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Article 
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Abstract: We introduce a synchronization procedure for clocks based on the Einstein–Landauer 
framework. Clocks are modeled as discrete, macroscopic devices operating at a thermal equilibrium 
temperature 𝑇. Synchronization is achieved by transmitting photons from one clock to another; the 
absorption of a photon by a clock reduces the uncertainty in its timekeeping. The minimum energy 
required for this reduction in uncertainty is determined by the Landauer bound. We distinguish 
between the time-bearing and non-time-bearing degrees of freedom of the clocks. A reduction in 
uncertainty under synchronization in the time-bearing degrees of freedom necessarily leads to heat 
dissipation in the non-time-bearing ones. The minimum energy dissipation in these non-time-bearing 
degrees of freedom is likewise given by the Landauer limit. We also consider lattices of clocks and 
analyze synchronization using a Ramsey graph approach. Notably, clocks operating at the same 
temperature may be synchronized using photons of different frequencies. Each clock is categorized 
as either synchronized or non-synchronized, resulting in a bi-colored complete graph of clocks. By 
Ramsey’s theorem, such a graph inevitably contains a triad (or loop) of clocks that are either all 
synchronized or all non-synchronized. The extension of the Ramsey approach to infinite lattices of 
clocks is reported. 

Keywords: Landauer bound; synchronization of clocks; Einstein synchronization; Ramsey theory; 
complete graph; transitivity 
 

1. Introduction 

The synchronization of clocks is considered as one of the most fundamental problems in physics 
because it lies at the very foundation of how we understand time, simultaneity, and ultimately the 
structure of space-time itself [1,2]. Clock synchronization underpins our entire framework for 
defining when and where events occur in physics [1,2]. Various procedures enabling synchronization 
of clocks were suggested. Antiphase synchronization was the phenomenon observed by Huygens in 
XVII century [3,4]. Generally speaking, in Newtonian-Lagrangian mechanics, the synchronization of 
clocks is a trivial, straightforward procedure, because time is considered absolute, meaning it flows 
the same for all observers, regardless of their state of motion or location. In classical mechanics, time 
is considered absolute, homogeneous and universal [5–7]. It is assumed that there exists a single, 
universal global time that is the same for all observers, regardless of location or motion [5–7]. Clocks 
at different locations are assumed to tick at the same rate and show the same time, provided they 
were set/synchronized identically [5–7]. 

The situation is quite different in the special and general relativity [8–12]. Synchronized clocks 
could not be moved from one point to another without intervention into their operation. Two 
solutions were suggested for synchronization of the clocks in the special relativity: i) Einstein lattice 
of synchronized clocks [1–4]; ii) Eddington slow clock transport [8,9]. We follow the more 
comprehensive Einstein synchronization procedure. Einstein synchronization implies the following 
steps: i) Assume there are two clocks, clock “A” and clock “B”, located at different positions in space 
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but at rest relative to each other in an inertial frame. We send a light signal. At time 𝜏஺ on clock 
labeled “A”, a light signal is sent from clock “A” to the clock labeled B. ii) At the next stage we receive 
the signal: the light signal reaches clock “B” at time 𝜏஻ (registered according clock “B” time). iii) At 
the next stage the signal is reflected back from clock “B” to clock “A”. iv) the reflected signal is 
received back at clock A at time 𝜏஺ᇱ  , (fixed according to clock “A”). 

Assuming the speed of light is constant and the same in both directions, the time it takes for light 

to travel from “A” to “B” is equal to the time it takes to return from B to A. So: 𝜏஻ = ఛಲାఛಲᇲଶ . If this 
equation is true, this means that Clock “B” is synchronized with Clock “A”. Assumptions behind the 
procedure are summarized as follows: a) Light travels at constant speed c in vacuum in all directions, 
b) Clocks are stationary in the same inertial frame, c) The time taken for the light to go from clock 
“A” to “B” is the same as from clock “B” to “A”. However, it is latently made one more assumption, 
namely we adopted that any light signal sent from one clock to another is suitable for the 
synchronization, whatever its wavelength (frequency). We demonstrate that this assumption 
contradicts the Landauer principle. 

