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Abstract: Human Robot Collaboration (HRC) has been a significant research topic within the Industry
4.0 movement over the past decade. Within the study of HRC, the collaboration approach of Speed
and Separation Monitoring (SSM) has been implemented through various architectures. The different
configuration strategies involved different perception sensing modalities, mounting strategies, data
filtration, computational platforms, and calibration methods. This paper explores the evolution of the
perception architectures used to perform SSM, and highlights innovations in sensing, and processing
technologies that can open up the door to significant advancements in this sector of HRC research.
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1. Introduction

Human Robot Collaboration (HRC) began gaining traction in the 2010s as there was desire to create
more flexibility and digitalization in industries like automotive, commercial product manufacturing,
and supply chain management. HRC posed an opportunity to lower the space claim of robots on
a production floor while combining the precision capabilities of robots with human ingenuity and
creativity. The key was creating this combination while at the same time, maintaining a safe hybrid
workspace for the robot and human to work together with minimum downtime. The robot provided
the ability to consistently execute repetitive tasks with repeatably high precision and accuracy. The
human provided the creativity and ability to adapt to tasks that may need adjustment and flexibility.
In other words, the goal of HRC is to combine the benefits of low mix high volume robots with the
flexibility of high mix low volume human capabilities. The earlier development of HRC research was
highly motivated by the "Industry 4.0" movement. The term "Industry 4.0" was first used in 2011 [1] to
illustrate the occurrence of a fourth industrial revolution. This revolution had a focus on digitalization
and automation of processes. There was a large rise of research and development into smart devices,
internet of things (IoT), smart factories, and electrification [1]. These efforts all contributed to using
technology to automate manufacturing, testing, inspection, and all other related processes to the
production of products along with their transport, storage, and tracking. This rise in digitalization
drove the need to observe more aspects of these processes. In order to observe the states, behaviors,
and values of these systems, there was a significant rise in sensor integration into manufacturing and
production processes. Sensor integration for safety of workers, tracking of products, productivity,
and quality of work. This Industry 4.0 infrastructure then paved the way for research fields like
HRC to have integrated torque sensors for force feedback measurement. There was also a rise in
the integration of 2-D scanning LiDARs and light curtains to observe dangerous regions during the
manufacturing process. The goal of these sensor additions were to create safe stopping states for a
manufacturing line without shutting down the whole system. Minimum downtime was a significant
motivator for early HRC research and was foundational to "safety-rated monitored stop" one of the
four collaboration approaches defined by the International Organization of Standardization (ISO). This
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safe stop state paused robot action instead of completely shutting it down, requiring a whole robot
restart. Over time, collaborative robots or, cobots, began to be developed as industry off the shelf
robots. This made HRC easier to integrate into workspaces and manufacturing pitches. Following
this wave of integration in industry, the research fields that generated this new digital collaborative
infrastructure began investigating new principles and values for these architectures. The idea of a 5th
industrial revolution or "Industry 5.0" started appearing in literature and research around 2018 [1].
This revolution shifted the focus from digitization and automation to worker collaboration and well
being. The research began adding on top of the safety proponents that HRC techniques provide but
also utilize more complex collaborative tasks between the human and the robot. With the collaborative
architectures developed, HRC has added a focus of monitoring and increasing the comfort of humans
interacting with robots [2,3]. Increased collaboration complexity and monitoring of worker well being
drove up the computational and sensing requirements for HRC research. Though the principles for
HRC have begun shifting at a high level, the four ISO define collaboration approaches remain the
foundational pillars for continued development in the field of HRC.

The four foundational collaboration methods are defined in the ISO/TS 15066:2016 standard [4].
The approaches consist of safety-rated monitored stop, power and force limiting, hand guiding, and
speed and separation monitoring.

1.1. Safety-Rated Monitored Stop

As previously mentioned, safety-rated monitor stop defines a safe stop state in which the robot
actions are suspended, but the robot does not need to completely restart to reenter an active state. The
safety-rated stop may be triggered by robot torque feedback, a light curtain, or boundary monitor
sensor in the event a human enters an area in which they are not supposed to. The robot cannot leave
the suspended state until the sensors monitoring the area or event which triggered it return to normal
and are cleared by an operator. The three remaining collaborative approaches build off this stop state
once their thresholds of safe interaction are exceeded. These thresholds can include force, torque,
distance, or velocity.

1.2. Power and Force Limiting

Power and force limiting, or PFL, is the most commonly built-in collaboration method for off the
shelf industrial cobots. This collaboration approach requires torque feedback at each robot joint. In
the event that the robot collides with the human, or begins to exert a joint force greater than the ISO
defined thresholds, the robot then enters a safety-rated monitored stop [5].

1.3. Hand Guiding

Hand guiding is an approach in which a human user can freely move a manipulator robot by
its tool or tool center point (TCP). This approach greatly simplifies robot training and lowers the
technical entry level for human robot interaction. This approach is again, generally a built-in software
feature that relies on the same torque feedback used by power and force limiting already present in off
the shelf cobots. Once again, this operation mode has safety limits to maintain a safe human-robot
interaction (HRI). As before, if the limits of the motors, or torque threshold are exceeded, the robot
enters a safety-rate monitored stop.

1.4. Speed and Separation Monitoring

Speed and separation monitoring or SSM, relies on perception systems which can be mounted
on or off the robot to monitor the minimum distance between the robot and human along with the
velocity heading between the robot and the human. ISO defines the algorithm thresholds such that
particular combinations of speed and separation either limit robot velocity or force it to enter a safety
rated monitored stop.
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1.5. HRC Collaboration Method Trade-Offs

In contrast to the first three methods, SSM aims to avoid human robot collisions all together.
Power and force limiting only enters a safety stop following a collision. Hand guiding requires
constant contact between the robot and human, therefore a higher level of safety must be maintained
in order to lower risk of injury to the operator handling the robot end effector. Hand guiding maintains
safe collaboration by significantly reducing the maximum joint speed, and movement range, in an
effort to lower chances for human collisions, self collision, or exceeding the mechanical limits of the
joint motors. Though SSM brings the benefits of preemptive measures, it requires significantly more
computation performance. The computational challenge comes from the requirement to continuously
compute the minimum distance between the human and the robot in an SSM workspace. Regardless
if on-robot or off-robot, SSM perception systems need to meet performance requirements including
sample rate, resolution, coverage, calibration, and physical placement/mounting. These requirements
vary based on the limitations of the perception and computation technologies selected. These system
requirements drive challenges into the implementation of SSM Architectures. Hence, PFL is the more
prevalent approach built into off the shelf collaborative robots [6-8]. Furthermore, the torque and
force sensing requirements between PFL and Hand Guiding are fairly similar. With the addition
of capacitive sensing for detecting contact between the human and robot, most collaborative robots
include hand-guiding as a "free drive mode" to simplify robot task planning [9].

This paper seeks to detail the history, function, and trade-offs of different computational platforms
and perception modalities used in HRC SSM Architectures. Perception sensors have seen large changes
in performance and application focus. At the same time, the computational platforms available for
SSM Architecture integration have increased in performance and variety. Following the overview of
sensor history and performance , this paper explores the chronology of these modalities across SSM
applications in order to illustrate the trends in SSM Architectures over time. These trends help predict
how perception and computational systems may be applied to SSM research in the future.

