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Abstract: The paper presents a study on optimizing  leather defect detection using the YOLOv11 

model.  Traditional  leather  processing  has  faced  challenges  in  quality  control,  where  human 

inspection accuracy ranges between 70% to 85%, affecting leather utilization rates and resulting in 

significant material waste.  This  research  introduces  an  automated  solution  to  improve  defect 

classification and detection accuracy. The study focuses on defects commonly found in leather, such 

as  insect  larvae  damage  and  removal  cuts,  using  a  specialized  light  chamber  to  control 

environmental variables. By analyzing both grain and  flesh  sides of  the  leather,  the  researchers 

demonstrated a significant  increase  in defect detection accuracy, with  the  flesh side achieving a 

higher classification rate. YOLOv11’s dual‐side analysis allowed for clearer identification of subtle 

defects,  leading  to  a more  efficient  classification  process.  The  results  suggest  that  integrating 

advanced AI models  like YOLOv11 with  controlled digitization  environments  could drastically 

reduce human error and improve leather utilization, providing a scalable solution for the leather 

industry. 
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1. Introduction 

The traditional processing and use of leather date back to around 7000 BCE. However, with the 

invention of chrome  tanning  in  the early 19th century,  leather production began  to  industrialize, 

marking the start of modern  leather manufacturing. According to research by IMARC Group, the 

global leather industry market size was valued at $390,9 billion in 2023, with an estimated compound 

annual growth rate (CAGR) of 4,8% from 2024 to 2032 [1]. Despite adopting alternatives like synthetic 

and vegan  leather, genuine  animal  leather  remains widely utilized, with  its market  estimated  at 

approximately $100 billion in 2023, and an expected growth rate of around 4% per year [2]. Animal 

hides in use are cow (67%), sheep (12%), pig (11%), goat (10%), and other (0,5%) [3]. Finished leather 

goods find extensive applications across various industries, including fashion, automotive, furniture, 

and footwear. 

For manufacturers of finished leather hides and products, leather utilization poses significant 

challenges  from  business,  environmental,  and  social  perspectives.  Increasing  the  utilization  of 

finished  leather hides before  the  cutting process  can  lead  to  cost  savings,  reduced  leather waste, 

decreased inventory requirements, and a lower demand for animal hides. According to the Food and 

Agriculture Organization of  the United Nations  (FAO),  this high consumption of genuine  leather 

contributes to the death of about 1 billion animals annually worldwide [4]. 

Leather utilization rates for finished leather vary based on the type of animal hide used and the 

specific industry or product. This paper focuses on optimizing defect detection, classification, and 

segmentation of  finished cowhide  leather  in  the automotive  industry, which  is 17% of  the global 
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market  for  genuine  leather  products.  For  the  innovative  project  “Improving  the  utilization  of 

industrially  processed  animal  leather  through  the  application  of  artificial  intelligence,  No.: 

00136377/00127312/2023/26” we researched automotive interior suppliers operating in Serbia. In total, 

12 international companies that supply industrial leather have been surveyed: YanFeng (3), Adient (2), 

Magna (2), Grammer (1), AutoStop Interiors (2), SMP (1), and Passubio SPA (1). 

Key findings relevant to this study indicate that the accuracy rate of quality inspection operators 

for finished leather hides ranges between 70% and 85%, directly affecting the leather utilization rate, 

which varies from 50% to 85%. Scrap rates following the cutting process range from 1,5% to 10%, 

while customer complaints are between 0,5% and 3%. Customer complaints and scrap rates further 

reduce utilization by an additional 6‐10% due  to  losses  in optimization of post‐processing  leather 

hides or recalculations in automatic pattern nesting for leather. The total number of finished leather 

hides cut daily by these companies ranges between 120 and 350. The average weight of a leather hide 

is around 25 kg, and the average purchase price is approximately 35 EUR per hide. Considering all 

these factors, the result is concerning: each surveyed companies produces approximately 3400 kg of 

leather waste daily, amounting to a loss of around 4700 EUR per day. The cause of such poor process 

performance  is  the human  factor  and  the  inability  to  conduct  consistent  inspection  of  industrial 

leather. 

