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Abstract: This work is a supplement to the the author’s “The Rise of the Brown-Twiss Effect” featured
in the Photonics special issue: “Optical Imaging and Measurements: 2nd Edition". The main
contribution for the author’s algorithm was the survey of the stochastic search algorithm required to
determine the true noise free-image via the Brown-Twiss effect with enormously small integration
times. A key element in the algorithm was the introduction of initial conditions where the values of
the intensity pixels are assumed to be mutually statistically independent and uniformly distributed
over the range [0,6) where & is a (very small) positive constant. This algorithm performed quite

well, but the small initial conditions are unnecessary, as well as other complications that should be
simplified. Here we streamline the algorithm in the form of a discrete-time dynamic system and
explore the alternate features and benefites of compartmental nonnegative dynamic systems.

Keywords: Hanbury Brown and Twiss effect; two-dimensional imaging; integration time reduction;
noise reducing phase retrieval; stochastic search algorithm; phase retrieval algorithms; Cramér-Rao
bound; nonnegative dynamic systems

1. Introduction

Recent work of the present Author has succeeded in the vast reduction of integration times that
have solong plagued the Hanbury Brown-Twiss effect. The way is now open to reap the advantages
of simple, inexpensive flux collecting hardware, immunity to seeing conditions, and unlimited
baselines and image resolution. Furthermore since the Brown- Twiss effect has been extended to two-
dimensional imaging; it is appropriate that we term the algorithm the Intensity Correlation Imaging
(ICI) algorithm.

Within the “The Rise of the Brown-Twiss Effect” surveyed in this special issue the reduction of
integration times has been accomplished by means of the Noise Reducing Phase Retrieval (NRPR)
algorithm which is embedded within a Stochastic Search algorithm. In the complex analysis of [1],
initial conditions, such as small random perturbations in the pixel intensities and other
complexities, the algorithm performed very well. However, in this paper we update and simplify the
algorithm by constructing a discrete-time dynamic system. Moreover, not only does the algorithm
perform as well as the original, but we also introduce the benefits of a nonnegative dynamic systems.

We progress as follows. Section 2 begins with the NRPR algorithm, which contains the correct
integration times and sets up the foreground/background dichotomy. Section 3 transforms the NRPR
steps into a discrete-time, nonnegative dynamic system. Section 4 merges the dynamic system within
the Stochastic search algorithm structured to gradually reduce the “Box” sizes.

2. Description of the NRPR Algorithm

It is supposed that there is an array of flux collecting apertures arranged so as to form a square,
evenly spaced grid on the “u-v plane” (which, in interferometry, denotes the Fourier domain
projected on the plane perpendicular to the target line-of-sight). The grid has a one-to-one
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correspondemce to a matrix of N XN pixels forming the construction of an image of a luminous
object amidst a black sky. The defining characteristics of the NRPR algorithm are:

g € C"" = Current value of the estimated image (pixellated)
g € R™" =The true image, without noise
7€ R™" = Unity for for pixels constrained to have zero intensity
and zeros for pixels that are unconstrained
7, eR" =1, . —7,The opposite of 7
J[...]= Two-dimensional Fast Fourier Transform (unitary)
G =3[g]e C"" =The true coherence, without noise
R

NN = The measured coherence magnitude obtained by
cross-correlating the intensity signals from all pairs

of the flux collecting apertures
(3gl), =FFT in the u-v plane. (J[g]), = (S[g]);k

Re[...]2 %([...] +[..T ), The real valued portion of [...]

Re, [...] # max {0,%([...] +[..] )},The real positive value of [...] (1. a-k)

(A4)°(B)= Hadamard product of 4 and B

The matrix 7 defines the set of constraints. 7, =1 declares pixel (k,;) to be constrained to
be zero, whereas ¢, =1 if g, is unconstrained. Matrix (T i ) g s the opposite; unity for
uncnstrained pixels and zero for constrained pixels. The region wherein 7, =1 we have termed “the

background”, and the remaining region, “the foreground”. In this scenario, the initial inputs and the
subsequent algorithm are defined as in Figure 2.
Figure 2 shows the various steps of the NRPR algorithm. There are several initial specifications.

12
Aiv\/% |7/wl|2 N“k (0’1)‘

a positivity constraint. This is composed of the noise-free normalized coherence magnitude,

which obeys

7(u, )|

, where u,is the relative position vector of a pair of the flux collecting apertures, N, (0,1) is a

The first is the measured coherence magnitude, G (u,.AT) =“y (u, )|2 N

complex-valued Gaussian noise of zero mean and unit varianceand N, is the number of constrained

N N
pixels, i.e. N, = ZZr,g . The formulation of this noise model was accomplished in [2] resulting
k=1 j=1

in an asymptotic expression for the precision estimate of the necessary integration time. The second
initial specificationis g =g, where g,isindependently and uniformly distributed in (0,5] where

O is real and positive. It is these random specifications of the initial values of the pixel intensities
that we wish to supplant with a dynamic system having additional simplifications.

