, including latency, accuracy, jitterness,
and task completion time, are recorded and compared across systems. In addition, we conducted a
short survey to collect subjective feedback from participants who had experienced all three systems,
with the results presented in Section 4.This approach allows for a comprehensive analysis of both
technical efficiency and user experience.

3.1. Development Platform

We used two different laptops during the development process to ensure stable software
performance under varying hardware conditions. The first laptop was equipped with a Ryzen 5
5500U CPU, 12 GB RAM, AMD Radeon Vega 7 integrated graphics, a built-in 720p 30fps camera, and
an integrated microphone. The second laptop featured an Intel(R) Core(TM) i7-13650HX CPU, 16 GB
RAM, a dedicated NVIDIA GeForce RTX 4060 GPU with 8 GB DDR6 VRAM, a built-in 720p 15fps
camera, and an integrated microphone.

The system was developed through iterative prototyping, combined with regular internal
testing and feedback from university instructors and experts with experience in assistive
technologies. This feedback loop allowed us to continuously improve the system while keeping it
accessible and practical. To implement our application, we chose Python as the primary
programming language due to its extensive ecosystem, cross-platform compatibility, and active
developer community. Python also simplifies rapid prototyping and integration with computer
vision and audio processing tools, which are central to our system. The key Python libraries utilized
include: i) OpenCV for video capture and preprocessing; ii) Mediapipe for extracting facial
landmarks and facial expression analysis; iii) Customtkinter for building modern and customizable
graphical user interfaces (GUIs); iv) dragonfly2 for a voice control framework that maps spoken
commands to computer actions; v) pyautogui for accessing the mouse and keyboard functionalities;
and vi) numpy for efficient numerical computations.

D Hands-Free Computer Interaction - X

| Mous i

Mode: LIVE_STREAM (Smooth)
Mouse Speed:
@

17.0

Mincutoff:
@

1.20

Beta:
@
Mouse Control: OFF Blendshape Control: OFF Voice Command: OFF 0.21

Figure 6. 3M-HCI Graphical User Interfaces built with Customtkinter.

3.2. Testing Methodology

Following the evaluation of methodology proposed in [4], we assess the minimum operating
requirements of our system under various environmental and technical conditions, such as lighting,
background noise, and hardware configurations, as follows: a) different environmental lighting
conditions; b) more than one face detected by the camera; c) background noise; and d) different
hardware and software features of the computer. In addition to these tests, we also conduct a task-
based usability testing with existing systems, in order to highlight the effectiveness of the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

10 of 20

improvements proposed in our study: a) jitterness; b) responsiveness (task completion time); and c)
accuracy.

Before performing the tasks, participants were given time to freely explore and adjust the mouse
control system to ensure maximum comfort. They were instructed to select two facial expressions of
their choice and assign them to left and right click actions, based on what they found most intuitive
and easy to perform. Once these settings were configured, participants received clear instructions on
how to interact with the testing application.

The first task involved a sequence-based interaction test, where users were required to move the
cursor to predefined targets on the screen, perform either a left or right click as instructed, and
proceed to the next target (Figure 7). This process continued until all targets were completed. The
task was used to assess accuracy and responsiveness, based on metrics such as completion time and
cursor deviation.

Seck Project Gameface - Google

Figure 7. Moving and clicking task.

The second task required users to keep their head still for a fixed duration while the system was
running. This allowed us to measure unintended cursor movement or drift, providing insight into
the system’s stability when idle.

Finally, a short post-test survey was conducted to gather subjective feedback from users who
had experienced all three systems (Table 3). All questions are evaluated on a numeric rating scale
from 1 (Very Bad) to 10 (Excellent). The results of this evaluation, as well as the code and
configurations used in the testing application, are available in our public GitHub repository.

Table 3. List of survey questions.