2. Perception Technologies

An SSM Architecture uses its perceptions modules to observe the minimum human-robot distance
and input it to the SSM algorithm such that a safe velocity output command is sent to the robot
operating in the collaborative workspace. This section covers the most commonly used perception
technologies including IR Sensors, LIDARs, Radars, Vision Sensors (Stereo and Mono), and Thermal
Sensors.

2.1. IR Sensors

Infrared or IR sensors like in Figure 1 are one of the lowest cost light-based sensing modalities. IR
sensors consist of an IR light emitting diode (IR-LED) and a photo-diode to detect IR light reflected
back from the environment. The measurement modality is continuous and must be sampled by an
analog-to-digital converter (ADC) to interpret signal return strength [10]. The return signal output is a
voltage which must then be converted to a distance based on a voltage-distance relationship provided
in the datasheet [10]. The refresh rate of distance data is limited by the sample speed of the ADC and
microcontroller. The resolution of the distance data is dependent on the ADC bit resolution along with
the signal-to-noise ratio (SNR) of IR sensor output [10].
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Figure 1. GP2Y0A21YKOF SHARP IR Sensor which detects distance base on infra red light returned to the sensor

A typical IR sensor operates between 8 and 80 cm, ideal for use in SSM applications where the
workspace is generally a few meters wide [10]. In [11], a mesh of IR sensors was affixed on an ABB
robot to perform SSM. A key issue with IR sensors is their non-linear nature as seen in Figure 2. Though
the voltage to distance curve is provided in the spec, there is an accuracy limitation based on the
ADC or microprocessor being used to convert IR sensor voltage readings into distance. An additional
limitation with this sensing approach is although the measurement modality is continuous, this also
means the power consumption is continuous. In order to read the IR voltage returns, the IR-LED
needs to be emitting light. When scaling up a SSM system with multiple IR sensors, this continuous
consumption must be accounted for. Additionally, since this is a voltage-based measurement, the
sensing accuracy is impacted by the "cleanliness" of the input voltage [10]. The more ripple on the
sensor bus voltage, the less accurate the distance reading will be. The way voltage ripple noise was
accounted for in [11] was by adding a decoupling capacitor near the IR sensors throughout the sensor
skin. Another key issue with these sensors comes with expanding the interface to multiple sensors
based on purely analog voltage readings. Each sensor will need a dedicated ADC channel. Therefore,
an SSM system with these sensors must either mux through all devices or consist of a serial bus with
multiple external ADCs. The challenge with muxing these voltage signals is that an analog mux must
be used and the signal length from the sensor to the ADC must be as short as possible in order to limit
the SNR lost along the cable to the ADC. A second approach would be to place ADCs near each IR
sensor to limit signal wire distance. Though this approach would potentially be more costly, it trades
the distance the raw analog signal would travel for the digitized data instead.
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Figure 2. Voltage to distance relationship per the [10]

2.2. LiDAR Sensors

A fundamental perception platform commonly used for speed and separation monitoring is
light detection and ranging sensors also known as LiDARs. LiDAR has been used to perform speed
and separation monitoring for over a decade [12]. It is one of the earliest sensing approaches used
in the field of SSM research. Prior to its applications in SSM, LiDAR had a rich development and
application history. One of the earliest use cases for LIDARs and manipulator robots was in a 1980s
Ford manufacturing plant. The LiDAR was used to help a manipulator robot pick and place an
exhaust manifold out of a bin [13]. As the laser and receiver technology advanced, its packaging and
power consumption decreased. Additionally, the computational power needed to process the sensing
modality became more accessible. In the early 2000s commercially purchasable LiDARs came onto the
scene via companies like Mitsubishi [13]. The LiDAR then began appearing in manufacturing plants
to act as safety sensor guides for autonomous guided vehicles and robots (AGVs and AGRs). LiDARs
also began to be paired with manipulator robots to perform collision avoidance. As the human robot
collaboration field began to grow in the mid-late 2000s, LIDAR was quickly adopted as a baseline
perception modality [12,14]. Not only was it used as the experimental sensor in SSM, LiDARs became
the control perception modality to compare to a prototype distance sensor in question [15].
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(a) (b)
Figure 3. (3a) Legacy AGV for manufacturing applications. (3b) More modern AGV product commonly seen in

warehouse automation applications.

Through this rich development, LIDAR operating principles have greatly diversified. The initial
laser ranging modality worked solely on the time-of-flight of a laser into the environment and back to
the sensor. The light bounces off the environment and then returns to the aperture. As illustrated in
equation 1, distance d to an object is half the speed of light ¢, times the time difference between signal
transmission and receive, know as the time-of-flight or 7 [14].

d= %CT (1)

The multi dimensional 2-D and 3-D LiDARs take this distance measurement principle and apply
it across a field of view (FOV) via mechanical or electrical means [13]. The laser transmits a pulse of
light which reflects off a mirror. Then, through opto-mechanical means, the light is spread around
the environment. The return light is received monostatically or bistatically and then digital signal
processing is used to calculate the point cloud data and stream that information off to a PC or other
external processing unit [13]. When transmission and receive is performed by a single aperture, this is
considered a monostatic LIDAR. When the LiDAR has dedicated transmission and receive aperture,
this is considered a bistatic LIDAR.

In general, LiDARs give detailed 3-D distance information about the environment. This detailed
perception however comes at the cost of processing power, size, and power consumption. Different
LiDAR topologies can balance some of these constraints out. Monostatic LIDARs are generally lighter
than bistatic ones as there is one aperture for transmit and receive.

LiDAR has maintained a consistent presence in SSM Architectures through the history of SSM
research [12,16-27]. [12] is an example of early research into SSM. In this work, a single 2-D scanning
LiDAR was fixed, off-robot in the workspace. The LiDAR tracked human movement within the
workspace. This data drove the Basic and Tri-Modal SSM experiments. Basic SSM commanded the
robot velocity to zero if the minimum distance threshold was tripped, and Tri-Modal SSM which
commanded a slower velocity state prior to a full safety rated monitored stop. [12] discussed the
implications of the newly proposed ISO/TS 15066 standard at the time and indicated these initial
findings showed promise for SSM in future HRC applications. Other SSM researchers continued to use
this static off-robot LiDAR Tri-Modal SSM approach. [19] used this LIDAR configuration in conjunction
with spherical estimation of the robot shape to compute a more accurate minimum distance between
the robot and human. Other works have used LiDAR as a control to compare their experimental
sensors against [28] or combined LiDAR into a fusion based sensor platform [25]. In [21], fusion is
taken a step further by fusing multiple off-robot LiDARs with an on-robot ToF Camera to maximize
sensor perception system coverage. Their algorithm aimed to have the local (on-robot) ToF Camera
account for when the global (off-robot) LIDARs were occluded.