Encouragingly,  during  an  extensive  literature  review, we  found  over  100  scientific  papers 

published in journals and conference proceedings on the topic of defect detection and classification 

in  industrial  leather  using  automated  control.  The  methods  applied  for  defect  detection  and 

classification on finished leather include the following [5]: 

 Traditional image processing methods achieved an accuracy range of 70% to 85%, 

 Machine Learning‐Based Methods reported accuracies ranging from 80% to 90%, 

 Deep learning approaches demonstrated higher accuracy levels, often exceeding 90%. 

Deep  learning  techniques, particularly  those based on You Only Look Once  (YOLO) models, 

were  identified  as  the most  effective  for  leather  defect  inspection  and  classification  among  the 

methods  analyzed.  YOLO models  not  only  provided  higher  accuracy  rates  but  also  improved 

processing efficiency compared to traditional methods. YOLOv2 and similar architectures have been 

noted for their real‐time processing capabilities and high detection and classification rates, achieving 

accuracies of around 92% to 95% in some studies [5]. To the best of our knowledge, the versions of 

YOLO models applied to defect detection and classification range from v1 to v9 [5–7]. In this study, 

we will  employ  the YOLOv11 model, which was  released on September  30,  2024,  and  currently 

represents the state‐of‐the‐art in YOLO models, for defect detection and classification in industrial 

leather. 

The primary contribution of this paper will be the application of the YOLOv11 model to the flesh 

side  of  leather  to  improve  defect  classification  on  the  grain  side,  within  a  specially  designed, 

controlled, closed environment. The model will be applied to defects resulting from damage caused 

by insect  larvae and damage due to the removal of the hide from the animal, which are barely or 

almost not visible on the surface of finished leather. 

2. Theoretical Background 

2.1. Literature Review 

In a comprehensive review conducted by Chen, Z. et al. [5], 90 scientific papers published over 

the last three decades, up to 2022, were analyzed. These studies primarily focused on addressing the 

challenges  of  defect  detection  and  classification  on  the  grain  side  of  the  leather  using  image 

processing and machine learning techniques. The defects addressed by these authors are: Tick Marks, 

Hot‐Iron Marks, Scabies, Open and Closed Surface Cuts, Scars, Pinholes, Fungal Attack, Chrome 

Patch, Wrinkles,  and Healing Wounds. As  this  research  is  centered  on  the  application  of  deep 

learning methodologies, traditional image processing and machine learning approaches will not be 

considered  in  this  literature  review.  Various  models  have  been  employed  for  detection  and 

classification tasks on the grain side of the leather, including Mask R‐CNN, U‐Net, YOLOv2, AlexNet, 
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SVM, CNN, ResNet50, GAN, and Salthisature models [5]. This work also provides insights into data 

volume, defect types, and the best‐achieved accuracy. For defect detection and classification on the 

grain side of the leather, the authors utilized datasets ranging from 270 to 15000 samples across 1 to 

9 different defect types, with accuracy rate ranging from 80% to 96%. Based on this literature review, 

it has been concluded that a dataset of 300 samples per defect will be sufficient to achieve meaningful 

results [5]. 

In the experimental study, Chen, Z. et al. [6] provide a detailed analysis of the performance and 

application of YOLO (v1‐v8) models for defect detection and classification on leather surfaces. The 

authors  consider YOLO  a practical option  for  improving quality  control processes  in  the  leather 

industry. They highlight  issues with  certain  types of defects where YOLO did not perform well, 

suggesting  the potential  to detect hard‐to‐see defects by examining  the  leather’s reverse side. The 

defects  addressed  by  these  authors  are:  Cavity,  Pinhole,  Scratch,  Rotten  Surface,  Growth  Line, 

Healing Wound, Crease, and Bacterial Wounds. 

Deep  learning has  emerged  as  the most  effective  approach  for  solving defect detection  and 

identification problems on the grain side of the leather, as confirmed by the findings of Tabernik, D. 

et al. [8]. 

