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Article

A Novel Mathematical Formalism for Modeling
Physical Phenomena
Yehonatan Knoll

Independent Researcher; yonatan2806@gmail.com

Abstract

The action principle, which had successfully guided physicists for centuries, now appears to be leading
them into dead ends. The reason for this is conjectured to be its inability to properly represent scale
covariant physics. As a result, absolute notions of large and small emerge, with the size of a human
observer determining which is which. An alternative to the action principle is proposed, rectifying this
relic of anthropocentric bias by postulating that physicists could exist at any scale, all on equal footing.
The consistency between their descriptions of physical phenomena severely restricts the set of their
possible observations. So much so that the set of well-behaved, scale-dependent and compatible fields,
φ(x, λ), representing spacetime phenomena at any scale, λ, could replace the set of fields which are
local extrema of an action, in its role as a “physical law". Observations deemed inexplicable or bizarre
when analyzed at any given scale become inevitable when viewed as mere constant-scale ‘sections’,
φ(x, λ = const), of such ‘scale-orbits’. Among them: Why particles rather than a continuum, and why
must they not be represented by mathematical points? Why Einsteinian/Newtonian gravity seem to
break down at small accelerations? What is the origin of quantum nonlocality? Quantitative agreement
with observations is demonstrated in simple cases while in more complicated cases, exact paths to
solutions are provided.

Keywords: mathematical modeling; multiscale; quantum foundations; nature of matter; missing mass
problem; dipole problem in cosmology

1. Introduction
This paper is about physics, an essential part of which is the activity of knowledge exchange

among physicists, at different locations, different eras, different orientations etc. The Lagrangian
formalism, also referred to as the (extremum-) action principle, is one of several equivalent tools
designed to achieve the common ground necessary for such social activity. Physicist A (mathematically)
representing a studied system by φ, is guaranteed that φ could (in principle) appear in physicist
B’s notes if they use a common action to generate the set of their permissible φ’s. To facilitate
communication between any two physicists there must also exist a consistent set of dictionaries,
translating φA ↔ φB, which is elegantly provided by the symmetry group of the action. The central
role of the Poincaré group in this regard stems from the fact that it provides a necessary and sufficient
set of such dictionaries for the vast majority of physicists ever registered. In this paper we ask: Why
not extend our Poincaré community of physicists to include also physicists of arbitrary scale?

A cynical reviewer might at this point recommend that this manuscript be resubmitted to a scaled
journal, for which there are two good replies. First, to this very day the social activity of physicists is
limited to the firm ground of planet earth and at small relative velocities. Yet the mere act of imagining
the existence of physicists anywhere else and at large velocities relative to us is what brought as so
far, rescuing physics multiple times from long periods of stagnation. Rejecting even the possibility
that physicists could have a size other than that of a physics professor, would be a blatant repetition of
the original sin of anthropocentrism. So why not imagine a giant observer for whom our galaxy, or
even the entire universe is a mere speck of dust? Or miniature ones, experiencing the creation and
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subsequent annihilation of a short-lived subatomic particle over multiple generations?—which leads
to the second reply: We currently don’t know how to identify a scaled physicist. The cynic might object
that we do: Just take all the dynamical fields, φ, and scale them according to

φ(x) 7→ Sλ φ = λα φ(λx) (1)

for some φ-specific scaling exponent α (its inverse ‘length dimension’); that’s the only way to preserve
the multiplicative group property

Sλ2 Sλ1 φ = Sλ2λ1 φ (2)

he would argue. This implies that scaled physicists comprise scaled hydrogen atoms, which are seen
nowhere. Moreover, scaling (1) without alteration of the constants of nature requires physics to be scale
covariant, which it isn’t according to our best understanding.

A detailed model addressing the cynic’s concerns has previously been proposed by the author.
It accepts the premise (1) hence also the conventional action principle which was never meant to be
invariant under (1). There is only a handful of nontrivial scale invariant actions, none of which come
close to being realistic. Attempting realism therefore required a very unorthodox application of the
action principle manifesting in various technical subtleties, which is never a good sign. However,
this is not the main motivation for the current paper. Rather, the form (1) of a scale transformation is
too simplistic for two reasons: First, it is only one part of what occurs when, e.g., zooming out of a
picture, the other part being a coarsening/smoothing operator. Such coarsening is familiar from the
Renormalization Group formalism where φ is assumed to be a scale-dependent effective representation
of some fundamental underlying reality. However, since we can’t allow such assignment of ontological
privilege to any particular scale, φ(x, λ) are equally fundamental irrespective of their λ. Second, even
standalone, (1) presupposes too much about φ. The Hubble expansion, for example, can formally be
viewed as a scale transformation satisfying (2), with the cosmological time playing the role of (the
log of-) λ, but not conforming with (1), in which different structures scale differently depending on
their ‘φ’. Moreover, (1) doesn’t admit a generally covariant extension, which is a prerequisite for any
realistic theory. As (1) results from integrating infinitesimal ‘naive’ scale transformations

λ∂λ φ = x · ∂x φ + αφ ,

a more flexible rescaling would ensue from substituting x · ∂x φ 7→ Z · ∂x φ (generalizing to a Lie
derivative along Z for tensors) where Z is a φ-dependent scaling field determined on consistency
grounds. The α-term could likewise locally depend on Z. Combined with some λ-independent, local
coarsening operator Ĉ, (1) is replaced with

λ∂λ φ = Ŝφ , with Ŝφ := Z · ∂x φ + αφ + Ĉφ (3)

That prescription (3) for scale transformations respects the group property (2) is easily seen by changing
the scale variable to s = ln λ, s ∈ (−∞, ∞), in which case (3) becomes

∂s φ = Ŝφ (4)

and (2) becomes the group property of a flow. Above and throughout the paper φ stands for φ(es, x)
whenever the logarithmic scale s is involved, which should be clear from the context. Crucially, while
the effect of Ĉ, as that of its RG counterpart, is to smooth φ (equivalently, attenuate its high frequencies)
it must not result in a projection, or else scale-flow would be possible only in the forward, viz. +s
direction, with some φ(x, s0) as initial condition, implicitly privileging the scale s0.1 Nonetheless,
since Ĉ is a coarsener, flowing backwards in scale typically leads to a singularity, often at finite-s,

1 The reader should not conflate the reversibility of the RG flow in parameters space with the irreversibility of the coarse-
graining operation on configuration-space variables, typically employed in RG calculations.
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as the high frequencies grow without bound. It further turns out that compatibility with Lorentz
transformations creates a similar problem also in the +s direction. In the proposed formalism, the tiny
subset of solutions of (3) which are well-behaved at any scale, s = ±∞ included, and any x, denoted
by S , plays the role of the set of all extrema of an action.

The set S is determined solely by the form of Ŝ in (3). In other words, given a definition of what
a scale transformation is, the mere requirement of consistency between the descriptions of physical
phenomena at any scale is what defines the laws of physics. Thus each member of S , referred to as a
scale orbit, consists of infinitely many fixed-scale sections, each corresponding to distinct yet compatible
representations of spacetime phenomena at different scales. It should therefore not come as a surprise
that analyzing an individual section not in the context of its full orbit could lead to ‘bizarre physics’.
Critically, unlike in the RG formalism, the scale, s, is not a resolution parameter an experimenter can
always control by changing the equipment with which he observes a system, but rather his native
scale, encapsulating the totality of instruments and materials he uses when arriving at measurement
results. The native scale is an identifier facilitating the dictionary between distinct-scale physicists.
A dwarf and a giant can determine whether they are studying the same system, i.e., whether their
sections are taken from a common orbit, by propagating in scale their sections at their native scale,
to the native scale of the other. Note that by s−translation invariance of (4) one’s native scale is only
defined up to a communal constant, i.e. only relative scales matter. Thus a spacetime phenomenon
(section) which we, humans, regard as being in the realm of condensed matter physics, a dwarf might
label “astrophysical", and so would be his attitude towards us, when slicing the orbit on which we
reside at λdwarf. However, when slicing his orbit at λdwarf he must arrive at a self-representation which
is isomorphic to ours, i.e., φdwarf(x, sdwarf) ∼ φhuman(x, shuman), or else we would not belong to the
same community of physicists (Such distinction between the representations of one’s self and of others
exists also in action based theories, perhaps the most radical example being a physicist boosted to
near light-speed becoming nearly two dimensional). The s-translation invariance of (4) then implies
φdwarf(x, s) ∼ φhuman(x, s − δs) with δs = sdwarf − shuman.

Irrespective of its philosophical merits, the proposed formalism could be used as a phenomeno-
logical tool for modeling physical phenomena, with multi-scale phenomena, e.g., turbulent flow, being
the most natural candidates. However in this paper the main focus is on a model pretending to
be ‘fundamental’. As such, it inevitably interfaces with diverse fields, ranging from astronomy and
cosmology to quantum foundations and the nature of matter. Obviously, no single paper and no single
brain can fully cover the relevant existing body of knowledge. Moreover, the high degree of novelty
involved in the proposed formalism meant that, compromises in mathematical rigor in some of the
proofs/arguments had to be made. Nonetheless, consistent equations for observables are eventually
presented, and solved in simple cases. Hopefully, by the end of the paper, the reader will be more open
to the possibility that the major open problems in physics are, in fact, different facets of a common
problem: An outdated modeling language, still clutching to the belief that we, humans, are special.

2. Exactly Solvable Linear Toy Model
In order for the notion of native scale to be fully meaningful, φ must be rich enough to be

able to describe: the system being observed; the observer—his equipment included; electromagnetic
phenomena involved in most observations etc. This ambitious task is deferred to Sec. 3. A gentle
introduction to the jargon and techniques used in that section is provided by the flow (4) of a time-
independent scalar field in Euclidean D-dimensional space. In choosing the generator of coarsening,
Ĉ, the following properties should be included:

1. Averaging. If φ(xm) is a local maximum (minimum) then Ĉφ(xm) ≤ 0 (≥ 0 resp.)
2. Locality. Ĉ is second order and does not contain higher order derivatives or powers higher than

the first of the second derivative.
3. Equivariance. Ĉ must commute with translations, rotations and reflections in RD.
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The simplest Ĉ satisfying the above is the (D-dimensional) Laplacian, corresponding to the (weighted)
arithmetic average of φ in the neighborhood of a point. There are, of course, other choices correspond-
ing to different averages2 such as: ∇ · (∇ f (φ)) for a monotonically increasing f , or ∇2 φ + |∇g(φ)|2
for any g and combinations thereof (∇ and · are both D-dimensional). The locality clause is a corollary
of averaging. Indeed, in 1-dimension for simplicity, a ∂4

x term added to the Laplacian would increase a
local maximum of φ = −x2 + ax4 at x = 0 for a > 2 × 4!, as would an added

(
∂2 φ

)2 do to φ = −ax2

for a > 1
2 . However, when φ takes values in spaces lacking a clear-cut definition of local extremum,

locality becomes an independent clause, defining the local, infinitesimal neighborhood of a point.
Clause 3 is obviously needed due to the arbitrariness in positioning and orienting one’s coordinate
system. Equivalently, it is what defines the community of physicists in Euclidean space.

Sticking with the Laplacian, and using the simplest scaling field, Zi = xi, (4) becomes

∂s φ = ℓ2
0∇2 φ + x · ∇φ + αφ (5)

with ℓ0 some parameter. It is tempting to attribute a ‘physical dimension of length’ to ℓ0, balancing the
double derivative it multiplies. However, being a description of physics on all scales, the proposed
formalism is inexorably an attempted ‘theory of everything’ and as such ought to be able to represent
any measurement process. And since the result of any measurement is ultimately a dimensionless
number, e.g., the number pointed to by a pointer, or the minimal number of standard-length rods
exactly fitting a line segment, the notion of physical dimensions should ultimately be abolished.
Moreover, since (5) describes a flow in scale, endowing ℓ0 with a dimension of length may lead to
the wrong expectation that it too would flow in scale. Nonetheless, the developmental stage of the
proposed theory is currently insufficient to internally represent any measurement. To make contact
with empirical data associated with sections at our native scale, arbitrarily assigned the value s = 0 or
λ = 1, dimensions will occasionally appear in this paper. Unless stated otherwise, ℓ0 = 1 is assumed,
i.e., the coordinate x at s = 0 is measured in multiples of ℓ0. Note that even this innocuous statement
relies on the existence of an affine structure of space whose physical validation requires an affine
structure of space! Thus without doing away with this circularity via a general covariant extension of
(5) (Sec. 3), our proposal cannot even pretend to be a fundamental physical theory.

2.1. The Particle Basis of φ

Of special interest are fixed-point solutions of the flow (5), i.e. scale-invariant φ, of which fixed-
points which are further global or local attractors stand out. To find the latter we note that, if φ is
integrable at s = 0—the case of a non-integrable φ is dealt with later—its zeroth moment, m0, satisfies
∂sm0 = (α − D)m0 and m0 explodes for |s| → ∞, implying φ /∈ S , unless α = D and m0(s) ≡ 1
without loss of generality by the linearity of (5), or else m0(0) = 0. Assuming the former for now, it
is helpful to represent φ by its cumulants. Taking the Fourier transform of (5) and dividing by the
Fourier transform φ̃ := F φ, which is also the generating function of its moments assumed all to exist,
leads to the following equation for the generating function of the cumulants, Z(k, s) := ln φ̃

∂sZ = −k2 − k · ∇Z , (v · w ≡ viwi , v2 ≡ v · v) (6)

Equation (6) is an infinite set of uncoupled o.d.e.’s for the coefficients of multinomials kn1
1 · · · knD

D ,
whose solutions, ∝ exp(−s ∑i ni), all vanish for s → ∞ except that of k2

1, . . . , k2
D, approaching − 1

2 .
Solving back, φ = F−1 expZ , we get the Gaussian

φG = (2π)D/2e−
1
2 ∑i x2

i

2 An average of a real set b := {xk} is a map A : b 7→ R satisfying min{b} ≤ A ≤ max{b}. Any average can be put into the
form f−1 Ab f where f is some (monotonic) function, b f := { f (x1), f (x2), . . .}, and A is any average, e.g. arithmetic.
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which is therefore a global attractor of the flow (5) for (moment-determinate) functions with well
defined moments to any order at s = 0. However, not all moment determinate φ(x, s = 0) are sections
of orbits in S . A large subset that is, consists of linear combinations, discrete or continuous, of shifted
fixed-point Gaussians. This is so because any such sum has well defined moments to any order and
the effect of the flow on individual Gaussians is a trivial shift

φG(x − x0)|s=0 7→ φG

(
x − e−sx0

)
(7)

We strongly suspect that the converse is also true, namely, that any φ ∈ S can be decomposed
into a linear combination of shifting Gaussians. A formal proof will not be attempted here but the
intuition must be clear: The Laplacian increases (decreases) and ‘sharpens’ φ at its local maximum
(resp. minimum) when flowing in the −s direction of (5), and if the scaling part does not sufficiently
compensate for this, φ wildly diverges at a local extremum. Any section of φ ∈ S must therefore be
‘round’ enough on the scale set by ℓ0(= 1) and if so it should be decomposable into Gaussians of width
ℓ0. A clear illustration of the fate of a function not sufficiently round is provided by a Gaussian of
width less than 1 at s = 0, i.e., Z(0) = −( 1

2 − ϵ)k2. A finite-s singularity is reached at s = 1
2 ln(2ϵ)

where Z vanishes, corresponding to φ which is a ‘delta-function Gaussian’.
Closure under continuous sums is what distinguishes the shifted Gaussians basis of S , referred to

as the ‘particle basis’, from the scaled Fourier basis,

λαeiλk·x− 1
2 λ2k2

; k ∈ RD , λ ≡ es (8)

Although individually in S , infinite sums thereof may still lie outside S , as the above narrow-Gaussian
example demonstrates. Nonetheless, the pseudo basis (8) is not entirely useless. It clearly shows the
rapid decay of waves when their wave-vector is contracted beyond the cutoff frequency (ℓ−1

0 ) and will
serve us in the sequel.

