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Abstract: The paper presents a study on optimizing leather defect detection using the YOLOv11
model. Traditional leather processing has faced challenges in quality control, where human
inspection accuracy ranges between 70% to 85%, affecting leather utilization rates and resulting in
significant material waste. This research introduces an automated solution to improve defect
classification and detection accuracy. The study focuses on defects commonly found in leather, such
as insect larvae damage and removal cuts, using a specialized light chamber to control
environmental variables. By analyzing both grain and flesh sides of the leather, the researchers
demonstrated a significant increase in defect detection accuracy, with the flesh side achieving a
higher classification rate. YOLOv11’s dual-side analysis allowed for clearer identification of subtle
defects, leading to a more efficient classification process. The results suggest that integrating
advanced Al models like YOLOv11 with controlled digitization environments could drastically
reduce human error and improve leather utilization, providing a scalable solution for the leather
industry.
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1. Introduction

The traditional processing and use of leather date back to around 7000 BCE. However, with the
invention of chrome tanning in the early 19th century, leather production began to industrialize,
marking the start of modern leather manufacturing. According to research by IMARC Group, the
global leather industry market size was valued at $390,9 billion in 2023, with an estimated compound
annual growth rate (CAGR) of 4,8% from 2024 to 2032 [1]. Despite adopting alternatives like synthetic
and vegan leather, genuine animal leather remains widely utilized, with its market estimated at
approximately $100 billion in 2023, and an expected growth rate of around 4% per year [2]. Animal
hides in use are cow (67%), sheep (12%), pig (11%), goat (10%), and other (0,5%) [3]. Finished leather
goods find extensive applications across various industries, including fashion, automotive, furniture,
and footwear.

For manufacturers of finished leather hides and products, leather utilization poses significant
challenges from business, environmental, and social perspectives. Increasing the utilization of
finished leather hides before the cutting process can lead to cost savings, reduced leather waste,
decreased inventory requirements, and a lower demand for animal hides. According to the Food and
Agriculture Organization of the United Nations (FAO), this high consumption of genuine leather
contributes to the death of about 1 billion animals annually worldwide [4].

Leather utilization rates for finished leather vary based on the type of animal hide used and the
specific industry or product. This paper focuses on optimizing defect detection, classification, and
segmentation of finished cowhide leather in the automotive industry, which is 17% of the global
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market for genuine leather products. For the innovative project “Improving the utilization of
industrially processed animal leather through the application of artificial intelligence, No.:
00136377/00127312/2023/26” we researched automotive interior suppliers operating in Serbia. In total,
12 international companies that supply industrial leather have been surveyed: YanFeng (3), Adient (2),
Magna (2), Grammer (1), AutoStop Interiors (2), SMP (1), and Passubio SPA (1).

Key findings relevant to this study indicate that the accuracy rate of quality inspection operators
for finished leather hides ranges between 70% and 85%, directly affecting the leather utilization rate,
which varies from 50% to 85%. Scrap rates following the cutting process range from 1,5% to 10%,
while customer complaints are between 0,5% and 3%. Customer complaints and scrap rates further
reduce utilization by an additional 6-10% due to losses in optimization of post-processing leather
hides or recalculations in automatic pattern nesting for leather. The total number of finished leather
hides cut daily by these companies ranges between 120 and 350. The average weight of a leather hide
is around 25 kg, and the average purchase price is approximately 35 EUR per hide. Considering all
these factors, the result is concerning: each surveyed companies produces approximately 3400 kg of
leather waste daily, amounting to a loss of around 4700 EUR per day. The cause of such poor process
performance is the human factor and the inability to conduct consistent inspection of industrial
leather.

Encouragingly, during an extensive literature review, we found over 100 scientific papers
published in journals and conference proceedings on the topic of defect detection and classification
in industrial leather using automated control. The methods applied for defect detection and
classification on finished leather include the following [5]:

e  Traditional image processing methods achieved an accuracy range of 70% to 85%,

e Machine Learning-Based Methods reported accuracies ranging from 80% to 90%,
e Deep learning approaches demonstrated higher accuracy levels, often exceeding 90%.

