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Abstract: This study presents a detailed investigation of the application of superquadrics in small-angle scattering
(SAS), a technique essential in materials science, biology, and physics for investigating structural properties at the
nanoscale and microscale. Superquadrics, a family of geometric shapes known for their versatility in representing
a wide range of forms, are employed to model complex structures in SAS studies. We examine the parametric
nature of superquadrics and their ability to efficiently describe shapes from simple balls to intricate star-like forms.
We demonstrate the application of superquadrics through a rigorous analysis of SAS simulated data, including
scattering intensity patterns and pair-distance distribution functions. This allows us to reveal insights into key
structural characteristics of various materials, such as the size and shape. We also demonstrate the efficacy of
superquadrics in accurately modeling experimental small-angle X-ray scattering data from a chimeric protein
complex, showcasing their potential in biological systems analysis. The findings offer a robust framework for

future research and application in diverse fields, including materials science, nanotechnology, and bioengineering.
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1. Introduction

Superquadrics, a versatile family of geometric shapes defined by a set of parametric equations,
have emerged as important tools in a wide range of fields. Their applications span from computer
graphics [1] and robotics [2] to the structural modeling of nano and microstructures [3]. The adaptability
of superquadrics, which can represent structures, ranging from simple balls to complex star-like forms,
is underpinned by their geometric flexibility [4] and computational efficiency [5]. This makes them
particularly useful in fields such as materials science, nanotechnology, and bioengineering, where a
precise characterization of geometric properties is crucial for exploiting the shape-dependent properties
of particles at the nano and microscale.

Small-angle scattering (SAS; [6-8]) of X-rays (SAXS) or neutrons (SANS) is a non-destructive
analytical technique widely used in material science [9-11], biology [12-18], chemical physics [19-
23], cellular automata [24,25] or in studying the geometrical properties of fractal systems [26-30]. It
measures the intensity of scattered radiation at small angles and is commonly used in studying the size,
shape, and distribution of particles at the nano and microscale, owing to its sensitivity to variations in
scattering length density caused by inhomogeneities within a sample.

In the specific context of SAS analysis, superquadrics address a critical challenge: the modeling
of structures that deviate from idealized geometries. Traditional SAS models are effective for well-
defined shapes like spheres, cubes, and ellipsoids [31], but they struggle with structures that exhibit
transitional or complex features. In the latter case additional approaches, often complicated, are
used, including exploiting specific properties such as exact self-similarity [26] or involving molecular
dynamics simulations [32]. This limitation to simple shapes is particularly acute in the study of
biological macromolecules and nanomaterials, where diverse shapes often defy simple geometric
categorization. Superquadrics offer a solution by providing a parametric framework capable of
describing a broad spectrum of shapes, including those that transition between traditional geometric
forms.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This adaptability of superquadrics is crucial for analyzing scattering data from materials with
varied morphologies that can be modeled with precise geometric structures, such as those with rounded
or sharp edges and clear symmetrical properties [33]. When modeling organic and more complex
structures, then generalizations of superquadrics, to supershapes [34] and rational supershapes [35]
can be further considered. However, direct mathematical equivalence between specific supershapes
and superquadrics isn’t straightforward due to their different foundational equations. In the former
case the corresponding equation introduces additional parameters and does not map directly onto the
equation of superquadrics. Still, by adjusting the supershapes parameters, one can achieve visually
similar results to those of superquadrics, especially for certain symmetries and aspect ratios.

Therefore, in this study we explore the integration of superquadrics within SAS analysis, focusing
on their effectiveness in scenarios where the simplicity and clarity of geometric forms are essential
for the accurate interpretation of SAS data. The role and impact of the parameters appearing in the
superquadrics equation are investigated in detail. To this aim, superquadrics are treated as randomly
oriented and distributed inhomogeneities within a matrix, allowing for an efficient description and
analysis of SAS data, including scattering intensity patterns and pair-distance distribution functions.
We identify six general classes of superquadric shapes, each characterized by specific parameters,
and conduct a rigorous analysis to unveil key structural characteristics such as size and shape. Our
findings reveal that scattering intensities and pair-distance distribution functions possess distinctive
features that can differentiate between various superquadric classes.