2.3. Time-of-Flight Sensors

The use of time-of-flight to determine distance spans a number of technologies. This includes laser
range finders and LiDARs discussed in the previous section. Time-of-flight (ToF) Cameras evolved as
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technology innovations from these original sensing modalities. The distinction with ToF cameras are
that unlike traditional LiDARs, ToF Cameras do not require mechanical components to rotate laser
detectors [14]. Instead, this technology relies on the flood illumination of a laser or LED illuminator
and some form of light sensor array. The sensor array can range from traditional complementary
metal-oxide-semiconductor (CMOS) imagers and charge coupled devices CCDs, to Single Photon
Avalanche Diodes or SPAD arrays [14]. The time-of-flight calculation for these devices is the same as
Equation 1, but at a per pixel level. Sensor characterization tests have shown that ToF Cameras exhibit
similar reflectivity, precision and accuracy performance to their LIDAR counterparts [29]. This makes
them great alternative sensing candidates for LIDARs in existing SSM Architectures.

There are two major types of ToF Cameras. Each calculates distance in a different manner. One
type is the pulsed-light camera which measures the "time-of-flight" directly. The structured light
emitted by the illuminator goes out into the environment and then returns to the sensor. The light
hits the sensor in the same pulsed pattern that it was transmitted in. Additionally, the start time of
the light transmission is known. Therefore, the transmission to received time is a digital process to
determine a time-of-flight and in turn, a distance to the target. The other major ToF Camera type used
is called continuous-wave or CW [14,30]. This approach measures the time-of-flight indirectly. Instead
of directly measuring the transmission to receive time, this method measures the phase shift of the
modulated light pattern between transmission and reception [14]. The phase measurement is done by
integrating small groups of pulses over time. The larger the integration time, the more detailed the
return scene. However, longer integration times mean larger amounts of motion blur in a scene [14].
This motion blur can directly impact an SSM algorithm and or an object classifier.

Both camera types have their benefits and hindrances. For instance, the pulsed technique can
be used to measure much further distances than the continuous wave approach. This hindrance on
CW limits the top end of its measurement range to a maximum of 5 to 10 meters depending on the
technology. However, in the context of SSM, the maximum range of desired perception is generally
within a few meters. It is important to note that the maximum range is a relative term as the optical
power of these cameras differ based on their system architecture. For instance, it is important to account
for the inverse square law behavior of light [14]. The nature of the inverse square law diminishes
the optical power of the camera’s illuminator rapidly as distance increases. Furthermore, when this
phenomenon is extrapolated to a 2-D field of view, this means the optical power in the center will be
significantly greater than the optical power at the edges. This phenomenon can be accommodated by
diffusing the LED or laser illuminator in a structured manner.

Off-the-shelf illumination products build diffusers into the front of their lasers to provide a
structured field of illumination (FOI) [14]. It is important to keep in mind that one must balance the
desired imager FOV with the FOI illumination scheme. The balance between capturing the entire scene
in a single wide camera may need to be balanced with multiple smaller FOV ToF cameras that can
capture narrower point clouds at a further distance [31].

As previously mentioned, coverage of the workspace is important to keep in mind, as blind
spots in the perception system can pose risks to the human operating in the collaborative workspace
[32]. The overall performance of these ToF cameras can generate 15 - 450 frames per second (FPS)
depending on the camera architecture. The frame rate is a crucial aspect of SSM as the monitoring
system chosen for the workspace should aim to be > 33 Hz for robot speeds of 1.0 m/s. At this refresh
rate, a robot traveling at 1.0 m/s can cover 60 cm in one sample cycle [22]. Too slow of an FPS and the
SSM algorithm will not be able to adjust the robot trajectory or velocity in time to avoid a collision
with a human or object in the workspace. Therefore, it is imperative that robot operating speed is
matched to the FPS capability of the sensors being used. These ToF cameras come in a wide variety
of FOVs, resolutions, frame rates, and depth ranges. It is also important to note that these properties
will also impact the power consumption of these units as well. At the high resolution end of the ToF
technology is the Azure Kinect Development Kit seen in Figure 4 [31]. This product can capture 3-D
point clouds in both narrow and wide field of view modes. The Azure for Kinect DK is the updated
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version of Microsoft’s previous Xbox Kinect and Kinect V2, which each are extensively used in SSM
research [33-46]. Additionally, there is base software support for RGB depth overlays since the module
includes both a ToF camera and RGB camera. The sensor exhibits a refresh rate that ranges from 10 to
30 FPS depending if the camera is operating in megapixel or quarter-megpixel mode.

Figure 4. AKDK 1 MP, 120°FOV, 3-D ToF Camera

At the lower cost and performance end of the spectrum is the STMicroelectronics VL53L1x time-
of-flight sensor seen in Figure 5. Though this device only has a 16x16 SPAD array resolution, it has a
sample rate of 50 FPS at 1 m and 30 FPS at 4 m. These devices are low cost and easy to integrate into
an on-robot SSM application. A number of works rely on this sensor as the perception component of
their SSM Architecture [28,32,47-54].

Figure 5. VL5311x 4 M max, 50 Hz max, 27°FOV, ToF Sensor

The benefits of ToF technology in the SSM setting is that it provides the same kind of direct
distance measurement that a LIDAR can produce at a much cheaper price point. Additionally, the size
and power constraints of ToF cameras and sensors are much lower than their LIDAR counterparts.
This provides an opportunity for ToF sensors and cameras to be integrated into both on-robot and
off-robot reference frames to generate a holistic point cloud of the entire collaborative workspace.

2.4. Radar Sensors

In addition to light based perception, electromagnetic waves specifically in the radio frequency
RF range (greater than 60 GHz) can be used to detect objects and targets in a scene[55]. These radar
sensors which operate in a mode called frequency modulated continuous wave or FMCW can be
used to determine a number of spatial elements in one reading. These sensors transmit RF waves
out across a linear spectrum of frequencies in what is called a chirp configuration [55]. This chirp
bounces off the environment and is received by the receive antenna on the radar. The raw received
signal is then passed through a Fast Fourier Transform or FFT to then decode the spatial data from
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the signal [55]. Depending on the number of transmitters and receivers, these radar sensors have the
ability to determine the distance, velocity, and angle between the object and radar [55]. The distance
from a single object only requires a single transmitter and receiver. The relationship between distance,
frequency, phase, and wavelength is demonstrated in equation 2 [55].

4rd
= @

When the chirp is transmitted and then returned with an object in the field of view of the radar,

Dy

there will be a frequency difference between the transmitted and returned chirp. After the receive
signal is passed through an FFT the single object will be expressed as a phase difference of constant
frequency. This frequency is then extracted and passed through equation 3 to determine the distance
to the target.

fo=2 ®
c

In the event multiple objects are detected, the FFT will express multiple constant frequency

components [55]. This return behavior can be thought of as the "point cloud" perceived by the radar.

Multiple transmitters are needed in order to measure the velocity of objects in an environment. By

sending two chirps distinctly spaced in time, the returned signals will have the same frequency

components but different phases. The velocity of the object can be determined by passing the phase

difference through equation 4.