Andrzej Wróbel  and  Piotr  Szymczyk  [9]  reported  achieving  over  95%  accuracy  in  defect 

detection  using  the  YOLOv5 model, with  the  requirement  of  1000  or more  samples  per  defect. 

Similarly, Thangakumar, J., et al. [10] applied YOLOv8 for precise defect detection and segmentation 

on the front side of the wet blue leather, which falls outside the scope of this study, as it pertains to 

pre‐finished  leather. However, their findings  indicate  that  the YOLOv8 model demonstrated high 

accuracy and  reliability  in defect detection and  segmentation, using  less  time and  fewer  training 

samples. Based on previous experiences with YOLO models, Silva, V. [11] used YOLOv5 for detection 

and classification tasks on the grain side of the leather using a relatively small dataset of defective 

and non‐defective leathers. 

In contrast, Wang, M. et al. [7] utilized YOLOv9, positioning them as one of the few authors to 

explore the latest versions of YOLO. Their study compared the performance of Faster‐RCNN, VFNet, 

Detr, and YOLO (v3, v5, v7) with YOLOv9, where YOLOv9 achieved superior speed and accuracy, 

reaching nearly 95% defect detection accuracy on the grain side of the leather. Defekti kojima su se 

ovi autori bavili su: Bubble, Dent, and Broken Glue. 

Based on the analysis of the literature review, we determined that a dataset of 300 samples per 

defect will be  adequate  to  achieve an  initial accuracy higher  than 90%, which  is  the goal of  this 

research. Based on  the extensive  literature  review we concluded  that YOLO  technology  is highly 

suitable for defect detection and classification problems. Additionally, the literature review revealed 

that  no  previous  studies  have  employed  the  reverse  side  of  leather  for  defect  detection  and 

classification purposes. All studies reviewed by the authors were conducted in laboratory conditions 

without environmental control. We will design a dedicated environment that enables consistent and 

controlled conditions, suitable for industrial application. A literature review also led us to conclude 

that no author has yet addressed defects resulting from damage created by insect larvae or from the 

removal of the hide, most likely because they are barely or not at all visible on the leather surface. 

Even when visible, they are difficult to classify, as the two classes (grubs and suckout) manifest almost 

identically on the leather surface. 

2.2. YOLO Model 

This section provides a summary of the advancements in the YOLO model family over the past 

year  (Table  1).  The  previous models,  from  YOLOv1  to  YOLOv8,  are  presented  and  thoroughly 

analyzed in an experimental study conducted by Chen Z. et al. [6]. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2024 doi:10.20944/preprints202411.0239.v1

https://doi.org/10.20944/preprints202411.0239.v1


  4 

 

Table 1. Evolution of YOLO Models in 2024. 

Model  Backbone  Head  Label Allocation 

YOLOv9  CSPDarkNet53 

conv, anchor boxes, 

multi‐label classification, 

Auto Learning Bounding 

Box 

Programmable Gradient 

Information (PGI) 

YOLOv10 
CSPDarkNet53 or 

custom 

conv, decoupled 

detection head, anchor‐

free, multi‐label 

classification 

Consistent dual assignments 

for NMS‐free training 

YOLOv11 
Ultralytics 

Backbone 

Multi‐task support for 

detection, segmentation, 

classification, pose 

estimation, OBB 

Optimized Task‐Aligner 

Assigner 

The YOLOv9 model,  developed  in  February  2024,  incorporates  advanced  architectures  and 

optimization techniques to reduce data loss and improve model efficiency. A key advancement over 

YOLOv8  is  the  implementation  of  Programmable Gradient  Information  (PGI)  (Table  2)  and  the 

Generalized  Efficient  Layer Aggregation Network  (GELAN).  PGI mitigates  information  loss  by 

preserving gradient information across network layers, while GELAN facilitates feature extraction at 

all scales, simplifying computation. Together, these techniques yield improvements over the YOLOv8 

model: a 49% reduction in training parameters and a 43% decrease in computational load, making 

this  model  suitable  for  high‐performance  tasks  and  resource‐constrained  devices  [12].  In  the 

literature, we have encountered applications of YOLOv9 across various industries. Yang et al. [13] 

applied YOLOv9 in the case of a target‐matching method for visible and infrared images at sea based 

on decision‐level  topological  relations. Huang, X.  et  al.  [14] used  an  improved YOLOv9‐OREPA 

model in their study on underwater crack detection. Rizzieri, N. et al. [15] employed YOLOv8 and 