Deep learning techniques, particularly those based on You Only Look Once (YOLO) models,
were identified as the most effective for leather defect inspection and classification among the
methods analyzed. YOLO models not only provided higher accuracy rates but also improved
processing efficiency compared to traditional methods. YOLOv2 and similar architectures have been
noted for their real-time processing capabilities and high detection and classification rates, achieving
accuracies of around 92% to 95% in some studies [5]. To the best of our knowledge, the versions of
YOLO models applied to defect detection and classification range from v1 to v9 [5-7]. In this study,
we will employ the YOLOv11 model, which was released on September 30, 2024, and currently
represents the state-of-the-art in YOLO models, for defect detection and classification in industrial
leather.

The primary contribution of this paper will be the application of the YOLOv11 model to the flesh
side of leather to improve defect classification on the grain side, within a specially designed,
controlled, closed environment. The model will be applied to defects resulting from damage caused
by insect larvae and damage due to the removal of the hide from the animal, which are barely or
almost not visible on the surface of finished leather.

2. Theoretical Background
2.1. Literature Review

In a comprehensive review conducted by Chen, Z. et al. [5], 90 scientific papers published over
the last three decades, up to 2022, were analyzed. These studies primarily focused on addressing the
challenges of defect detection and classification on the grain side of the leather using image
processing and machine learning techniques. The defects addressed by these authors are: Tick Marks,
Hot-Iron Marks, Scabies, Open and Closed Surface Cuts, Scars, Pinholes, Fungal Attack, Chrome
Patch, Wrinkles, and Healing Wounds. As this research is centered on the application of deep
learning methodologies, traditional image processing and machine learning approaches will not be
considered in this literature review. Various models have been employed for detection and
classification tasks on the grain side of the leather, including Mask R-CNN, U-Net, YOLOv2, AlexNet,
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SVM, CNN, ResNet50, GAN, and Salthisature models [5]. This work also provides insights into data
volume, defect types, and the best-achieved accuracy. For defect detection and classification on the
grain side of the leather, the authors utilized datasets ranging from 270 to 15000 samples across 1 to
9 different defect types, with accuracy rate ranging from 80% to 96%. Based on this literature review,
it has been concluded that a dataset of 300 samples per defect will be sufficient to achieve meaningful
results [5].

In the experimental study, Chen, Z. et al. [6] provide a detailed analysis of the performance and
application of YOLO (v1-v8) models for defect detection and classification on leather surfaces. The
authors consider YOLO a practical option for improving quality control processes in the leather
industry. They highlight issues with certain types of defects where YOLO did not perform well,
suggesting the potential to detect hard-to-see defects by examining the leather’s reverse side. The
defects addressed by these authors are: Cavity, Pinhole, Scratch, Rotten Surface, Growth Line,
Healing Wound, Crease, and Bacterial Wounds.

Deep learning has emerged as the most effective approach for solving defect detection and
identification problems on the grain side of the leather, as confirmed by the findings of Tabernik, D.
et al. [8].

Andrzej Wrébel and Piotr Szymczyk [9] reported achieving over 95% accuracy in defect
detection using the YOLOvV5 model, with the requirement of 1000 or more samples per defect.
Similarly, Thangakumar, J., et al. [10] applied YOLOVS for precise defect detection and segmentation
on the front side of the wet blue leather, which falls outside the scope of this study, as it pertains to
pre-finished leather. However, their findings indicate that the YOLOvV8 model demonstrated high
accuracy and reliability in defect detection and segmentation, using less time and fewer training
samples. Based on previous experiences with YOLO models, Silva, V. [11] used YOLOVS5 for detection
and classification tasks on the grain side of the leather using a relatively small dataset of defective
and non-defective leathers.

In contrast, Wang, M. et al. [7] utilized YOLOVY, positioning them as one of the few authors to
explore the latest versions of YOLO. Their study compared the performance of Faster-RCNN, VFNet,
Detr, and YOLO (v3, v5, v7) with YOLOV9, where YOLOV9 achieved superior speed and accuracy,
reaching nearly 95% defect detection accuracy on the grain side of the leather. Defekti kojima su se
ovi autori bavili su: Bubble, Dent, and Broken Glue.

