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Abstract: Fanconi syndrome is a disorder of renal proximal tubule transport characterized by metabolic
acidosis, amino aciduria, glucosuria, and phosphaturia. There are acquired and hereditary forms of this
disorder. Fanconi syndrome in Basenjis was first described in 1976 and is now recognized as an inherited
disease in these dogs. Linkage analysis within a large family of Basenjis that included both affected and
unaffected individuals was performed to localize the causative variant within the genome. Significant linkage
was identified between chromosome 3 (CFA3) makers and the disease phenotype. Fine mapping restricted the
region to a 2.7 Mb section of CFA3. A whole genome sequence of a Basenji affected with Fanconi syndrome
was generated, and the sequence data were examined for the presence of potentially deleterious homozygous
variants within the mapped region. A homozygous 317 bp deletion was identified in the last exon of FANT of
the proband. 78 Basenjis of known disease status were genotyped for the deletion variant. Among these dogs,
there was almost complete concordance between genotype and phenotype. The only exception was one dog
that was homozygous for the deletion variant but did not exhibit signs of Fanconi syndrome. These data
indicate that the disorder is very likely the result of FAN1 deficiency. The mechanism by which this deficiency
causes the disease signs remains to be elucidated. FAN1 has endonuclease and exonuclease activity that
catalyzes incisions in regions of double-stranded DNA containing interstrand crosslinks. FAN1 inactivation
may cause Fanconi syndrome in Basenjis by sensitization of kidney proximal tubule cells to toxin-mediated
DNA crosslinking resulting in accumulation of genomic and mitochondrial DNA damage in the kidney.
Differential exposure to environmental toxins that promote DNA crosslink formation may explain the wide
age-at-onset variability for the disorder in Basenjis.

Keywords: kidney; hereditary disorder; DNA repair; whole genome sequencing; toxins

1. Introduction

Fanconi syndrome (FS) is characterized by excessive frequent urination (polyuria), excessive
thirst (polydipsia), bone pain and muscle weakness [1-3]. The disorder was first described by Dr.
Guido Fanconi in 1936 [4]. FS results from impaired function of the proximal renal tubular epithelial
cells leading to urinary leakage of phosphate, glucose, uric acid, amino acids, low-molecular-weight
polypeptides, and other small molecules, and to proximal renal tubular acidosis [5]. While inherited
forms of isolated human FS have been described [6,7], hereditary human FS usually occurs as a
component of multisystem disorders such as mitochondrial cytopathies [8], Dent’s disease [9], Lowe’s
syndrome [10] and cystinosis [11]. FS can also result from the toxic effects of certain drugs or heavy
metals on the proximal tubules of the kidneys in individuals with no known genetic risk factors [12—
16].

Canine FS was first reported in Basenjis by Easley and Breitschwerdt in 1976 [17]. Additional
reports of FS in this dog breed have followed [18-25]. Based on these reports, the disease in Basenjis
appears to be inherited as an autosomal recessive trait. Typically, the first signs of FS in Basenjis are
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polydipsia, polyuria, weight loss and poor hair coat [25]. In most Basenjis, the age of onset is between
4 and 7 years of age and the lifespan of affected dogs is between 11 and 12 years of age if they have
been maintained with dietary management [25]. There have been reports of sporadic FS in other dog
breeds, some of which have been linked to dietary factors or heavy metals [25-37], although these
cases do not exhibit some of the laboratory findings characteristic of Basenji FS and may present with
additional signs not seen in the Basenji disease.

Among Basenjis, the prevalence of FS has been estimated to be about 10% [24]. Variants in a
number of genes have been associated with human FS-like disorders [38-53] , but the molecular
genetic basis of the canine disorder has not been determined. Genetic linkage and whole genome
sequence studies were therefore undertaken to identify the cause of the Basenji disease.