YOLOv9 for detecting Diabetic Retinopathy (DR), a severe eye disease secondary to diabetes. Wang, 

X. et al.  [16] utilized  the YOLOv9 model  for coffee detection and segmentation  in  the agriculture 

sector. Bustamante, A.  et  al.  [17] used YOLOv9  for  accurate posture detection of  elderly people, 

aiming to improve monitoring and provide timely alerts in homes and elderly care facilities. Mi, Z., 

&  Yan, W. Q.  [18]  combined  YOLOv9  and  Swin  Transformer  to  develop  a  complex model  for 

detecting strawberry ripeness. Li, J., Feng [19] applied YOLOv9 to handle various adverse weather 

conditions. Wan, L. et al. [20] used YOLOv9 for mobile inspections conducted by intelligent tunnel 

robots,  which  are  instrumental  in  broadening  inspection  reach,  economizing  on  inspection 

expenditures, and augmenting  the operational efficiency of  inspections. Xu, W. et al.  [21] applied 

YOLOv9 for violence detection. Although the YOLOv9 model was released at the beginning of 2024, 

numerous  scientific  papers  already  demonstrated  its  diverse  applications  in  object  detection, 

achieving excellent results in detection, classification, and segmentation. 

Table 2. Algorithms Used for Calculating the Cost Function. 

Model  Confidence Error Loss  Box Regression Loss  Classification Loss 

YOLOv9  BCE 
PGIoU (Programmable 

Gradient IoU) 
BCE 

YOLOv10  BCE  DIoU (Dual IoU)  BCE 

YOLOv11  BCE  CIoU + DFL  BCE 

The YOLOv10 model, developed in May 2024, introduces efficiency‐focused advancements by 

eliminating the NMS algorithm during inference. Utilizing consistent dual assignments (Table 2), the 

model applies two approaches for object label assignment: one that generates multiple predictions 

per  object  during  training  and  another  that  selects  the  best  prediction  for  each  object,  thereby 

increasing  inference  speed. Additionally,  YOLOv10  employs  an  enhanced  backbone  for  feature 
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extraction  (CSPNet) and, unlike previous versions,  it does not use predefined anchors, making  it 

simpler and faster. It also incorporates elements of the self‐attention mechanism, helping it focus on 

the important parts of the image. These improvements enhance the model’s accuracy and efficiency, 

making YOLOv10 an excellent choice for applications requiring fast response and high precision [22]. 

Although  the  YOLOv10  model  was  only  released  in  mid‐2024,  published  studies  on  its 

applications are already available. Hussain, M., & Khanam, R.  [23]  focused on  improving quality 

inspection within the photovoltaic (PV) domain using YOLOv10. Tan, L. et al. [24] used YOLOv10 

for a novel self‐checkout system for retail, enhancing checkout efficiency and reducing labor costs. 

Qiu, X. et al. [25] employed YOLOv10 for a lightweight drone target detection algorithm. Liu, W. et 

al. [26] used YOLOv10 for tomato recognition and for a rapid sorting system. Zhang, C. et al. [27] 

developed a novel YOLOv10‐DECA model for real‐time detection of concrete cracks. 

The YOLOv11 model, developed  in September 2024, brings new enhancements  in speed and 

accuracy, with an improved backbone and feature extraction architecture. The model uses optimized 

data processing methods and  faster  training, with a  reduced number of parameters compared  to 

YOLOv8  (<22%), making  it more  efficient. Additionally,  it  supports various  tasks  such  as object 

detection, segmentation, pose estimation, and classification, making this model a versatile choice for 

applications  that  require high accuracy  in  real‐time on devices with  limited  capabilities  [28]. The 

YOLOv11 model was only recently launched, so we cannot refer to any relevant model applications. 