A
max — 4:TC

Multiple chirps and a second FFT is required in order to measure multiple object velocities in the

(4)

field of view. The signals returned will have different frequency components and phases. The signals
must be passed through an FFT a second time, also known as a Doppler FFT, to then distinguish the
phase differences for each frequency component or object [55]. Measuring angle requires the inverse
architecture of measuring velocity. Angle measurements require two transmitters and a single receiver
[55]. The distance between the two receive antennas will be a known separation distance. The angle
computation is performed by sending a chip transmission, waiting for the signal to be received by the
receive antenna, and then taking the phase difference of the two return signals between the receive
antennas. The known antenna separation and phase difference are then used to compute the Angle of
Arrival or AoA in equation 5. The estimated AoA using equation 5 is most accurate near 0 degrees and
least accurate near the maximum angle.

AACD)
27l
Different design parameters impact different performance metrics of these radar sensors. The

0 = sin1(

(5)

separation distance between the receive antennas has a performance impact on the maximum angular
field of view defined by equation 6. A & 90° or 180° total FOV is achieved when the received antenna
separation distance is half the signal wavelength [55].

1, A
Omax = sin 1(5) (6)

Additionally, the number of frequencies within a chirp pattern impacts the frequency resolution
which is a similar parameter to point cloud density. Furthermore, the computational front end device
impacts the quality of chirp transmission, return, and computation. A number of silicon manufacturers
have made Application Specific Integrated Circuits, or ASICs, for radar sensor signal processing. Texas
Instruments has a mature product line of mmWave radar sensors [56]. The product line name denotes
the wavelength of the transmitted and returned signals produced by their sensors. The mmWave ICs
combine the chirp generation, return signal filtering, sampling, and frequency domain processing.
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These radar ICs are developed into multiple tx and rx antenna structures. The antennas can be routed
onto the printed circuit board near the chip or even on the chip itself which is called the antenna on
package or AoP mmWave sensor [57]. With the multiple tx and rx antenna structure, these sensors can
determine the position, velocity, and orientation (AoA) of multiple targets in a single frame capture.
This variable frame rate can be anywhere from 1 - 30 FPS.

(a) (b)
Figure 6. (6a) External Antenna mmWave Base Radar Product [58]. (6b) Antenna on package mmWave Base
Radar Product [58].

Though the "point cloud" returns from these devices will not be as rich as their LIDAR coun-
terparts, they have some robustness and other performance qualities that LIDARs can struggle to
overcome or achieve. For instance, LIDARs are a light based sensing modality, meaning environmental
obstructions like fog, smoke, or mist, will impact the point cloud distance accuracy as these mediums
will refract some of the LIDAR transmission signal. Radar innately will not be impacted by these kinds
of mediums due to the innate nature of the sensing modality. Furthermore, radar has the ability to
transmit through a number of solid materials as well including plastics, glass, and soil. Radar sensors
will also require less computational power and energy to make spatial measurement when compared
with a LiDAR sensor [15]. Lastly, one key performance feature is mmWave sensors have been tuned
to detect living objects within a sensor’s FOV [59]. Living object detection has a number of key
applications in the automotive and industrial spaces for safety. In cabin radar on cars and industrial
vehicles can determine the presence of a human and even their heart and breathing rate. Additionally,
in automotive applications, these sensors can help prevent the child left behind phenomenon, where
children are accidentally left in a car during extreme heat or cold leading to accidental death [59]. In
the world of HRC, this key feature has the potential to be used to locate a worker and measure their
biometircs while operating in the hybrid workspace. With these given characteristics, researchers have
been applying radar in automotive and industrial applications well into the last decade. In robotics,
LFMCW radar has been used in collision avoidance applications [60,61]. Specific to HRC research,
radar has been used for fence-less machine guarding and target tracking for speed and separation
monitoring [15,17,18,25,60,62,63].

2.5. Vision Sensors

Vision-based perception modules rely on a fundamental light-based sensing element. The sensors
may be configured as stereoscopic cameras in order to compute a depth or operate as an independent
visible imager to classify and segment scene data for fusion with LiDAR, ToF, or Radar.
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2.5.1. Stereo Vision

Stereo vision has been used in computer vision and robotics since that late 1990s [64]. The
fundamental principle of stereo vision is the merging of two visible imager based frames with known
separation and orientation to compute a 3-D depth from the cameras. Stereo cameras, like the Intel
RealSense in Figure 7, can operate on passive light in the environment and have active illumination
incorporated into the sensor to provide more controlled light for a scene. Stereo cameras have a
number of benefits for performing 3-D depth computation.

Left infrared camera Right infrared camera

RGB camera

Infrared dot matrix projector

Figure 7. Intel D435i Stereoscopic Camera

For instance, this perception modality is based on traditional CMOS or CCD imagers which can
operate at significantly higher frame rates than ToF Cameras or LIDARs. These sensors can easily
achieve 60, 90, or even 120 FPS. Furthermore, the imagers selected for these perception modules tend to
be global shutter imagers as opposed to rolling shutter. This design decision makes these systems less
prone to motion blur in a scene. The depth range of these sensors tend to reach out a few meters and
can sense as close as 0.3 meters [65]. This range is highly suited for SSM and other HRC applications.

Along with beneficial traits, there are other key performance factors that can hinder stereo vision
for HRC applications. One key issue with stereo vision is its inability to compute depth on texture-less
surfaces and objects. Stereo vision struggles to compute depth on walls, ceilings or floors, which could
be used as computation references in some applications. However, in HRC applications, the main focus
is to compute the distance from the robot to a human. Humans are highly textured targets in most
cases due to their shape and the texture of their clothing or uniform. Due to the nature of high FPS
multi-megapixel image sensors used in stereo cameras, a significant amount of data must be processed
in order to generate a point cloud. Again, this hindrance has becomes less of an obstacle as processing
platforms have increased compute power and dedicated cores for image processing and hardware
acceleration. Within the field of SSM, the first applications of stereo vision were seen in 2011 [66].
In [66], data from three cameras were fused to determine the location of a human in a collaborative
workspace. The worker in this experiment wore special clothing with colorized markers to aid in
computation of body position. Stereo was also used many times in conjunction with other perception
modalities like ToF [67]. In this work, the ToF point cloud and stereo frame were fused into a single
data frame. Over time, the FPS of the sensors increased, and the capabilities of the processors and
computational platforms increased as well. This allowed for point cloud computation in conjunction
with human pose estimation. These works apply the stereo perception method in both on and off-robot
mounting strategies [12,20,21,26,35,36,66-75].

2.5.2. Mono Vision

With the introduction of embedded system platforms with hardware acceleration, machine vision
and machine learning, vision based depth processing has significantly improved. Instead of dual
cameras for stereo based depth, monocular based depth estimation has become accurate enough to
estimate the point cloud of a human in a scene with just one imager. In [76], a single RGB camera
stream is fed to an NVIDIA Jetson TX2 which contained a convolutional encoder-decoder network
which preformed segmentation and depth estimation of humans within the camera frame. The
monocular depth estimation approach is a newer method that requires lower sensor power, but more
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computational power as a trade-off. The rise in performance of monocular based depth estimation
algorithms present a strong opportunity for these models to start being applied in SSM Architectures.