2. Materials and Methods

Genomic DNA was isolated from blood leukocytes as described previously [54]. Genetic
mapping of the FS locus was performed using a 325 microsatellite marker canine linkage map to
genotype a 59 member family of Basenjis including 22 afflicted with FS. Linkage analysis of the
disease locus genotypes inferred from phenotypes under a completely penetrant autosomal recessive
model of inheritance and marker loci was performed using Cri-map software
(http://www.animalgenome.org/bioinfo/resources/manuals/Embnetut/Crimap/). In addition to the
11 canine chromosome 3 (CFA3) markers included in the original linkage map panel, we used another
29 CFA3 microsatellite markers (Supplemental Table S1) for fine mapping by haplotype
homozygosity in FS-affected Basenjis but not in Basenjis with normal renal function.

For whole-genome sequencing, a 300 bp paired-end library was prepared with the Illumina
TruSeq sample preparation kit and DNA from a single FS-affected Basenji. The library was sequenced
in a 2 x 120 cycle run in 2 lanes of a flow cell from an Illumina Genome Analyzer II and and in a 2 x
100 cycle run in 1 lane from an Illumina HiSeq 2000. We used the same procedures to obtain whole
genome sequences from 3 dogs of other breeds in unrelated projects. These dogs were not affected
with FS and consequently, the produced sequences served as controls for this project. Reads from all
sequences were aligned to the canine reference sequence build v2.1 using NextGENe v2.15 software.
To identify candidate pathogenic mutations, we performed an exon-by-exon inspection of all genes
within the fine-mapped disease associated region for potentially deleterious mutations. We also
evaluated sequence gaps within the mapped region for the likelihood that they represented disease-
related genomic DNA deletions. For this analysis, we generated NextGENe Expression reports with
100 bp windows to identify coverage gaps that were unique to the FS-affected Basenji and that
included exonic DNA. We amplified across the single gap fulfilling these criteria with PCR primers
5-ATATATAGTAGAGCAGTATCAGT-3" and 5’-ATTTCCTAAAATGGCCAC-3" and confirmed the
identity of the resulting amplicons by automated Sanger sequencer (3730xl; Applied Biosystems).
DNA samples from individual dogs were genotyped for the deletion allele with the same primers
used to validate the deletion. These primers produce amplicons of 480 bp for the wild type allele and
163 bp for the mutant allele. Amplicon sizes were determined with a microcapillary system (QIAxel,
Qiagen). An RNeasy kit (Qiagen) was used to extract total RNA from the kidney of two Dachshunds
obtained after euthanasia for an unrelated health problem. Additionally, total RNA was extracted
from the white blood cells and serum of an FS-affected and FS-unaffected dogs with the PAXgene
Blood RNA kit (Qiagen). RT-PCR amplifications were performed with a GeneAmp®EZ rTth RNA
PCT kit (Applied Biosystems) using the primer pairs in Table 1. We also performed 3’-RACE
amplifications with the Invitrogen 3’ RACE System with two specific primers from exon 13; 5'-
GCTGTGGACTTCCGACACT-3 for the first amplification and 5-CTCCCAGAGTCATCGTGTT-
3’for the nested amplification. The identities of the resulting amplicons were verified by automated
Sanger sequencing.
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Table 1. RT-PCR primer sequences for FANT mRNA.

Target Forward Primer Sequence/Reverse Primer Sequence Amplicon Size (bp)
exon Sto 7 CCTAGGTACACCATCAATCGGAA/ACAGTCCGAGACAAAATCCTT 269
exon 12 to exon 14 CAGGCCCAGGAAGGCAGA/CACGTGGCAGACTTICTACTICGG 300
exon 12 to intron 13 CAGGCCCAGGAAGGCAGA/AACACAATTATCAGAGAAAAAGCGT 245
exon 13 to 3'UTR CTGGCTGTGGACTTCCGACA/CTTAACTGGAAACATTGGGTGTG 244

3. Results

Linkage analysis was performed by genotyping DNA from a Basenji family
consisting of 22 FS cases and 37 FS unaffected controls for 325 genome-wide
microsatellite loci (Figure 1). The strongest associations with inferred genotypes
for the FS locus and marker loci occurred on CFA3 (Figure 2). Fine mapping in 86
FS-affected Basenjis revealed that these dogs were all homozygous for the same 6-
marker haplotype flanked by recombinant markers at 40,537,065 bp and 43,218,050
bp, and that none of the 11 aged Basenjis with normal renal function were
homozygous for this haplotype. This analysis defined a 2.7 Mb target region of
CFA3 as harboring the FS locus which contained 11 annotated genes.
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Figure 1. Pedigree of the Basenji family used for linkage mapping of the FS locus.
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Figure 2. Plot of linkage results of the Fanconi Syndrome Basenji pedigree (22 cases and 37 controls).