3. Methodology 

3.1. Environmental Set‐Up 

For the research, we created a dedicated small‐scale environment in the form of a light chamber, 

which would be suitable for industrial conditions. This environment for digitizing industrial leather 

cuts is fully enclosed to control lighting and industrial dust—factors that can significantly impact the 

research. Lighting is essential for achieving adequate photographs for computer vision applications, 

while industrial dust on the leather poses a problem by concealing tiny perforation defects. 

To control the environment, we constructed a digitization chamber with dimensions of 1000mm 

x 1000mm x 1000mm. The chamber walls are made of Forex material, and the interior is matte white. 

The chamber includes a pull‐out drawer where the leather cut is placed in the designated digitization 

area.  The  digitization  zone measures  800mm  x  800mm.  To manage  the  technical  solution,  we 

developed an operational software system. The surface on which we digitize the leather is burgundy, 

providing contrast that is beneficial for AI models. 

The lighting is LED type, 2100 LUX, with a color temperature of 4000K, positioned at a 45‐degree 

angle. The industrial camera used for digitizing leather cut parts is The Imaging Source DFK 38UX541 

1.1”, 20.3 Megapixels, 18 fps, with a Global Shutter and USB 3,1 output with a resolution of 4504 x 

4504 pixels (1:1 aspect ratio)1. The lens used on the camera is a V1226‐MPZ, 12 mm 1″ f/2,6—f/16 with 

a fixed focal length2. 

To manage the solution, we developed operational software for lighting, camera control, and AI 

model applications. The software is controlled via a touch‐screen monitor Zeus ZUS215MAX located 

on the front of the chamber. All equipment is connected via the NVIDIA Jetson Orin Nano Developer 

kit.  The  prototype  developed  for  this  research,  which  consists  of  custom‐made  hardware  and 

software, is named Prototype P2‐24 (Figure 1). 

 
1  Available online: https://www.theimagingsource.com/en‐us/product/industrial/38u/dfk38ux541/ 

2  Available online: https://www.rmaelectronics.com/computar‐v1226‐mpz/) 
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Figure 1. Digitization environment named Prototype P2‐24. 

3.2. Data Collection and Model Training 

The data annotation was carried out using the CVAT.ai software3  allowing easy data export in 

the desired format. The data consists of images of leather pieces, each with two  images: front and 

back (Figures 2 and 3). For each piece of leather, polygonal annotations of defects were made on both 

sides. As mentioned before, we focus on two defects (grubs and suckout) that are more clearly visible 

on the back side, in an attempt to improve the overall classification accuracy. These are defects to 

which no tolerance is applied according to the general standards of leather industry customers; they 

must be  removed without exception. The  total dataset consists of 1200  images, of which 600  (300 

front, 300 back)  is of class grubs and 600 (300 front, 300 back) of class suckout, with a total of 1327 

annotations. The image resolution is 4504 × 4504. The dataset is split into training, validation and test 
sets, which creates: 840 images for training, 240 for validation and 120 for test. 

We use two fine‐tuned YOLOv11 models for detection, trained separately with data from the 

front and back side of the leather, respectively. Models are trained to recognize defects on both sides 

of each  leather piece with corresponding annotations. The training was conducted on an NVIDIA 

RTX 4090 GPU, with optimized parameters  for epochs,  initial  learning rate, and batch size, using 

rigid image augmentations to enhance the model’s robustness. 

 
3  Available online: https://www.cvat.ai/ 
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Figure  2.  Example  of  an  enlarged  annotated  image  of  grain  (left)  and  flesh  (right)  leather  sides 

showing a defect named grubs (larval damage). 

 

Figure  3.  Example  of  an  enlarged  annotated  image  of  grain  (left)  and  flesh  (right)  leather  sides 

showing a defect named suckout (cut damage). 