It must be emphasized that only a single data batch of measured coherence magnitude
measurements will be used in the process by which the zero-noise image is determined. Thus the
adaptive algorithms described here do not increase the necessary integration time. However, the
adaptive algorithms require repeated NRPR computations, and each such repetition uses a new seed
for the randomized initial guess for the image.

The various steps A to F of the algorithm are discussed in References [1-3]. The basic
computations of NRPR are directed to an hypothesis that a square “box” of size B, and, positioned

in the center of the field of view, contains the noise-free image. Then NRPR is embedded within the
Stochastic Search wherein the hypothesis is tested and the noise-free image is discovered.
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Inputs
1. Measured data batch G (u,AT) using observation time AT :

G (ue AT) = (w)f +2%

where N. ="z, and |y, | = estimated minimum coherence of object
o

12

o' N, (0,1)|

2. Initial randomized g: g = g,. Each (g,), s independently and
uniformly distributed in (0,5 ], >0

3. Algorithm parameters: #=0.7, =5 =10"°
U
Start: g =g,, il G(u,AT)

Algorithm%
A4 G'=3[g]
B Gi=(1-£)G+¢|G]
C G,=GoG's(1/|G])
D g,=3"[G,]
E gpp=rogp+rlomax{0,Re(gp)}
F g=1,0,+7(g-fg,)
2

o R

yes

\
8= (g)Converged ’ Gc = S[gc]

Figure 2. NRPR algorithm as employed in the identification of image constraints.

3. The NRPR Algorithm as a Discrete-Time Dynamic System

As the next step in our analysis, we recast the equations of Figure 2 into a discrete-time dynamic
system such that all the principal quantities are indicated by the sequence of integers k=0,1,....0. We
start with the initial conditions and the first iteration and recite the sequence of further iterations,
keeping the algorithm in its proper order:

A A 2 N, 2 12
G, (0)= |7/q| + o= Ny (0.1)
g(0)=5rand(N,N), 5=10"°
k=0,1,2,...00
’ (2.
G(k+1)=3[g(k)]
(‘#k“):(I—S)G(k)+g|G(k+1)|
Z'og(k+1):z‘o{g(k)_ﬂRe|:SH (GA(k+1)O€iarg(G(k+1)))j|}
T, og(k+1) =7, ORC+ [SH (é(k+l)oeiarg(6(k+l))):|
a-f)

where the function rand (N,N) isan N x N matrix having statistically independent elements that

are uniformly distributed in [O, 1) . Now consider the equations pertaining to k=0 and 1:
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G2y, [ b N, 0
g(0 )=5mnd(N,N), 5=10"°
U
G(1)=3[8rand(N,N)]
1) = (1-£)G(0)+ e8]V = G (0)+ O (s + £5)
rog(l)= ro{ 2(0)- ﬂRe[S” (é(o)oe"”[z"’"f’w)‘@ +0(—g+gﬁ))J}
r,0g(1)=7,oRe [“H(G(O)o rlrd (N L o (= g+g§))}
(3.a-d)
Ignoring terms of order ¢ and €0 these relations become:
(%(1) G, ( |7’k/| Ry |7 | Ny 01)
rog(l)=r oRe[SH { [5—ﬂé(0)] o g2l N’NH]H
r,0g(l)=7, oRe [’” (G(o)oe"”[z”’"d“’”)*])] (4. a-f)

U k=12,
Hh+1)=(1-2)G (k) +e[3[g(k)]
rog(k+1)= fo{g(k)—ﬁRe[s" (é(k+l)oeimg(3[g(k)])):|}
7 0g(k+1)=7, oRe, [s (G(k1)oemiee) ﬂ
Regarding the second equation above, ,Bé(o)is at least three orders of magnitude larger than

¢ . Thus:
[5 - ﬂ(#o)] o @ L2 (NN)1] o BG(0)e ™M N)1] - Then the first three equations above

are devoid of the very small quantities 6 and ¢, therefore we have:

006,02 25 v, 0]

rog(1)=—ﬂf°Re[ H( (0)oe o L2rand(V.N)- ])}

aog(1)=aoRe+[ ( (0)oe e ])] . a-f)
U k=1,...,0

C?'Afk+1 = 1 8 + | [g ]|
tog(k+1)=ro { (k) ,BRe[‘”H( (k+1) o gL D)}}
(k+

oe iarg(3[e(k ]))}

This dynamic system replaces six steps per iteration with three steps. Note that the quantity
m’I:Zrand (N.N) 1:|

r,0g(k+1)= rioRe[ (

is the phase factor of the Fourier transform of the random initial pixel intensities. The

new initial conditions in Equations (5. b-c) are correct to within € and ¢ (107*). This means that to
the same small error the complete history of the dynamic system is essentially identical to that of the
original NRPR in Figure 2. In particular one must note that (5.b) also leads to the convergence of

To g(k) to zero as demonstrated in Reference [1] . Therefore in the limit, 7 o g(k)is the ultimate

nonnegative dynamic system.
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ir| 2rand(N,N)-1]

Clearly the phase factor, e ,in 7o g(O) and 7, o g(O) is a statistical ensemble that

encompasses all possible coherence phases. Thus there is a very significant non-zero probability that
on any one trial NRPR converges to of the correct coherence phase and magnitude and therefore to
the noise-free image.

4. The Stochastic Search Algorithm for Sequential Box Sizes

In this Section we consider the Stochastic Search algorithm employing random coherence phases
within the two initial conditions rather than random pixel intensities. Figure 3 shows that the
embedded NRPR runs (in blue) use statistically independent and uniformly distributed coherence
phases spanning [-r, 7). The search sets up a square “Bx” and runs NRR 7 >1 times until there are

two images that are fully correlated. In that case, the two outcomes are the noise-free image (baring
180 degrees of rotation or translations). If there are no such correlations withinn  computations, then
the algorithm reduces the box size and tries again. If by chance a converged image has pixel intensities
that reside outside of the box, this indicates that the box is too small to contain the illuminated object,
and the box size must be enlarged. Overall this is the process by which the Stochastic Search validates
the hypotheses of the box size.

Collect intensity fluctuation data from all apertures and compute intensity fluctuation
cross-correlations

ﬂ Coherence magnitude data

— Set up a “Box” of size, Bx (if no success, reduce Bx)

4

Run NRPR to convergence (up to n >1 times)
Note: Each run of NRPR uses the two initial conditions that contain an initial guess of
the coherence phases such that they are statistically independent and uniformly
distributed. All such initial conditions are mutually independent of one-another.

<

Update the image correlation matrix

d

No ( Is there a pair of fully
L correlated images?

Stochastic Search Algorithm

Yes

Noise-free Image

Figure 3. Stochastic Search algorithm using random coherence phases.

In Figure 4 we demonstrate that the dynamic system (5. a-f) behaves essentially as in References
[1-3] when in the case that the smallest box size does fully contain the illuminated object. Alternately,
one can start with a box size that is smaller than the illuminated object and then increase the box sizes
until the noise-free image is found. With this strategy, the number of NRPR computations is distinctly
reduced. In fact, if the number of runs is large for the case of decreasing box size, then for the same
image, the number of runs for the case of increasing box sizes is halved. The latter strategy, as
mentioned in Reference[1] is clearly superior.
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B o 80,4 by Bx=60,1try

Bx 40, 1try

Bx 40, 2 try

20 20

40 40

60 60

20 40 60 80 100 120 140 20 40 60 80 100 120 140

Figure 4. This illustrates how the Stochastic Search uses the nonnegative dynamic system to determine the noise-

free image by the regular reduction of the Box size. We start with B =80 and run n = 2 trials. Then we then
select B =60and B_ =40, each having two trials. The satellite is 50% the size of the 40 pixel box. Consequently

we discover that the final pair of images are fully correlated and thus are the noise-free image.fThe parameters
of the dynamic system are £=10° and S =0.7 . Each trail was computed for 3000 iterations in

approximately 3.5 seconds using an Apexx W Class, thus producing the noise-free image in 21 seconds.

5. Conclusions

Reference [1] created an algorithm that emphatically reduced the integration times of the Brown-
Twiss effect as applied to two-dimensional imaging (termed ICI). However, there were a number of
complexities in the algorithm that merited simplification. This paper has succeeded in streamlining
the ICI algorithm by transforming the six steps of the original algorithm into a discrete-time,
nonnegative dynamic system having a three dimensional state space. It is demonstrated that this
dynamic system fully replicates the original to within o(¢). Furthermore, the simplified product,

being a nonnegative system [4], is well suited to partner with Artificial Intelligence automation such
as nonnegative spiking neural networks. Such automation can be expected in the near future.
The Author is an Independent Researcher.
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