Based on the analysis of the literature review, we determined that a dataset of 300 samples per
defect will be adequate to achieve an initial accuracy higher than 90%, which is the goal of this
research. Based on the extensive literature review we concluded that YOLO technology is highly
suitable for defect detection and classification problems. Additionally, the literature review revealed
that no previous studies have employed the reverse side of leather for defect detection and
classification purposes. All studies reviewed by the authors were conducted in laboratory conditions
without environmental control. We will design a dedicated environment that enables consistent and
controlled conditions, suitable for industrial application. A literature review also led us to conclude
that no author has yet addressed defects resulting from damage created by insect larvae or from the
removal of the hide, most likely because they are barely or not at all visible on the leather surface.
Even when visible, they are difficult to classify, as the two classes (grubs and suckout) manifest almost
identically on the leather surface.

2.2. YOLO Model

This section provides a summary of the advancements in the YOLO model family over the past
year (Table 1). The previous models, from YOLOv1 to YOLOVS, are presented and thoroughly
analyzed in an experimental study conducted by Chen Z. et al. [6].
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Table 1. Evolution of YOLO Models in 2024.

Model Backbone Head Label Allocation
conv, anchor boxes,
multi-label classification, =~ Programmable Gradient
Auto Learning Bounding Information (PGI)
Box

YOLOvV9 CSPDarkNet53

conv, decoupled
CSPDarkNet53 or detection head, anchor- Consistent dual assignments

YOLOVIO custom free, multi-label for NMS-free training
classification
Multi-task support for
YOLOV11 Ultralytics detectlo.n', segmentatlon, Optimized ”.Fask-Ahgner
Backbone classification, pose Assigner

estimation, OBB

The YOLOVY model, developed in February 2024, incorporates advanced architectures and
optimization techniques to reduce data loss and improve model efficiency. A key advancement over
YOLOVS is the implementation of Programmable Gradient Information (PGI) (Table 2) and the
Generalized Efficient Layer Aggregation Network (GELAN). PGI mitigates information loss by
preserving gradient information across network layers, while GELAN facilitates feature extraction at
all scales, simplifying computation. Together, these techniques yield improvements over the YOLOV8
model: a 49% reduction in training parameters and a 43% decrease in computational load, making
this model suitable for high-performance tasks and resource-constrained devices [12]. In the
literature, we have encountered applications of YOLOV9 across various industries. Yang et al. [13]
applied YOLOVY in the case of a target-matching method for visible and infrared images at sea based
on decision-level topological relations. Huang, X. et al. [14] used an improved YOLOv9-OREPA
model in their study on underwater crack detection. Rizzieri, N. et al. [15] employed YOLOvVS8 and
YOLOVY for detecting Diabetic Retinopathy (DR), a severe eye disease secondary to diabetes. Wang,
X. et al. [16] utilized the YOLOvV9 model for coffee detection and segmentation in the agriculture
sector. Bustamante, A. et al. [17] used YOLOVY for accurate posture detection of elderly people,
aiming to improve monitoring and provide timely alerts in homes and elderly care facilities. Mi, Z.,
& Yan, W. Q. [18] combined YOLOV9 and Swin Transformer to develop a complex model for
detecting strawberry ripeness. Li, J., Feng [19] applied YOLOV9 to handle various adverse weather
conditions. Wan, L. et al. [20] used YOLOV9 for mobile inspections conducted by intelligent tunnel
robots, which are instrumental in broadening inspection reach, economizing on inspection
expenditures, and augmenting the operational efficiency of inspections. Xu, W. et al. [21] applied
YOLOV9 for violence detection. Although the YOLOv9 model was released at the beginning of 2024,
numerous scientific papers already demonstrated its diverse applications in object detection,
achieving excellent results in detection, classification, and segmentation.

Table 2. Algorithms Used for Calculating the Cost Function.