The traditional application of RGB imagers in HRC and SSM are for tracking segmentation and
pose of a human in a fused sensor frame if one has the computational bandwidth for additional sensors
on their platform. The human can be classified in the RGB frame, then the overlapping pixels in
that frame are cross-correlated and segmented out of the LiDAR, ToF, or stereo vision depth frame
[24-26,34,35,70,73,76-79].

2.6. Thermal Vision

One modality that has a key characteristic for identifying humans within a scene is thermal
imagery. Thermal-based perception modules rely on a fundamental temperature-based sensing
element. Thermal imager development dates back to the 1960s for a number of scientific and military
applications. These sensors could monitor the thermal profile of the surface of the earth, or monitor
geological zones with higher thermal activity. Overtime, thermal imaging innovations began to
scale down the size of the sensors, and the technology found its way into the commercial sector
via companies like FLIR. Two major thermal imagery modalities that are commonly used are micro-
bolometers and thermopiles. Thermopiles measure thermal response using the same mechanics as
thermocouples. These element of dislike metals generate a voltage based on the temperature detected
by the device. These devices are grouped together to create sensors that generate a thermal image
like the TeraRanger Evo in Figure 8 [80]. Microbolometers on the other hand, are sensors made up
of hundreds of silicon constructed thermistors. The thermal sensing mechanic of a thermistor is its
resistance. As the detected temperature changes, the resistance of the sensing element changes [81].

Figure 8. "TeraRanger Evo Thermal 33 Sensor"

In most industrial applications, humans are warm compared to the average temperature in an
industrial environment. This generally makes humans appear as a clear feature in a thermally sensed
frame of an industrial environment. A number of researchers have taken advantage of this modality to
couple with other perception methods like ToF and stereo vision to map the human thermal signature
to the depth point cloud [35,36,71,82]. In [36], an IR stereo camera data is fused with 360°IR imager
data to track humans in a collaborative workspace. In [83], Terabee Evo Thermal sensors were used to
relate human temperature to distance directly. The temperature reading of the human would decrease
as the separation distance increased. Another thermal fusion application was done in [35], where the
authors fused stereo, ToF, and Thermal data to train their depth estimation and human classification
model. The thermal imager used in [35] was the Optris PI 450i thermal camera which had a 382 x 288
pixel resolution and 80 Hz refresh rate [84]. It is important to consider performance and cost metrics of
these different thermal modalities and devices. The sensor used in [82] is a thermopile based sensor,
therefore, the refresh rate or sensor frames per second is much lower than other papers which used
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thermographic cameras or micro-bolometers. The trade with these higher performance imagers is that
they cost significantly more than the thermopile devices. The Optris PI 450i in Figure 9 retails at at
$6,300 USD [84] whereas the TeraBEE TeraRanger Evo Thermal sensor retails for under $100.00 USD
[80].

Figure 9. "TeraRanger Evo Thermal 33 Sensor"

3. Speed and Separation Monitoring Architecture

Each HRC method has implementation and integration trade-offs in research and industry.
However, advancements in perception and computation technologies has begun to soften the trades
against SSM. These new technologies open the possibilities to lower cost, power, and complexity of
SSM Architectures; while at the same time, increasing computational performance, sensor coverage,
and data throughput. Figure 10 illustrates the high-level architecture of an SSM Architecture. The
perception sensing, computational units, and system requirements of this architecture are the major
focus points of this work. This section details the trades and considerations one must make when
constructing a SSM Architecture. The perception system mounting, perception sensor performance,
system calibration requirements, and architecture computation approach must be well matched to the
particular use case or experiment.
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Figure 10. SSM System Architecture

3.1. Perception System Mounting

As defined in the previous section, SSM requires perception systems on-robot or off-robot in order
to monitor the speed and separation between the robot and the human. There are significant benefits
and considerations when choosing a robot mounting strategy.

3.1.1. Off-Robot

Off-robot systems do not need to consider complex mounting techniques to keep the sensors in
place on a moving manipulator arm. The sensor systems usually consist of point rich sensors like
LiDARs, stereo cameras, ToF cameras, or radar [15,25,61,69]. The off-robot approach also generally
provides better sensor coverage and minimizes the chance for occlusions or spatial regions where the
perception system is blind. These blind spots can be caused by a particular robot position, human
position, or other environmental obstruction. On the other hand, off-robot sensing has very low
flexibility from a calibration perspective. Off-robot perception systems must be calibrated such that
the robot and perception reference frames are matched to the world frame. This is key for computing
the actual minimum distance and velocity between the human and the robot. Once the robot is moved
within the environment, or one of the sensors are adjusted, the entire system needs to be re-calibrated.

3.1.2. On-Robot

On-robot sensing however, has significantly more flexibility when it comes to robot placement in
a collaborative environment. Assuming solid fixturing of on-robot sensors, the position of the robot in
the workspace does not impact the spatial transforms from the perception system to the robot. This
greatly reduces the calibration complexity of on-robot systems. However, like off-robot sensing, there
are still compromises and considerations. On-robot perception systems are much more prone to spatial
occlusions and blind spots. The robot arm can easily move in front of the perception system and cast a
shadow or block line of sight with the human making minimum distance and velocity calculations
impossible. Additionally, in earlier years of SSM research, the size of point rich sensors made them
challenging to use in on-robot perception approaches. Therefore, many researchers resorted to lower
resolution sensors like Infrared (IR) distance sensors, or 1-D ToF sensors [11,47,49,85].
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3.2. Perception Sensor Performance

The perception technology selection for an SSM Architecture drives the observably of the
workspace while the SSM algorithm is executing. The are many dimensions to sensor performance
when building the perception system. As previously mentioned, sample rate, resolution, coverage,
calibration, and physical mounting all play a role in architecture performance.

3.2.1. Sample Rate

The sample rate or, frame rate, of a particular sensor will limit the refresh rate of the minimum
distance calculation. A depth sensor of 60 FPS, provides twice as much data as a depth sensor that
only provides 30 FPS. Without the consideration of the other architecture requirements or computation
loop speed, the sensor sample rate is the fastest rate in which the SSM algorithm can recalculate the
minimum distance. As previously mentioned, the maximum velocity the robot can operate is driven
directly by frame rate. A 33 FPS sensor would be able to detect up to 3 cm of moment if a robot was
traveling at 1 m/s. Increasing robot movement without matching frame rate creates larger losses of
potential motion. In addition to influencing algorithm loop frequency, sensor sample rate plays a role
into the bandwidth for filtration of the distance data. An example for this is the use of a windowed
averaging filter to soften noisiness or the standard deviation of distance data. Ata minimum, a window
filter needs to compare two received data points together to generate and averaged output. Therefore,
the larger the filter window, the more input data points required to generate a single filtered data point
at the output. Low frame rate sensors (10 - 15 FPS) significantly limits filtering options where as higher
frame rate sensors (60 - 100 FPS) open up the amount of filtering bandwidth without jeopardizing the
SSM algorithm loop time significantly.