Furthermore, we demonstrate the practical application of this approach by modeling experi-
mental SAXS data from a chimeric protein complex [36]. This application highlights the potential of
superquadrics in biological system analysis, particularly in elucidating the contribution of different
protein domains to the overall scattering intensity. The study thus presents superquadrics not only
as a theoretical advancement but also as a practical tool for enhancing the understanding of complex
structures with SAS analysis.

2. Theoretical Background

2.1. Superquadrics

The general form of the superquadric is given by the following parametric equations [37]:

x(n,w) = a-sign(cos(n)) - cos(n)“
-sign(cos(w)) - cos(w)?,
y(i7,w) = b-sign(cos(17)) - cos(17)* ©)
-sign(sin(w)) - sin(w)®
z(n,w) = c - sign(sin(y)) - sin(n).
In these equations, g, b, and ¢ represent the semi-dimensions of the superquadric along the x, y, and
z axes, respectively. These dimensions define the scale of the superquadric in each of the principal
directions, thereby determining its overall size and proportion. The angular parameters # and w vary

over the ranges [~ 7, 7] and [—, 7T}, respectively, sweeping the entire surface of the superquadric.
The sign function, defined as:

-1 ifx<0O,
sign(x) =<0 ifx=0, )
1 ifx>0.

is used to handle the signs of the cosine and sine terms, which is crucial for accurately representing
the shape’s geometry, especially when dealing with negative exponents. The use of the sign function
ensures that the superquadric shape is correctly formed in all quadrants of the coordinate system,
maintaining the correct orientation and symmetry.
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The exponents e; and e, in Eq. (1) are shape parameters that control the ‘squareness’ or ‘'roundness’
of the superquadric. By adjusting these parameters, a wide variety of shapes can be generated (see
Figure 1), ranging from spherical forms (when e; and e; are close to 1) to box-like shapes with sharp
edges and flat faces (as e; and e; increase). This flexibility makes superquadrics very useful in various
applications, particularly in structural modeling, where they are employed to represent complex
shapes and surfaces efficiently [38—41].

2.2. Small-Angle Scattering

The fundamental principle of SAS lies in the analysis of the scattering intensity I(g), i. e. the
elastic cross section per unit solid angle, as a function of the magnitude of the scattering vector, defined
as g = 4mA~'sinf, where A is the wavelength of the incident radiation, and 26 is the scattering
angle [13,42].

In the case of a single particle in a fixed orientation in vacuum, let us consider first the electron
density p(r) that gives the number of electrons per unit volume a the position r. Then the scattering
amplitude of the particle can be expressed as the Fourier transform of the electron-density distribution
o, as [43]:

Al = [ [ [ o) exp(=iq-nav. ©

Here, V is the irradiated volume, and dV is the volume element that contains p(r)dV electrons at
position r.

Then, the corresponding intensity I(q) is given by the product of the amplitude A(q) and its
complex conjugate A*(q) [44], i.e.

@) = A@A*@) = [ [ [P exp(ig-n)av, (4)

which is expressed in terms of the convolution square:

P = [ [ [eotn —nav. ®

In the realm of SAS analysis, certain simple geometric shapes allow for the derivation of analytic
expressions for their scattering amplitudes. These expressions are invaluable for interpreting scattering
data and understanding the underlying structural characteristics of the material under study. A
quintessential example is the scattering amplitude of a sphere. For a homogeneous sphere of radius R,
the scattering amplitude can be analytically expressed as a function of the scattering vector 4. This is
given by the well-known formula [45]:

_ 47R® 3(sin(qR) — gR cos(qR)) '

AW =73 (aR)?

(6)

For a collection of statistically isotropic particles, without long-range order, embedded in a
homogeneous matrix with electron density pg, the electron density p is replaced by Ap = p — po.
Then, by taking into account that the convolution square of this difference density is related to the
pair-distance distribution function p(r) [46] by p(r) = r?Ap?(r), the scattering intensity of the whole
collection can be written in terms of the p(r) as [43]:

sin gr

qr

I(q) = 47'[/0 p(r) dr. )
Thus, the p(r) is a critical concept in SAS analysis, particularly when examining collections of points.
It represents a histogram of the frequency of distances between all pairs of points within the scattering
volume. Essentially, p(r) describes how the density of scattering material varies as a function of
distance within the particle. This function is particularly insightful as it provides a real-space interpre-

d0i:10.20944/preprints202408.0018.v1
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tation of the scattering data, which is inherently collected in reciprocal space. In the case of a sphere of
radius R, p(r) has an analytic expression, as given by [47]:

3
p(r) :12(271{)2<232;+(;R)3>, (®)

One of the primary properties of the p(r) is that it peaks at distances corresponding to the most
prevalent inter-particle separations within the sample. For instance, in a system of uniform spherical
particles, p(r) would exhibit a peak corresponding to the radius of the spheres [43]. The function
diminishes to zero for distances larger than the maximum dimension of the scattering entity, denoted
as D. This characteristic of the p(r) provides important information about the overall size and shape
of the particles or structures under study. Moreover, the area under the p(r) curve is proportional to
the square of the volume of the scattering entity, offering insights into the particle’s size and density.

In particular, the radius of gyration (Rg), which is a measure of the distribution of the components
of the scattering particle around its center of mass, is the main quantity used to infer its size and shape.
Moreover, when not the whole curve is available from experimental data, Rg can be determined form
the low-angle part of the scattering data, often using the Guinier approximation [48], which states that:

I(q) ~ 1(0) exp(—q°RZ /3). )

3. Results and Discussion

Here, the parameters 2 = b = ¢ = 1 A are held constant across all shapes. This is because
variations in these parameters, while affecting the size of the superquadrics, do not significantly alter
the fundamental structural properties under investigation. Basically, they elongate the shapes along
one or two spatial dimensions. This gives rise to certain well-established regions where the scattering
intensity I(g) exhibits a decay proportional to 4! or 42 (depending on the relative values of a, b and
c) [11,31].

3.1. Models

The shape parameters e; and e, control the squareness of the superquadric in the respective
directions. The most common shapes of a superquadric can be classified based on the values of ¢; and
€r:

¢ Ellipsoid: When both ¢; and e; equal 1, the superquadric takes on the form of an ellipsoid. This
shape is characterized by its uniform curvature and is commonly used to model objects with
spherical or ellipsoidal characteristics.

® Octahedron: As ¢; and e, increase beyond 1, the superquadric becomes more box-like with
sharper edges. This configuration resembles an octahedron and is suitable for representing
objects with angular features.

 Elliptic bicone: When e, is greater than 1 and e; equals 1, the superquadric exhibits the ap-
pearance of two cones sharing a common elliptical base. This shape is well-suited for modeling
objects with conical attributes

* Elliptic pillow: Conversely, when ¢; equals 1 and e, is greater than 1, the superquadric takes
on a form reminiscent of four half-regions with common elliptical bases. This configuration is
useful for objects that possess pillow-like structures.

* Near-cube: When both e; and ¢, are between 0 and 1, the superquadric approaches a cube-like
shape. It is an ideal choice for representing objects that are nearly cubic in nature.

e Star: Finally, by setting both e; and e; greater than 2, the superquadric exhibits concave features
resembling a star-like shape. This configuration is valuable for modeling objects with intricate
concavities.
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Note that in the literature, these classes with €; > 0 and €, > 0 are also known generically as
superellipsoids [49]. Structures corresponding to certain values of €; and/or €; are given particular
names, e.g. supereggs, when € = 1 or superspheres, when €] = e, =1 [49].

The visual representations in Figure 1 showcase examples of superquadrics from each of these
classes. These variations in shape parameters highlight the adaptability and versatility of superquadric
models in geometric modeling, allowing researchers and designers to accurately capture a wide range
of structural and geometrical properties in their models [38,39].

eg=1,e,=1 e =2,e,=2 e =2,e=1

@ (b) (©)

e, =05,e,=0.5 ee=4,e,=4

(d) (e) ®
Figure 1. Diverse manifestations of superquadrics showcasing six distinct classes resulting from
varying parameters ¢; and e in Eq. (1),ata =b=c=1 A. (a) Ellipsoid. (b) Octahedron. (c) Elliptic
bicone. (d) Elliptic pillow. (e) Near-cube. (f) Star. For a better visualization, only points that lie on the
surface were kept.