Returning to the case of non-integrable, or integrable but zero m0, the corresponding fixed-points
of (5) are fl(r)Ym

l (Ω) in D = 3 for a suitable fl , l ≥ 1, vanishing at r = 0, which happen to have a r−3

asymptotic tail hence are non-integrable. It can be shown that the basin of attraction of each consists
only of itself, rendering it uninteresting from our perspective.

Full justification for the name “particle" attached to Gaussians of width ℓ0 and 0th-moment equal
to 1 (or any other normalization) will have to await section 3 but some can already be given at this stage.
If physicists of different native scales are to have isomorphic self-representations—their laboratory
etc. included—and if physicists exist at arbitrarily large or small scales (but not necessarily at any
scale) then they must all consist of the same particles and their ‘oppositely charged’ antiparticles—
Gaussians of width ℓ0 and 0th-moment −1. Otherwise particle-antiparticle pairs would not get fully
annihilated when flowing via (7) in the +s direction. As a result, the ‘vacuum’ would get increasingly
contaminated with particles of arbitrary charge. Conversely, the vacuum could only acquire content
when zooming into an empty patch of it, if particle-antiparticle pairs are created out of it. Note that the
decomposablility of φ into a discrete sum of particles is required by the fact that φ would otherwise
trivialize to a uniform φ ≡ 0 for s → −∞. Thus our model requires for its consistency both particles
and the quantization of their charge. Moreover, in the point-particle limit, ℓ0 → 0, it would take
s → ∞ for any pair to annihilate even approximately, contradicting the existence of scaled physicists.
Point-particles, which are the source of all evil in mathematical physics, are excluded from the outset.

2.2. Adding Time Dependence

How should the flow (5) be generalized for a time-dependent φ? Guided by the equivariance
clause with the Poincaré group replacing the isometry group of Euclidean space, the unique general-
ization reads

∂s φ = ∇2 φ − ∂tt φ + x · ∇φ + t∂t φ + αφ (9)
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Multiplying the ∂tt φ term is a (ℓ0/c)2 coefficient, assumed to equal 1 unless stated otherwise. In
covariant notations (9) reads

∂s φ = □2 φ + xµ∂µ φ + αφ (10)

with □2 ≡ ηµν∂µ∂ν and ηµν = ηµν := diag(-1,1,1,1). Readers experiencing unease from the appearance
of Lorentz symmetry out of the blue are referred to [3]; It has been known since the early years
of Relativity Theory that Lorentz transformations were only serendipitously discovered within the
framework of electrodynamics. This symmetry group (the Galilean group being a limiting case
thereof) is an inevitability when the meaning of synchronized clocks is logically analyzed—which is
essentially what is being done in this paper with regard to scale transformations. Thus our proposed
time-dependent generalization of ∇2 φ(x, t) inexorably involves values of φ at times other than t, but
not because space and time form a ‘spacetime’ continuum—the Minkowskian/geometric view (if
that were the case then ∂tt would be expected to have the opposite sign). Instead, space and time
are fundamentally distinct and are mixed together on consistency grounds; without such mixing no
community of physicists would exist.

Generalizing static particles are—naturally—moving particles and in particular uniformly so,
obtained by boosting a static particle solution. In D = 1 for simplicity, the boost explicitly reads
φG(x, s) 7→ φG(γ(x − vt), s) with γ =

√
1/(1 − v2), making the Lorentz contraction of the particle in

the direction of motion manifest. Uniformly moving particles are therefore all members of S , but are
all members of S such? More accurately: Do they form a basis for S? To answer this question, (9) is
first integrated over three-space. Assuming the integral exists results in the following equation for the
zeroth moment

∂sm0 = −∂ttm0 + t∂tm0 + (α − D)m0 (11)

Plugging a scaled Fourier ansatz m0(ω; t, s) = fω(s) exp(iesωt) and continuing with the α = D case,
we get: d

ds fω = ω2 fω implying fω ≡ 0 ∀ω ̸= 0 or else it explodes for s → ∞. For ω = 0, fω is some
constant which can be assumed to equal 1 by the linearity of (9). We conclude that m0 which is constant
in both time and scale is a necessary condition for the corresponding φ to lie in S . Next, consider the
generalization of equation (6) for the time-dependent cumulants of φ,

λ∂λZ = −k2 − ∂ttZ + (∂tZ)2 + t∂tZ − k · ∇Z (12)

similarly obtained by Fourier transforming (9) and dividing by φ̃(k, t, λ). Using (12) we first argue that
the instability of the flow (9) in the −s direction, which mandates particles, in and of itself does not
further mandate their uniform motion. To show this we plug the following ansatz into (12), continuing
with D = 1 for clarity

Z(k, λ, t) =
∞

∑
n=1

cn(λt, λ)kn =
∞

∑
n=1

(
∞

∑
m=n−1

cm
n (λt)λ2m−n

)
kn (13)

where cm
n is a double-indexed function of the scaled time alone. Equating the coefficient of each power

of k to zero in increasing powers of λ (note that the series is missing the n = 0 term by our result
c0 ≡ ln m0 = 0). Starting with c−1

1 , dictating the asymptotic scaling form of the center-of-mass, i.e.
λ−1c−1

1 (λt), we see that it decouples from all other terms in the limit λ → 0 and can be an arbitrary
function. Successive terms, ck

1, can then be iteratively computed as the (∂tZ)2 term does not contain the
first power of k, and the ∂tt term pulls out an extra factor of λ2, e.g., c1

1 = − 1
2

...
c −1

1 , c3
1 = − 1

4
...
c 1

1, . . . (all
evaluated at the scaled time λt). For c−1

1 with bounded time derivatives to all orders, the power series
of c1 clearly converges for λ < 1. Moving to n = 2, the leading order of (minus the-) variance reads
c0

2 = − 1
2 (1 − v2) with v = c̈−1

1 again manifesting the Lorentz contraction. Higher order corrections, ck
2,

can then be calculated in terms of
...
c k−2

2 and products c̈p
1 c̈q

1, p + q = k − 2 coming from the nonlinear

term, e.g., c2
2 = 1

4

(
− ...

c 0
2 + 2c̈−1

1 c̈1
1

)
. . .. The leading order term of the third cumulant, the so called

“skewness", reads λc1
3 = λ 2

3 v2v̈. It is likewise a relativistic effect in which the ‘front’ and ‘back’ of an
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accelerating (extended) particle experience different Lorentz contractions. Continuing this way, cm
n can

be computed in terms of c−1
1 and its first n − 1 derivatives. The results in a convergent power series

for each at λ < 1. As cn = O(λn−2), at small enough scale the shape of a particle is approximated
arbitrarily well by that of a uniformly moving particle (appropriately Lorentz contracted in the direction
of motion). The leading order correction appear in the form of a particle’s skewness in the direction
of acceleration (predicated on relativistic velocities). We conclude that a sufficient condition for φ to
well-behave at small scales is that it approaches a scaling particle solutions, generalizing the static-
particle result and, as in that case, we conjecture that any φ ∈ S approaches a sum of moving-particle
solutions at small scales. Although much more difficult to prove, there is no apparent reason why this
conclusion should not carry to nonlinear scale-flows in the case of a single particle, and this conjecture
shall play a central role in Sec. 3. However, unlike in the linear case, single particle solutions cannot be
superposed, hence the “‘basis" in “particle basis" becomes a misnomer. Instead, it is conjectured that
any φ ∈ S must approach at small scales a discrete sum of non-overlapping moving-particle solutions.

Returning to our original question, of whether c−1
1 necessarily describes a uniformly moving

particle, we turn to the fate of such a well localized moving particle solution at small λ, entirely
encoded in the single function c−1

1 , when it flows to large λ, outside the convergence radius of the
each cumulant’s power series. We prove that the answer is positive, viz., unless c−1

1 describes a globally
freely moving particles, λ−1c−1

1 (λt) = ζfree := λ−1x0 + vt for some x0 and v, its corresponding φ is not
in S . This is due to a new flow instability in the +λ direction, introduced by the minus sign of the
∂tt term in (9). To prove this, consider the equation for the center of the particle ζ ≡ c1 (switching
notations in order to not overload the upper index)

λ∂λζ i = −∂ttζ
i + t∂tζ

i − ζ i , i = 1, . . . , D (14)

obtained by equating the coefficients of ki in (12) to zero (i not a power!). Now plug into (14) the most
general solution

ζ i(t, λ) = ζ i
free(λ, t) + λ−1 ∑

ω

Ai
ω eiλωt+ 1

2 ω2λ2
(15)

with the sum representing also an integral, and the Aω’s are the Fourier coefficients of ζ i(1, t). Clearly,
unless Ai

ω ≡ 0, and insofar as φ still describes a localized particle, this particle (wildly) moves around
unbounded for λ → ∞ which in and of itself implies φ ̸∈ S . However, moving to higher order
cumulants, which are all morphological attributes of a particle-like φ hence independent of ζ i, a similar
divergence occurs, implying either the divergence φ or its complete delocalization.

Another way of seeing why only uniformly moving particles appear in S is by decomposing a
non-uniformly moving particle solution at s = 0 into its space-time Fourier components, and letting
them each flow to s = ∞. Their evolution in scale is just (8) with k · x meaning kµxµ (and k2 ≡ kµkµ).
Waves with k2 > 0 are strongly attenuated at large λ, while those with k2 < 0 blow-up. Now, it is
easily verified that any non-uniform, or uniform but superluminal motion at s = 0, must have some
time-like (k2 < 0) Fourier components in its decomposition, expelling the orbit on which it resides
from S . This method is applicable also to possible superpositions of non-uniformly moving particles
having ζ = ζfree for their joint φ. Rather than resorting to murky causal paradoxes, or to our current
inability to accelerate masses beyond the speed of light, the proposed formalism rejects Tachyons on
simple mathematical grounds. The dominance of waves with light-like k’s can also be appreciated
even before moving to more complicated models.

3. A Realistic Model
The alert reader must have anticipated the main result of the previous section, namely, that S

consists of freely moving particles. By linearity, particles can move through one another uninterrupted
and if so, they are noninteracting particles which should better have straight paths. Enabling their
mutual interaction therefore requires some form of nonlinearity, either in the coarsener, Ĉ, or in
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the scaling part. Further recalling our commitment to general covariance as a precondition for any
fundamental physical theory, nonlinearity is inevitably and, in a sense, uniquely forced upon us. A
nonlinear model also supports a plurality of particles, having different sizes which are different from
the common ℓ0 in a linear theory. This frees ℓ0, ultimately estimated at ∼ 1020 km, to play a role at
astrophysical scales.

Our realistic model involves a spin-1, α = 1 field: The A-field. A straightforward (and unique up
to terms involving the curvature) way to render a differential operator generally covariant is through
the minimal-coupling prescription, of ‘dotting the commas’ which can be applied to the ‘Maxwell
coarsener’ ηµν□2 − ∂µ∂ν. The scaling piece of an α = 1 covariant vector is just its Lie derivative with
respect to the scaling field, Zµ, defined below. Combined, the scale flow of Aµ reads

∂s Aµ = ℓ2
0
(
∇ν∇ν Aµ −∇ν∇µ Aν

)
+ (LZ A)µ (16)

with
(LZ A)µ ≡ Zν∇ν Aµ +∇µZν Aν (17)

the Lie derivative of Aµ with respect to Zµ. In flat spacetime and Zµ(x) = xµ, (17) reduces to ‘naive’
α = 1 scaling, (LZ A)µ → xν∂ν Aµ + Aµ. Equation (16) prescribes the generally covariant scale-flow of a
vector in one particular coordinate system common to all scales. Thus S is partitioned into equivalence
classes, the members of each are related by some coordinate transformation.

