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Abstract: This work is a supplement to the the author’s “The Rise of the Brown‐Twiss Effect” featured   

in  the  Photonics  special  issue:  “Optical  Imaging  and  Measurements:  2nd  Editionʺ.  The  main 

contribution for the author’s algorithm was the survey of the stochastic search algorithm required to 

determine the true noise free‐image via the Brown‐Twiss effect with enormously small integration 

times. A key element in the algorithm was the introduction of initial conditions where the values of 

the intensity pixels are assumed to be mutually statistically independent and uniformly distributed 

over the range   0,   where     is a (very small) positive constant. This algorithm performed quite 

well, but the small initial conditions are unnecessary, as well as other complications that should be 

simplified. Here we  streamline  the algorithm  in  the  form of a discrete‐time dynamic  system and 

explore the alternate features and benefites of compartmental nonnegative dynamic systems.   

Keywords: Hanbury Brown and Twiss effect; two‐dimensional imaging; integration time reduction; 

noise reducing phase retrieval; stochastic search algorithm; phase retrieval algorithms; Cramér‐Rao 

bound; nonnegative dynamic systems   

 

1. Introduction 

Recent work of the present Author has succeeded in the vast reduction of integration times that 

have so long plagued    the Hanbury Brown‐Twiss effect. The way is now open to reap the advantages 

of  simple,  inexpensive  flux  collecting  hardware,  immunity  to  seeing  conditions,  and  unlimited 

baselines and image resolution. Furthermore since the Brown‐ Twiss effect has been extended to two‐

dimensional imaging; it is appropriate that we term the algorithm the Intensity Correlation Imaging 

(ICI) algorithm. 

Within the “The Rise of the Brown‐Twiss Effect” surveyed in this special issue the reduction of 

integration times has been accomplished by means of the Noise Reducing Phase Retrieval (NRPR) 

algorithm which is embedded within a Stochastic Search algorithm. In the complex analysis of [1], 

initial  conditions,  such  as  small  random  perturbations  in  the  pixel  intensities    and  other 

complexities, the algorithm performed very well. However, in this paper we update and simplify the 

algorithm by constructing a discrete‐time dynamic system. Moreover, not only does the algorithm 

perform as well as the original, but we also introduce the benefits of a nonnegative dynamic systems. 

We progress as follows. Section 2 begins with the NRPR algorithm, which contains the correct 

integration times and sets up the foreground/background dichotomy. Section 3 transforms the NRPR 

steps into a discrete‐time, nonnegative dynamic system. Section 4 merges the dynamic system within 

the Stochastic search algorithm structured to gradually reduce the “Box” sizes.   

2. Description of the NRPR Algorithm 

It is supposed that there is an array of flux collecting apertures arranged so as to form a square, 

evenly  spaced  grid  on  the  “u‐v  plane”  (which,  in  interferometry,  denotes  the  Fourier  domain 

projected  on  the  plane  perpendicular  to  the  target  line‐of‐sight).  The  grid  has  a  one‐to‐one 
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correspondemce  to a matrix of  N N pixels  forming  the construction of an  image of a  luminous 

object amidst a black sky. The defining characteristics of the NRPR algorithm are: 
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                                                        (1. a‐k) 

The matrix     defines the set of constraints.  1kj    declares pixel   ,k j   to be constrained to 

be  zero,  whereas    1kj    if  k jg is  unconstrained.  Matrix   kj   is  the  opposite;    unity  for 

uncnstrained pixels and zero for constrained pixels. The region wherein  1kj    we have termed “the 

background”, and the remaining region, “the foreground”. In this scenario, the initial inputs and the 

subsequent algorithm are defined as in Figure 2. 

Figure 2 shows the various steps of the NRPR algorithm. There are several initial specifications. 

The first is the measured coherence magnitude,       
1 22 2

24
ˆ , 0,1C

kestk k
NG T N   uu u  which obeys 

a positivity constraint. This is composed of    the noise‐free normalized coherence magnitude,   k u

, where  ku is  the  relative position vector of  a pair  of  the  flux  collecting  apertures,   0,1
k

Nu   is  a 

complex‐valued Gaussian noise of zero mean and unit variance and 
CN   is the number of constrained 

pixels, i.e. 
1 1

N N

C kj
k j

N 
 

   . The formulation of this noise model was accomplished in [2]    resulting 

in an asymptotic expression for the precision estimate of the necessary integration time. The second 

initial specification is  0g g  where  0g is independently and uniformly distributed in   0,  where 

   is real and positive. It is these random specifications of the initial values of the pixel intensities 
that we wish to supplant with a dynamic system having additional simplifications.   

It  must  be  emphasized  that  only  a  single  data  batch  of  measured  coherence  magnitude 

measurements will be used  in the process by which the zero‐noise  image is determined. Thus the 

adaptive algorithms described here do not  increase  the necessary  integration  time. However,  the 

adaptive algorithms require repeated NRPR computations, and each such repetition uses a new seed 

for the randomized initial guess for the image. 