Landauer principle is one of the limiting physical principles, which constraint behavior of 
computing systems. The Landauer principle restricts the minimal energy necessary for erasure of one 
bit of information. Rolf Landauer adopted that computation is a physical process; thus, it must obey 
the laws of physics, and first and foremost the laws of thermodynamics [14–17]. This thinking led to 
the new limiting physical principle, establishing minimal energy cost for erasure of a single memory 
bit for the system operating at the equilibrium temperature T. The minimum amount of heat/energy 
W dissipated when erasing one bit of information is given by Eq. 1: 𝑊 = 𝑘஻𝑇𝑙𝑛2 (1)

The Landauer principle also led to the fundamentally important distinction between the logic 
and thermodynamic irreversibility [13–31]. It should be emphasized, that the Landauer bound, given 
by Eq. 1, is related only to a single information-bearing degree of freedom of the entire computing 
system. The Landauer principle was rigorously microscopically derived without direct reference to 
the second law of thermodynamics [18]. A quantum mechanics extension of the Landauer Principle 
was demonstrated [19]. Also a relativistic generalization of the Landauer Principle was introduced 
[22,24]. An extension of the Landauer Principle to the many-valued logic based computation was 
reported [23]. We introduce the analogy between the computers and physical clocks, and extend the 
Landauer Principle to the Einstein synchronization of clocks. 

We also adress the lattices of clocks, seen within the perspective of the Ramsey theory [32–39]. 
Ramsey theory is a branch of discrete mathematics within combinatorics that deals with the 
emergence of order within seemingly chaotic or random structures, provided those structures are 
sufficiently large. It addresses questions of the form: "How large must a structure be to guarantee 
that a specific property or pattern inevitably appears within it?" [32–39]. 

2. Results 

2.1. Synchronization of Clocks Operating at the Same Temperature 

Consider a pair of clocks to be synchronized, the clocks are numbered “1” and “2” 
correspondingly. The clocks are seen as “synchronized” or, alternatively, “non-synchronized”. Now 
we make the main assumptions of the suggested approach: i) the clocks are in the thermal equilibrium 
with surrounding; the equilibrium temperature of both clocks is T. ii) the minimal energy necessary 
for the clocks synchronization is established with the Landauer bound, 𝐸௦௬௡௖௛௥ = 𝑘஻𝑇𝑙𝑛2 (2)

We follow the general Landauer approach [13–20]. The clock is the physical device. It contains: 
1) the timekeeping element (oscillator), which provides a regular, consistent time interval (the 
“heartbeat” of the clock), such as a pendulum, balance wheel and spring, quartz crystal (in quartz 
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clocks and watches), atomic oscillator (in atomic clocks); 2) a power source, which drives the 
timekeeping element and other mechanisms; 3) an escapement mechanism, which controls and 
regulates the release of power to the timekeeping element, converting continuous energy into discrete 
impulses, which translates the motion of the oscillator into usable time intervals (seconds, minutes, 
hours, etc.); 4) a display or indication mechanism. 

What is common between computer and clocks? Both of them are discrete physical devices. Both 
systems move through a sequence of states: A clock moves through states like "1:00", "1:01", "1:02"... 
Measurement of time is established by comparing their timekeeping against a known standard or 
reference, which may be International Atomic Time (TAI), based on the vibrations of cesium atoms 
or Coordinated Universal Time (UTC). Whatever is the presumed time standard, the time 
measurement is necessarily a discrete procedure. 