Analyzing an α = 1 model in D = 3 space is much more difficult as no moment of the associated
particle exists. This is clearly seen already in a linear, naive scaling, flat-space model. A non-spinning,
viz., A ≡ 0, fixed-point reads

A0(r) :=
1
r

erf
(

r√
2 ℓ0

)
(18)

having a non-integrable r−1 tail. To facilitate the analysis of such extended particles, we define a
auxiliary α = 3 model for the center(oid) of Aµ

Jµ := −∇ν∇ν Aµ +∇ν∇µ Aν ≡ −∇νFνµ ≡ − 1√−g
∂ν
(√

−gFνµ

)
(19)

Operating with ∇µ on (19), using the antisymmetry of Fµν := ∇µ Aν −∇ν Aµ, the commutators of
covariant derivatives[

∇µ,∇ν

]
Vα = Rα

ρµνVρ ,
[
∇µ,∇ν

]
Tαβ = Rα

ρµνTρβ + Rβ
ρµνTαρ , etc. (20)

and the symmetries of the Riemann tensor, gives ∇µ Jµ ≡ 0, i.e., Jµ is covariantly conserved at any scale,

s. Operating with Ŵ µ
ρ := −∇α∇αg µ

ρ +∇ρ∇µ on (16), the second term of this operator annihilates
the coarsener by the above remarks. The scaling piece combines the covariant generalization of the flat
spacetime conversion α = 1 7→ 3 with a novel nonlinear term (see Sec.3.2 below). On the l.h.s. we have
Ŵ µ

ρ ∂s Aµ. We would like to swap the order of W and ∂s, which would give ∂s Jν by (19). However,

Ŵ µ
ρ could implicitly depend on the scale s through gµν. Nonetheless the order is swapped and we

shall review the approximation involved in doing so once gµν is determined. The combined result
finally reads

∂s Jν = ℓ2
0∇α∇α Jν + Ŵ µ

ν (LZ A)µ (21)

more suited for analysis. For example, in the case of flat spacetime and naive scaling, Zµ = xµ, the
particle solution of the J-field associated with (18) is the familiar Gaussian J0 = e−r2/2ℓ2

0 from the
previous sections. It is emphasized that Jµ and its associated scale flow are merely analytic tools, not
to be put on equal footing with Aµ and its flow. As the nonlinear term arising from scaling does not
involve Jµ but rather Aµ, for a given Aµ and gµν, (21) describes the linear but inhomogeneous (in both
spacetime and scale) flow of Jµ.
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Relation (19) is formally equivalent to Maxwell’s equations with Jµ sourcing Aµ’s wave equation.
However, Jµ is not an independent object as in classical electrodynamics but a marker of the locus of
privileged points at which the Maxwell coarsener does not annihilate Aµ (distinct Aµ’s differing by
some ∂µΛ therefore have identical Jµ’s). For Jµ and Aµ to mimic those of classical electrodynamics, Jµ

must also be localized along curved worldlines traced by solutions of the Lorentz force equation in Aµ

(which as already shown in the scalar case, necessitates a nonlinear scale flow). And just like in the
scalar-particle case, where higher order cumulants (n > 2) are ‘awakened’ by its center’s nonuniform
motion, deforming its stationary shape, so does the Aµ “adjunct" (in the jargon of action-at-a-distance
electrodynamics) to each such Jµ gets deformed. Due to the extended nature of an A-particle, and
unlike in α = 3 models3, these deformations at (t, x) are not encoded in the local motion of its center at
time t, but rather on its motion at retarded and advanced times, t ± |x| (assuming flat spacetime for
simplicity). However, associating such temporal incongruity with ‘radiation’ can be misleading, as it
normally implies the freedom to add any homogeneous solution of Maxwell’s equations to Aµ which
is clearly nonsensical from our perspective. Consequently, the retarded solution cannot be imposed on
Aµ and in general, Aµ contains a mixture of both advanced and retarded parts, which varies across
spacetime. The so-called radiation arrow of time manifested in every macroscopic phenomenon must
therefore receive an alternative explanation (see Sec. 3.4.2).

Now, why should Jµ be confined to the neighborhood of a worldline? As already seen in the
linear, time-dependent case, a scale-flow such as (16) suffers from instability in both s-directions: In
the −s direction it is due to the spatial part of the coarsener, whereas in +s direction it is its temporal
part. If we examine the scale flow of Aµ inside a ‘lab’ of dimension much smaller than ℓ0, centered at
the origin without loss of generality, then the coarsener completely dominates the flow. It follows that
Aµ ∈ S requires that it be almost annihilated by Ŵ µ

ρ , or else it would rapidly diverge. This can be true
if either: the scale of variation of Aµ is on par with ℓ0 or greater—as in the case of our static, Gaussian

fixed-point; or else Ŵ µ
ρ Aρ ≈ 0, except around privileged points where the scaling-field grows to the

order of ℓ0, balancing the non-vanishing coarsener piece. This is where Jµ is focused, as shown in Sec.
3.1.2 below. “Almost" is emphasized above because exact annihilation would leave a flow governed
entirely by scaling. It is precisely the fact that, at distances from Jµ that are much smaller than ℓ0, the
action of the coarsener is on the order of that of the scaling piece, which gives rise to nontrivial physics.
This will be a recurrent theme in the rest of the paper.

3.1. Determining the Metric and the Scaling Field

The flow (16) of Aµ requires specifying both gµν(x, λ) and Zµ(x, λ) in a generally covariant way.
Starting with the former, we seek the scale flow of gµν. It is well known that, in Riemannian geometry,
the Ricci tensor is the unique, symmetric generally covariant tensor which can be constructed from
the metric tensor and its first two derivatives and does not contain higher power than the first of its
second derivative. By our definition of a coarsener, this leaves Ĉ = Rµν + bgµνR with Rµν := Rα

µαν

and R := Rµ
µ, as the only permissible coarsener for some constant b. Now, the flow (16) of Aµ is

‘guided’ by gµν via the minimal coupling prescription. On consistency grounds the flow of gµν must
also be guided by Aµ, or else the gravitational field would not focus around matter. The simplest way
to achieve this mutuality is through the use of the (symmetric) canonical energy-momentum tensor

Θµν = FµρF ρ
ν − 1

4 gµνFρσFρσ (22)

peaking around Jµ, which leads to the following scale flow of gµν:

∂sgµν = ℓ2
g
(

Rµν + bgµνR − 4πG Θµν

)
+ (LZg)µν (23)

3 Retarded/advanced effects persist even in α = 3 models. In Sec. 2.2 it was shown that cn(t) depends on the first n − 1 time
derivatives of c1(t), implicitly ‘informing’ it about c1(t′) at t′ ̸= t
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with ℓg, G and b some constants, and

(LZg)µν ≡ Zρ∇ρgµν + gρν∇µZρ + gρµ∇νZρ = ∇µZν +∇νZµ (24)

The global sign of the coarsener piece reflects Weinberg’s sign convention for the Riemann tensor

Rµ
αβγ = −

(
Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓσ
γα − Γµ

σγΓσ
βα

)
Taking the covariant divergence of (23), and using ∇µ

(
Rµν − 1

2 gµνR
)
≡ 0 (as a result of the Bianchi

identity) implies that

∇µ
(
−4πGℓ2

g Θµν + (LZg)µν − ∂sgµν +
(

b + 1
2

)
ℓ2

ggµνR
)
= 0 (25)

is a necessary condition for (23) to have a solution. Defining

−4πGℓ2
g Pµν := (LZg)µν (26)

equation (25) can be rewritten as

∇µ
(
Θµν + Pµν

)
= − 1

4πGℓ2
g
∇µ∂sgµν +

b + 1
2

4πG
∂νR (27)

Postulating that energy-momentum conservation is recovered in the limit gµν → ηµν mandates b = − 1
2 ,

nullifying the last term on the r.h.s. of (27), which is assumed henceforth. The possibility that gravity
is essentially involved in the structure of elementary matter [4], and consequently gµν → ηµν is
nonphysical, has not been explored.

3.1.1. Determining Zµ in the Flat Spacetime Approximation

Assuming gµν = ηµν leads to significant simplification when determining Zµ, and is therefore
considered first. In this approximation covariant derivatives appear as ordinary derivatives, (27)
reduces to energy-momentum conservation

∂µTµν ≡ ∂µ
(
Θµν + Pµν

)
= 0 (28)

and (LZg)µν = ∂µZν + ∂νZµ. By virtue of definition (19) of Jµ (Maxwell’s equations) and ∂µ F̃µν ≡ 0
(F̃µν := ϵµνρσFρσ) alone, Poynting theorem is satisfied identically

∂µΘµν = −Fνµ Jµ (29)

hence (28) implies
∂µPµν = Fνµ Jµ (30)

Maxwell’s equations (19), along with (29) and (30), referred to henceforth as the basic tenets of classical
electrodynamics, are nowadays taken as the definition of classical electrodynamics, encapsulating its
experimental success while avoiding the traditional use of the Lorentz force equation of a point charge,
with its infamous, unresolved classical self-force problem.

Equations (26) and (30) result in four second order equations for the four components of the
scaling vector Zµ,

□2Zν + ∂ν∂µZµ = −4πGℓ2
g Fνµ Jµ (31)

which, together with the boundary condition Zµ → xµ away from matter, define Zµ up to a solution of
the homogeneous equation (31). Continuity in s severely, if not completely, removes this remaining
freedom.
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Summarizing, as a corollary of defining the scale flow of the metric, a definition of the scaling field
at each scale λ was obtained, constrained by continuity in λ. A generalization to curved spacetime
follows by adding the r.h.s. of (27) (with b = − 1

2 ) to the r.h.s. of (31),

∇µ∇µZν +∇µ∇νZµ = −4πGℓ2
g Fνµ Jµ +∇µ∂sgµν (32)

and using a covariant form for the boundary condition

Pµν → − 1
2πGℓ2

g
gµν far away from matter (33)

3.1.2. Time Independent Fixed-Point Aµ

Now that Aµ depends on Zµ via (16), and Zµ on Aµ via (31), the nonlinear nature of the flow
(16) can be appreciated, as well as the indirect mixing of A0 and A through Zµ, even in the time-
independent case. Analyzing and solving the fixed-point solutions of the nonlinear system (16)(31)
in the general, time-independent case, deserves a separate paper. Here we analyze the spherically
symmetric, non-spinning (A ≡ 0) case in order to demonstrate how the nonlinearity introduces a
second length scale, governing particle physics, which unlike ℓ0 is an attribute of the solution rather
than a parameter of the model.

For A0 ≡ φ(r), A ≡ 0, the r.h.s. of (30) is an outwards-pointing radial force xi f (r) with

f (r) :=
(

2
φ′2

r2 +
φ′φ′′

r

)
Plugging

Zi = xi + zi ≡ xi + xiz(r) , Z0 = x0 + h(r) (34)

into (31) with boundary conditions z(∞) = 0, z′(0) = 0 (for the Laplacian to be well-defined at the
origin) and h′(0) = h(∞) = 0 translates into h = 0 and a second order ODE for z(r)

2z′′ +
8z′

r
= −4πGℓ2

g f , z(∞) = 0, z′(0) = 0 (35)

Setting ∂s A0 = 0 in (16) gives

ℓ2
0

(
φ′′ +

2φ′

r

)
+ r(1 + z)φ′ + φ = 0 , φ(∞) = 0, φ′(0) = 0 (36)

The system (35)(36) is symmetric under Aµ 7→ −Aµ, zµ 7→ zµ, guaranteeing that fixed-points come in
particle-antiparticle pairs, which is true also in the general case. Since z(∞) = 0 ⇒ φ(∞) = 0, the
system is under-determined, i.e., its solutions involve four integration constants satisfying only three
independent conditions, therefore specifying a one-parameter family of solutions. Solutions of (35) are

z(r) = −2πGℓ2
g

∫ r

0
dr′
∫ r′

0 dr′′ r′′4 f (r′′)
r′4

+ 2πGℓ2
g

∫ ∞

0
dr′
∫ r′

0 dr′′ r′′4 f (r′′)
r′4

(37)

A particle solution is defined by J0 ≈ 0, hence also f (r) ≈ 0, for r ≳ rp, where rp is the particle’s radius
(‘matter’). Inside matter f (r) > 0, implying z(r) > 0.

Using f (0) = 1
3ℓ4

0
φ2(0), obtained from the analytic solution near r = 0, the system (35)(36) can be

numerically integrated from r = 0 using φ(0) as a free parameter, adjusting z(0) to meet z(∞) = 0,
with the result that rp monotonically and unboundedly decreases with increasing φ(0).

The Poincaré stress-energy tensor (26) reads

Pij = − 1
2πGℓ2

g

(
ηij(1 + z) +

xixj

r
z′
)

, P00 =
1

2πGℓ2
g

, P0i = 0 (38)
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consisting of a z-independent ‘vacuum energy-momentum’ piece, − 1
2πGℓ2

g
ηµν, entirely due to the

boundary condition (33), and a particle-specific, O(ℓ−4
0 ) z-dependent piece, pµν, which is colocalized

with J0. The trace of pij is positive inside matter; Poincaré would have interpreted this as the negative
pressure holding the particle against its internal Coulomb expansion, and the nontrivial scaling field,
xiz, as the displacement vector due to the Coulomb stress. Since the positive ‘Coulomb pressure’ inside
a charged particle is on the order of q2/r4

p, and p i
i ∼ z/ℓ4

0, equilibrium inside matter requires a huge
(dimensionless) z (for rp a typical subatomic scale, e.g., the classical electron radius or the proton’s
radius, and ℓ0 ∼ 1020 km, z ∼ 10150). Outside matter z ∼ r−3, rendering pij traceless. Note that the p00

component vanishes thus the particle’s energy is attributable entirely to its electrostatic self-energy
Θ00. Remarkably, attributes of a particle derived from Pµν, e.g. its mass, all depend on ℓ0, which is also
involved in gravity, while those derived from Jµ further depend on G and ℓg.

In conclusion of this section, a few final remarks. First, the above particle solution, although
involving a nonlinearity, must not be conflated with soliton solutions of nonlinear PDEs, having a long
history in modeling of particles. The existence of particles in the proposed formalism does not hinge
on the flow being nonlinear (as seen in Sec. 2), but rather on a unique scaling operation countering
the coarsener, therefore requiring a large scaling field inside a small particle. Second, at large r, the
scaling piece completely dominates the fixed-point equation, exactly annihilating only the monopole,
∼ r−1, of Jµ. No higher order multipoles are therefore part of a fixed-point solution at r > ℓ0 (it would
take, e.g., α = 2 for the dipole). However, since electro- and magneto-statics are only testable at scales
much smaller than ℓ0, higher order multipoles, required by a spinning particle, need only extend
to distances≪ ℓ0, where the coarsener completely dominates, exactly annihilating any term in the
multipole expansion. Second, charge quantization could be explained by cosmological considerations,
of the type discussed at the end of Sec. 2.1. As in the linear case, and as seen in the spherically
symmetric solution, fixed-points depend on a continuous parameter, controlling all their attributes
this time, which is ‘spontaneously’ fixed at its observed value by a global consistency condition.
Alternatively, charge quantization may arise just from the fixed-point condition for a spinning particle,
where the reduced symmetry of the solution eliminates said free parameter. Finally, some/most/all
real-world particles are likely represented by time-dependent solutions, which are fixed-points only
in the statistical sense, when averaged over sufficiently long yet microscopic time intervals. Since
p00 ∝ ∂0z0, the time-averaged energy

∫
d3xp00 would vanish nonetheless. The time dependence of

such solutions would need to be chaotic, with a scale invariant power spectrum up to some cutoff
frequency. Analyzing the properties of such dynamical fixed-points is suited for a statistical theory,
complementing the proposed realistic model on such issues, which allegedly is quantum mechanics
and its generalization; see Sec. 3.3

3.1.3. A Particle’s Gravitational Field

Moving one step beyond the flat spacetime approximation, the distortion to ηµν caused by a
fixed-point particle is calculated, assuming first that it is a static particle. To this end the flat metric is
replaced with a static metric

g00 = −(1 − Φ) , gij = ηij(1 + Φ) , gi0 = g0i = 0 , |Φ| ≪ 1 (39)

with non-vanishing Christoffel symbols

Γ0
i0 = − 1

2 ∂iΦ , Γi
00 = − 1

2 ∂iΦ , Γi
jk =

1
2

(
∂jΦηi

k + ∂kΦηi
j − ∂iΦηjk

)
(40)

and we seek a fixed-point solution of the metric flow (23), with Tµν := Θµν + Pµν now calculated using
(39) instead of ηµν. Substituting (39) into (23) and setting ∂sgµν = 0 gives

∇2Φ = 4πG
(
Θ00 + pmet

00
)
+

2
ℓ2

g
(41)
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with pmet
00 being the metric part of p00, resulting from ∂0z0 7→ ∇0z0 in (26) (the matter part vanishes;

see previous section), and the vacuum piece (33) of Pµν, now reading Pvac
00 = (1 − Φ)/(2πGℓ2

g) ≈
1/(2πGℓ2

g). Since in Newtonian gravity, a uniform background density can have no consistent, non-
vanishing effect, the tiny Pvac

00 is ignored in this section, reinterpreted in the context of a cosmological
model, Sec. 3.4.