Model Confidence Error Loss Box Regression Loss Classification Loss
PGIoU (Programmable
YOLOvV9 BCE Gradient ToU) BCE
YOLOv10 BCE DIoU (Dual IoU) BCE
YOLOv11 BCE CloU + DFL BCE

The YOLOvV10 model, developed in May 2024, introduces efficiency-focused advancements by
eliminating the NMS algorithm during inference. Utilizing consistent dual assignments (Table 2), the
model applies two approaches for object label assignment: one that generates multiple predictions
per object during training and another that selects the best prediction for each object, thereby
increasing inference speed. Additionally, YOLOv10 employs an enhanced backbone for feature
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extraction (CSPNet) and, unlike previous versions, it does not use predefined anchors, making it
simpler and faster. It also incorporates elements of the self-attention mechanism, helping it focus on
the important parts of the image. These improvements enhance the model’s accuracy and efficiency,
making YOLOvV10 an excellent choice for applications requiring fast response and high precision [22].

Although the YOLOvV10 model was only released in mid-2024, published studies on its
applications are already available. Hussain, M., & Khanam, R. [23] focused on improving quality
inspection within the photovoltaic (PV) domain using YOLOv10. Tan, L. et al. [24] used YOLOv10
for a novel self-checkout system for retail, enhancing checkout efficiency and reducing labor costs.
Qiu, X. et al. [25] employed YOLOV10 for a lightweight drone target detection algorithm. Liu, W. et
al. [26] used YOLOV10 for tomato recognition and for a rapid sorting system. Zhang, C. et al. [27]
developed a novel YOLOv10-DECA model for real-time detection of concrete cracks.

The YOLOv11 model, developed in September 2024, brings new enhancements in speed and
accuracy, with an improved backbone and feature extraction architecture. The model uses optimized
data processing methods and faster training, with a reduced number of parameters compared to
YOLOVS (<22%), making it more efficient. Additionally, it supports various tasks such as object
detection, segmentation, pose estimation, and classification, making this model a versatile choice for
applications that require high accuracy in real-time on devices with limited capabilities [28]. The
YOLOv11 model was only recently launched, so we cannot refer to any relevant model applications.

3. Methodology
3.1. Environmental Set-Up

For the research, we created a dedicated small-scale environment in the form of a light chamber,
which would be suitable for industrial conditions. This environment for digitizing industrial leather
cuts is fully enclosed to control lighting and industrial dust—factors that can significantly impact the
research. Lighting is essential for achieving adequate photographs for computer vision applications,
while industrial dust on the leather poses a problem by concealing tiny perforation defects.

To control the environment, we constructed a digitization chamber with dimensions of 1000mm
x 1000mm x 1000mm. The chamber walls are made of Forex material, and the interior is matte white.
The chamber includes a pull-out drawer where the leather cut is placed in the designated digitization
area. The digitization zone measures 800mm x 800mm. To manage the technical solution, we
developed an operational software system. The surface on which we digitize the leather is burgundy,
providing contrast that is beneficial for AI models.

The lighting is LED type, 2100 LUX, with a color temperature of 4000K, positioned at a 45-degree
angle. The industrial camera used for digitizing leather cut parts is The Imaging Source DFK 38UX541
1.17, 20.3 Megapixels, 18 fps, with a Global Shutter and USB 3,1 output with a resolution of 4504 x
4504 pixels (1:1 aspect ratio)'. The lens used on the camera is a V1226-MPZ, 12 mm 1" £/2,6 —£/16 with
a fixed focal length?.

To manage the solution, we developed operational software for lighting, camera control, and Al
model applications. The software is controlled via a touch-screen monitor Zeus ZUS215MAX located
on the front of the chamber. All equipment is connected via the NVIDIA Jetson Orin Nano Developer
kit. The prototype developed for this research, which consists of custom-made hardware and
software, is named Prototype P2-24 (Figure 1).

1 Available online: https://www.theimagingsource.com/en-us/product/industrial/38u/dfk38ux541/

2 Available online: https://www.rmaelectronics.com/computar-v1226-mpz/)
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Figure 1. Digitization environment named Prototype P2-24.

3.2. Data Collection and Model Training

The data annotation was carried out using the CVAT.ai software® allowing easy data export in
the desired format. The data consists of images of leather pieces, each with two images: front and
back (Figures 2 and 3). For each piece of leather, polygonal annotations of defects were made on both
sides. As mentioned before, we focus on two defects (grubs and suckout) that are more clearly visible
on the back side, in an attempt to improve the overall classification accuracy. These are defects to
which no tolerance is applied according to the general standards of leather industry customers; they
must be removed without exception. The total dataset consists of 1200 images, of which 600 (300
front, 300 back) is of class grubs and 600 (300 front, 300 back) of class suckout, with a total of 1327
annotations. The image resolution is 4504 x 4504. The dataset is split into training, validation and test
sets, which creates: 840 images for training, 240 for validation and 120 for test.