A computer, in turn, moves through discrete computational states as it executes each instruction. 
Both of them have essential and supplementary degrees of freedom. In computers, we distinguish 
between the “information-bearing” and “non-information bearing” degrees of freedom. Information-
bearing degrees of freedom are specific physical states used to encode information in a computer, i.e. 
the charge of a capacitor (in DRAM, a memory chip that depends upon an applied voltage to keep 
the stored data), magnetization of a domain (in hard drives); high/low voltage (in logic gates). These 
degrees of freedom carry logical bits: “0” or “1”. Non-information-bearing degrees of freedom are 
other microscopic states (e.g., atomic positions subject to thermal vibrations) that do not directly 
represent logical information, i.e. atomic motions, electron energy distributions unrelated to logic 
states. These degrees of freedom can still absorb or carry energy but not logical bits. When you erase 
a bit (e.g., reset a memory location to “0” regardless of previous value), you reduce the number of 
possible logical states from two (“0” or “1”) to one (just “0”). This reduction in logical entropy must 
be compensated by an increase in physical entropy elsewhere, typically in the non-information-
bearing degrees of freedom (e.g., as heat). The erasure reduces uncertainty in the information-bearing 
degrees of freedom. To obey the Second Law of Thermodynamics, the system must increase entropy 
elsewhere. That entropy increase appears as heat dissipated into the environment — mostly affecting 
the non-information-bearing degrees of freedom (vibrations, kinetic energy, etc.). 

The same is true for clocks. We propose to distinguish between the time-bearing and non-time 
bearing degrees of freedom of the clock. The devices exploiting time-bearing degrees of freedom 
include timekeeping oscillators, such as pendulum or quartz crystal. The units exploiting non-time-
bearing degrees are the power supply, converting mechanism and display. Minimal/elementary 
synchronization of the clock is equivalent to erasure of a bit of information, necessary for zeroing the 
clock reading. Synchronized clocks are equivalent to the certain logical state; unsynchronized clocks 
are equivalent to the uncertain logical state. When we synchronize clocks (e.g., reset a pendulum 
location to “1” regardless of previous state of the clocks), we reduce the number of possible 
logical/temporal states — from two (“0” or “1”) to one (just “1”). This is illustrated with the twin-well 
Landauer pendulum, shown in Figure 1. Synchronization reduces uncertainty in the time-bearing 
degrees of freedom of the clock. After synchronization, we exactly know in what state the pendulum 
is located; this evidences that the clocks are synchronized. The process results in the decrease in 
entropy (we see a clock as the macroscopic device, operating at certain equilibrium temperature T). 
According to the Second Law of Thermodynamics this reduction in entropy must necessarily should 
be compensated by an increase in entropy elsewhere, typically in the non-time-bearing degrees of the 
clock (i.e. heat). Thus, the Landauer principle expressed with Eq. 2 becomes applicable. Let us 
illustrate this idea with the Einstein synchronization scheme depicted in Figure 1. 
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Figure 1. Synchronizations of clocks labeled “1” and “2” with the Einstein procedure performed with the photon ℎ𝜈. Both of clocks operate under the equilibrium temperature T. The clocks exploit the twin-well U(x) based 
pendula. . 

We start from a pair of clocks operating at the same temperature T. Consider clock “1”, 
exploiting the twin-well based pendulum. Pendulum may be located in the left half-well, 
corresponding to state “0”, or in the right half-well corresponding to the state “1” of the clock. We 
send the photon ℎ𝜈 towards the clock “2” exploiting the same twin-potential pendulum. The clocks 
may be synchronized if and only if photon ℎ𝜈 have a sufficient energy to place the pendulum in a 
certain (right or left half- well) regardless of previous state of the clock “2”. Thus, Eq. 3 necessarily 
holds: ℎ𝜈 ≥ 𝑘஻𝑇𝑙𝑛2 (3)

The mass of photon, necessary for synchronization the clocks in given by Eq. 4: 𝑚௣௛ ≥ 𝑘஻𝑇𝑙𝑛2𝑐ଶ  (4)

It should be emphasized, that the introduced synchronization procedure is reversible. It does 
not matter what clock (“1” or “2”) emits the photon, and what clock operates as an absorber of the 
photon. We assume that the emitting clock sends the photon 𝜈 when its state is fixed, and there is 
no uncertainty in its ticking. If the photon is sent when the state of the emitting clock is uncertain, the 
total energy necessary for synchronization of the pair is 𝐸௧௢௧ = 2𝑘஻𝑇𝑙𝑛2. We call the entire protocol 
of synchronization the Einstein-Landauer procedure. 