In arriving at (41) we assumed Zi ≈ xi to leading order in Φ, which can be verified given ∇2Φ = 0.
The scaling piece coming from the Lie derivative, explicitly appearing in the fixed-point equation (36)
for Aµ, appears to be missing from (41). This is because it has been absorbed into pmet

00 :

pmet
00 ≈ − 1

4πGℓ2
g

(
xi + zi

)
∂iΦ (42)

Moving pmet
00 to the l.h.s. of (41), using zi ≪ xi outside matter from the previous section, we obtain the

fixed-point equation for an inhomogeneous flow of a scalar Φ

ℓ2
g

(
∇2Φ − 4πGΘ00

)
+ xi∂iΦ = 0 (43)

with the zi∂iΦ term inside matter omitted by our assumption that gravity plays a negligible role
in the structure of matter. At distances from the source smaller than ℓg, ultimately estimated at
ℓg ∼ 1020 − 1023km, solutions of (43) are approximately the usual solutions of Newtonian gravity,
Φm = −m/|x|, with m =

∫
d3xΘ00. A covariant generalization of (41) would be

Rµν − 1
2 gµνR = 4πG

(
Θµν + Pµν

)
(44)

which is just Einstein’s fields for G 7→ − 1
2 G. The physical meaning of gµν solving (44) is only revealed

through its effect on Aµ, and in the following sections the reason for this peculiar coefficient of G
becomes apparent. Note that Pµν now involves solutions to the wave equation (32) and, consequently,
the uniform vacuum energy in (41) becomes nonuniform and time-dependent (having ‘vacuum
ripples’) possibly having an observable effect in strong fields.

In most realistic scenarios, Θµν is time-dependent, focused on the worldline, ζ(t, λ), of a particle.
The flow of the adjunct metric perturbation solving (23) then involves a form more general then (39):
gµν = ηµν + hµν,

∣∣hµν

∣∣ ≪ 1, with hµν also time-dependent. However, for non relativistic ζ(t, λ) the
flow of Φ ≡ h00 takes the simple form

λ∂λΦ = ℓ2
g

(
∇2Φ − ∂ttΦ − 4πGΘ00

)
+ xi∂iΦ + t∂tΦ (45)

with the negligible −∂ttΦ term above retained for the pedagogical reason: A solution for a uniformly
moving ζ can then be obtained by simply boosting the previous static perturbation as in Sec. 2.2
(though only to nonrelativistic velocities for consistency). For a non-uniform ζ, we first note the
freedom to choose the scaling center at will: If Φ(x, t, λ) solves (45) with Θ00 focused on ζ(t, λ), then
so does Φ(x − λ−1x′, t − λ−1t′, λ) with ζ 7→ ζ(t − λ−1t′, λ) + λ−1x′ for any x′, t′. Using this freedom
we can focus on any point on the worldline traced by ζ, assuming t = 0. It is then readily verified that
at sufficiently small accelerations,

...
ζ (e.g., for a path ζ := λ−1ζscl(λt) in its scaling regime), Φm(x − ζ)

becomes a pointwise, arbitrarily good solution for (45) in a neighborhood,

|x − ζ| ≤ c2|
...
ζ |−1 ≪ ℓg (46)

Since outside this neighborhood Φm ≈ 0, the standard, Newtonian approximation

Φ(x, t, λ) ≈ ∑
p

Φmp(x − ζk(t, λ)) (47)
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where ‘p’ is a particle label, becomes an arbitrarily good, point-wise, global solution of (45). The time
and scale dependence of Φ is therefore entirely inherited from that of {ζk}.

As Φ (47) flows to larger λ the approximation (46) it involves gradually breaks due to the shrinkage
of that neighborhood of ζ at large accelerations. Moreover, for relativistic ζ, the flow equation for
components other than h00 are no longer satisfied automatically, and (45) is to be replaced with

λ∂λhµν = ℓ2
0

(
G(1) − 4πG

(
Θµν + Pµν

))
where G(1) is the usual linearized Einstein tensor. The linearized EFE must then be satisfied in the
ℓ0-neighborhood of ζ for hµν to not rapidly diverge at large λ.

3.2. The Motion of Matter Lumps in a Weak Gravitational Field

Equation (47) prescribes the scale flow of the metric (in the Newtonian approximation), given
the a set, {ζk(t, λ)}, of worldlines associated with matter lumps. To determine this set, an equation
for each ζk(t, λ), given Φ(t, x, λ), is obtained in this section. This is done by analyzing the scale flow
of the first moment of J0 associated with a general matter lump, using (21). An obstacle to doing so
comes from the fact that, ζ(t, λ) now incorporates both gravitation and electromagnetic interactions in
a convoluted way, as the existence of gravitating matter depends on it being composed of charged
matter. In order to isolate the effect of gravity on ζ(t, λ), we first analyze the motion of a body in the
absence of gravity, i.e., gµν ≡ ηµν, Zµ = xµ + zµ with xµ the Minkowskian coordinates. To this end
we first need to better understand the scale flow (21) of Jµ. Using (17) and (19) plus some algebra the
scaling piece in (21) reads

Ŵ µ
ν LZ Aµ = xµ∂µ Jν + 3Jν + Mν (48)

with
Mν := ∂µ Mµ

ν := ∂µ

(
∂ρzµF ρ

ν + ∂µzρF ρ
ν + ∂νzρF µ

ρ − ∂ρzρF µ
ν + zµ Jν

)
(49)

The first two terms in (48) are the familiar α = 1 7→ α = 3 conversion, to which a ‘matter vector’, Mν,
is added, consisting of inhomogeneous terms, and the homogeneous, ∂µ(zµ Jν) term, modifying naive
scaling in a way which conserves-in-scale charge for a time-independent J0

Zµ = xµ 7→ xµ + zµ , α = 3 7→ 3 + ∂µzµ (50)

In the absence of gravity, the swapping of Ŵ µ
ν and ∂s leading to the l.h.s. of (21) is fully justified.

Combined, we then get
∂s Jν = ℓ2

0□
2 Jν + xµ∂µ Jν + 3Jν + Mν (51)

Since ∂ν Jν ≡ 0, taking the divergence of (51) implies ∂ν Mν ≡ 0 ⇒
∫

d3x M0 := M(s), viz., a
conserved-in-time ‘matter charge’. Defining q(s) :=

∫
d3x J0 the (conserved in time-) electric charge,

and integrating (51) over three-space implies d
ds q = M(s) i.e., electric charge is conserved in scale if

and only if the matter charge vanishes. That the latter is identically true follows from

M =
∫

d3x ∂j M
j
0 +

∫
d3x ∂0M0

0 = 0 + 0 (52)

where the vanishing of the second integral follows, after integration by parts, from the explicit form
(49) of ∂0M0

0.
Next, multiplying (51) by xi/q and integrating over a ball, B, containing a body of charge q, results

in
λ∂λζ i = −ℓ2

0 ∂ttζ
i + t∂tζ

i − ζ i + q−1
∫

B
d3x xi M0(x, t, s) (53)

where ζ i(t, s) = q−1
∫

B d3x xi J0(x, t, s) is an object’s ‘center-of-charge’. Above and in the rest of this
section, the charge of a body, assumed nonzero for simplicity, is only used as a convenient tracer of
matter.
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The integral in (53) is the first moment of a distribution, M0, whose zeroth moment vanishes. It
vanishes identically for a spherically symmetric M0, and even for a skewed M0, the result is a constant,
w ≪ ℓ0, at most on the order of the support of M0. For a particle’s path not passing close to the scaling
enter (without loss off generality), w ≪ |ζ|. This integral term is therefore ignored for the rest of the
paper, and the reader can easily verify that its inclusion would have had a negligible influence on the
results.

With said integral ignored, (53) becomes (14). And as proved in that case, solutions for ζ i must
all be straight, non tachyonic worldlines. The effect of gravity on those is derived by including a
weak field in the flow of the first-moment projection of (21). Since gravity is assumed to play a
negligible role in the structure of matter, the way this field enters the flat spacetime analysis is via
the scaling field, Zµ = xµ + zµ 7→ z̃µ + zµ, with z̃µ incorporating the metric, and by ‘dotting the
commas’ in partial derivatives. Before analyzing the first moment we note that, the previous zeroth-
moment analysis can be repeated with ∂ 7→ ∇, at most introducing curvature-terms corrections due
to the non-commutativity of covariant derivatives (20), which can be neglected in the Newtonian
approximation. As for the swapping of Ŵν

µ and ∂s made in arriving at (51), using Fµν ≡ ∂µ Aν − ∂ν Aµ

(viz., ordinary derivatives can replace covariant ones) in the definition (19) of Jµ, it is easily established
that the swapping introduces an error equal to 1

2 Fνµ∂s∂ν ln(−g) ≈ Fνµ∂s∂νΦ with the determinant
g = |gµν| ≈ −1 − 2Φ. This error is negligible when competing with ∂s∂νFνµ, containing extra spatial
derivatives of Aµ at its center. Thus J0 is not only covariantly conserved in time, which can be written
∂µ
(√−gJµ

)
= 0, by virtue of the last identity in (19), but also in scale,∫

d3x
√
−gJ0(x, t, λ) ≡ q (54)

Continuing in the Newtonian approximation of the metric (39) for simplicity, and further assuming
non-relativistic motion, i.e., ||Ji|| ≪ ||J0|| (say, in the L1 sense), a straightforward calculation to first
order in Φ, incorporating ∇2Φ = 0, gives

□2
GR J0 ≡ ∇α∇α J0 ≈ −(1 + Φ)∂tt J0 + (1 − Φ)∂j

(
∂j J0 + ∂jΦJ0

)
(55)

Ignoring O(Φ) corrections to the isotropic coarsener, the net effect of of the potential in the Newtonian
approximation is to render the coarsener anisotropic through its gradient. Multiplying (51) with the
modified d’Alembertian (55) by

√−gxi/q ≈ (1 + Φ)xi/q and integrating over B, the (1 + Φ) cancels
(to first order in Φ) the (1 − Φ) factor multiplying the spatial piece in (55), which is then integrated by
parts, assuming ∂iΦ is approximately constant over the extent of the body. Since z̃µ = xµ + O(Φ) and
∇µ J0 ≈ ∂µ(J0(1 + O(Φ))) the modification to the scaling piece (48) only introduces an O(Φ) correction
to the −ζ i term in (53) which is neglected in the Newtonian approximation. Further neglecting the
O(Φ) contribution to the double time-derivative piece, the first moment projection of (21) finally reads

λ∂λζ i = ℓ2
0

(
−∂ttζ

i − ∂iΦ(ζ, t, λ)
)
− ζ i + t∂tζ

i (56)

This equation is just (14) with an extra ‘force-term’ on its r.h.s. which could salvage a non uniformly
moving solution, ζ i, from the catastrophic fate at λ → ∞ suffered by its linear counterpart.

At sufficiently large scales, λ, when all relevant masses contributing to Φ occupy a small ball of
radius ≪ ℓ0 centered at the origin of scaling without loss of generality, the scaling part on the r.h.s
of (56) becomes negligible compared with the force term, rather benefiting from such crowdedness
(t ≪ ℓ0 can similarly be assumed without loss of generality). It follows that each |ζ| would grow—
extremely rapidly as we show next—with increasing λ even when the weak-field approximation is
still valid, implying that the underlying Aµ is not in S . The only way to keep the scale evolution of ζ

under control is for the acceleration term to similarly grow, almost canceling the force term but not
quite, which is critically important; it is the fact that the sum of these two terms, both originating
from the coarsener, remains on the order of the scaling term, which is responsible for a nontrivial, non
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pure scaling ζ. This means that each worldline converges at large scales to that satisfying Newton’s
equation

∂ttζ
i = − ∂iΦ(ζ, t, λ) (57)

At small scales the opposite is true. The scaling part dominates and any scaling path, i.e., ζ i(t, λ) =

λ−1ζ i
scl(λt) is well behaved. Combined: at large scales ζ i is determined, then simply scaled at small

scales, gradually converging locally to a freely moving particle. Finally, (57) must be true also for a
loosely bound system, e.g. a wide binary moving in a strong external field, implying that Newton’s
law applies also to their relative vector, not merely to their c.o.m.

Deriving a manifestly covariant generalization of (56) is certainly a worthwhile exercise. However,
in a weak field the result could only be

λ∂λζµ = ℓ2
0

(
−∂ττζµ − Γ̄µ

νρ∂τζν∂τζρ
)
+ τ∂τζµ − z̃µ (58)

with τ some scalar parameterization of the worldline traced by ζµ. Above, Γ̄µ
νρ is the Christoffel

symbols associated with gµν(x, λ;−2G), i.e., the analytic continuation of the metric, seen as a function
of Newton’s constant, to −2G. Recalling from Sec. 3.1.3 that the fixed-point gµν is a solution of the
standard EFE analytically continued to G 7→ − 1

2 G, Γ̄ in that case is therefore just the Christoffel symbol
associated with standard solutions of EFE’s. The previous, Newtonian approximation is a private
case of this, where Φ contains a factor of G. Note however that the path of a particle in our model
is a covariantly defined object irrespective of the analytic properties of gµν. Resorting to analyticity
simply provides a constructive tool for finding such paths whenever gµν is analytic in G. In such cases,
the covariant counterpart of (57) becomes the standard geodesic equation of GR which gives great
confidence that this is also the case for non-analytic gµν.

The reasons for trusting (58) are the following. It is manifestly scale- and general-covarinat, as
is our model; it is τ-shift invariant, i.e., ζµ(τ − λ−1τ′, λ), parameterizing the same, scale dependent
world-lines, also solves (58) for any τ′; At nonrelativistic velocities in a Minkowskian background,
ζt ≡ t ≈ τ solves (58) which, when substituted into the i-components of (58), recovers (56); The
scaling regime ansatz, ζµ(τ, λ) ∼ ζ

µ
scl(λτ, λ), solves λ∂λζ

µ
scl = −z̃µ(ζscl, λ), i.e., each point on the

world-line traced by ζµ, indexed by a fixed λτ, flows along integral curves of the scaling field—as
must be the case when the coarsener is negligible; It only involves local properties of ζµ and gµν, i.e.,
their first two derivatives, which must also be a property of a covariant derivation, as is elucidated
by the non-relativistic case. Thus (58) is the only candidate up to covariant, higher derivatives terms
involving ζµ and gµν, or nonlinear terms in their first or second derivatives, all becoming negligible in
weak fields/ at small accelerations.