We use two fine-tuned YOLOv11 models for detection, trained separately with data from the
front and back side of the leather, respectively. Models are trained to recognize defects on both sides
of each leather piece with corresponding annotations. The training was conducted on an NVIDIA
RTX 4090 GPU, with optimized parameters for epochs, initial learning rate, and batch size, using
rigid image augmentations to enhance the model’s robustness.

3 Available online: https://www.cvat.ai/
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Figure 2. Example of an enlarged annotated image of grain (left) and flesh (right) leather sides
showing a defect named grubs (larval damage).

Figure 3. Example of an enlarged annotated image of grain (left) and flesh (right) leather sides
showing a defect named suckout (cut damage).

3.3. Metrics for Evaluation

We use a test set of 120 (60+60) images of leather pieces, with both front and back views provided
for each piece. Each image is annotated with polygonal defect markings, allowing precise comparison
of defect detection on each side. Across all images, there are a total of 64 grubs and 60 suckout defects
annotated. After detecting defects on both sides of the leather, we defined a combined weighted
scoring system that applies to the output classification. The experiment tests two approaches:

e Front-Only Classification: Based solely on the front side.
e Dual-Side Combined Classification: Combines results from both front and back sides.

The selection of scoring weights involves a degree of arbitrariness and is refined through trial
and error. However, an informed approach can guide this process, and we have determined that a
0,3/0,7 weighting, favoring the backside, yields the most accurate results when considering these two
classes.

CombinedScore = 0.7 * Conferont + 0.3 * Confoack (1)

4. Results

We applied the YOLO model on a dataset of 1200 defective samples from both sides of the
leather, focusing on grubs and suckout defects, and the results are shown in Table 3. In the case of
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detection on the grain side, we achieved satisfactory accuracy of 85.8% for grubs and 87.1% for suckout.
However, for defect detection on the flesh side, we achieved significantly better results, with 93.5%
for grubs and 91.8% for suckout.

Table 3. Performance results.

Sample size of leather A‘;eertae%:ei(a);c:tz;cy Average accur(aoz))r classification

grubs suckout grubs suckout grubs suckout
Grainside 300 300 85.8 87.1 66.8 78.2
Flesh side 300 300 93.5 91.8 98.2 97.6

In terms of classification, we obtained relatively low results for grubs on the grain side at 66.8%,
while suckout classification accuracy was 97.6%. For defect classification on the flesh side, we achieved
outstanding results of 98.2% for grubs and 97.6% for suckout.

The results demonstrate a notable improvement in defect detection accuracy on the flesh side of
the leather, with an overall accuracy increase from 0.85 to 0.93. F1-Score improved from 0.86 to 0.93,
reflecting a more balanced and effective classification. Precision increased from 0.87 to 0.92,
indicating fewer false positives on the flesh side, while recall rose from 0.84 to 0.94, showing a higher
rate of correctly identified defects. This improvement across all three metrics suggests that the flesh
side provides clearer defect signals, allowing for more accurate and reliable detection. In Figure 4,
confusion matrices show the performance of the two detectors.

Table 4. Algorithms Used for Calculating the Cost Function.

Metric Grain side (%) Flesh side (%)
Accuracy 85 93
F1-Score 86 93
Precision 87 92

Recall 84 94

Suckout Accuracy 87 92
Grubs Accuracy 85 94
Confusion Matrix Grain side Confusion Matrix Flesh side
0.8
w w
.g 0.7 -s
o o
- -06
2 2
L. | -05 8
: :
= -04 &
s s
2 -0.3 %
2 ' a
- 0.2
grt;bs suckout grt;bs suckout
Predicted Labels Predicted Labels

Figure 4. Normalized confusion matrices for the grain (left) and flesh (right) side.