3.2.2. Resolution

Sensor resolution is another key requirement for good SSM Architecture performance. The
particular resolution in question for SSM Architectures is the resolution of distance measurements.
Sensor resolution directly impacts SSM algorithm granularity. In other words, the range and transition
between danger states becomes much coarser when the selected sensor modality has limited resolution.
In addition to depth granularity, resolution directly impacts velocity calculations. A 1.0 cm resolution
depth sensor will always compute a higher minimum velocity than a 1.0 mm resolution depth sensor.
The velocity computation via change in distance will inherently be no less than 1.0 cm/s vs 1.0 mm/s
in turn rising the possibility of entering a protective stop sooner than necessary increasing down time.
Also, from a safety perspective a lower resolution sensor will provide a lower number of changing
distance points when the robot and human are on a path to collide. Depending on the velocity of the
trajectory, a higher resolution depth sensor will provide more transitioning distance points to the SSM
algorithm increasing the likelihood the SSM algorithm could lower the robot velocity before a collision
occurs.

3.2.3. Coverage

The aim of sensor coverage in an SSM Architecture is to minimize system blind spots. Any
region in which the perception system cannot see the human or calculate the minimum distance poses
a risk for collisions. Coverage is heavily influenced by the FOV achievable by the sensors in the
architecture. In [48], the sensors selected for on-robot sensing had a 25 degree FOV. Therefore, it was
understood that the 8 ring sensor approach contained blind spots within a meter of the sensor ring.
During experimentation however, it was found that the blind spots were acceptable for the particular
experiments conducted in [48]. In general, the larger FOV sensors make high workspace coverage
less challenging. Less individual sensors can be used in comparison to lower FOV solutions in turn
lowering the number of sensors a computational platform may need to communicate with. However,
larger coverage generally means more data collected for computation. Therefore, balancing coverage
requirements with computational bandwidth must be done on a case by case basis.
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3.2.4. Calibration

The accuracy and precision of the computed minimum distance is significantly influence by how
the SSM Architecture is calibrated. Even if high performing sensors are used in an SSM Architecture
(high resolution, FOV, FPS, and ect.) the system will perform poorly without proper calibration. On or
off-robot, it is crucial that the physical location of a sensor in an SSM Architecture is mapped accurately
to the virtual world frame. The calibration process varies depending on the sensor modality used.
Vision based sensors benefit from Hand-Eye calibration tool kits [86]. The approach in [86], meshes
images captured from a sensor looking at a checkerboard with the particular robot pose during image
capture. The data is then pushed into a solver to generate the frame transformation matrix between
the sensor frame and world frame. Other non traditional imager based systems like LIDARs and
radars must use different techniques for sensor to world frame calibration. One technique that is
used for LiDARs is physical mapping of the LIDAR position in a motion capture system [29]. In [29],
retro reflective markers were placed on the base of the LIDAR module to form a rigid body in the
motion capture software. The coordinates and orientation of the rigid body center was published
from the motion capture software. The rigid body center was then used to construct a transform
from the LiDAR to the robot end effector. The calibration of radar can also be done using motion
capture but also another target based approach. In [60], the radar sensors in the SSM workspace were
calibrated using a corner reflector to generate a high signal to noise (SNR) target for the sensors. Two
calibration techniques were explored in this work. One took advantage of the forward kinematics of
the robot in the workspace and uniform fixturing to make an estimated transform from the robot TCP
to the sensing point on the radar. [60] also explored using singular value decomposition (SVD) on
multiple radars point at the same corner reflector to perform point cloud alignment. It is important
to consider the calibration complexity of a particular perception modality before integrating it into
and SSM Architecture. As previously mentioned, if a complex calibration technique is required for an
off-robot sensor scheme, any time the robot or sensor is moved within the workspace, the calibration
process must be performed again to guarantee accurate operation of the SSM Architecture.

The selection, mounting, and calibration of perception sensors are key factors when building
up an SSM Architecture. However, the computational platform also plays a key role as it will be
responsible for processing the perception sensor data and running the SSM algorithm itself. There
is a range of options that can perform this role and choosing the best fitted one involves balancing
processing capabilities, power consumption, space claim, and interface compatibility.

3.3. Computation

As depicted in Figure 10, data processing and SSM algorithm execution are the key computational
loads in an SSM system. Sensor data must be captured, sometimes filtered, and then fed into an SSM
algorithm. In turn, the algorithm outputs a command or coefficient which then updates the robot
behavior via a change in speed, trajectory, or fully halting the robot into a safety rated monitored stop.
Many early SSM Architectures relied solely on PCs for data processing and algorithm execution. In
some cases, there were PCs dedicated to sensor data processing while the other would be used to
run the algorithm in conjunction with a digital twin [16,61,87]. Digital twin introductions into SSM
Architectures became more prevalent as the processing power of GPUs and PCs increased over the
years. These virtual models encompassed the robot and all sensors into a single calibrated world frame.
The real sensor data interacts with the virtual robot and is used to help the real robot distinguish
between self colliding sensor data and true on human data points [48]. As architecture complexity
advanced in the field of SSM, more sensors were combined into single digital twin ecosystems to
significantly reduce workspace occlusions, which present one of the largest challenges for SSM
Architectures. As years passed, data capture and processing has started to be offloaded from purely
PC based computational platforms to microprocessor and microcontrollers [47,49,51,53,77,88]. These
peripheral integrated processors like the STM32 in Figure 11 may run a simple baremetal loop or full
Real Time operating systems (RTOS). The primary objective is sensor data capture, filtration, and
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publishing to the central PC to act as the SSM algorithm input. This approach is widely used with the
more cost effective 1-D ToF sensors, thermopiles, and lower resolution sensors previously discussed.

Figure 11. NUCLEO-F030RS8 is an STM32 Microcontroller Evaluation Board. This is a common example of a
platformed used for sensor processing.

In the most recent years, a new type of processing platform has entered the field of SSM research.
Embedded System modules have begun to be integrated into SSM Architectures. These modules
include devices like the raspberry pi, NVIDIA Jetson Orin, and the Intel NUC. The power of these
systems on module (SOMs), system on a chip (SOC), and single board computers (SBCs) are their ability
to provide bare metal peripheral interfaces while also supplying significantly more processing power
than a traditional microcontroller or microprocessor. These devices contain processing cores, hardware
accelerators, on board memory, and gigabit connectivity interfaces like PCle and Ethernet. In SSM
Architectures, these edge units have typically been used to offload point rich sensor processing from
the main algorithm PC in an SSM Architecture or reduce the number of full PCs in more complex multi
point rich sensor systems [15,17,23,25,37,76,77]. With Al at the Edge catching momentum industry and
research fields, these embedded platforms have started to not only record, and process data, but also
use Al to extract key features and even provide refined speed and separation data directly to the PC
running the SSM algorithms.