It's worth noting that while the classification of superquadrics into these distinct classes based on
shape parameters e; and e, provides a comprehensive framework for understanding their geometrical
properties, it does not encompass all possible superquadric structures. There exist configurations
beyond these classes, but they tend to be more exotic and less commonly used in geometrical modeling.
These "exotic" superquadrics may have highly specialized shapes or intricate combinations of param-
eters that are less practical for general-purpose modeling. Nevertheless, the established classes we
discuss here serve as a robust foundation for modeling a wide range of objects encountered in various
fields, offering a balance between flexibility and practicality in geometrical modeling applications.

3.2. Pair-distance distribution functions and scattering intensities

The pair-distance distribution function p(r) is evaluated by randomly generating 50000 particles
within each shape. For globular shapes, this number of particles is generally sufficient to provide
accurate scattering data over an extended g-range, which is useful for data analysis [16,17,20]. The
scattering intensity I(q) is then calculated by using Eq. (7), for various superquadric shapes from each
class depicted in Figure 1. For each combination of (ey, e), ten trials are conducted.
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To ensure the validity of the approach employed, Figure 2(a) includes the p(r) given by Eq. (8),
with R = 1. The results show an excellent agreement between the theoretical p(r) and the simulated
one (green continuous curve).

T T T ] T ] 100_ T =
5 ——— Ellipsoid 4
—— Octahedron N\
Elliptic bicone \
4- —— Pillow shape - 1014 \ E
——— Near-cube \
= ——— Star shape \
é 3 T T — \\
= Z1024 \ E
- ) —— Ellipsoid
—— Octahedron
10734 Elliptic bicone 4
1- i —— Pillow shape \
——— Near-cube \
—— Star shape \
O = T 10-4 E T \
0.0 05 1.0 15 2.0 10° 10
@ r, [A] (b) q, [A]

Figure 2. Small-angle scattering curves for each of the six classes of superquadrics depicted in Figure 1.
(a) The simulated pair-distance distribution functions (see main text for details). (b) The scattering
intensity, given by Eq. (7). In both cases, the red vertical bars represent errors (the standard deviations
for 10 trials, for each class).

The simulated p(r) profiles, as illustrated in Figure 2(a), predominantly exhibit a bell-shaped
behavior. This characteristic suggests a high degree of symmetry in relation to the center of mass for all
the shapes considered. Nonetheless, distinct features in p(r) are observed for each superquadric class.

Ellipsoids and near-cubes, known for their uniform curvature, exhibit smooth p(r) curves. In
contrast, shapes with more angular geometries, such as octahedrons, display sharper peaks in their
p(r) functions. The peaks are associated with the most common distances within the shape. Thus,
octahedron p(r) pattern suggests a higher prevalence of certain inter-particle distances, uniquely
characteristic of these shapes, and which arise due the the lower symmetry as compared to spheres
or near-cubes. Moreover, the star shape, marked by its concavities, reveals a more complex p(r)
pattern. Here, the maxima are noticeably shifted towards smaller values, and the frequency of the most
common distances is significantly higher compared to other p(r) curves. This observation is attributed
to the numerous distances within the branches of the star, underscoring the complexity and nuanced
spatial arrangement inherent to this shape. In general, the value rp, at which these peaks occur, tends
to be smaller with decreasing the symmetry.

The scattering intensities, obtained from the Fourier transform of p(r) as per Eq. (7), shed light on
the size and shape of the scattering entities. Notably, certain features, such as the radius of gyration
Rg and the self-similarity of the systems, are more readily discerned in reciprocal space [30,50]. This
aspect becomes crucial, particularly when the experimental data is incomplete or lacks the necessary
range for a thorough analysis of Rg from p(r). The accuracy of the Fourier transformation used is
further verified against the analytical expression of the sphere’s scattering amplitude (black dashed
line), given by: Eq. (6).

Typically, the scattering curves exhibit a Guinier region (for g4 < 7/R) followed by a Porod
region (for g 2 71/ R), where the scattering intensity, characterized by alternating maxima and minima,
decays according to a power-law proportional to =% [51]. However, in physical experiments, the
scattering curves are often smoothed due to various factors, such as finite instrument resolution or
the presence of non-ideally monodisperse systems [52]. In this study, we replicate these effects by
applying locally weighted scatterplot smoothing (LOWESS [53]; with a span of 0.12) to the scattering
intensities, facilitating a more accurate exploration of the trends in scattering intensity.
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Figure 3. Guinier plot for each of the six classes of superquadrics depicted in Figure 1. Black dots:

calculated data (from Figure 2b) according to Eq. (9), after taking the logarithm. Coloured continuous
lines: linear fits. The values of the slopes are given in Tab. 1.