Furthermore, Figure 5 illustrates the distribution and relationship between class probability for
the flesh side (blue) and the grain side (green). Scores are sorted in ascending order for both the front
and flesh side to facilitate direct comparison. The difference between the two distributions is
significant, indicating a clear separation in scores for the front and flesh sides. This separation may
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contribute to a more nuanced approach to defect detection, where certain defects are more reliably
detected on the flesh side, as confirmed by higher confidence scores for the flesh side.

Sorted Front and Back Side Scores: suckout

10 { . Back Side (Sorted)
e Front Side (Sorted)

os

0
Sorted index

Sorted Front and Back Side Scores: grubs

L0 = Back Side (Sorted)
mmm Front Side (Serted)

o

Figure 5. Barchart of prediction confidences.

It is also important to note that the grain side shows much greater variability in classification
confidence, reinforcing the hypothesis that weighted scoring could significantly enhance accuracy
(Table 5). These results highlight differences in the detection scores for the defects grubs and suckout
when comparing the flesh side and grain side of leather pieces. For both classes, the back-side scores
are significantly higher than the grain-side scores, with an average difference of around 28.7% for
grubs and 18.2% for suckout. This indicates that they are much more discernable on the flesh side
compared to the front. The standard deviation on the flesh side is low, showing that flesh side scores
are consistently high. In contrast, the front-side scores have a higher standard deviation, reflecting
more variability and less consistent detection on the front.

Table 5. Performance results.

Grubs Suckout
Mean Accuracy (%) STD (%) Mean Accuracy (%) STD (%)
Grain side 68.44 5.83 78.28 5.1
Flesh side 97.19 1.58 96.5 1.44

5. Discussion

The results of this study demonstrate the effectiveness of using YOLOv11 for defect detection
and classification on finished leather, especially when analyzing both the grain and flesh sides. The
experiment confirms that defect detection on the flesh side yields higher accuracy and reliability for
certain defects, such as grubs (larval damage) and suckout (cut damage). This outcome supports the
hypothesis that examining the flesh side can reveal defects otherwise difficult to detect on the grain
side, providing a promising approach for optimizing leather utilization.

Table 6 shows a comparison of the results we achieved with this case study with the results of
other authors who also applied YOLO models for the case of defect detection and classification.
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Table 6. Relevant use of YOLO model series for detection and classification of industrial leather
defects on finished leather.
Leath YOL Best
Author Sample size Defects e? et OLO es
side model accuracy (%)
Wang, M. et al. [7] 6288 Bubble, dent, broken glue  Grain YOLOV9 94.7
Ar.1drze] Wrébel and 400 General defects (not Grain  YOLOVS 95
Piotr Szymczyk [9] categorized)
Cavity, pinhole, scratch,
tt f th YOL -
Chen, Z. et al. [6] 2855 rotten sur.ace, sroW Grain OLOVS 85.1
line, healing wound, v8
crease, bacterial wound
Th k ., etal Not
angakumar, J., et a Not specified Various leather defects ° YOLOvS 92
[10] specified
The.proPosed model 1200 Grubs (larval damage) Both grain YOLOVI1 976
in this paper: and suckout (cut damage) and flush

The specialized environmental setup, consisting of a light chamber equipped with a 20.3-
megapixel industrial camera, played a crucial role in enhancing detection accuracy by minimizing
variables like lighting inconsistencies and dust interference, which are common in industrial
environments. This controlled setting proved essential for achieving consistent, reliable defect
detection, indicating that adopting similar environments could be beneficial in industrial
applications.

The two-class weighted scoring system introduced here also proved advantageous, particularly
when detection on one side provided better visibility or detail than the other. By assigning greater
weight to the flesh side for specific defect types, this scoring method capitalized on the flesh side’s
improved accuracy, as shown by an average accuracy difference of 28.7% for grubs and 18.2% for
suckout. This approach highlights the potential of side-specific detection, where each side of the
leather can provide unique data, refining the classification process and potentially reducing waste
through more precise grading.

The increased precision and recall scores on the flesh side underscore the model’s capability to
reduce false positives and false negatives, two critical aspects of automated leather inspection. With
precision increasing from 0.87 to 0.92 and recall from 0.84 to 0.94 on the flesh side, these
improvements suggest that incorporating backside analysis can significantly reduce inspection
errors. Such accuracy has substantial implications for real-world applications, potentially allowing
manufacturers to meet stricter quality standards and minimize waste due to misclassification or
overlooked defects.