In conclusion of this section we wish to relate (58) to the fact that Tµν is not covariantly conserved
by virtue of (27). It was well known already to Einstein that the geodesic equation follows from local
energy-momentum conservation under reasonable assumptions. Similarly, the Lorentz force equation
follows quite generally from the basic tenets of classical electrodynamics (30),(29),(19). Referring to
Figure 1, both results are derived by integrating ∇µTµν = 0 over a world-cylinder, C, with the ∂ττζν

term obtained by converting part of the volume integral into a surface integral over the Σ’s via (a
relativistic generalization of-) Stoke’s theorem, leaving the remaining part for the ‘force term’, which
gives Γ̄µ

νρ∂τζν∂τζρ in the case of gravity. The integral over T represents small radiative corrections to
the geodesic/Lorentz-force equation which can be ignored in what follows. A crucial point in that
derivation is that the result is insensitive to the form of C so long as the Σ’s contain the support of the
particle’s energy-momentum distribution. This insensitivity would not carry to the r.h.s. of (27) should
it be transferred sides, whether or not gµν is to include the self-field of the particle. Thus attempting to
generalize the geodesic equation based on (27), in the hope that it would reproduce fixed-λ sections
of (58) solutions, is bound to fail. Nonetheless, since the conservation-violating r.h.s. of (27) is a tiny
O(ℓ−2

g ), it can consistently be ignored for any reasonable choice of C whenever the individual terms
in the geodesic equation are much larger, i.e., at large scales; it is only at small scales that each term
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becomes comparable to the r.h.s. even for reasonable choices of C. And since in the limit ℓ0 → ∞
paths become simple geodesics at any scale according to (58), the two length parameters, ℓ0, ℓg are not
independent, constrained by consistency of solutions such as the above, and likely additional ones
involving the structure of matter, as hinted to by the fixed-point example in Section 3.1.2.

Figure 1. A 1 + 1 cross section of a world cylinder whose boundary consists of two space-like surfaces, Σ and
a time-like world tube T. The integral over T results in radiative corrections, ignored at small accelerations.
Figure adapted from appendix D of arXiv:0902.4606v10 [quant-ph] where a detailed derivation of the Lorenz force
equation can be found.

3.2.1. Application: The Rotation Curve of Disc Galaxies

As a simple application of (56), let us calculate the rotation curve, v(r), of a scale-invariant mass,
M, located at the origin, as it appears to an astronomer of native scale λ = 1. Above, r is the distance
to the origin of a test mass orbiting M in circles at velocity v. Since Φ in (56) is time-independent, the
time-dependence of ζ i can only be through the combination Ω(λ)t for some function Ω. Looking for a
circular motion solution in the x1 − x2 plane,

ζ1(λ, t) = r(λ) sin
(
Ω(λ)t

)
, ζ2(λ, t) = r(λ) cos

(
Ω(λ)t

)
and equating coefficients of sin(Ωt) and cos(Ωt) for each component, the system (56) reduces to two,
first order ODE’s for Ω(λ) and r(λ). The equation for Ω readily integrates to Ω = ωλ for some
integration constant ω, and for r it reads

λ
dr
dλ

= ℓ2
0

(
λ2ω2r − GM

r2

)
− r (59)

Solutions of (59) with r(1) ≡ r1 as initial condition, all diverge in magnitude for λ → ∞ except for
a single value of ω for which r(λ) → 0 in that limit; for any other ω′ ≷ ω, r(λ) rapidly diverges
to ±∞ respectively; the map r1 7→ ω is invertible. We note in advance that, for a mistuned ω this
divergence starts well before the weak field approximation breaks down due to the r−2 term, and
neglected relativistic and self-force terms become important, and being so rapid, ∼ eλ2

, those would
not tame a rogue solution. It follows that there is no need to complicate our hitherto simple analysis in
order to conclude that ω′ = ω is a necessary conditions for r to correspond to an Aµ ∈ S .

Solutions of (59) which are well-behaved for λ → ∞ admit a relatively simple analytic form.
Reinstating c and defining λ̄ := ωℓ0λ/c the result is

r(λ̄) :=

(
GMℓ2

0
6c2

)1/3
1
λ̄

[
6λ̄ −

√
6πe

3
2 λ̄2
(

erf
(√

3/2 λ̄
)
− 1
)]1/3

, (60)
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having the following power law asymptotic forms

r(λ̄) ∼
(

GMℓ2
0

c2

)1/3

×

λ̄−2/3 for λ̄ ≫ 1 , ‘coarsening regime’(
π
6
)1/6

λ̄−1 for λ̄ ≪ 1 , ‘scaling regime’
(61)

with the corresponding asymptotic circular velocity, v = (ωλ)r

v(λ̄) ∼
(

GMc
ℓ0

)1/3
×

λ̄1/3 for λ̄ ≫ 1,(
π
6
)1/6 for λ̄ ≪ 1

(62)

With these asymptotic forms the reader can verify that, in the large λ̄ regime, (57), which in this case
takes the form:

v2

r
=

GM
r2 (63)

is indeed satisfied for any λ̄.
It is conjectured that the above result generalizes as follows to the case, of multiple, gravitationally

interacting, scale-independent masses mp (p a particle index): The smooth, λ-dependent family of
solutions ζp(t, λ) to (56)(47) for a bound system, approaches

ζp(t, λ) ∼
λ≫1

λ−2/3ζN
p (λt) (64)

at large scale, where
{

ζN
p

}
are Newtonian paths of interacting point-masses

{
mp
}

. The scaling form
(64) is an exact symmetry of Newtonian gravity, and it seems impossible that the flow (56)(47) could
approach a different, smooth family of Newtonian solutions.

Finally, for a scale-dependent mass in (59), an r(λ; ω) is obtained by the large-scale regularity
condition which is not of the form r

(
λ̄
)
. This results in a rotation curve v(r1) ≡ ω(r1)r1 which is not

flat at large r1, and an r(λ) which, depending on the form of M(λ), may not even converge to zero at
large λ.

Moving, next, to a more realistic representation of disc galaxies. For a general gravitational
potential, Φ, sourced via (47) by a planar, axially symmetric mass density Tmat

00 (ρ)—ρ being the
radial distance from the galactic axis in the galactic plane—and for a test mass circularly orbiting the
symmetry axis in the galactic plane, the counterpart of (59) reads

λ
dr
dλ

= ℓ2
0

(
ω2λ2r − ∂ρΦ(r, λ)

)
− r (65)

The time-independent mass density, Tmat
00 , is approximated by a (sufficiently dense) collection of

concentric line-rings, each composed of a (sufficiently dense) collection of particles evenly spaced
along the circumference. Next, recall that in the above warm-up exercise, the solution of (65) for each
such particle is well behaved only for one, carefully tuned value of ω. This sensitivity results form
instability of the o.d.e. (65) in the +λ direction, inherited from that of Aµ, and is not a peculiarity of
the Coulomb potential. To find the rotation curve one needs to simultaneously propagate with (65)
each ring—or rather a single representative particle from each ring—rr1(λ), using an initial guess
for ω(r1) (where r1 is now a ring index, labeling the ring whose radius at λ = 1 equals r1, viz.,
rr1(1) = r1). Unlike in the previous case, the (mean-field) Newtonian potential of the disc at scale
λ, Φ(ρ, λ), solution of (41), must be re-computed at each λ. The rotation curve is obtained as that
(unique) guess, ω(r1), for which no ring diverges in the limit λ → ∞. In so finding the rotation curve
the scale dependence of individual particles comprising the disc needs to be specified. If those are
fixed-point particles then their mass is scale-independent by definition. Moreover, as mentioned above,
a scale-dependent mass leads to manifest contradictions with observations. In light of this, a scale
independent mass is assumed modulo some caveats discussed in Sec. 3.4. Note the implication of the
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scale-invariant-mass approximation, applicable to any gravitating system: Although ζ i(t, s = 0) is
the desired spacetime path, by construction and the s-translation invarinace of (56), ζ i(t, s) for any s
would also be a permissible path at s = 0. In other words, (56) with the regularity condition at s → ∞,
generates a continuous family of spacetime paths which could be observed at any fixed native scale,
s = 0 in particular.

The algorithm described above for finding the rotation curve, although conceptually straight-
forward, could be numerically challenging and will be attempted elsewhere. However, much can be
inferred from it without actually running the code. Mass tracers lying at the outskirts of a disc galaxy,
experience almost the same, −MG/r potential, where M is the galactic mass, independently of λ. This
is clearly so at λ = 1, as higher order multipoles of the disc are negligible far away from the galactic
center, but also at larger λ, as all masses comprising the disc converge towards the center, albeit at
different paces. The analytic solution (61) can therefore be used to a good approximation for such
traces, implying the following power-law relation between the asymptotic velocity, vf, of a galaxy’s
rotation curve and its mass, M,

M =

(
6
π

)1/2 ℓ0

Gc
v3

f (66)

Such an empirical power law, relating M and vf, is known as the Baryonic Tully-Fisher Relation (BTFR),
and is the subject of much controversy. There is no concensus regarding the conssistency of observations
with a zero intrinsic scatter, nor is there an agreemnet about the value of the slope—3 in our case—when
plotting log M vs. log vf. Some groups [5] see a slope ∼ 3 while other [6] insisting it is closer to 4 (both
‘high quality data’ representatives, using primary distance indicaors). While some of the discrepancy
in slope estimates can be attributed to selection bias and different methods of estimating the galactic
mass, the most important factor is the inclusion of relatively low-mass galaxies in the latter. When
restricting the mass to lie above ∼ 1010M⊙, almost all studies support a slope close to 3. The recent
study [7] which includes some new, super heavy galaxies, found a slope ∼ 3.26 and a log M/M⊙-axis
intercept of ∼ 3.3 for the massive part of the graph. Since the optimization method used in finding
those two parameters is somewhat arbitrary, imposing a slope of 3 and fitting for the best intercept is
not a crime against statistics. By inspection this gives an intercept of ∼ 4.2, consistent with [5], which
by (66) corresponds to ℓ0 ∼ 4.6 × 1020 km.

With an estimate of ℓ0 at hand, yet another prediction of our model can be put to test, pertaining
to the radius at which the rotation curve transitions to its flat part. The form (61) of r(λ) implies
that the transition from the scaling to the coarsening regime occurs at λ̄ ≈

√
2/3. At that scale the

radius assumes a value rtr ≈
(

MGℓ2
0/c2)1/3

= vf ℓ0/c. Using standard units where velocities are
given in km/s and distances in kpc, gives rtr ≈ 1

20 vf. Now, in galaxies with a well-localized center—a
combination of a massive bulge and (exponential) disc—most of the mass is found within a radius
rM < rtr, lying to the right of the Newtonian curve’s maximum. Approximating the potential at r ≥ rM

by −GM/r, the transition of the rotation curve from scaling to coarsening, with its signature rise from
a flat part seen in Figure 2, is expected to show at rtr, followed by a convergence to the galaxy-specific
Newtonian curve. This is corroborated in all cases—e.g. galaxies NGC2841, NGC3198, NGC2903,
NGC6503, UGC02953, UGC05721, UGC08490... in fig.12 of [8]
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Figure 2. The rotation curve v(r) ≡ ω(r)r|λ=1 obtained from (60) by setting λ = 1 (blue). The Newtonian curve
for the same parameters (red).

The above sanity checks indicate that the rotation curve predicted by our model cannot fall too
far from that observed, at least for massive galaxies; it is guarantied to coincide with the Newtonian
curve near the galactic center, depart from it approximately where observed, eventually flattening at
the right value.

However, the above checks do not apply to diffuse, typically gas dominated galaxies, several
orders of magnitude lighter. More urgently, a slope= 3 is difficult to reconcile with [6] which finds
a slope≈ 4 when such diffuse galaxies are included in the sample. Below we therefore point to two
features of the proposed model possibly explaining said discrepancy. First, our model predicts that
vf attributed in [6] to such galaxies would turn out to be a gross overestimation should their rotation
curves be significantly extended beyond the handful of data points of the flat portion. To see why,
consider an alternative solution strategy for finding a rotation curve (which may also turn out to be
computationally superior):
1. Start with a guess for the mass distribution of a galaxy at some large enough scale, λ>, such that its
rotation curve is fully Newtonian (If our conjecture regarding (64) is true then the flow to even larger
λ is guaranteed not to diverge for any such initial guess).
2. Let this Newtonian curve flow via (65)(47) to λ = 1—no divergence problem in this, stable direction
of the flow—comparing the resultant mass distribution at λ = 1 with the observed distribution
3. Repeat step 1 with an improved guess based on the results of 2, until an agreement is reached.
By construction the solution curve is Newtonian at λ>, having a v ∼

√
GM/r tail past the maximum,

whose rightmost part ultimately evolves into the flat segment at λ = 1. We can draw two main
distinctions between the flows to λ = 1 of massive and diffuse galaxies’ rotation curves. First,
since the hypothetical Newtonian curve at λ = 1—that which is based on baryonic matter only—is
rising/leveling at the point of the outmost velocity tracer in the diffuse galaxies of [6], we can be
certain that this tracer was at the rising part/maximum of the λ> curve, rather than on its v ∼

√
GMr

tail as in massive galaxies. This means that, in massive galaxies, the counterpart of the short, flat
segment of a diffuse galaxy’s r.c., is rather the short flat segment near its maximum, seen in most such
galaxies near the maximum of the hypothetical Newtonian curve. Second, had tracers further away
from the center been measured in diffuse galaxies, the true flat part would have been significantly
lower relative to this maximum than in massive galaxies. With some work this can be shown via the
inhomogeneous flow of v ≡ λωr derived from (65)

λ̄∂λ̄v = λ̄2v − ∂ρΦ(r, λ̄)λ̄ (67)
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where r is a solution of (65) (re- expressed as a function of λ̄). The gist of the argument is that, solutions
of (67) deep in the coarsening regime, upon flowing to smaller λ̄, decay approximately as λ̄1/3, whereas
in the scaling regime they remain constant (see also (62)). In massive galaxies the entire flow from
λ̄> to λ̄ = 1 of a tracer originally at the maximum of the r.c. is in the coarsening regime, while in
diffuse galaxies it is mostly in a hybrid, coarsening scaling intermediate mode. The velocity of that
tracer relative to the true vf therefore decays more slowly in diffuse galaxies. Note that to make the
comparison meaningful a common λ> must be chosen for both galaxies such that v