Question Description
Q1 Does it take a lot of time to master the application?
Q2 Is the response of left/right mouse click fast?
Q3 Is the cursor movement responsive?
Q4 Is it difficult to click the left/right mouse button?
Q5 Is it difficult to move the cursor precisely?
Q6 Is it difficult to move the cursor vertically?
Q7 Is it difficult to move the cursor horizontally?
Q8 Does moving the cursor cause fatigue?
Q9 Do you think this mouse system can be applied for people with disabilities?

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

11 of 20

4. Results and Discussion
4.1. Robustness Testing Under Environmental and Hardware Variations

We evaluate the system’s functionality and performance under varied lighting, multiple faces,
and different hardware and operating systems, as well as identify the minimum hardware and
environmental requirements necessary for stable operation.

4.1.1. Lighting Condition Test

To assess the robustness of 3M-HCI under real-world usage, we conducted experiments in four
different lighting environments, with corresponding results shown in Figure 8 (a—d). In each scenario,
we visualized the 147 facial landmarks used by MediaPipe Face Mesh to detect expressions, enabling
a detailed qualitative assessment of detection stability under varying illumination conditions. From
our experiments, we can conclude that:

e Bright Environment (Figure 8a, 8b): Whether in a brightly lit room or a dim room with high
screen brightness, the system performed flawlessly. Facial landmarks were immediate and
accurate. Mouse control operated smoothly without any jitter or delay. This represents the
optimal environment for system usage.

e Dim Room with Medium Screen Brightness (Figure 8c): Under significantly darker conditions,
where only moderate screen brightness was present, the system remained functional. Facial
landmarks still worked, but occasional instability in mouse movement was observed. The
system was still usable with minor degradation.

e Near-total Darkness with Low Screen Brightness (Figure 8d): In the most extreme case, with no
external light and very low screen brightness, the system struggled. Although the Mediapipe
framework could still detect the facial landmarks. However, the detection was inconsistent and
unreliable. Landmarks often flickered or were lost entirely, making interaction with the system
ineffective in this condition

(b)

(c) (d)

Figure 8. Mediapipe facial landmarks detection in different light conditions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

12 of 20

From the experiments above, we conclude that the most critical factor for the system's
performance is the clarity of the captured facial image. While ambient lighting conditions have a
limited impact on the overall outcome, ensuring a well-defined face is essential. Notably, MediaPipe
demonstrated impressive robustness. It was able to detect facial landmarks even in extremely low-
light scenarios where the human eye struggles to distinguish facial features.

4.1.2. Multiple Faces in a Frame

This test evaluates Mediapipe’s behavior when multiple faces appear in the frame. When
configured to detect only a single face, Mediapipe selects the one it detects with the highest
confidence. In practice, this is often the face closest to the camera, which typically belongs to the user.
However, the most confidently detected face is not always the intended user’s face, especially in
dynamic or crowded environments. Our experiments show that when two faces are present in the
frame, Mediapipe may occasionally select the one farther from the camera, which disrupts the
system’s operation.

A simple strategy to address this issue is to enable Mediapipe’s multi-face detection mode. In
this configuration, the system detects all visible faces and compares them to the face identified in the
previous frame, selecting the one with the most consistent position or landmark pattern. While this
improves the accuracy of user tracking in multi-face scenarios, it also introduces a higher
computational load, which may reduce real-time performance, particularly on lower-end devices.
For this reason, we did not adopt this approach in our implementation, as it caused noticeable lag
during runtime, making the interaction experience less smooth and responsive.

4.1.3. Background Noise

In contrast to previous systems that relied solely on voice recognition, making them vulnerable
to ambient noise and unintended speech, 3M-HCI integrates a mouth-open detection mechanism
using facial landmarks. To evaluate its robustness, we conducted a test scenario where two people
held a conversation near the system. While earlier studies [4] reported performance degradation due
to microphone sensitivity and background noise, our method was unaffected. Since voice commands
in our system are only executed when the user’'s mouth has been recently detected as open,
environmental noise or nearby conversations had no impact on command triggering. This approach
significantly reduces false positives and enhances reliability in shared or noisy environments.