2.2. Synchronization of Clocks Operating at the Different Temperatures 

Consider synchronization of clocks operating at the different temperatures. For a sake of 
unambiguity assume 𝑻𝟏 ൐ 𝑻𝟐. 

 
Figure 2. Synchronizations of clocks labeled “A” and “B” with the Einstein procedure operating at different 
temperatures is illustrated. The condition 𝑻𝟏 ൐ 𝑻𝟐 is assumed. 

Now the synchronization procedure turns out to be more subtle, and it does matter which clock 
works as an emitter of the photon, and which clock absorbs the photon. When clock “1” is an emitter 
of the photon and there is no uncertainty in its ticking (clock “1” sends a photon when its state is 
fixed), Eq. 5 guarantees the synchronization of the system: 

1 1 0 0 ℎ𝜈 

1 2 

U(x) U(x) 

T T 

ℎ𝜈 

1 1 0 0 ℎ𝜈 

1 2 

𝑇ଵ 
𝑇ଶ 

U(x) U(x) 
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𝜐 ≥ 𝑘஻𝑇ଶ𝑙𝑛2  (5)

When clock “2” is an emitter of the photon (we assume that there is no uncertainty in its ticking), 
Eq. 6 provides the synchronization of the pair of clocks: 𝜐 ≥ 𝑘஻𝑇ଵ𝑙𝑛2  (6)

Eq. 5 and Eq. 6 establish an asymmetry in synchronization of clocks, operating at different 
temperatures. A very deep analogy between the transitivity of thermal equilibrium and the 
transitivity of clock rate synchronization was addressed in ref. [40]. We put this analogy into the 
context of the Landauer Principle. Einstein-Landauer synchronization of the clocks, becomes possible 
if Eq. 7 holds, regardless which clock is emitter, and which is an absorber of the photon. 𝜐 ≥ 𝑘஻𝑙𝑛2𝑚𝑎𝑥ሼ𝑇ଵ,𝑇ଶሽ (7)

2.3. Lattice of Clocks and Its Converting Into Bi-Colored Graph 

Now we introduce the coloring procedure enabling converting the lattice of clocks into the bi-
colored, complete graph. Consider two pairs of clocks depicted in Figure 3. When the clocks are 
synchronized with the Einstein-Landauer procedure, they are connected with the gold link (as shown 
in inset A); when the clocks are not synchronized, they are connected with the blue link (as shown in 
inset B). This coloring procedure enables representation of any lattice of clocks with the complete, bi-
colored graph. 

 

A        B 

Figure 3. A. A pair of synchronized clocks is depicted. The clocks are connected with the gold link. B. A pair of 
non-synchronized clocks is depicted. The clocks are connected with the blue link. 

Now we put the coloring into the context of the Landauer principle. The transitivity of 
synchronization becomes important, as it will be shown below. Consider two triads of clocks 
operating at the same temperature T. 

 
Figure 4. A. Synchronization of a triad of clocks is depicted. The clocks operate at the same temperature T. Eq. 3 
holds. Synchronization is transitive. The entire triad is synchronized. B. Synchronization of a triad of clocks is 
depicted. The clocks operate at the same temperature T. Eq. 3 is not fulfilled. Non-synchronization is transitive. 
The entire triad is non-synchronized. 

The first triad is synchronized with the Einstein-Landauer procedure realized with photons 𝝂. 
Inset “A “depicts situation, when Eq. 3 is fulfilled, and photons 𝝂 enable synchronization of the 
clocks. Inset “B”, in turn, illustrates the case, when 𝒉𝝂 ൏ 𝒌𝑩𝑻𝒍𝒏𝟐 takes place and synchronization is 

T T 

T T T T 

𝜐 𝜐 𝜐 𝜐 

𝜐 𝜐 

1 1 

2 2 3 3 

A B 
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impossible. It should be emphasized, that in both of these situations (“A” and “B”) the relation “to 
be synchronized”/”to be not synchronized” is transitive. It means, that if clocks “1” and “2” and “2” 
and “3” are synchronized with the aforementioned procedure, the clocks “1” and “3” are also 
necessarily synchronized. Correspondingly, if clocks “1” and “2” and “2” and “3” are non-
synchronized with, the clocks “1” and “3” are necessarily non-synchronized. Thus, any lattice of 
clocks, operating at the same temperature and synchronized with the photons of the same frequency 
will be necessarily completely synchronized or, alternatively, non-synchronized. 