The whole-genome sequence reads from the Illumina Genome Analyzer I and Hiseq 2000 were
combined and aligned to the canine genome reference to produce an aligned sequence with 12.7-fold
average coverage. Exon-by-exon inspection of the sequences for the 143 annotated exons in the 11
genes within the FS region failed to reveal any sequence variants likely to alter the function of the
gene products. This inspection also revealed gaps in the aligned sequence that overlapped part or all
of 11 exons from within the FS target region. Comparisons of the depth of coverage in the WGS of
the FS-affected Basenji with those of the WGS from 3 unaffected dogs of other breeds showed similar
patterns for all but one of the sequence gaps. The exception was found only in the Basenji sequence
in the vicinity of FANI exon 14 (Figure 3). PCR amplification with primers spanning the gap
confirmed that a deletion in the genomic DNA of the FS-affected Basenji was responsible for the gap
(Figure 4) and re-sequencing the amplicons produced with these primers revealed that 317 bp of exon
14 were deleted starting at the second exonl4 nucleotide and extending into the 3’ untranslated
region of FAN1 (Figure 5). In addition, the mutant allele has four nucleotide substitutions within the
12 nucleotides immediately 3’ to the deletion.
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Figure 3. Comparison of percent coverage in a part of the CFA3 target region between an FS-affected
dog and 3 controls. The region represented in this graph starts at 40,860,000 to 40,870,300 bp of CFA3
in intervals of 100 bp. The percent coverage is the average coverage of the interval normalized for the
average genome coverage for the individual dog. Arrow indicates the gap in coverage that was
unique to the affected Basenji.
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Figure 4. Microcapillary electrophoretograms of PCR amplicons produced with primers spanning the
gap in the FANI. Lane 1 represents a negative control. PCR was performed with DNA from an FS-
affected dog (2) and two FS-unaffected dogs (lanes 3 and 4). The FS-affected dog produced an 167 bp
amplicon which is smaller than the expected band. One of the FS-unaffected dogs (3) produced the
expected band and the other dog (lane 4) produced the expected band and the deletion allele band.


https://doi.org/10.20944/preprints202410.1987.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2024 d0i:10.20944/preprints202410.1987.v1

6
A
Intronl3 Exon 14 3'UTR
—7
\ polyadenylation '\ly
317 bp deletion
B

-60 gtttcagtaagatactaataactttttttgatactaataactttaaaaatcatattccag

95 L V E V K G P N D R L S H K Q M I W L D

2953 CTGGTGGAAGTTAAAGGCCCCAATGATCGCCTTTCACATAAGCAGATGATCTGGTTGGAT

1005 E L. Q K L G A E V E V C H V V A V G A K

3013 GAGCTGCAGAAGTTGGGGGCCGAAGTAGAAGTCTGCCACGTGGTTGCAGT TGGAGCAAAG

1025 8 K § L :S

3073 AGCAAAAGCCTTTCCTAActaagagctgtggtgtcggggtgtctggttgtacttggactg

3133 attttcagaagcataaagcatgattacatttttaactttgattttgctttgtcagtaata

3193 aacaagatcatcgttgtacagtgtgtgcatcajjillcttggtcgtggtttaatgtacte

+25 cttgattccacatagcaggtaatgaactttctagaaggtcagaaccttggtggccatttt

Figure 5. The deletion boundaries represented by illustration and genomic sequences of the FANT.
(A) Illustration of the 3" end of the FANI gene. The deletion starts after the first base of exon 14 and
goes into the 3" UTR past the primary polyadenylation site. (B) Sequences for the end of intron 13,
exon 14 and the 3’'UTR. Gray shaded sequences correspond to exon 14, blue shaded represents the
potential poly signal and red shaded is the polyadenylation site. The 317 deleted bases are underlined.