However, this feature relies on the system’s ability to consistently detect the user’s full face. If
the face is partially occluded, out of frame, or poorly lit, the mouth-open detection may fail to activate,
thus preventing valid voice commands from being registered. Ensuring a clear and stable view of the
user's face is therefore essential for maintaining the robustness of this mechanism.

4.1.4. Different Hardware and Software Features of the Computer

We evaluated the software performance across different machines and conducted a comparative
analysis of three applications: 3M-HCI, Project GameFace, and CameraMouseAl. The results are
summarized in Table 4 below:

Table 4. Software performance on different laptops.

Overall Computational Computational Computational
Laptop CPU RAM (oF}
Performance Cost (3M-HCI) Cost [6] Cost [7]
Dell Inspiron Intel Core i7- Windows
16GB Excellent 12.7% 15.1% 26.7%
15 3530 1355U 11
Dell XPS 13 Intel Core i7- Windows OK. The microphone
16GB . 49.9% 60.3% Unable to run
9360 7660U 10 takes time to boot
Intel Core i7- Windows
Dell G15 5530 16GB Excellent 10.7% 23% 8.5%
13650HX 11

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

13 of 20
Lenovo
Intel Core i5- Windows OK. The program is a
ThinkPad 8GB] 52.8% 57.7% 31.2%
8350U 11 bit laggy
T480
Dell Precision Intel Core i7- Windows
16GB Excellent 37.9% 41.5% 18.8%
7510 6820HQ 10
MSIGF63 Intel Core i7- Windows OK. The microphone
16GB 19.7% 28.3% Unable to run
Thin 11UD 11800H 11 takes time to boot
Dell Inspiron Intel Core i5- Windows
16GB Excellent 6.1% 20.56% 16.2%
16 5620 1240P 11
HP Laptop Intel Core i5- Windows
8GB Excellent 24.7% 19.1% 11.05%
16-d0xxx 11400H 11
ASUS TUF Intel Core i5- Windows Some commands
16GB 41.88% 47.37% 23.4%
Gaming F15 10300H 11 cannot be recognized.
MSI Modern AMD Ryzen 5 Windows Voice command runs
12GB 34.6% 47.4% 17.2%
15 5500U 11 badly.

Compared to other applications, our software runs efficiently and stably. Despite integrating
voice commands, our system still consumes fewer computational resources than Google's solution.
CameraMouseAl exhibits lower computational cost than ours, likely because it is a simpler tool,
supporting only 2-3 basic mouse actions.

Based on Table 4, we recommend the following minimum system requirements: Windows 10
or higher, a CPU equivalent to Intel Core i5-10th Gen or above, no dedicated GPU is required, a
functional camera and microphone, and at least 8GB of RAM. These are very lightweight
requirements, making the system compatible with nearly all modern laptops.

4.2. Empirical Task-Based Test

We conducted a pilot user study involving eight participants to empirically evaluate the
usability, responsiveness, and precision of the proposed 3M-HCI system in real-world interaction
scenarios. All participants provided informed consent prior to the study. The objective of this test
was to assess how effectively users could perform common cursor-based tasks using hands-free
input, in comparison with traditional mouse input and two baseline systems: Project GameFace and
CameraMouseAl. Each participant was asked to complete a set of target selection and click tasks
under identical conditions across all systems. Key performance metrics, including pointer accuracy,
latency, jitter, and number of successful clicks, were recorded. Additionally, a post-test survey was
conducted to capture user satisfaction and perceived usability. The findings from this pilot study
provide preliminary insights into the practical viability and comparative advantages of our system
in assistive computing contexts.

4.2.1. System Accuracy

We measured the system’s accuracy by calculating the deviation of four systems
(CameraMouseAl, Project GameFace - Google, Our Method (3M-HCI), and Normal Mouse) from the
optimal path (straight path) to the target, along with the number of clicks required to complete the
task. The results are presented in Figure 9 and Figure 10 below.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 do0i:10.20944/preprints202507.1514.v1

14 of 20

Deviation from Optimal Path

System + Average

—e— CameraMouseAl
—e— Project GameFace - Google
—&— Our Method
—e— Use Mouse
~=-=-- CameraMouseAl (avg)

Project GameFace - Google (avg)
- Our Method (avg)
-- Use Mouse (avg)

60

D9 1éch (%)

Figure 9. Deviation from Optimal Path.