Figure 12. NVIDIA Jetson Orin Starter Kit for platform evaluation.
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4. Materials and Methods

The collection of peer-reviewed papers surveyed in this work span nearly three decades of general
robotics perception research (1996 - 2024) and around a decade of papers that specifically focus on
SSM (2008 - 2024). Although sensor and computational citations are noted in the reference section,
only SSM experiment conference papers and journal articles are included in the results section data
set. Source gathering for this work spanned a two-year period (2022 - 2024). The articles were found
through peer reviewed research databases including IEEE Xplorer, ASME, Elselvier, ScienceDirect,
Wiley Online Library, ProQuest, SpringerLink, Frontiers, MDPI, and the Journal of Open Source
Software. The citations were imported into a Zotero collection and tagged according to their relevance
to SSM research and the construction of an SSM Architecture in the published experiments. Figure 13,
illustrates the workflow for collecting citations and tagging data. The exported and tagged citation set,
along with processing scripts and figures can be found publicly available at [89].
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Figure 13. Peer review citation generation and tagging workflow.

In order to expand the sample size of the works in the survey, an initially smaller collection
of works was uploaded to Inciteful [90]. This tool looks at the connections and relevance between
papers based on cross-citations found within an uploaded group of works. It was found that 50 of the
works in the collection were connected citations. The web of connections in Figure 14 illustrates the
connections between papers from dozens of authors. From this network of connections, the tool then
provided additional works of relevance related to the uploaded group of works. The approach found
13 additional sources that were added to the pool of works in this survey dataset. All sources came
from the databases mentioned above and listed in Figure 13.
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Figure 14. Inciteful web of related works in SSM Architecture survey which reference one another

The works were analyzed to determine the perception methods and computational devices used
in the proposed SSM experiments. Each paper was manually tagged with one or several of the
labels defined in Figure 13. The works used a range from one perception method to multiple sensor
modalities fused together. If an architecture integrated stereoscopic cameras and LiDAR in the SSM
experiments, then the work was given both the LiDAR tag and the Stereovision tag. The same logic
was used for the computational platforms observed across the works. If a experiment required a
microcontroller for data processing and the actual SSM algorithm was executed on a PC, then the work
was given both the Baremetal tag and the PC tag.

Once all peer reviewed works were tagged within the Zotero citation group, the citation dataset
was exported as an Excel file for processing. The data columns of interest consisted of Publication
Year, Author, Title, and Manual Tags. Each citation (row) was then searched and incremented through
to account for each tag used in the manual tag cell of that given citation. The tag counts per citation
were then summed together with all citations in the dataset per a given publication year. This general
categorization is the foundation for all figures presented in the results section of this work.

5. Current Trends and Limitations of SSM

Figure 15 depicts the overall spread of perception modalities and computational platforms found
within the citation dataset. These graphs demonstrate the general spread seen through the papers
without temporal context. In the remaining sections, the data will be correlated with the publication
dates these experiments were run to show trends with respect to the utilization of these different
sensors and computational platforms in SSM experiments.
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Figure 15. (15a) Histogram of sensor types in the dataset. (15b) Histogram of computational platform types in the
dataset.

5.1. Perception Trends

Sensor modalities were tagged and divided into six categories. Per Figure 16, categories were
1DTOF, 3DTOF, LiDAR, Radar, Stereovision, and Monovision. It was observed that LiDAR and
vision based systems were present across the years compared to the other categories. Radar and ToF
modalities only started to show heightened prevalence in 2018. Additionally, it was observed that
though LiDAR maintained some integration into SSM Architectures, there has been a substantial rise
in Monovision, Stereovision, and ToF based approaches in the past four years.
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Sensor Usage Trends Over Time (1996-2010 and 2023-2024 Combined)
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Figure 16. Timeline usage of different sensor modalities across SSM research

These sensor trends correlate significantly with the popularity of sensors used in the field over a
given period of time. The Kinect and Kinect V2 could be easily integrated into ROS and were relatively
cost effective compared to multi thousand dollar LiDARs and other advanced vision systems. This
may contribute to the higher values of ToF and vision based approaches in this field illustrated in
Figure 17. 2018 onward however, has seen a rise in vision based methods. Both stereo vision and single
imager based systems have been aided by increased computational abilities and development of easily
integrable Al estimation algorithm on these embedded platforms.

Sensor Migration Analysis Over Time
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Figure 17. Migration of different sensor modalities used in SSM research over time

5.2. Computational Trends

In addition to tagging sensing approaches, each work in this survey collection was tagged for
computational products used in the SSM Architectures presented. Eight specific platform in model
types were identified and labeled within the citation dataset. In Figure 18, the eight categories were
generalized to PC, Baremetal, and Embedded platforms. If a work used multiple computational devices,
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then that work received multiple computational citation tags. Overall, PCs were the foundational
platform used for SSM Architectures. Then, as seen in Figure 19, there was a significant rise in the
number of architectures which integrated microcontrollers from 2018 to 2019. Many of these tags were
associated with work researching cost effective SSM Architectures that used lower resolution depth
sensor technology including 1-D ToF and thermopiles. Lastly, over the past 3 years, (2021 - 2024) there
has been an observed uptick in the use of embedded platforms in SSM Architectures. May of these
embedded platforms were integrated with point rich sensing modalities like stereovision, ToF, and
radar.

Platform Usage Trends Over Time (1996-2010 and 2023-2024 Combined)
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Figure 18. Timeline Usage of different computation units across SSM research
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Figure 19. Migration of different computation units used in SSM research over time
Table 1 is a highlight of key works in the SSM Architecture Citation dataset. These works present

foundational experiments or exhibit new innovative approaches for structuring an SSM Architecture.
Foundational experiments include work that helped define SSM approaches or were one of the first
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instances to use a particular sensing modality. Innovative approaches include experiments which

fused multiple sensing modalities or computational platforms in a unique or innovative manner.

Table 1. Key works in SSM Architecture Research

Reference Category Hardware
Zhang, Chenyang; et al. [70] Monovision, Stereovision PC
Rakhmatulin, Viktor; et al. [77] Monovision, MOCAP Embedded,

Baremetal
Ubezio, Barnaba; et al. [60] Radar PC
Podgorelec, David; et al. [23] - Embedded
Flowers, Jared; et al. [68] Stereovision PC
Rashid, Aquib; et al. [21] LiDAR, Stereovision PC
Tsuji, Satoshi; et al. [52] 1DToF Baremetal
Tsuji, Satoshi [53] 1DToF Baremetal
alg}aya-Mejla, Lina Maria; et al. 3DToF PC
Yang, Botao; et al. [71] Thermal, Stereovision PC
Sifferman, Carter; et al. [88] 1DToF Baremetal
é;ﬁaglanms, Panagiotis; et al. Stereovision PC, PLC
Lacevic, Bakir; et al. [37] 3DToF PC, Embedded
Park, Jinha; et al. [16] 3DToF, LiDAR PC
Lu, Chen-Lung; et al. [17] 3DToF, LiDAR, Radar Embedded
Ubezio, Barnaba; et al. [63] Radar PC
Costanzo, Marco; et al. [35] Therma-l,'Monowsmn, PC