(
λ̄>
)
/vf is equal in

both.
The second possible explanation for the slopes discrepancy, which could further contribute to

an intrinsic scatter around a straight BTFR, involves a hitherto ignored transparent component of
the energy-momentum tensor. As emphasized throughout the paper, the A-field away from a non-
uniformly moving particle (almost solving Maxwell’s equations in vacuum) necessarily involves
both advanced and retarded radiation. Thus even matter at absolute zero constantly ‘radiates’, with
advanced fields compensating for (retarded) radiation loss, thereby facilitating zero-point motion of
matter. The A-field at spacetime point (t, x) away from neutral matter is therefore rapidly fluctuating,
contributed by all matter at the intersection of its worldline with the light-cone of (t, x). We shall refer
to it as the Zero Point Field (ZPF), a name borrowed from Stochastic Electrodynamics although it does
not represent the very same object. Being a radiation field, the ZPF envelopes an isolated body with
an electromagnetic energy ‘halo’, decaying as the inverse distance squared—which by itself is not
integrable!—merging with other halos at large distance. Such ‘isothermal halos’ served as a basis for a
‘transparent matter’ model in a previous work by the author [2] but in the current context its intensity
likely needs to be much smaller to fit observations. Space therefore hosts a non-uniform ZPF peaking
where matter is concentrated, in a way which is sensitive to both the type of matter and its density.
This sensitivity may result both in an intrinsic scatter of the BTFR, and in a systematic departure from
ZPF-free slope=3 at lower mass. Indeed, in heavy galaxies, typically having a dominant massive center,
the contribution of the halo to the enclosed mass at rtr is tiny. Beyond rtr orbiting masses transition
to their scaling regime, minimally influenced by additional increase in the enclosed mass at r. The
situation is radically different in light, diffuse galaxies, where the ratio of ρZPF/ρbaryon is much higher
throughout the galaxy, and much more of the non-integrable tail of the halo contributes to the enclosed
mass at the point where velocity tracers transition to their scaling regime. This under estimation of the
effective galactic mass, increasing with decreasing baryonic mass, would create an illusion of a BTFR
slope greater than 3.

3.2.2. Other Probes of ‘Dark Matter’

Disc galaxies are a fortunate case in which the worldline of a body transitions from scaling to
coarsening at a common scale along its entire worldline (albeit different scales for different bodies).
They are also the only systems in which the velocity vector can be inferred solely from its projection on
the line-of-sight. In pressure supported systems, e.g., globular clusters, elliptical galaxies or galaxy
clusters, neither is true. Some segments of a worldline could be deep in their scaling regime while
others in the coarsening, rendering the analysis of their collective scale flow more difficult. One solution
strategy leverages the fact that, all the worldlines of a bound system are deep in their coarsening
regime at sufficiently large scale, where their fixed-λ dynamics is well approximated using Newtonian
gravity. Starting with such a Newtonian system at sufficiently large λ>, the integration of (56) to
small λ is in its stable direction, hence not at risk of exploding for any initial choice of Newtonian
paths. If the Newtonian system at λ> is chosen to be virialized, a ‘catalog’ of solutions of pressure
supported systems extending to arbitrarily small λ can be generated, and compared with line-of-sight
velocity projections of actual systems. As remarked above, the transition from coarsening to scaling
generally doesn’t take place at a common scale along the worldline of any single member of the system.
However, if we assume that there exists a rough transition scale, λtr, for the system as a whole in
the statistical sense, which is most reasonable in the case of galaxy clusters, then immediate progress
can be made. Since in the scaling regime velocities are unaltered, the observed distribution of the
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line-of-sight velocity projections should remain approximately constant for λ < λtr, that of a virialized
system, viz., Gaussian of dispersion σv. On the other hand, at λ > λtr a virialized system of total mass
M satisfies

σv ≈
√

GM/r (68)

where σv is the velocity dispersion, and r is the radius of the system, which is just (63) with σv 7→ v.
On dimensional grounds it then follows that σv would be the counterpart of v f from (66), implying
σv ∝ M1/3 which is in rough agreement with observations. The proportionality constant can’t be
exactly pinned using such huristic arguments, but its observed value is on the same order of magnitude
as that implied by (66).

Applying our model to gravitational lensing in the study of dark matter requires better under-
standing of the nature of radiation. This is murky territory even in conventional physics and in next
section initial insight is discussed. To be sure, Maxwell’s equations in vacuum are satisfied away from
Jµ, although only ‘almost so’, as discussed in Sec. 3. However, treating them as an initial value problem,
following a wave-front from emitter to absorber is meaningless for two reasons. First, tiny, O(ℓ−1

0 )

local deviations from Maxwell’s equations could become significant when accumulated over distances
on the order of ℓ0. Second, in the proposed model extended particles ‘bump into one another’ and their
centers jolt as a result—some are said to emit radiation and other absorb it, and an initial-value-problem
formulation is, in general, ill-suited for describing such process. Nonetheless, incoming light—call it a
photon or a light-ray—does posses an empirical direction when detected. In flat spacetime this could
only be the spatial component of the null vector connecting emission and absorption events, as it is the
only non arbitrary direction. A simple generalization to curved spacetime, involving multiple, freely
falling observers, selects a path, ζµ, everywhere satisfying the light-cone condition ζ̈2(τ) ≡ 0. Every
null geodesic satisfies the light-cone condition, but not the converse. In ordinary GR, the only non
arbitrary path connecting emission and absorption events which respects the light-cone condition and
locally depends on the metric and its first two derivatives is indeed a null geodesic. In our model,
a solution of (58) which is well behaved on all scales, further satisfying the light-cone condition for
λ → ∞, is an appealing candidate: It must (almost) be a null geodesic in strong fields/at large scales,
and when transitioning to weak fields/small scales, the light-cone condition inherited from large scales
is preserved by the scaling operation; Indeed, denoting ζ̈µ ≡ ∂τζµ, applying ∂τ to both sides of

∂sζµ = τζ̈µ − z̃µ(ζ, s)

multiplying the result by gµν ζ̈ν, one gets

∂s ζ̈2 = τ∂τ

(
ζ̈2
)
+ 2ζ̈2 (69)

In arriving at (69) use of (23) has been made in converting ∂sgµν to spacetime derivatives of gµν and z̃µ,
and a term ℓ2

gGµν ζ̈µ ζ̈ν has been neglected (which is justified in the context of cosmology, discussed in
Sec. 3.4.2). Likewise, all spacetime derivatives of gµν have been neglected (weak field domain). It then
follows that ∂s ζ̈2(τ, s) ≡ 0 if ζ̈2(τ, s) ≡ 0.

Furthermore, in GR the deflection angle of a light ray due to gravitational lensing, by a compact
gravitating system of mass M, is ϕ = 4GM/(c2R), where R is the impact parameter. When ζµ is in
its scaling regime, our model’s ϕ remains constant. If the system is likewise in its scaling regime,
(68) implies that its virial mass, Mvir = σ2

v r/G, scales according to Mvir 7→ λ−1Mvir, as does the
impact parameter of ζµ, R 7→ λ−1R. The conventional mass estimate based on the virial theorem,
of this λ-dependent family of gravitating systems, would then agree with that which is based on
(conventional) gravitational lensing, Mlens = c2Rϕ/4G, up to a constant, common to all members—
recall that this entire family appears in the ‘catalog’ of λ = 1 systems. Extending this family to large λ,
the two estimates will coincide by construction. Thus if the system and ζ i transition approximately at
a common λ, this proportionality constant can only be close to 1. This is apparently the case in most
observations pertaining to galaxy clusters. Nonetheless, the two methods according to our model need
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not, in general, produce identical results. The degree to which they disagree depends on the exact
scale-flow of ζµ, which is one of those calculations avoided thus far, involving a path non-uniformly
(in scale) transitioning from coarsening to scaling.

A final caveat regarding the application of (58) is that, we have no reason to expect that the
light-cone condition is satisfied exactly (other than in the λ → ∞ limit). Nonetheless, in and of itself
this caveat does not invalidate such solutions, even as candidates for exact solutions, so long as no
conflict with observations arises.

3.3. Quantum Mechanics as a Statistical Description of the Realistic Model

The basic tenets of classical electrodynamics (19), (29) and (30), which must be satisfied at any scale
on consistency grounds (up to neglected curvature terms), strongly constrain also statistical properties
of ensembles of members in S , and in particular constant-λ sections thereof. In a previous paper by
the author [1] it was shown that these constraints could give rise to the familiar wave equations of
QM, in which the wave function has no ontological significance, merely encoding certain statistical
attributes of the ensemble via the various currents which can be constructed from it. It is through this
statistical description that h̄ presumably enters physics, and so does ‘spin’ (see below).

This somewhat non-committal language used to describe the relation between QM wave-
equations and the basic tenets is for a reason. Most attempts to provide a realist (hidden variables)
explanation of QM follow the path of statistical mechanics, starting with a single-system theory,
then postulating a ‘reasonable’ ensemble of single-systems—a reasonable measure on the space of
single-system solutions—which reproduces QM statistics. Ignoring the fact that no such endeavor
has ever come close to fulfillment, it is rarely the case that the measure is ‘natural’ in any objective
way, effectively defining the statistical theory/measure (uniformity over the impact parameter in an
ensemble representing a scattering experiment being an example of an objectively natural attribute of
an ensemble). Even the ergodicity postulate, as its name suggests, is a postulate—external input. When
sections of members in S are the single-systems, the very task of defining a measure on such a space, let
alone a natural one, becomes hopeless. The alternative approach adopted in [1] is to derive constraints
on any statistical theory of single-systems respecting the basic tenets, showing that QM non-trivially
satisfies them. QM then, like any measure on the space of single-system solutions, is postulated rather
than derived, and as such enjoys a fundamental status, on equal footing with the single-system theory.
Nonetheless, the fact that the QM analysis of a system does not require knowledge of the system’s
orbit makes it suspicious from our perspective. And since a quantitative QM description of any system
but the simplest ones involves no less sorcery than math, that fundamental status is still pending
confirmation (refutation?).

Of course, the basic tenets of classical electrodynamics are respected by all (sections of-) members
of S , not only those associated Dirac’s and Schrödinger’s equations. The focus in [1] on ‘low energy
phenomena’ is only due to the fact that certain simplifying assumptions involving the self-force can be
justified in this case. In fact, the current realization of the basic tenets, involving fields only instead of
interacting particles, is much closer in nature to the QFT statistical approach than to Schrödinger’s.

3.3.1. The Origin of Quantum Nonlocality

“Multiscale locality", built into the proposed formalism, readily dispels one of QM’s greatest
mysteries—its apparent non-local nature. In a nutshell: Any two particles, however far apart at our
native scale, are literally in contact at sufficiently large scale.

Two classic examples where this simple observation invalidates conventional objections to local-
realist interpretations of QM are the following. The first is a particle’s ability to ‘remotely sense’ the
status of the slit through which it does not pass, or the status of the arm of an interferometer not
traversed by it (which could be a meter away). To explain both, one only needs to realize that for a
giant physicist, a fixed-point particle is scattered from a target not any larger than the particle itself,
to which he would attribute some prosaic form-factor; At large enough λ the particle literally passes
though both arms of the interferometer (and through none!). This global knowledge is necessarily
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manifested in the paths chosen by it at small λ. Of course, at even larger λ the particle might also
pass through two remote towns etc., so one must assume that the cumulative statistical signature of
those infinitely larger scales is negligible. A crucial point to note, though, is that the basic tenets, which
imply local energy-momentum conservation at laboratory scales, are satisfied at each λ separately.
For this large-λ effect to manifest at λ = 1, local energy-momentum conservation alone must not be
enough to determine the particle’s path, which is always the case in experiment manifesting this type
of nonlocality. Inside the crystal serving as mirror/beam-splitter in, e.g., a neutron interferometer,
the neutron’s classical path (=paths of bulk-motion derived from energy-momentum conservation) is
chaotic. Recalling that, what is referred to as a neutron—its electric neutrality notwithstanding—only
marks the center of an extended particle, and that the very decomposition of the A-field into particles is
an approximation, even the most feeble influence of the A-field awakened by the neutron’s scattering,
traveling through the other arm of the interferometer, could get amplified to a macroscopic effect.
This also provides an alternative, fixed-scale explanation for said ‘remote sensing’. In the double-slit
experiment such amplification is facilitated by the huge distance of the screen from the slits compared
with their mutual distance.

The second kind of nonlocality is demonstrated in Bell’s inequality violations. As with the
first kind, the conflict with one’s classical intuition can be explained both at a fixed scale, or as a
scale-flow effect. Starting with the former, and ever so slightly dumbing down his argument, Bell
assumes that physical systems are small machines, with a definite state at any given time, propagating
(deterministically or stochastically) according to definite rules. This generalizes classical mechanics,
where the state is identified with a point in phase-space and the evolution rule with the Hamiltonian
flow. However, even the worldlines of particles in our model, represented by sections of members in
S , are not solutions of any (local) differential equation in time. Considering also the finite width of
those worldlines, whose space-like slices Bell would regard as possibly encoding their ‘internal state’,
it is clear that his modeling of a system is incompatible with our model; particles are not machines, let
alone particle physicists. Spacetime ‘trees’ involved in Bell’s experiments—a trunk representing the
two interacting particles, branching into two, single particle worldlines—must therefore be viewed
as a single whole, with Bell’s inequality being inapplicable to the statistics derived from ‘forests’ of
such trees.4 This spacetime-tree view gives rise to a scale-flow argument explaining Bell’s inequality
violations: The two branches of the tree shrink in length when moving to larger scale, eventually
merging with the trunk and with one another. Thus the two detectors at the endpoints of the branches
cannot be assumed to operate independently, as postulated by Bell.

3.3.2. Fractional Spin

Fractional spin is regarded as one of the hallmarks of quantum physics, having no classical analog,
but according to [1], much like h̄, it is yet another parameter—discrete rather than continuous—entering
the statistical description of an ensemble. At the end of the day, the output of this statistical description
is a mundane statement in R3, e.g., the scattering cross-section in a Stern-Gerlach experiment, which
can be rotated with O(3). Neither Bell’s- nor the Kochen-Specker theorems are therefore relevant
in our case as the spin is not an attribute of a particle. For this reason the spin-0 particle from
Sec. 3.1.2 is a legitimate candidate for a fractional-spin particles, such as the proton, for its ‘spin
measurement/polarization’ along some axis is by definition a dynamical happening, in which its
extended world-current bends and twists, expands and contracts in a way compatible with- but not
dictated by the basic tenets. As stressed above, there is no natural measure on the space of such objects,
and the appearance of two strips on Stern & Gerlach’s plate rather than one, or three etc. need not have
raised their eyebrows. Nonetheless, the proposed model does support spinning solutions, viz. J ̸≡ 0
in the rest frame of the particle, and there is a case to be made that those are more likely candidates for
particles normally attributed with a spin, integer or fractional.