Click Count Comparison

Click Count

CameraMouseAlProject GameFace Our Method Use Mouse
Method

Figure 10. Number of clicks.

Overall, our system demonstrated higher accuracy compared to CameraMouseAl and Project
GameFace. Overshooting was not observed in our system, in contrast to CameraMouseAl, where it
occurred frequently during cursor movement. Regarding the clicking mechanism, both
CameraMouseAl and Project Gameface experienced unintended cursor movement during facial
expression activation, leading to incorrect clicks. Our system did not encounter this issue due to a
more optimal selection of anchor points.

4.2.2. System Responsiveness.

We also measured the time taken to complete the first task as an indicator of system
responsiveness. The result is shown in Figure 11.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

15 of 20

Movement latency

System + Total
—e— CameraMouseAl
—e— Project GameFace - Google
—e— Our Method
—e— Use Mouse
-==- CameraMouseAl (Total)
Project GameFace - Google (Total)
-+ Our Method (Total)
-+ Use Mouse (Total)

Latency (s)
-

Figure 11. Movement Latency.

As shown in the figure, our method consistently outperformed both CameraMouseAl and
Project GameFace in terms of movement latency. Across all target transitions (e.g., 1 -2, 2—3, etc.),
our system maintained latency values around 2 to 3 seconds, with minimal fluctuation. In contrast,
CameraMouseAl exhibited the highest latency, with several spikes exceeding 6 seconds—most
notably in the 5—6 transition. Project GameFace also showed relatively high latency, particularly
during transitions 4—5 and 6—7.

Moreover, the total average latency of our system (green dashed line) is clearly lower than that
of CameraMouseAl (blue dashed line) and Project GameFace (orange dashed line), indicating faster
and more consistent performance. While traditional mouse input (red line) remains the fastest as
expected, our method shows a strong balance between speed and usability, especially considering its
hands-free nature.

4.2.3. System Jitterness

As illustrated in Figure 12, our method achieved significantly lower jitter deviation compared
to other hands-free systems. Specifically, the CameraMouseAl showed the highest instability with a
jitter deviation of over 120 pixels, followed by Project GameFace with approximately 80 pixels. In
contrast, our method maintained a low deviation of under 10 pixels, indicating stable and precise
cursor control. As expected, traditional mouse usage yielded the lowest jitter, serving as a
performance baseline.

This finding highlights the importance of incorporating adaptive filter algorithms and activation
mechanisms in hands-free systems. By minimizing cursor jitter, our approach improves not only task
precision but also user comfort and trust, which are critical for sustained use, especially among
individuals with motor impairments.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

16 of 20

Jitter Deviation Comparison

Jitter Deviation (pixel)

CameraMouseAlProject GameFace Our Method Use Mouse
Method

Figure 12. Jitter Deviation of Different Systems.

4.3. Survey Results

The survey results provide insights into the subjective usability, responsiveness, and comfort of
our system compared to existing solutions, including CameraMouseAl, Project GameFace, and
traditional mouse control. We present the result below in Table 5.

Table 5. Survey Results.

Project 3M-HCI

Question Description CameraMouseAl GameFace (Ours) Mouse
Q1 Does it take a lot of time to master the application? 3.5+1.87 675+1.98 725+1.71 10.0+0.0
Q2 Is the response of left/right mouse click fast? 3.5+235 75+158 825+1.09 10.0£0.0
Q3 Is the cursor movement responsive? 5.38 +£2.06 6.62+1.11 8.88+0.6 10.0+0.0
Q4 Is it difficult to click the left/right mouse button? 4+255 6.25+156 7+1.87 10.0+0.0
Q5 Isitdifficult to move the cursor precisely? 3.5+245 6.87+1.17 837+0.7 10.0+0.0
Q6 Isit difficult to move the cursor vertically? 45+2.18 75+141 837+086 10.0+£0.0
Q7 Isitdifficult to move the cursor horizontally? 45+2.18 75+141 837+086 10.0+0.0
Q8 Does moving the cursor cause fatigue? 2.62+1.93 7+187 725+1.79 9.87+0.33
Qo Do you think this mouse system can be applied for 44353 712250 7854271 775439

people with disabilities?