Table 1. Structural parameters for each of the six classes of superquadrics depicted in Figure 1. r,, (A)
is the value of r for which p(r) attains its maximum, 7 is the slope of the straight lines in Figure 3, and
Rg (A) is the radius of gyration obtained from Eq. (9).

Ellipsoid = Octahedron Elliptic bicone Elliptic pillow Near-cube  Star

p 1.03 0.73 0.85 0.97 1.03 0.32
T -0.19 -0.10 -0.13 -0.16 -0.19 -0.02
Rg 0.78 0.55 0.63 0.69 0.76 0.27

Distinct intensity patterns are observed across different superquadric classes, as illustrated in
Figure 2(b). For simpler shapes like ellipsoids and near-cubes, I(g) show a more predictable and
smoother decay with increasing g. For some particular parameter values of the superquadrics, a form
factor that describes the transition between these two shapes is available [33]. In contrast, complex
shapes such as star-shaped superquadrics exhibit more pronounced fluctuations, reflective of their
intricate internal structures. Additionally, the Guinier region for the star shape is notably elongated
compared to other shapes. This phenomenon can be attributed to the fact that, despite having similar
overall dimensions, a significant portion of the points generated for the star shape (as shown in
Figure 1) are concentrated in a much smaller region, while the remainder extend along the branches.

Differences in the scattering patterns are utilized to determine the radii of gyration. To this end,
we conduct a Guinier analysis by plotting In(I(g)) against 4%, as outlined in Eq.(9) and illustrated in
Figure 3. For each dataset, a linear fit is applied for values where gqR < 0.4. The slopes of these fits
(1) and the corresponding radii of gyration (Rg) are detailed in Tab. 1. Our findings reveal that the
radius of gyration for the star shape is approximately three times smaller than that of the ellipsoid or
near-cube, and about twice as small compared to the elliptic bicone or elliptic pillow, in line with the
qualitative predictions seen in Figure 2(b).
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Figure 4. (a) The structure of chimeric protein complex of ferritin from Helicobacter pylori with
N-terminal His6-SUMO-tag [36]. The complex’s domains are shown in different colours. On top of the
complex is superimposed a star shape superquadric (transparent light blue colour) with parameters
a = 144 A, b =144 A, c =144 A, e; = 3 and e; = 3. (b) The corresponding SAXS experimental
scattering intensity, reported in Ref. [36]. Vertical red lines represent measurement errors. Green
curve - scattering from the star-like superquadric. Blue line - Guinier’s approximation given by Eq. (9).
Horizontal dashed-line is the background (see main text for details).

3.3. Application: Analysis of Small-angle X-ray Scattering Data from a Chimeric Protein complex

To demonstrate the capability of superquadrics in modeling structures at the nano and micro
scales, this section focuses on a biological system comprising a ferritin-based fusion protein. SAXS
data were collected for a solution containing a 24-meric ferritin-based protein complex, fused with a
SMTS3 protein tag (a homolog of the human Small Ubiquitin-like Modifier; SUMO), in a medium of 25
mM Tris, 150 mM NaCl, and pH 7.4 [36]. The SAXS data underwent normalization to the intensity of
the transmitted beam, followed by radial averaging and subtraction of solvent-blank scattering. The
corresponding SAXS data and models were retrieved from the Small Angle Scattering Biological Data
Bank (SASBDB [54]), with the specific dataset identified as: SASDTU4.

Figure 4(a) presents the chimeric protein complex of ferritin from Helicobacter pylori, designated
with the UniProt [55] ID: 3BVE. This figure highlights the C-terminal region of the protein construct
employed in SAXS measurements. The N-terminal region comprises a His-SUMO-tag, corresponding
to UniProt ID Q12306, and includes amino acids 3-98 with the mutations R64T and R71E. The protein
complex distinctly reveals a star-like configuration, featuring a central core (ferritin) to which several
branches (SMT3 tags) are connected. Overlaying this molecular structure is a star-shaped superquadric
model (transparent light-blue region), which closely approximates the overall form of the protein
complex. However, some extremities of the branches are observed to extend beyond the confines of
the superquadric model.