Now we address the more complicated situation. We adopt that the clocks operate at the same 
equilibrium temperature T. However, the clocks may exchange with the photons of different 
frequencies 𝜐௜௞, where i and k are the numbers of clocks to be synchronized. Clocks numbered i and 
k may be synchronized when Eq. 8 is true: ℎ𝜐௜௞ ≥ 𝑘஻𝑇𝑙𝑛2 (8)

Now the procedure of synchronization is not transitive. It means, that if clocks “𝑖” and “𝑘” and 
“𝑘” and “𝑙” are synchronized with the Einstein-Landauer procedure, the clocks “𝑖” and “𝑙” are not 
necessarily synchronized. Indeed, 𝜐௜௟ may not fulfil demands imposed by Eq. 8 for the pair of clocks 
labeled “𝑖” and “𝑙” . Obviously, the relation “to be non-synchronized” is now also non-transitive. 
Thus, any lattice of clocks may be described with the complete, bi-colored graph, such as that, 
presented in Figure 5. 

 
Figure 5. Non-transitive synchronization of the clocks with the Einstein-Landauer procedure is illustrated. The 
vertices of the graph numbered ሼ1, … ,6ሽ represent clocks. Synchronized clocks/vertices are connected with the 
gold links; non-synchronized clocks are connected with the blue links. Triangle “456” is monochromatic gold; 
triangle “456” represents the triad of synchronized clocks. Triangle “135” is monochromatic blue. Triangle “135” 
represents the triad of non-synchronized clocks. . 

According to the Ramsey theorem this graph should inevitably contain at least one mono-
chromatic triangle. Indeed, the Ramsey number 𝑹ሺ𝟑,𝟑ሻ = 𝟔. We recognize that the graph, shown in 
Figure 5 contains the triangle “456”, which is monochromatic gold. Hence, triangle “456” represents 
the triad of synchronized clocks. Triangle “135” is a monochromatic blue one. Triangle “135”, in turn 
represents the triad of non-synchronized clocks. 

Thus, we demonstrated the following theorem: 
Theorem. Consider the lattice built of six clocks, synchronized with the Einstein-Landauer 

procedure. The clocks numbered “ 𝒊 “ and “ 𝒌 ” exchange with photons 𝝊𝒊𝒌 . The clocks are 
synchronized when 𝒉𝝊𝒊𝒌 ≥ 𝒌𝑩𝑻𝒍𝒏𝟐 holds. The clocks are non-synchronized when 𝒉𝝊𝒊𝒌 ൏ 𝒌𝑩𝑻𝒍𝒏𝟐 
is true. The lattice inevitably contains a triad/loop of synchronized, or, alternatively, non-
synchronized clocks. 

It should be emphasized that the Ramsey theory does not specify what sort of color will 
necessarily be present in the graph. The extension of the introduced approach to the clocks operating 
at different temperatures is trivial, and it should be based on Eq. 7. 

1 2 

3 

4 5 

6 
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The suggested approach is easily extended to the infinite lattice built of clocks. Consider an 
infinite but countable system of clocks, which form the vertices of an infinite bi-colored graph. The 
clocks are connected with a gold link when the clocks are synchronized, i.e. Eq. 8 holds. The 
vertices/clocks are connected, in turn, with a blue link when the clocks are non-synchronized 
(demands imposed by Eq. 8 are not fulfilled). According to the infinite Ramsey theorem, an infinite 
monochromatic (gold or blue) clique will necessarily appear in the graph [42]. 