4 See philarchive.org/rec/KNOQTM for more details; Non-machines—as they are dubbed there—are expected to have statistical
properties which are incompatible with those of machines, whether micro- or macroscopic.
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3.3.3. Photons and Neutrinos (or illusion thereof?)

Einstein invented the ‘photon’ in order to explain the apparent violation of energy conservation
occurring when an electron is jolted at a constant energy from an illuminated plate even when the
plate is placed far enough from the source, such that the time-integrated Poynting flux across it
becomes smaller than that of the jolted electron. It is entirely possible that Einstein’s explanation can
be realized in the proposed formalism, although the rest-frame analysis of a fixed-point particle from
Sec. 3.1.2 must obviously be modified for massless (neutral) particles which might further require
extending Aµ and Zµ to include distributions. Maxwell’s equations would then act as the photonic
counterpart of a massive-particle’s QM wave equation, describing the statistical aspects of ensembles
of photons. Indeed, since in a ‘lab’ of dimension ≪ ℓ0 individual photons (almost) satisfy the basic
tenets of classical electrodynamics (and (31)) for a chargeless current (i.e.,

∫
d3 J0 = 0), the construction

from [1] would result in Maxwell’s equations, with the associated Θµν being the ensemble energy-
momentum tensor. However, since the A-field (almost) satisfies Maxwell’s equations regardless of
it being a building block of photons, it is highly unlikely that photons exhaust all radiation-related
phenomena. For example, is there any reason to think that a radio antenna transmits its signal via
radio photons, rather than radio (A-) waves? This suggests an alternative explanation for photon-
related phenomena, which does not require actual, massless particles. Its gist is that, underlying the
seeming puzzle motivating Einstein’s invention of the photon, is the assumption that an electron’s
radiation field is entirely retarded which, as emphasized throughout the paper, cannot be the case
for the A-field. Advanced radiation converging on the electron could supply the energy necessary
to jolt it, further facilitating violation of Bell’s inequality in entangled ‘photons’ experiments. This
proposal, first appearing in [1] and further developed in [2], was, at the time, the only conceivable
realist explanation of photon related phenomena. In the proposed model, apparently capable of
representing ‘light corpuscles’, it may very well be the wrong explanation. Photons would then be
just ephemeral massless particles created in certain structural transitions of matter, then disappearing
when detected. Note that these two processes are entirely mundane, merely representing a relatively
rapid changes in Aµ and Zµ at the endpoints of a photon’s (extended) worldline. Such unavoidable
transient regions might result in an ever-so-slight smoothing of said distributions, which are otherwise
excluded from S .

“God is subtle but not malicious" was Einstein’s response to claims that further repetitions of the
Michelson-Morley experiment did show a tiny directional dependence of the speed of light. This
attitude is adopted vis-a-vis the neutrino’s mass problem. All direct measurements based on time-of-
flight are consistent with the neutrino being massless; the case for a massive neutrino relies entirely
on indirect measurements and a speculative extension of the Standard Model. Neutrinos would then
be quite similar to photons, only probably spinning (J ̸= 0), whose creation and annihilation involve
structural transitions at the subatomic scale. However, as with photons, and even more so due to their
elusiveness, neutrinos might not be the full story, or even the real one. The classical model of photons
cited above assumes that only Aµ contributes to the radiative Tµν which is therefore identified with
Θµν. In the proposed model Tµν consists also of

Pµν = − 1
4πGℓ2

g

(
∂µZν + ∂νZµ

)
with Zν satisfying (31) in the flat spacetime approximation, rewritten here

□2Zν + ∂ν∂µZµ = −4πGℓ2
g Fνµ Jµ

This is a massless wave equation, not too dissimilar to Maxwell’s, therefore expected to participate
in radiative, energy-momentum transfer. However, two features set it apart. First, the two terms on
the l.h.s. of (31) enter with the ‘wrong’ relative sign, spoiling gauge covariance. As a result an extra
longitudinal mode exists, i.e., Zµ = ϵµ f (kνxν) with ϵµ ∝ kµ (which in the Maxwell case is a pure
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gauge), on top of the two transverse modes, ϵµkµ = 0. Second, unlike Θµν, Pµν is only linear in Zµ, an
impossibility for a Noether current. Combined, these two features imply that only the longitudinal
mode can radiate energy-momentum and only during transient, ‘structural changes’ to the radiating
system. Indeed, consider the integral of the energy flux of Pµν over T = S2 ×R in Figure 1.∫

dt
∫

S2
P0idσi ≡

∫
dt
∫

S2
P · dσ (70)

where S2 is a large sphere centered at the location of the system and dσ is an outward pointing vector
orthogonal to S2 of length dσ. Clearly, only the longitudinal mode, whose energy flux at each point
on S2 is ∝ k0k ∥ dσ, contributes to the integral (70). Moreover, we saw in Sec. 3.1.1 that outside of
fixed-points, zµ must be negligible. So long as the system qualifies as a fixed-point, as during bulk
acceleration, no net flux is being generated by it, and it is therefore only while transitioning between
distinct fixed-points that P is involved in energy changes (and even then only its ∂rZ0 piece—r being
the radial coordinate when S2 and the system are co-centered at the origin—as the ∂tZr piece integrates
to zero over time). The Z-field is therefore a natural candidate for a ‘classical neutrino field’, whose
relation to neutrino phenomena parallels that of the A-field to photon phenomena. As with photons, it
is a particle’s advanced Z-field converging on it which supplies the energy-momentum necessary to
jolt it, conventionally interpreted as the result of being struck by a neutrino. Similarly, hitherto ignored
retarded Z-field is allegedly generated in structural changes of a system, e.g., when nuclei undergo
β-decay. As pointed out in Sec. 3.3.2 above, the (fractional) spin- 1

2 attributed to the neutrino, as is the
spin-1 of the photon, only labels the statistical description of phenomena involving such jolting of
charged particles.

3.4. Cosmology

Cosmological models are stories physicists entertain themselves with; they can’t truly know what
happened billions of years ago, billions of light-years away, based on the meager data collected by
telescopes (which covers 0% of the electromagnetic spectrum). Moreover, in the context of the proposed
model, the very ambition implied by the term “cosmology" is at odds with the humility demanded of
a physicist, whose entire observable universe could be another physicist’s microwave oven. On the
other hand, astronomical observations associated with cosmology, also serve as a laboratory for testing
‘terrestrial’ physical theories, e.g., atomic-, nuclear-, quantum-physics, and this would be particularly
true in our case, where the large and the small are so intimately interdependent. When the most
compelling cosmological story we can devise requires contrived adjustments to terrestrial-physics
theories, confidence in those, including GR, should be shaken.

Reluctantly, then, a cosmological model is outlined below. Its purpose at this stage is not to
challenge ΛCDM in the usual arena of precision measurements, but to demonstrate how the novel
ingredients of the proposed formalism could, perhaps, lead to a full-fledged cosmological model free
of the aforementioned flaw.

3.4.1. A Newtonian Cosmological Model

As a warm-up exercise, we wish to solve the system (56)(47) for a spherical, uniform, expanding
cloud of massive particles originating from the scaling center (without loss of generality). The path of
a typical particle is described by

ζ i(t, λ) = ria(t, λ) (71)

where ri a constant vector. It is easily verified that the same homogeneous expanding cloud would
appear to an observer fixed to any particle, not just the one at the origin. The mass density of the
cloud depends on a via ρ ∝ a−3, retaining its uniformity at any time and scale if creation/annihilation
of matter in scale is uniform across space. The gravitational force acting on a particle is given by
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f i = − 4πG
3 ρ(t, λ)ria (the uniform vacuum energy is ignored as its contribution to the force can only

vanish by symmetry) and (56) gives a single, particle-independent equation for a

λ∂λa = ℓ2
0

(
− ...

a − 4πG
3

ρa
)
− a + tä (72)

with ä ≡ ∂ta etc.
Two types of solutions for (72) which are well behaved at all scales should be distinguished:

Bounded and unbounded. In the former a(t, λ) is identically zero at t = 0 and a λ-dependent ‘big-
crunch’ time, tf. By our previous remarks, at large scale the coarsening terms—those multiplied by ℓ2

0
on the r.h.s. of (72)—dominate the flow and must almost cancel each other or else a would rapidly
blow up with increasing λ. The resulting necessary condition for a regular a(t, λ) on all scales is a
λ-dependent o.d.e. in time, which is simply the time derivative of the (first) Friedmann equation for
non-relativistic matter

ä2 + k(λ) =
8πG

3
ρ(t, λ)a2 (73)

The k above disappears as a result of this derivative, meaning that it resurfaces as a second integration
constant of any magnitude—not just k ∈ {−1, 0, 1}. Denoting

lim
t→0

ρ(t, λ)a3(t, λ) := ρ0(λ)

bounded solutions in which mass is conserved in time are therefore described by some flow in k − ρ0

parameter space for which maxt a(t, λ) shrinks to zero for λ → ∞. For example, as k in (73) plays the
role of minus twice the total energy of the explosion per unit mass, for a scale independent ρ0, k(λ)
monotonically increases with increasing λ.

Given a solution of (73) at large enough λ one can then integrate (72) in its stable, small λ direction,
where the scaling piece becomes important, but due to the a(t = 0, λ) = a(tf, λ) ≡ 0 constraint, some
parts of a solution remain deep in their coarsening regime. The same is true for unbounded solutions,
but in this case there is no a(t, λlarge) to start from, rendering the task of finding solutions more difficult;
instead of b.c. a(t, λ) = 0 for t = 0, tf, we have a(ti, λ) = 0 for some initial time, ti, and the large-t
asymptotic ä(t, λ) ∼ v∞ for some v∞ ≥ 0. Note the consistency with a = v∞t + λ−1C for some
constant C, which is an exact solution for the ρ-free (72) (and its only solution not wildly diverging in
magnitude at large t). One exception to the hardness of the open-solution (applicable also to closed
solutions) is a scaling solution, a(t, λ) = λ−1aσ(λt), where aσ is an exact solution of (73) with ρ0 ∝ λ−1

and k(λ) = const. Note that the asymptotic b.c. is automatically satisfied for k ≤ 0. Another is the scale
invariant solution of (72), integrated backwards from t = ∞ to a = 0, implicitly defining ti (integrating
forward from a(0, λ) = 0 leads to nonphysical solutions).

The Newtonian-cloud model, while mostly pedagogical, nonetheless captures a way—perhaps
the only way—cosmology is to be viewed within the proposed framework: It does not pertain to the
Universe but rather to a universe—an expanding cloud as perceived by a dwarf amidst it. A relative
giant, slicing the cloud’s orbit at a much larger λ, might classify the corresponding section as, e.g.,
the expanding phase of a Cepheid/red-giant, or a runaway supernova. An even mightier giant may
see a decaying radioactive atom. Of course, matter must disappear in such flow to larger and larger
scales—a phenomenon already encountered in the linear case which is further discussed below. The
rate (in scale) at which this takes place, ∂sρ0(s) in the above models, must be compatible with our
analysis of galaxies, where mass was assumed conserved in scale. This would be true for small enough
global rate, or if around our native scale, mass annihilation takes place primarily outside galaxies
(commencing in a galaxy only after scale flow has compressed it to an object currently not identified as
a galaxy).

Suppose now for concreteness that a giant’s section is an expanding star. The dwarf’s entire
observable universe would in this case correspond to a small sphere, non-concentrically cut from the
star. The hot thermal radiation inside that sphere at λgiant, after flowing with (16) to λdwarf, would
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be much cooler, much less intense, and much more uniform, except for a small dipole term pointing
towards the star’s center, approximately proportional to the star’s temperature gradient at the sphere,
multiplied by the sphere’s diameter. Similarly for the matter distribution at λdwarf, only in this case the
distribution of accumulated matter created during the flow is expected to decrease in uniformity if new
matter is created close to existing matter. Thus the distribution of matter at λdwarf is proportional to the
density at λgiant only when smoothed over a large enough ball, whose radius coresponds to a distance
at λgiant much larger than the scale of density fluctuations. This would elegantly explain the so-called
dipole problem [9]—the near perfect alignment of the CMB dipole with the dipole deduced from
matter distribution, but with over 5σ discrepancy in magnitude; Indeed, the density and temperature
inside a star typically have co-linear, inward-pointing gradients, but which differ in magnitude. Note
that a uniform cloud ansatz is inconsistent with the existence of such a dipole discrepancy and should
therefore be taken as a convenient approximation only, rendering the entire program of precision
cosmology futile. The horizon problem of pre inflation cosmology is also trivially explained away by
such orbit view of the CMB. Similarly, the tiny but well-resolved deviations from an isotropic CMB
(after correcting for the dipole term) might be due to acoustic waves inside the star.

Returning to the scale-flow of φ ≡
(

Aµ, gµν

)
interpolating between ‘a universe’ and a star, and

recalling that φ(x, s) stands for a spacetime phenomenon as represented by a physicist of native scale
s, a natural question to ask is: What would this physicist’s lab notes be? A primary anchor facilitating
this sort of note-sharing among physicists of different scales is a fixed-point particle, setting both
length and mass standard gauges. We can only speculate at this stage what those are, but the fact that
the mass of macroscopic matter must be approximately scale invariant—or else rotation curves would
not flatten asymptotically—makes atomic nuclei, where most of the mass is concentrated, primary
candidates. Note that in the proposed formalism the elementarity of a particle is an ill-defined concept,
and the entire program of reductionism must be abandoned. For if zooming into a particle were to
‘reveal its structure’, even a fixed-point would comprise infinitely many copies of itself as part of its
attraction basin.