RT-PCR was used to analyze the FAN1 transcripts present in the total RNA from the kidneys of
2 unaffected dogs and from blood of FS-affected and unaffected dogs. All of the RNA preparations
produced similar RT-PCR amplicons with primers designed from exon 5 and 7 sequences.
Microcapillary electrophoretograms of RT-PCR amplicons demonstrated expression in all samples
indicating that the mutant transcript is transcribed (Figure 6A). As expected, RT-PCR with primers
designed from exon 12 and from the deleted region of exon 14 produced amplicons with RNA from
normal but not affected dogs (Figure 6B). Primers designed from exon 12 and intron 13 produced
amplicons with RNA from affected but not normal dogs (Figure 6C), indicating that the deletion
causes intron retention in the transcript. RNA samples for both normal and affected dogs failed to
produce RT-PCR amplicons with primers designed from exon 13 and sequences immediately 3’ to
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the deletion, suggesting that the deletion includes the polyadenylation site for normal dogs. This was
confirmed with a 3’ RACE experiment which located the normal polyadenylation site 135 bp past the
stop codon and 76 bp past a potential polyA signal. A similar 3’ RACE experiment revealed that the
mutant RNA produces a transcript 577 bp into intron 13, 520 bp past an in-frame termination codon.

A

p— «——269bp

<« 245 bp

Figure 6. Microcapillary electrophoretograms of RT-PCR amplicons from FANT mRNA. RT-PCR was
performed with total RNA extracted from kidney of two FS-unaffected dogs (1 and 2), blood of two
FS-unaffected dogs (3 and 4) and one FS-affected dog (5). Lane 6 represents a negative control. (A)
RT-PCR was performed with primers from exon 5 to exon 7 of the FAN1 gene. The expected amplicon
size was 269 bp. (B) RT-PCR was performed with primers from exon 12 to exon 14 of the FAN1 gene.
The expected amplicon size was 300 bp. (C) RT-PCR was performed with primers from exon 12 to
intron 13 of the FAN1 gene. The expected amplicon size was 245 bp.
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We genotyped a cohort of 78 Basenjis of known clinical status for the FAN1 deletion and found
all 32 of the FS-affected Basenjis to be homozygous for the deletion allele. FS unaffected dogs tested
either homozygous wild-type or heterozygous except for one unaffected dog that tested homozygous
for the deletion allele. The deletion allele was highly significantly associated with the FS phenotype
(p=4.219 x 102, Fisher's exact test 2x2). Table 2 summarizes the genotype distribution.

Table 2. Distribution of genotypes among healthy and FS-affected Basenjis.

Phenotype Del/Del Gg:l)/t\g)tes Wt/Wt Total
FS affected 32 0 0 32
FS unaffected 1 33 12 46
Total 33 33 12 78

4. Discussion

The data from this study indicate that FS in Basenjis is the result of FAN1 deficiency. The
homozygous deletion genotype was strongly associated with FS phenotype, with only one dog that
did not exhibit disease signs out of 33 that were homozygous for the deletion variant. In addition,
the FANT risk variant was not present in 120 unaffected dogs from 81 different breeds. The whole
genome sequence of the proband did not contain homozygous variants in any other genes that have
been associated with the type of disease signs exhibited by the affected Basenjis. Although a
functional assay of potential FAN1 enzymatic activity was not performed, the predicted translation
of the variant transcript suggests a grossly altered protein structure if the transcript is synthesized
and translated (Supplemental Figure 1).

The mechanism by which deficiency in FAN1 leads to the kidney pathology associated with FS
remains to be fully elucidated. FANT was first named KIAA1018 by Nagase et al. [55] who screened
brain cDNA libraries for unidentified genes. They determined that KIAA1018 was expressed at
similar levels in multiple tissues. Alonso et al. [56] proposed that FANT was part of the myotubularin
gene family of tyrosine phosphatases. They proposed a new genomic designation, MTMR15 and
predicted that the encoded protein was a catalytically inactive member of the inactive MTMR family
of protein tyrosine phosphatases. The inactive MTMRs have been reported to act as regulatory units
for active members of the group [57]. However, no studies have been reported that directly support
the hypothesis that FAN1 (MTMR15/KIAA1018) is involved in the regulation of the enzymatically
active MTMRs.