The results in the table indicate that our proposed 3M-HCI system achieved high subjective
ratings across all categories. Notably, it received an average score of 8.25 + 1.09 for the responsiveness
of left/right mouse clicks and 8.88 + 0.6 for overall cursor responsiveness, comparable to the
traditional mouse and outperforming both CameraMouseAl and Project GameFace.

In terms of ease of use, participants reported that our system required relatively little time to
master (7.25 + 1.71), and clicking actions were less difficult (7 + 1.87) compared to other hands-free
systems. One contributing factor is that our system allows users to choose from multiple facial
expressions for click activation. Since different users may find certain expressions easier or more
natural to perform, this flexibility improves comfort and accessibility. Additionally, our system
maintains cursor stability during facial expression recognition, avoiding unintended cursor jumps—
an issue observed in other systems such as CameraMouseAl and Project GameFace. Precision and
directional control (both vertical and horizontal) were also rated higher than alternatives, indicating
more stable and accurate performance.

Fatigue levels while using the system were moderate (7.25 + 1.79), significantly better than
CameraMouseAl (2.62 + 1.93) and slightly better than Project GameFace (7 + 1.87), showing the
ergonomic advantages of our approach. Importantly, our system received the highest rating (7.85 +

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

17 of 20

2.71) in terms of perceived applicability for people with disabilities, suggesting strong user
confidence in its real-world assistive potential.

4.4. Limitations

Despite the overall positive results, several limitations were identified based on user feedback
during testing. One notable issue was the lack of intuitive parameter tuning, as users found it difficult
to adjust the minCutoff and beta values of the 1-Euro filter. This difficulty stems from the technical
definitions of minCutoff and beta, making it challenging to grasp their impact on the filtering
process. Consequently, this limitation significantly hinders accessibility and the ability to optimize
the filter's performance. Another concern was microphone instability on low-end devices, where
users reported delays in microphone initialization or instances where speech was not recognized,
particularly during system startup or under constrained hardware conditions.

5. Conclusions

This paper presents 3M-HCI, a novel, low-cost, and hands-free human-computer interaction
system that integrates facial expressions, head movements, eye gaze, and voice commands through
a unified processing pipeline. The central contribution of 3M-HCI lies in its unified processing
architecture, which integrates three key components: 1) a cross-modal coordination mechanism that
synchronizes facial, vocal, and eye-based inputs to enhance reliability and reduce false triggers; 2) an
adaptive signal filtering method that suppresses input noise while maintaining low-latency
responsiveness; and 3) a refined input-to-cursor mapping strategy that improves control accuracy
and minimizes jitter.

Although experimental results demonstrate that 3M-HCI outperforms several recent baseline
models in both accuracy and responsiveness, the system still requires further refinement. User
feedback revealed areas where usability and flexibility can be significantly improved, particularly in
terms of parameter customization and robustness on low-end devices. We aim to simplify the tuning
of the One Euro Filter by introducing a real-time interface that abstracts away low-level parameters
like minCutoff and beta, allowing users to adjust the filter's responsiveness through more intuitive
controls.