3.3. Metrics for Evaluation 

We use a test set of 120 (60+60) images of leather pieces, with both front and back views provided 

for each piece. Each image is annotated with polygonal defect markings, allowing precise comparison 

of defect detection on each side. Across all images, there are a total of 64 grubs and 60 suckout defects 

annotated. After detecting defects on both  sides of  the  leather, we defined a  combined weighted 

scoring system that applies to the output classification. The experiment tests two approaches: 

 Front‐Only Classification: Based solely on the front side. 

 Dual‐Side Combined Classification: Combines results from both front and back sides. 

The selection of scoring weights involves a degree of arbitrariness and is refined through trial 

and error. However, an informed approach can guide this process, and we have determined that a 

0,3/0,7 weighting, favoring the backside, yields the most accurate results when considering these two 

classes. 

CombinedScore = 0.7 * Conffront + 0.3 * Confback  (1)

4. Results 

We applied  the YOLO model on a dataset of 1200 defective  samples  from both  sides of  the 

leather, focusing on grubs and suckout defects, and the results are shown  in Table 3. In the case of 
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detection on the grain side, we achieved satisfactory accuracy of 85.8% for grubs and 87.1% for suckout. 

However, for defect detection on the flesh side, we achieved significantly better results, with 93.5% 

for grubs and 91.8% for suckout. 

Table 3. Performance results. 

 
Sample size of leather 

Average accuracy 

detection (%) 

Average accuracy classification 

(%) 

grubs  suckout  grubs  suckout  grubs  suckout 

Grain side  300  300  85.8  87.1  66.8  78.2 

Flesh side  300  300  93.5  91.8  98.2  97.6 

In terms of classification, we obtained relatively low results for grubs on the grain side at 66.8%, 

while suckout classification accuracy was 97.6%. For defect classification on the flesh side, we achieved 

outstanding results of 98.2% for grubs and 97.6% for suckout. 

The results demonstrate a notable improvement in defect detection accuracy on the flesh side of 

the leather, with an overall accuracy increase from 0.85 to 0.93. F1‐Score improved from 0.86 to 0.93, 

reflecting  a  more  balanced  and  effective  classification.  Precision  increased  from  0.87  to  0.92, 

indicating fewer false positives on the flesh side, while recall rose from 0.84 to 0.94, showing a higher 

rate of correctly identified defects. This improvement across all three metrics suggests that the flesh 

side provides clearer defect signals, allowing for more accurate and reliable detection. In Figure 4, 

confusion matrices show the performance of the two detectors. 

Table 4. Algorithms Used for Calculating the Cost Function. 

Metric  Grain side (%)  Flesh side (%) 

Accuracy  85  93 

F1‐Score  86  93 

Precision  87  92 

Recall  84  94 

Suckout Accuracy  87  92 

Grubs Accuracy  85  94 

 

Figure 4. Normalized confusion matrices for the grain (left) and flesh (right) side. 

Furthermore, Figure 5 illustrates the distribution and relationship between class probability for 

the flesh side (blue) and the grain side (green). Scores are sorted in ascending order for both the front 

and  flesh  side  to  facilitate  direct  comparison.  The  difference  between  the  two  distributions  is 

significant, indicating a clear separation in scores for the front and flesh sides. This separation may 
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contribute to a more nuanced approach to defect detection, where certain defects are more reliably 

detected on the flesh side, as confirmed by higher confidence scores for the flesh side. 

 

 

Figure 5. Barchart of prediction confidences. 

It is also important to note that the grain side shows much greater variability in classification 

confidence, reinforcing  the hypothesis that weighted scoring could significantly enhance accuracy 

(Table 5). These results highlight differences in the detection scores for the defects grubs and suckout 

when comparing the flesh side and grain side of leather pieces. For both classes, the back‐side scores 

are significantly higher than the grain‐side scores, with an average difference of around 28.7% for 

grubs and 18.2%  for  suckout. This  indicates  that  they are much more discernable on  the  flesh side 

compared to the front. The standard deviation on the flesh side is low, showing that flesh side scores 

are consistently high. In contrast, the front‐side scores have a higher standard deviation, reflecting 

more variability and less consistent detection on the front. 

Table 5. Performance results. 