The experimental SAXS curve (represented by black dots) alongside the intensity profile of the
star-shaped superquadric (depicted as the green curve) is presented in Figure 4(b). A constant term of
1.7 x 1073 has been added to the calculated intensity. This adjustment accounts for the experimental
background scattering, as illustrated by the horizontal dark-green dashed line. The results align very

well up to a g value of approximately 0.07 AT Beyond this point, it is observable that the simulated
curve slightly undershoots the experimental data, despite the high error margins associated with the
experimental measurements.

Given that the radius of gyration of the core is about 56 A (significantly smaller than that of the
entire complex, which is approximately 75 A, as indicated by the blue curve in the plot of Eq. (9)),
the dominant contribution in this region arise from the shorter distances between particles, primarily
within the branches. Consequently, increasing the number of generated points, thereby reducing the
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distances between them, can enhance the resemblance of their distribution to the actual shape of the
branches, especially at the extremities. This adjustment is expected to result in an improved agreement
with the SAXS curve at higher g-values.

4. Conclusions

This study explores the applicability of superquadrics in SAS analysis, showcasing their efficacy
in modeling diverse structures at the nanoscale and microscale. By harnessing the parametric nature of
superquadrics, this investigation delves into their versatility in representing various shapes, ranging
from spherical entities to complex star-like formations. The results demonstrate the capability of
superquadrics to efficiently describe structural properties within SAS datasets, elucidating insights
into size, shape, and distribution of scattering entities.

The pair-distance distribution functions (p(r)) and the corresponding scattering intensities (1(g))
derived from different superquadric shapes exhibit distinctive patterns reflective of their geometric
attributes. Shapes like ellipsoids and near-cubes manifest smooth p(r) curves, while more angular
geometries like octahedrons display sharper peaks, signifying distinct inter-particle distances preva-
lent within these shapes. Furthermore, complex structures such as star-shaped superquadrics unveil
intricate p(r) patterns, highlighting the nuanced spatial arrangements inherent in these branched con-
figurations. The Guinier analysis of the scattering intensities reveals characteristic radii of gyration (Rg)
for each superquadric class, offering insights into the distribution of density around the corresponding
center of masses.

Additionally, the application of superquadrics in modeling small-angle X-ray scattering (SAXS)
data from a chimeric protein complex underscores their potential in accurately approximating complex
biological structures. The close agreement between the star-shaped superquadric model and the
experimental SAXS data highlights the utility of superquadrics in representing intricate molecular
architectures consisting of various protein domains, thus providing a robust framework for structural
analysis.

Overall, this study underscores the significance of superquadrics as versatile tools in geometric
modeling, offering a comprehensive approach to characterize and analyze structures across various
scales and disciplines. The insights gained herein pave the way for future advancements in SAS
analysis, facilitating a deeper understanding of structural properties in diverse materials and biological
systems. In materials science, this could lead to the development of novel nanostructured materials
whose properties are tailored through precise geometric control. Such materials could find applications
in areas ranging from photonic crystals and drug delivery systems to novel catalysts and energy storage
devices. In bioengineering, the ability to accurately model and analyze the structural properties of
biological macromolecules using superquadrics could significantly enhance our understanding of
biomolecular interactions and stability. This could lead to breakthroughs in the design of biomimetic
materials, tissue engineering, and the development of targeted therapeutic agents.

While this study demonstrates the significant potential of superquadrics in SAS analysis, it
is important to acknowledge certain limitations. The current research primarily focuses on ideal-
ized superquadric shapes, which, although versatile, may not capture the full complexity of certain
real-world nano and microstructures. For instance, materials with irregular surface textures or in-
ternal heterogeneities may not be accurately modeled by the smooth and continuous surfaces of
superquadrics. Additionally, the assumption of uniform material density within the region delimited
by the superquadric may not hold true for all materials, particularly those with graded or layered
compositions.

Future research could explore the integration of superquadrics with more complex modeling
techniques to better represent materials with non-uniform densities and irregular surfaces. This could
include hybrid models that combine superquadrics with fractal or stochastic elements to capture the
intricacies of materials like porous polymers, composite nanoparticles, or biological assemblies with
non-uniform density distributions. Another promising avenue is the application of superquadrics to
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the study of soft matter systems like colloidal clusters, where the shapes often deviate significantly
from standard geometric forms.
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