In this paper, the voice command component was not explored in depth. We selected a
lightweight and general-purpose voice recognition module to ensure broad compatibility and
minimal computational overhead. The primary design criteria were simplicity, low latency, and ease
of integration. However, more advanced alternatives could be considered. For instance, integrating
modern speech recognition frameworks such as OpenAl Whisper [38] may offer improved
robustness, especially in noisy environments. In addition, exploring non-speech voice command
systems [39] could further enhance responsiveness, particularly beneficial for gamers. Additionally,
our system currently underutilizes eye input. While eye direction is used as a gesture trigger, the
system does not yet leverage richer gaze data for pointer control or attention estimation. Enhancing
eye-tracking integration could significantly improve precision and interaction depth, especially for
users with limited facial mobility. This direction will be further investigated in our future work to
improve the adaptability and inclusiveness of the system.

Author Contributions: Conceptualization, B.H.Q.; methodology, B.H.Q. and N.D.T.A.; software, B.H.Q. and
N.D.T.A,; validation, B.H.Q., N.D.T.A., H.V.P,, and B.T.T.; writing—original draft preparation, B.H.Q., H.V.P,,
and N.D.T.A.; writing —review and editing, B.T.T.; visualization, B.H.Q. and H.V.P.. All authors have read and

agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

18 of 20

Data Availability Statement: The data supporting the findings of this study are available from the

corresponding author upon request.

Acknowledgments: We would like to acknowledge the technical support from Human-Machine Interaction Lab
(VNU-UET).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
3M-HCI 3-Modal Human-Computer Interaction

ALS Amyotrophic Lateral Sclerosis (ALS)
Al Artificial Intelligence

CNN Convolution Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

RAM Random Access Memory

RGB Red Green Blue

(ON Operating System

References

1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas,
NV, USA, 27-30 June 2016; pp. 779-788. https://doi.org/10.1109/CVPR.2016.91.

2. Ramachandra, C.K;; Joseph, A. IEyeGASE: An Intelligent Eye Gaze-Based Assessment System for Deeper
Insights into Learner Performance. Sensors 2021, 21(20), 6783. https://doi.org/10.3390/s21206783.

3. Walle, H,; De Runz, C,; Serres, B.; Venturini, G. A Survey on Recent Advances in Al and Vision-Based
Methods for Helping and Guiding Visually Impaired People. Appl. Sci. 2022, 12(5), 2308.
https://doi.org/10.3390/app12052308.

4. Ramos, P.; Zapata, M.; Valencia, K.; Vargas, V.; Ramos-Galarza, C. Low-Cost Human—-Machine Interface
for Computer Control with Facial Landmark Detection and Voice Commands. Sensors 2022, 22(23), 9279.
https://doi.org/10.3390/522239279.

5. Zapata, M.; Valencia-Aragon, K.; Ramos-Galarza, C. Experimental Evaluation of EMKEY: An Assistive
Technology for People with Upper Limb Disabilities. Sensors 2023, 23(8), 4049.
https://doi.org/10.3390/s23084049.

6. Project Gameface. Available online: https://blog.google/technology/ai/google-project-gameface/ (accessed
on 14 July 2025).

7. MacLellan, L.E.; Stepp, C.E. Fager, SK. Mentis, M., Boucher, A.R. Abur, D, Cler, GJ.
Evaluating Camera Mouse as a computer access system for augmentative and alternative communication
in cerebral palsy: a case study. Assist. Technol. 2024, 36(3), 217-223.
https://doi.org/10.1080/10400435.2023.2242893

8. Karimli, F; Yu, H,; Jain, S.; Akosah, E.S.; Betke, M.; Feng, W. Demonstration of CameraMouseAl: A
Head-Based Mouse-Control System for People with Severe Motor Disabilities. In Proceedings of the 26th
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2024), Atlanta, GA, USA, 7-10
October 2024; pp. 124:1-124:6. https://doi.org/10.1145/3663548.3688499

9. Yuan, B; Hu, D.; Gu, S;; Xiao, S.; Song, F. The global burden of traumatic amputation in 204 countries and
territories. Front. Public Health 2023, 11, 1258853. https://doi.org/10.3389/fpubh.2023.1258853