 
Grubs  Suckout 

Mean Accuracy (%)  STD (%)  Mean Accuracy (%)  STD (%) 

Grain side  68.44  5.83  78.28  5.1 

Flesh side  97.19  1.58  96.5  1.44 

5. Discussion 

The results of this study demonstrate the effectiveness of using YOLOv11 for defect detection 

and classification on finished leather, especially when analyzing both the grain and flesh sides. The 

experiment confirms that defect detection on the flesh side yields higher accuracy and reliability for 

certain defects, such as grubs (larval damage) and suckout (cut damage). This outcome supports the 

hypothesis that examining the flesh side can reveal defects otherwise difficult to detect on the grain 

side, providing a promising approach for optimizing leather utilization. 

Table 6 shows a comparison of the results we achieved with this case study with the results of 

other authors who also applied YOLO models for the case of defect detection and classification. 
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Table  6. Relevant use of YOLO model  series  for detection  and  classification of  industrial  leather 

defects on finished leather. 

Author  Sample size  Defects 
Leather 

side 

YOLO   

model 

Best   

accuracy (%) 

Wang, M. et al. [7]  6288  Bubble, dent, broken glue  Grain  YOLOv9  94.7 

Andrzej Wróbel and 

Piotr Szymczyk [9] 
400 

General defects (not 

categorized) 
Grain  YOLOv5  95 

Chen, Z. et al. [6]  2855 

Cavity, pinhole, scratch, 

rotten surface, growth 

line, healing wound, 

crease, bacterial wound 

Grain 
YOLOv5‐

v8 
85.1 

Thangakumar, J., et al. 

[10] 
Not specified  Various leather defects 

Not 

specified 
YOLOv8  92 

           

The proposed model 

in this paper:   
1200 

Grubs (larval damage) 

and suckout (cut damage) 

Both grain 

and flush 
YOLOv11  97.6 

The  specialized  environmental  setup,  consisting  of  a  light  chamber  equipped with  a  20.3‐

megapixel industrial camera, played a crucial role in enhancing detection accuracy by minimizing 

variables  like  lighting  inconsistencies  and  dust  interference,  which  are  common  in  industrial 

environments.  This  controlled  setting  proved  essential  for  achieving  consistent,  reliable  defect 

detection,  indicating  that  adopting  similar  environments  could  be  beneficial  in  industrial 

applications. 

The two‐class weighted scoring system introduced here also proved advantageous, particularly 

when detection on one side provided better visibility or detail than the other. By assigning greater 

weight to the flesh side for specific defect types, this scoring method capitalized on the flesh side’s 

improved accuracy, as shown by an average accuracy difference of 28.7% for grubs and 18.2%  for 

suckout. This  approach highlights  the potential  of  side‐specific detection, where  each  side of  the 

leather can provide unique data, refining the classification process and potentially reducing waste 

through more precise grading. 

The increased precision and recall scores on the flesh side underscore the model’s capability to 

reduce false positives and false negatives, two critical aspects of automated leather inspection. With 

precision  increasing  from  0.87  to  0.92  and  recall  from  0.84  to  0.94  on  the  flesh  side,  these 

improvements  suggest  that  incorporating  backside  analysis  can  significantly  reduce  inspection 

errors. Such accuracy has substantial implications for real‐world applications, potentially allowing 

manufacturers  to meet  stricter quality  standards  and minimize waste due  to misclassification or 

overlooked defects. 

The low detection and classification results on the grain side for grubs and suckout defects are 

attributed  to  the  limited or  impossible surface visibility of  these defects during  inspection, which 

subsequently affects processes such as lamination and sewing. Additionally, the low classification 

results  are  due  to  the  nearly  identical  surface  appearance  of  both  defects.  The  only  reliable 

classification occurs when suckout presents as a line resembling a scar. Conversely, these two defects 

are clearly distinguishable on the flesh side, as illustrated in Figures 2 and 3. Grubs defects are circular 

or elliptical, often occurring in clusters. The larvae create a uniform erosion within the leather, leaving 

a distinct and visible shape. Suckout, on the other hand, appears as a tear or separation on the flesh 

side, typically split into two parts. For this reason, the application of YOLOv11 achieved relatively 

lower results on the grain side for grubs and suckout defects compared to other studies using YOLO 

models for different defect classes. However, by applying YOLOv11 to the flesh side, we achieved 

higher results than previously reported in the literature. 