3. Discussion 

Physical clocks and computers may seem very different at first glance, but they share some deep 
similarities, especially in how they measure, process, and regulate information over time. Here are a 
few key similarities: 

i). Both are time-based systems. Computers rely on internal clocks (oscillators) to regulate 
operations [43,44]. Every instruction a computer executes is timed by this clock, measured in cycles 
per second (hertz) [43,44]. 

ii) Both use regular oscillations. Quartz clock uses regular electrical oscillations to keep accurate 
time. A computer’s CPU has a clock signal generated by a crystal oscillator that ensures each 
operation is synchronized -kind of like a metronome for processing. 

iii). Deterministic behavior. Clocks and computers both operate in predictable, rule-based ways. 
A computer executes instructions in a fixed, logical order dictated by the program and the clock signal 
[43,44]. 

iv) Information processing. Clocks and computers both are information processing devices. 
v) Both systems move through a discrete sequence of states. 
vi) Multiple clocks (e.g., connected in a network) need synchronization for accurate timekeeping. 

This problem was solved by Einstein, with the procedure of synchronization exploiting the constancy 
of the light in vacuum. Computers also need synchronized clocks across components (CPU, RAM, 
buses) to ensure proper data flow and processing. 

This analogy enabled putting of the both computers and clocks into the paradigm of the 
Landauer limiting principle, which establishes the minimal cost of energy necessary for erasure of a 
single bit information for the computer device operating at temperature T. We introduce the limiting 
principle, which establishes the minimal energy for synchronization of clocks operating at 
temperature T. We label this principle as the Einstein-Landauer synchronization. The 
synchronization of the clocks becomes possible, when Eq. 8 holds. The introduced Einstein-Landauer 
synchronization of clocks supports the idea that the entire universe is informational in nature and its 
functioning resembles a computational process. This idea was suggested in 1989 by John Archibald 
Wheeler, and it was aphoristically marked as “it from bit” [45]. This very general approach to physics 
is intensively developed now [46]. 

4. Conclusions 

Computation, as well as measurement of time, is performed by physical devices. Rolf Landauer 
introduced the principle, which aphoristically is formulated as follows: “information is physical”. We 
suggest the principle: “time is physical”. Time is physical, because it is measured by macroscopic 
physical devices/clocks. These devices are necessarily discrete, and thus, resemble the computers. 
The clocks necessarily contain “time-bearing” and “non-time-bearing” degrees of freedom. The time 
bearing degrees of freedom are pendula or electronic oscillators. The non-time-bearing degrees of 
freedom include energy supply, display, etc. Synchronization of clocks implies decrease in the 
uncertainty in the time-bearing-degrees of freedom of the clock. According to the Second Law of 
Thermodynamics this decrease should be compensated by the dissipation of energy in the non-time-
bearing degrees of freedom of the clock. We adopt, that the minimal dissipation of energy necessary 
for synchronization is given by the Landauer bound. It was suggested that actually the Landauer 
Principle represents re-formulation of the Second Law of Thermodynamics. Consider 
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synchronization of the locks labeled by numbers “𝒊“ and “𝒌”. The energy of photon necessary for 
synchronization is given by: ℎ𝜐௜௞ ≥ 𝑘஻𝑇𝑙𝑛2., where h is the Planck constant. Thus, the deep relation 
between the Second Law of Thermodynamics and the problem of synchronization of clock is 
established. Synchronization of clocks needs energy, thus, the “arrow of time” emerges from the 
inevitable energy loss spent for synchronization of clocks. We call the introduced procedure “the 
Einstein-Landauer synchronization” of clocks. 

Lattices of clocks are addressed within the Ramsey approach. Lattice built of six clocks, 
synchronized with the Einstein-Landauer protocol inevitably contains a triad/loop of synchronized, 
or, alternatively, non-synchronized clocks, when photons of various wavelengths are used for the 
synchronization. The infinite lattice built of clocks will necessarily contain an infinite clique of 
synchronized, or alternatively, non-synchronized clocks. 
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