10. Mehta, P.; Raymond, J.; Nair, T.; Han, M.; Berry, J.; Punjani, R.; Larson, T.; Mohidul, S.; Horton, D.K.
Amyotrophic lateral sclerosis estimated prevalence cases from 2022 to 2030, data from the National ALS
Registry. ~ Amyotroph. Lateral ~ Scler. ~ Frontotemporal — Degener. ~ 2025, 26(3-4), 290-295,
https://doi.org/10.1080/21678421.2024.2447919

11. Chen, Y.-L. Application of tilt sensors in human-computer mouse interface for people with disabilities.
IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9(3), 289-294. https://doi.org/10.1109/7333.948457

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

19 of 20

12. Mishra, M.; Bhalla, A.; Kharad, S.; Yadav, D. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5(5),
576-583.

13. Ribas-Xirgo, L.; Lopez-Varquiel, F. Accelerometer-Based Computer Mouse for People with Special Needs.
J. Access. Des. All. 2017, 7, 1-20. https://doi.org/10.17411/jacces.v7i1.113

14. Kim, S.; Park, M.; Anumas, S.; Yoo,]J. Head Mouse System Based on Gyro- and Opto-Sensors. In
Proceedings of the International Conference on Biomedical Engineering and Informatics, Yantai, China,
16-18 October 2010. https://doi.org/10.1109/BMEI.2010.5639399

15. Pereira, C.A.M.; Bolliger Neto, R.; Reynaldo, A.C.; Luzo, M.C.M.; Oliveira, R.P. Development and
evaluation of a head-controlled human-computer interface with mouse-like functions for physically
disabled users. Clinics 2009, 64(10), 975-981. https://doi.org/10.1590/51807-59322009001000007

16. Lin, C.-S;; Ho, C.-W.; Chan, C.-N.; Chau, C.-R.; Wu, Y.-C.; Yeh, M.-5. An Eye-Tracking and Head-Control
System Using Movement Increment-Coordinate Method. Opt. Laser Technol. 2007, 39(6), 1218-1225.
https://doi.org/10.1016/j.optlastec.2006.08.002

17. Betke, M,; Gips, J.; Fleming, P. The Camera Mouse: Visual Tracking of Body Features to Provide Computer
Access for People with Severe Disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10(1), 1-10.
https://doi.org/10.1109/TNSRE.2002.1021581

18. Su, M.C,; Su, S.Y.; Chen, G.D. A low-cost vision-based human-computer interface for people with severe
disabilities. Biomed. Eng. Appl. Basis Commun. 2005, 17, 284-292. https://doi.org/10.4015/51016237205000433

19. Naizhong, Z.; Jing, W.; Jun, W. Hand-free head mouse control based on mouth tracking. In Proceedings of
the IEEE International Conference on Computational Science and Education (ICCSE 2015), Cambridge, UK,
22-24 July 2015. https://doi.org/10.1109/ICCSE.2015.7250337

20. Arai, K;; Mardiyanto, R. Camera as Mouse and Keyboard for Handicap Person with Troubleshooting
Ability, Recovery, and Complete Mouse Events. Int. |. Hum. Comput. Interact. 2010, 1(3), 46-56.

21. Ismail, A.; Al Hajjar, A.E.S.; Hajjar, M. A prototype system for controlling a computer by head movements
and voice commands. arXiv 2011, arXiv:1109.1454. https://doi.org/10.48550/arXiv.1109.1454

22. Sawicki, D.; Kowalczyk, P. Head Movement Based Interaction in Mobility. Int.]. Hum.-Comput. Interact.
2017, 34, 653-665. https://doi.org/10.1080/10447318.2017.1392078

23. Abiyev, R.H.; Arslan, M. Head mouse control system for people with disabilities. Expert Syst. 2019, 37(1),
€12398. https://doi.org/10.1111/exsy.12398

24. Rahmaniar, W.; Ma’Arif, A.; Lin, T.-L. Touchless Head-Control (THC): Head Gesture Recognition for
Cursor and Orientation Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1817-1828.
https://doi.org/10.1109/TNSRE.2022.3187472