If nuclei approximately retain their size under scale-flow to large λ, while macroscopic molec-
ular matter shrinks, then some aspects of spacetime physics (at a fixed-scale section) must change.
Instinctively, one would attribute the change to a RG flow in parameter space of spacetime theories,
e.g., the Yukawa couplings of the Standard Model of particle physics, primarily that of the electron.
However, this explanation runs counter to the view advocated in this paper, that (spacetime) sections
should always be viewed in the context of their (scale) orbit; If the proposed model is valid, then the
whole of spacetime physics is, at best, a useful approximation with a limited scope. Moreover, an
RG flow in parameter space cannot fully capture the complexity involved in such a flow, where, e.g.,
matter could annihilate in scale (subject to charge conservation); ‘electrons’ inside matter, which in our
model simply designate the A-field in between nuclei—the same A-field peaking at the location of
nuclei—‘merging’ with those nuclei (electron capture?); atomic lattices, whose size is governed by the
electronic Bohr radius ∼ m−1

e , might initially scale, but ultimately change structure. At sufficiently
large λ an entire star or even a galaxy would condense into a fixed-point—perhaps a mundane proton,
or some more exotic black-hole-like fixed-point which cannot involve a singularity by definition.
Finally, we note that, by definition, the self-representation of that scaled physicist slicing φ(x, s) at his
native scale s, is isomorphic to ours, viz., he reports being made of the same organic molecules as we
are made of, which are generically different from those he observes, e.g., in the intergalactic medium.
So either actual physicists (as opposed to hypothetical ones, serving as instruments to explain the
mathematical flow of φ) do not exist in a continuum of native scales, only at those (infinitely many)
scales at which hydrogen atoms come in one and the same size; or else they do, in which case we,
human astronomers, should start looking around us for odd-looking spectra, which could easily be
mistaken for Doppler/gravitational shifts.
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3.4.2. Relativistic Cosmology

In order to generalize the Newtonian-cloud universe to relativistic velocities, while retaining
the properties of no privileged location and statistical homogeneity, it is convenient to transfer the
expansion from the paths of the particles to a maximally symmetric metric—a procedure facilitated
by the general covariance of the proposed formalism. Formally, this corresponds to an ‘infinite cloud’
which is a good approximation whenever the size of the cloud and the distance of the observer from
its edge are both much greater than ℓ0 and ℓg. Alternatively, the cosmological principle could be
postulated as an axiom. For clarity, the spatially flat (k = 0), maximally symmetric space, with metric

gtt = −1 , gij = ηija2(t, λ) , git = 0 (74)

is considered first, for which the only non-vanishing Christoffel symbols are

Γt
ij = a∂taδij , Γi

tj ≡ Γi
jt =

∂ta
a

δi
j (75)

The gravitational part, z̃µ, of the scaling field, appropriate for the description of a universe which is
electrically neutral on large enough scales, i.e.,

〈
Jµ

〉
≈ 0, is given by solutions of (32) which, for the

metric (74), reads

∇µ∇µ z̃ν +∇µ∇ν z̃µ =

−6 (λ∂λa/a)(∂ta/a) for ν = 0

0 for ν = 1, 2, 3
(76)

However, the generally covariant boundary condition (33) “far away from matter" is not applicable
here. Instead, ∇i z̃j +∇j z̃i is required to be compatible with the (maximal) symmetry of space—its Lie
derivative along any Killing field of space must vanish.

The general form of z̃µ consistent with the metric (74) is

z̃t = ϕ(t, λ) , z̃i = 0 ⇒ z̃t = −ϕ , z̃i = 0 (77)

Spatial scaling is taken care of by the metric, hence the vanishing z̃i. This implies that, in cosmic
coordinates the size of a gravitationally bound system whose outmost matter is deep in its scaling
regime, e.g. a galaxy with a flat r.c., also scales as a, rather than λ−1 in Minkowskian coordinates.

Inserting (77) into (76) results is a single equation

∂ttϕ + 3
ä
a

∂tϕ − 3
(

ä
a

)2
ϕ = −3

λ∂λa
a

ä
a

(78)

Importantly, ϕ = ±t is a solution for a of either scaling forms, a ∼ λ∓aσ(λ±t) resp., exposing an
implicit assumption regarding the scale-direction of giants, λ ↑ (equiv. s ↑): That it is defined by the
direction of the scaling field; A redefinition xµ 7→ −xµ would have mandated a s ↓ swap. For reasons
soon to become apparent, a negative ϕ solution is chosen, which, at any fixed λ, contains two, free, λ

dependent integration constants, referred to below.
An important issue which must be addressed before proceeding, concerns the ontological status of

the energy-momentum tensor. In GR, sourcing the Einstein tensor is a phenomenological device, equally
valid when applied to the hot plasma inside a star, or to the ‘cosmic fluid’. In contrast, Θµν and the scaling
field from which Pµν is derived, both enter (23) as fundamental quantities, on equal footing with gµν. To
make progress, this fundamental status must be relaxed, and the following way seems reasonable: The
fundamental scaling field is written Zµ = zµ + z̃µ, with z̃µ the above, coarse grained gravitational part, and
zµ the field inside matter. The space averages of the fundamental Θµν and pµν (derived from zµ) are written
at ⟨Θ00 + p00⟩ = ρ,

〈
Θij + pij

〉
= a2pδij. That such coarse grained pseudo tensor, respecting the symmetries

of the coarse grained metric (74), has the perfect fluid form, can easily be shown.
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Plugging Zµ thus defined and (74) into the metric flow (23), results in space-space and time-time
components given, respectively, by

2aλ∂λa = ℓ2
g

(
2a

...
a + ä2 − 4a2πGp

)
+ 2aäϕ (79)

0 = ℓ2
g

(
−3

ä2

a2 − 4πGρ

)
− 2∂tϕ (80)

with ρ and p incorporating Θµν and pµν while the remaining terms are entirely due to z̃µ. Another
equation which can be extracted from those two, or directly from (27), in conjunction with (78), is
energy-momentum conservation in time

∂t p a3 − ∂t

(
a3(ρ + p)

)
= 0 (81)

Only two of the above three equations are independent due to the Bianchi identity and (78).
Equations (79) and (80) can be combined to

λ∂λa = ℓ2
g

(
...
a − 2πGa

3
(ρ + 3p)

)
− 1

3
a∂tϕ + äϕ (82)

Remembering that paths of co-moving masses can be deduced by analytically continuing solutions of
(23), G 7→ −2G, and solving (58) in the resultant metric (which for the metric (74) gives: ζ i = ri, ζt = τ

with ri a constant), we might as well solve (82) directly for G 7→ −2G. In accordance with ϕ < 0 one
should also change s 7→ −s (or λ 7→ λ−1), for a(t, s) in (82) and (72) to have the same meaning. The
result is an equation which, for p = 0, is very similar to (72)

λ∂λa = ℓ2
g

(
− ...

a − 4πGa
3

(ρ + 3p)− 2
3ℓ2

g
a∂tϕ

)
+ a∂tϕ − äϕ (83)

only with ℓ0 7→ ℓg multiplying the coarsening piece (due to the different scale-flows involved) and
a dark energy term resulting from splitting 1

3 a∂tϕ, such that for ϕ = −t the scaling piece in (72) is
recovered.

With the above modifications in mind, (80) becomes(
ä
a

)2
=

8πG
3

ρ − 2∂tϕ

3ℓ2
g

(84)

which is the first Friedmann equation with an extra term mimicking dark energy. Since (84) is satisfied
(also) at λ = 1, reasonably assuming that ρ

∣∣t=t0,λ=1 is on the order of the current baryonic density based
on direct ‘count’, ρb ≈ 3 × 10−19 kg/km3, most likely a lower bound, and H0 = ä/a ≈ 70km/s/Mpc
based on local measurements (validated below), an estimate ℓg ≈ 2

√
−∂tϕ(t0)× 1023km is obtained,

hence ∂tϕ(t0, λ = 1) < 0, i.e., the ∂tϕ term in (84) mimics dark energy which is currently positive.
Let us summarize the computational task of finding a solution for the relativistic cosmological model.

The single scale-flow equation is for a, (83), whose solutions must be positive, not wildly diverging at
large λ. Equations (84), and (78) with a(t, λ) 7→ a(t, λ−1), act as constraints, which for a given a and ∂λa
couple ϕ and ρ at any (fixed-λ) section. The Propagation of a in scale depends on p which, as in a standard
Friedmann model, requires extra physical input regarding the nature of the energy-momentum tensor, e.g.,
an equation-of-state relating p and ρ. Since both ρ and p represent some large-volume average of Θµν + Pµν,
removed of Pµν’s ‘dark’ component, the contribution from inside matter (where J0 ̸≡ 0), denoted ρm, can
be assumed to be that of non-relativistic (“cold") matter, i.e., pm ≈ 0. Outside matter the A-field is nearly
a vacuum solution of Maxwell’s equations with an associated traceless Θµν contributing ρr and pr =

1
3 ρr

to the total ρ and p. If we proceed as usual, identifying ρr with the energy of retarded radiation emitted
by matter, observations would then imply ρr ≪ ρm in the current epoch. However, ρr incorporates also
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the ZPF which could potentially even outweigh ρm. The contribution of the ZPF, being an ‘extension’ of
matter outside the support of its Jµ, although having a distinct p(ρ) dependence, is not an independent
component. Properly modeling the combined matter-ZPF fluid, e.g. as interacting fluids, or using some
exotic equation-of-state, will be attempted elsewhere.

Returning to the fixed-λ constraint, (84) and (78), we first note that ϕ in the latter describes the
motion of a damped, harmonic oscillator with a negative spring coefficient and a force term (whose
sign and magnitude depend on ∂λa). A general negative solution has a single local maxima at tmax < t0

(by ∂tϕ(t0, λ = 1) < 0). Since at a fixed λ, (78) is second order in time, only one of its two integration
constants is fixed by (84) evaluated at t0. The second one can then be used to further tune ∂ttϕ(t0) in
matching the observed, current acceleration, via

∂t

(
8πG

3
ρ +

2∂tϕ

3ℓ2
g

)∣∣∣∣
t=t0,λ=1

= ∂t

(
8πG

3
ρΛCDM

m

)∣∣∣∣
t=t0

Above, ρΛCDM
m ≈ 5ρb is the ΛCDM cold matter density estimate based on supernova- and transverse

BAO-distance observations, and ∂tρ(t0, λ = 1) is determined by (27) (evaluated at t = t0, λ = 1). Thus,
the two integration constants of (78) can conspire to result in an illusion of both a positive cosmological
constant, and a cold dark matter addition to ρ (even if ρZPF ≈ 0).

Moving to the early universe, or star-phase of the explosion, at t < tmax, the ∂tϕ term in (84)
switches sign, and rapidly decreases with decreasing t, countering the opposite trend in ρ, dramatically
slowing the shrinkage of a(t), likely eliminating the horizon problem plaguing a generic Friedmann
model. The precise outcome of such a battle of divergences depends on the details of a solution, but a
natural, physically motivated scenario follows from the fact that, ä = 0, ρ = const1 and ϕ̈ = const2 is a
solution for the system (78)(84) when the two constants are chosen so that the r.h.s. of (84) vanishes.
Namely, the growth of ∂tϕ eventually ‘catches-up’ with that of ρ, meaning that there is no big-bang in
the remote past, just a static universe/star. During that epoch, a pertubative analysis of ρ, p, gµν and
z̃µ can be performed. A notable departure from standard such analysis is the appearance of ‘vacuum
waves’, perturbative solutions of (35), with associated δPµν masquerading as dark matter of some sort.

Relating cosmological observations to a(t, λ = 1) entails extra steps which are different in the
proposed formalism, therefore expected to yield different relations. Remarkably, this isn’t so in most
cases. Consider, e.g., the redshift. To calculate the redshift of a distant, comoving object at t = t1,
two adjacent, time-ordered points along its worldline are to be matched with similar two points for
earth at t0. The matching is done by finding two solutions of (58) which are well behaved on all scales,
satisfying the light-cone condition, connecting the corresponding points at λ = 1. For the metric (74)
and scaling field (77), the equation for ζr (denoting r = |x|) and ζt of each path becomes

λ∂λζr = ℓ2
0

(
−∂ττζr − 2

ä
a

∣∣∣
ζt

∂τζt∂τζr
)
+ τ∂τζr (85)

λ∂λζt = ℓ2
0

(
−∂ττζt − aä

∣∣∣ζt (∂τζr)2
)
+ τ∂τζt − ϕ(ζt, λ) (86)

subject to the light-cone condition. The two adjacent solutions at λ = 1, indexed by α (earlier) and β,
trace trajectories rα(t), t ∈ [t1, t0] and rβ(t), t ∈ [t1 + δ1, t0 + δ0], and the redshift is calculate from the
equality

r1 − r0 =
∫ t0

t1

r̈α(t)dt =
∫ t0+δ0

t1+δ1

r̈β(t)dt (87)

as z = δ0/δ1 − 1. Now, on the two, non overlapping, O(δ0) parts of their supports, rα/β (almost) satisfy
the light-cone condition which, for the highly symmetric metric (74) implies r̈α = r̈β = a−1. Assuming
that a changes very little over δ0, the difference between the two integrals in (87) coming from those
end parts is

δ0

a(t0)
− δ1

a(t1)
(88)
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which would give the standard expression for the redshift in terms of a. However, in addition there is
also an O(δ0) contribution from the overlap

∫ t0

t1

d
dt

δr(t)dt , δr := rα − rβ (89)

(rounding the boundary points for clarity which is legitimate to leading order), as the two solutions for
(85)(86) see slightly different Hubble parameters, on the order of Ḧδζt, and a slightly different scaling
field in (86), ϕ̈δζt. Nonetheless, since δr vanishes at its endpoints, contribution (89) also vanishes.
Note that only the light-condition entered the above analysis, rather than the explicit, conjectured (85)
and (86). Similarly for the angular diameter distance and the luminosity distance, the latter further
requiring exact conservation of Θµν, which is true also in our model.

Finally, the flatness problem of pre-inflation cosmology is elegantly dismissed as follows. First,
generalizing the relativistic model to a curved-space FLRW metric is straightforward, and the Friedmann
equation (84) receives a −k/a2 addition to its r.h.s. Denoting the ratio between its k and ρ r.h.s. terms,
χ(t, λ) := 3k/(8πGρa2), the flatness problem can be stated as the “unrealistic" fine-tuning of χ to near
mathematical zero at early times, needed to bring its current, observed value to zero within measurement
uncertainties. For example, if ρ(t, λ) = ρ0(λ)a−3(t, λ), with ρ0(λ) encoding the creation/annihilation of
matter in scale flow, then χ ∝ a/ρ0 which, at a fixed λ, grows by many orders of magnitude over the history
of the universe. However, in our formalism the universe is not a machine, propagating in time its state at an
earlier time, as previously explained in the context of Bell’s theorem; Friedmann’s equation (84) enters the
relativistic model as a constraint, not an evolution rule, and a cosmological solution is just what emerges out
of the set of all constraints. Moreover, even when seen as an evolution rule, (84) may lead to the following
counter argument: At a fixed time, a reasonable ρ0(λ) interpolating between a star and a ‘universe’ would
counter the growth of a in the λ ↓ direction (i.e., the scale-rate of density growth due to matter creation is
greater than the third root of its geometric depletion rate). Thus, unless χ is fantastically large close to the
scale, λgiant, at which a giant’s section corresponds to a star—and why should it be?—χ(t0, λhuman) = 0 to
within measurement uncertainties is a perfectly “realistic".
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