It is essential to recognize that not all defect types may benefit from dual‐side analysis. Certain 

surface characteristics unique to the grain side may not manifest clearly on the flesh side, warranting 

further research to assess the applicability of this approach across all defect types. Thus, while dual‐
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side analysis shows promise, expanding the classification system to accommodate a wider range of 

leather defect profiles could enhance its robustness. 

The  promising  results  achieved with  YOLOv11  confirm  its  suitability  for  industrial  defect 

detection,  where  both  accuracy  and  speed  are  crucial.  Recent  advances  in  deep  learning  and 

computer  vision,  as  exemplified  by  YOLOv11,  offer  a  pathway  to  streamline  leather  inspection 

processes,  reduce human error, and  improve  leather utilization. Future studies could expand  the 

range of detectable defects, validate this approach across larger datasets, and adapt the methodology 

to other stages of leather processing. Practical considerations for industrial applications should also 

be  taken  into  account,  as  both  sides  of  the  leather  would  need  to  be  digitized,  possibly 

simultaneously, to avoid errors. A potential solution could involve using a transparent surface for 

dual‐side digitization, although this would require entirely new studies focused on the development 

of appropriate hardware and environments for digitization. 

6. Conclusions 

This work is the result of an experimental study within a scientific innovation project. For the 

purposes of  the experiment, dedicated hardware was developed, and  the  latest  technology of  the 

YOLO model series (YOLOv11) was used for defect recognition and  localization on the grain and 

flesh side of industrial leather. Experimental validation confirmed that the application of YOLO on 

the  flesh  side of  industrial  leather  led  to  improved detection  and  classification of defects whose 

damage is more evident on the flesh side of industrial leather. For the experiment, we used the grubs 

defect, which  is caused by damage  inflicted by  larvae on  the  flesh  side of  industrial  leather, and 

suckout, which results from cuts during the separation of the hide from the animal’s body. The data 

used  for  training and validating  the experiment were more  than sufficient  to achieve appropriate 

accuracy in detection and classification. 

In this study, we presented a unique novelty contribution that, to the best of our knowledge, has 

not been previously documented in the literature: 

• We utilized a controlled, fully enclosed environment with identical digitization conditions for 

each defect, thus making a significant contribution toward implementing a technical solution for 

automatic defect inspection on leather in an industrial setting. 

• We applied computer vision models to detect, classify, and segment defects on the flesh side of 

industrial leather. 

• We investigated defects in the industry, known internally as grubs (larval damage) and suckout 

(cut damage), which,  to  the best of our knowledge, have not been  studied by any previous 

authors. 

The  limitation of  this  study  lies  in  its  inapplicability  to other  types of defects  that occur on 

industrial leather, particularly because certain defects on the grain side of industrial leather do not 

manifest on  the  flesh side or are barely visible. A  separate experimental study would need  to be 

conducted  for  each  defect  individually  to  determine  the  effectiveness  of  the  comprehensive 

application of the YOLOv11 model in addressing the challenges of automating the industrial leather 

inspection process. 

It has been demonstrated that YOLOv11 is highly successful in detecting and classifying defects, 

even  for  those  that  are difficult  to  classify due  to  their  similar manifestations on  the  surface. By 

applying a controlled environment in the form of a digitization chamber and using the YOLO model 

on data obtained in controlled conditions, we have shown that it is possible to implement computer 

vision  in  industrial  settings,  creating  the potential  to overcome manual  labor  and  reduce  leather 

waste by optimizing utilization  in  the pre‐cutting process of  finished  leather hides. The ability  to 

accurately classify defects  in an  industrial environment contributes  to  the possibility of assessing 

tolerance  and meeting  different  customer  standards, which  can  significantly  enhance  utilization 

optimization. 
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