25. Zelinskyi, S.; Boyko, Y. Using Facial Expressions for Custom Actions: Development and Evaluation of a
Hands-Free Interaction Method. Computer Syst. Inf. Technol. 2024, 4, 116-125. https://doi.org/10.31891/csit-
2024-4-14

26. Zhang, H.; Yin, L.; Zhang, H. A real-time camera-based gaze-tracking system involving dual interactive
modes and its application in gaming. Multimed. Syst. 2024, 30, 15. https://doi.org/10.1007/s00530-023-01204-
9

27. Dlib. Available online: https://dlib.net/python/ (accessed on 17 July 2025)

28. Viola, P.A.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001),
Kauai, HI, USA, 8-14 December 2001; pp. 511-518. https://doi.org/10.1109/CVPR.2001.990517

29. Singh, J.; Modi, N. A robust, real-time camera-based eye gaze tracking system to analyze users’ visual
attention ~ using deep learning. Interact. Learn. Environ. 2022, 30, 409-430.
https://doi.org/10.1080/10494820.2022.2088561

30. Mediapipe. Available online: https://ai.google.dev/edge/mediapipe/solutions/guide (accessed on 15 July
2025)

31. Zhang, K,; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded
Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499-1503.
https://doi.org/10.1109/LSP.2016.2603342

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2025 d0i:10.20944/preprints202507.1514.v1

20 of 20

32. Wu, W,; Peng, H; Yu, S. YuNet: A Tiny Millisecond-level Face Detector. Mach. Intell. Res. 2023, 20, 656—665.
https://doi.org/10.1007/s11633-023-1423-y

33. Casiez, G.; Roussel, N.; Vogel, D. 1€ Filter: A Simple Speed-based Low-pass Filter for Noisy Input in
Interactive Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI "12), Austin, TX, USA, 5-10 May 2012; pp. 2527-2530. https://doi.org/10.1145/2207676.2208639

34. Wang, H.; Sidenmark, L.; Weidner, F.; Newn, J.; Gellersen, H. HeadShift: Head Pointing with Dynamic
Control-Display ~ Gain. ACM Trans. Comput.-Hum. Interact. =~ 2025, 32(1), Article2.
https://doi.org/10.1145/3689434

35. Voelker, S.; Hueber, S.; Corsten, C.; Remy, C. HeadReach: Using Head Tracking to Increase Reachability
on Mobile Touch Devices. In Proceedings of the 2020 ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI ’20), Honolulu, HI, USA, 25-30 April 2020; pp. 739:1-739:12.
https://doi.org/10.1145/3313831.3376868

36. Nancel, M.; Chapuis, O.; Pietriga, E.; Yang, X.-D.; Irani, P.P.; Beaudouin-Lafon, M. High-Precision Pointing
on Large Wall Displays Using Small Handheld Devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '13), Paris, France, 27 April-2 May 2013; pp. 831-840.
https://doi.org/10.1145/2470654.2470773

37. SAPI5 (Dragonfly). Available online: https://dragonfly2.readthedocs.io/en/latest/index.html (accessed on
15 July 2025)

38. Radford, A.; Kim,] W.; Xu, T.; Brockman, G.; McLeavey, C.; Sutskever, I. Robust Speech Recognition via
Large-Scale Weak Supervision. In Proceedings of the 40th International Conference on Machine Learning
(ICML 2023), Baltimore, MD, USA, 23-29 July 2023, pp. 28492-28518.

39. Harada, S.; Wobbrock, J.O.; Landay, J.A. Voice Games: Investigation Into the Use of Non-speech Voice
Input for Making Computer Games More Accessible. In Proceedings of the 13th IFIP TC 13 International
Conference on Human-Computer Interaction (INTERACT 2011), Lisbon, Portugal, 5-9 September 2011;
Lecture Notes in Computer Science, Vol. 6946, pp. 11-29. https://doi.org/10.1007/978-3-642-23774-4_4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1514.v1
http://creativecommons.org/licenses/by/4.0/