The low detection and classification results on the grain side for grubs and suckout defects are
attributed to the limited or impossible surface visibility of these defects during inspection, which
subsequently affects processes such as lamination and sewing. Additionally, the low classification
results are due to the nearly identical surface appearance of both defects. The only reliable
classification occurs when suckout presents as a line resembling a scar. Conversely, these two defects
are clearly distinguishable on the flesh side, as illustrated in Figures 2 and 3. Grubs defects are circular
or elliptical, often occurring in clusters. The larvae create a uniform erosion within the leather, leaving
a distinct and visible shape. Suckout, on the other hand, appears as a tear or separation on the flesh
side, typically split into two parts. For this reason, the application of YOLOv11 achieved relatively
lower results on the grain side for grubs and suckout defects compared to other studies using YOLO
models for different defect classes. However, by applying YOLOvV11 to the flesh side, we achieved
higher results than previously reported in the literature.

It is essential to recognize that not all defect types may benefit from dual-side analysis. Certain
surface characteristics unique to the grain side may not manifest clearly on the flesh side, warranting
further research to assess the applicability of this approach across all defect types. Thus, while dual-
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side analysis shows promise, expanding the classification system to accommodate a wider range of
leather defect profiles could enhance its robustness.

The promising results achieved with YOLOv11 confirm its suitability for industrial defect
detection, where both accuracy and speed are crucial. Recent advances in deep learning and
computer vision, as exemplified by YOLOv11, offer a pathway to streamline leather inspection
processes, reduce human error, and improve leather utilization. Future studies could expand the
range of detectable defects, validate this approach across larger datasets, and adapt the methodology
to other stages of leather processing. Practical considerations for industrial applications should also
be taken into account, as both sides of the leather would need to be digitized, possibly
simultaneously, to avoid errors. A potential solution could involve using a transparent surface for
dual-side digitization, although this would require entirely new studies focused on the development
of appropriate hardware and environments for digitization.

6. Conclusions

This work is the result of an experimental study within a scientific innovation project. For the
purposes of the experiment, dedicated hardware was developed, and the latest technology of the
YOLO model series (YOLOv11) was used for defect recognition and localization on the grain and
flesh side of industrial leather. Experimental validation confirmed that the application of YOLO on
the flesh side of industrial leather led to improved detection and classification of defects whose
damage is more evident on the flesh side of industrial leather. For the experiment, we used the grubs
defect, which is caused by damage inflicted by larvae on the flesh side of industrial leather, and
suckout, which results from cuts during the separation of the hide from the animal’s body. The data
used for training and validating the experiment were more than sufficient to achieve appropriate
accuracy in detection and classification.

In this study, we presented a unique novelty contribution that, to the best of our knowledge, has
not been previously documented in the literature:

¢  We utilized a controlled, fully enclosed environment with identical digitization conditions for
each defect, thus making a significant contribution toward implementing a technical solution for
automatic defect inspection on leather in an industrial setting.

e We applied computer vision models to detect, classify, and segment defects on the flesh side of
industrial leather.

*  We investigated defects in the industry, known internally as grubs (larval damage) and suckout
(cut damage), which, to the best of our knowledge, have not been studied by any previous
authors.

The limitation of this study lies in its inapplicability to other types of defects that occur on
industrial leather, particularly because certain defects on the grain side of industrial leather do not
manifest on the flesh side or are barely visible. A separate experimental study would need to be
conducted for each defect individually to determine the effectiveness of the comprehensive
application of the YOLOv11 model in addressing the challenges of automating the industrial leather
inspection process.

It has been demonstrated that YOLOv11 is highly successful in detecting and classifying defects,
even for those that are difficult to classify due to their similar manifestations on the surface. By
applying a controlled environment in the form of a digitization chamber and using the YOLO model
on data obtained in controlled conditions, we have shown that it is possible to implement computer
vision in industrial settings, creating the potential to overcome manual labor and reduce leather
waste by optimizing utilization in the pre-cutting process of finished leather hides. The ability to
accurately classify defects in an industrial environment contributes to the possibility of assessing
tolerance and meeting different customer standards, which can significantly enhance utilization
optimization.
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