Unlike the MTMR proteins, FANT1 has a ubiquitin binding domain at the N-terminus and at its
C-terminus a domain with homology to bacterial and phage endonucleases, which suggested that
this protein may contribute to the maintenance of genome stability [58]. FAN1has been identified as
one of the proteins involved in DNA inter-strand crosslink repair [59—64]. The disease Fanconi anemia
is a recessive disorder characterized by genome instability, impaired repair of DNA crosslink
damage, developmental abnormalities, early-onset bone marrow failure and predisposition to cancer
[65,66]. Variants in more than 20 genes, including FAN1, have been associated with Fanconi anemia
[66-70]. The name FAN1 (Fanconi anemia-associated nuclease 1) has been proposed because this
protein interacts with Fanconi anemia pathway proteins [59-62,69]. When DNA inter-strand
crosslinks occur, FANT1 is recruited to the lesion sites through an interaction between its ubiquitin
binding domain and the ubiquitylated complex of the Fanconi anemia pathway [59-62,69]. However,
it appears that FAN1 may also mediate DNA repair independent of other proteins in this pathway
[63,71]. The deleted region encodes a conserved segment of the nuclease domain, which is likely to
obliterate FAN1 nuclease activity (Supplemental Figure 2) and thus its role in DNA repair. Based
on the evidence that FAN1 is involved in repairing DNA inter-strand crosslinks, the proximal renal
tubule pathology associated with FS may be the result of the accumulation of these crosslinks in renal
tubule epithelial cells.

Support for this hypothesis comes from the finding that FAN1 deficiency sensitizes cultured
cells to reagents that cause targeted DNA damage. This sensitivity can be rescued by transfection
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with wild-type FANI but not by variant constructs containing point mutations in the ubiquitin
binding or endonuclease domains, which indicates that both domains are involved in DNA repair
[59-62]. The nuclease domain of FAN1 has both 5 exonuclease activity and endonuclease activities
that are key characteristics of DNA repair proteins [59-62].

The fact that the most apparent pathology associated with FS occurs in the proximal tubules of
the kidneys suggest that this tissue may be particularly susceptible to DNA damage. Factors that
promote DNA damage in this tissue may contribute to the development of FS. Consistent with this
hypothesis is the fact that acquired forms of FS have been associated with heavy-metal exposure and
toxicoses from drugs such as cisplatin that promote DNA damage [7,14,28,29,72-76]. Heavy metals,
such as cadmium, may be present in plants and sea food because of contaminated soils and water
[72]. Chronic environmental exposure can result in cadmium accumulation to toxic levels that cause
kidney disease [72]. Cadmium toxicity can cause DNA damage, including double and single stranded
breaks [77]. The kidney is particularly susceptible to cadmium and other heavy-metal toxicities.
Approximately 50% of the accumulated dose of cadmium is stored in the kidney [72]. In
mitochondria, cadmium inhibits the respiratory chain resulting in the generation of reactive oxygen
species [78]. This leads to mitochondrial disruption with the release of cytochrome c, resulting in
caspase activation causing cell death by apoptosis [79,80].

We propose that FAN1 inactivation causes FS in Basenjis by hyper-sensitization of the proximal
tubule cells to toxins that mediate DNA damage, including heavy metals such as cadmium. Since
FANT1 has been reported to be involved in DNA repair and the knockdown of FANT1 sensitizes cells
to DNA crosslinking agents [59-62], we predict that environmental and dietary exposure to toxins
that promote DNA damage leads to the accumulation of both genomic and mitochondrial DNA
damage in the kidney. Differential exposure to environmental toxins may explain the wide age-at-
onset variability for FS in Basenyjis.

Supplementary Materials: The following supporting information can be downloaded at: Preprints.org, Figure
S1: title; Table S1: title; Video S1: title.
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