Stereovision
Scibilia, Adriano; et al. [5] - -
Lucci, Niccolo; et al. [39] 3DToF PC
Rashid, Aquib; et al. [24] LiDAR, Monovision PC
Du, Guanglong; et al. [34] 3DToF, Monovision PC
Tsuji, Satoshi; et al. [50] 1DToF Baremetal
Glogowski, Paul; et al. [41] 3DToF PC
Svarny, Petr; et al. [73] Monovision, Stereovision -
Antdo, Liliana; et al. [75] Stereovision PC
Kumar, Shitij; et al. [28] 1DToF PC, Baremetal
Benli, Emrah; et al. [36] Thermal, Stereovision PC
Lemmerz, Kai; et al. [79] 3DToF, Monovision PC
Kumar, Shitij; et al. [48] 1DToF PC, Baremetal
Hughes, Dana; et al. [47] 1DToF PC, Baremetal
Marvel, Jeremy A.; et al. [27] LiDAR PC
ﬁ%r]lchettm, Andrea Maria; et al. 3DToF PC
LiDAR, Stereovision,

Marvel, Jeremy A. [12] MOCAP PC
Tan, Jeffrey Too Chuan; et al. Stereovision PC

[66]
Lacevic, Bakir; et al. [91]

Abbreviations: Monovision—Single image sensor used for human classification, Stereovision—Stereo camera used for

d0i:10.20944/preprints202502.1179.v1

depth, MOCAP—Motion Capture System used for depth or calibration, Radar—LMCFW Radar used for depth, LIDAR—
LiDAR used for depth, 1DToF—1-D time-of-flight Sensors used for Depth, 3DToF—3-D time-of-flight Camera used for depth,
Thermal—Thermal Imager or sensor used for depth or human classification, PC—PC used for perception processing and
or SSM algorithm, Embedded—Embedded platform like NVIDIA Jetson or Intel NUC was used for perception processing,
Baremetal—Microcontroller or Microprocessor was used for perception processing, PLC—Programmable logic controller was
used for perception processing and or SSM algorithm

5.3. Scope Limitations

The works collected in the Current Trends section were selected by hand. The selection of a
particular sensing or computational tag for a work in this data-set was performed manually. There
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are likely many different SSM Architecture configurations in research that were not captured in this
smaller sample size. However, due to the manual approach, the small dataset contains only clear
examples of well constructed SSM Architectures.

5.4. Technical Limitations

Key technical advancements play a major role in gating technology trends within SSM research.
The rise of particular technology usage in SSM Architectures is gated by the development of said
technologies. It is important not to over interpret the prevalence of I2C ToF distance Sensors right as
they were brought to market in the mid 2010s. The key to identifying their impact on the field is their
continued presence in papers the five years following their introduction. Embedded System Modules
have seen a large rise in usage over the past few years, however this does not guarantee they are a
perfect fit for SSM Architectures.

6. Discussion and Conclusion

Overall, research in SSM and the evolution of SSM Architectures has been highly active over
the past decade. The perception and computational systems in these architectures have significantly
increased in complexity, performance, and flexibility. LIDAR based perception and PC based compu-
tation laid the foundational groundwork for SSM Architectures. With the rise of the Kinect and ToF
technology as a whole, an observable shift towards off robot ToF sensing was seen in the mid 2010s.
With continued silicon manufacturing improvements and Al development, the late 2010s and early
2020s has demonstrated a continued shift towards using point rich sensors (3-D ToF, Stereo/Mono
Vision, Radar) in conjunction with embedded system platforms.

From the computational and perception trends, what is clear is that the SSM Architectures must
be tailored to the particular SSM use cases. Point rich sensors like ToF and Stereo vision are great
sensor modalities where computational limitations are less, the robot maximum velocity is near 1m/s,
in turn setting your FPS requirement to around 30 FPS. Currently, most image and light-based sensor
options can easily achiever near 30 FPS. If the selected perception method requires filtering, then
more FPS is recommended. Radar within SSM Architectures show promise when mounted statically
off-robot or on the robot base. They will not provide the same coverage as LIDAR, but will cost less,
and are not dependent on the same light based mechanics as LiDAR, Stereo vision, or ToF. Hence,
radar makes well as a sensor fusion companion to visible perception nodes in an SSM Architecture.
As for computation, if the research focus is on processing power and higher level collision avoidance
control, PCs still provide the highest ceiling of processing power. In the event that the SSM use case or
research is focused more around deployment flexibility, cost reduction, or simple to calibrate sensor
modalities, then baremetal processors would work well for sensor input to serialize data for a PC
to control the SSM algorithm itself. However, the counter approach would be to consider using an
embedded System Module for sensing and control if the end collision avoidance is only Tri-Modal.

The significant gap that remains in this field is the movement of the SSM algorithms, digital twins,
and ROS master nodes directly into the embedded system modules. Each year, embedded platforms
have seen large performance boosts due to the demand for Al at the edge in the automotive and
industrial sectors. These platforms have reached a point where they can reasonably be used to not only
process depth and feature data, but also run the full SSM algorithm and produce the updated trajectory
commands to the robots. In [76], experiments around a monocular depth estimation algorithms were
performed across a number of platforms. One of the platforms tested in the experiments was the
NVIDIA Jetson Nano. The Jetson Nano is the lower power cost effective SOC in the NVIDIA Jetson
Product line. Though these experiments were focused on general depth estimation of humans, it
illustrates the potential for these lower power SOCs to provide purely monovision based point clouds
into an SSM Architecture application. The Nano provided lower frame rates than its PC counterparts
in the benchmark tests, but demonstrated the potential for optimization through TensorRT to provide
a 114 FPS data stream.
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These embedded system platforms, like the Jetson Nano, are physically much smaller than mid
or even mini ATX based PCs. Therefore, there is an opportunity to gain more space claim back in
the collaborative workspaces and SSM Architectures. Additionally, PCs consume hundreds of watts
of power compared to the tens of watts required by embedded platforms. Also, traditional higher
processing capable PCs can cost thousands of dollars, whereas a lower profile Linux SOM, though
less feature rich, is considerably more affordable. Furthermore, the compactness of these devices also
allow for less complex mechanical integration. There are opportunities for these devices to be directly
mounted onto the robot. This opens the potential for the entire SSM Architecture to move with the
robot in the collaborative workspace, greatly increasing the system flexibility of deployment. A shift
towards a purely embedded system approach for SSM Architectures could potentially decrease the
physical space claim of the system, lower power requirements, lower system cost, while maintaining
system performance, and increase workspace flexibility if there is a desire to reconfigure the SSM
Architecture.

More experimentation with point-rich perception sensors and embedded system modules is
required to validate their fit for SSM Architectures and use cases. It will be important to understand the
balance of intended maximum velocities of human and robot motions in particular SSM application. It
should be investigated if metrics like max velocity, robot work envelope, human work envelope, and
collaboration overlap could be used to output the perception and computational modality requirements
for an SSM Architecture. This way that architecture scheme would be optimized for that particular
SSM use case.
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MDPI  Multidisciplinary Digital Publishing Institute
SSM Speed and Separation Monitoring
PFL Power and Force Limiting

ISO International Organization of Standardization
ToF time-of-flight
IR Infrared

HRC Human Robot Collaboration
HRI Human Robot Interaction
TCP Tool center point

SBC Single Board Computer
SOM  System on Module

SOC  System on Chip

IoT Internet of Things

ADC  Analog to Digital Converter
SVD Singular Value Decomposition
AGV  Automated Guided Vehicle
AGR  Autonomous Guided Robot
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