The  various  steps  A  to  F  of  the  algorithm  are  discussed  in  References  [1–3].  The  basic 

computations of NRPR are directed to an hypothesis that a square “box” of size  xB   and, positioned 

in the center of the field of view, contains the noise‐free image. Then NRPR is embedded within the 

Stochastic Search wherein the hypothesis is tested and the noise‐free image is discovered.   
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Figure 2. NRPR algorithm as employed in the identification of image constraints. 

3. The NRPR Algorithm as a Discrete‐Time Dynamic System 

As the next step in our analysis, we recast the equations of Figure 2 into a discrete‐time dynamic 

system such that all the principal quantities are indicated by the sequence of integers  0,1,...k   . We 

start with the  initial conditions and the first  iteration and recite the sequence of further iterations, 

keeping the algorithm in its proper order: 
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                                                      (2. 

a‐f) 

where the function   ,rand N N   is an  N N  matrix having statistically independent elements that 

are uniformly distributed in   0,1 . Now consider the equations pertaining to  0k    and  1 :   
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(3.a‐d)           

  Ignoring terms of order   and     these relations become: 

                 

     

      
      

       

         

1 22 2

2

2 , 1

2 , 1

arg g

4
垐 1 0 0,1

ˆ1 = Re 0

ˆ1 Re 0

        k=1,2,...,

垐 1 1 g

ˆ1 Re 1

C

estkj kj kj kj

i rand N NH

i rand N NH

i kH

NG G N

g G e

g G e

G k G k k

g k g k G k e







   

 

 

  

  

  
  

  

 

      
    
 

      

     



  

  

   
       arg gˆ1 Re 1

i kHg k G k e    
  



      
  
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Regarding the second equation above,   ˆ 0G is at least three orders of magnitude larger than 

 . Thus:   
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are devoid of the very small quantities     and     , therefore we have: 
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                                                    (5. a‐f)                                                   

This dynamic system replaces six steps per  iteration with  three steps. Note  that  the quantity 
 2 , 1i rand N Ne     is the phase factor of the Fourier transform of the random initial pixel intensities. The 

new initial conditions in Equations (5. b‐c) are correct to within   and     ( 610 ). This means that to 

the same small error the complete history of the dynamic system is essentially identical to that of the 

original NRPR in Figure 2. In particular one must note that    (5.b) also leads to the convergence of 

 g k  to zero as demonstrated  in Reference [1]  . Therefore  in the  limit,     g k  is the ultimate 

nonnegative dynamic system.   
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Clearly  the phase  factor, 
 2 , 1i rand N Ne     ,  in     0  and 0g g     is  a  statistical  ensemble  that 

encompasses all possible coherence phases. Thus there is a very significant non‐zero probability that 

on any one trial NRPR converges to of the correct coherence phase and magnitude and therefore to 

the noise‐free image.   

4. The Stochastic Search Algorithm for Sequential Box Sizes 

In this Section we consider the Stochastic Search algorithm employing random coherence phases 

within  the  two  initial  conditions  rather  than  random  pixel  intensities.  Figure  3  shows  that  the 

embedded NRPR runs (in blue) use statistically independent and uniformly distributed coherence 

phases spanning   ,  . The search sets up a square “Bx” and runs NRR  1n    times until there are 

two images that are fully correlated. In that case, the two outcomes are the noise‐free image (baring 

180 degrees of rotation or translations). If there are no such correlations within n    computations, then 

the algorithm reduces the box size and tries again. If by chance a converged image has pixel intensities 

that reside outside of the box, this indicates that the box is too small to contain the illuminated object, 

and the box size must be enlarged. Overall this is the process by which the Stochastic Search validates 

the hypotheses of the box size. 

 

Figure 3. Stochastic Search algorithm using random coherence phases. 

In Figure 4 we demonstrate that the dynamic system (5. a‐f) behaves essentially as in References 

[1–3] when in the case that the smallest box size does fully contain the illuminated object. Alternately, 

one can start with a box size that is smaller than the illuminated object and then increase the box sizes 

until the noise‐free image is found. With this strategy, the number of NRPR computations is distinctly 

reduced. In fact, if the number of runs is large for the case of decreasing box size, then for the same 

image,  the number  of  runs  for  the  case  of  increasing  box  sizes  is halved. The  latter  strategy,  as 

mentioned in Reference[1] is clearly superior.     
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Figure 4. This illustrates how the Stochastic Search uses the nonnegative dynamic system to determine the noise‐

free image by the regular reduction of the Box size. We start with  80xB    and run n = 2 trials. Then we then 

select  60xB  and  40xB  , each having two trials. The satellite is 50% the size of the 40 pixel box. Consequently 

we discover that the final pair of images are fully correlated and thus are the noise‐free image.�The parameters 

of  the  dynamic  system  are  610    and  0.7  .  Each  trail  was  computed  for  3000  iterations    in 

approximately 3.5 seconds using an Apexx W Class, thus producing the noise‐free image in 21 seconds.   

5. Conclusions

Reference [1] created an algorithm that emphatically reduced the integration times of the Brown‐

Twiss effect as applied to two‐dimensional imaging (termed ICI). However, there were a number of 

complexities in the algorithm that merited simplification. This paper has succeeded in streamlining 

the  ICI  algorithm  by  transforming  the  six  steps  of  the  original  algorithm  into  a  discrete‐time, 

nonnegative dynamic system having a  three dimensional state space.  It  is demonstrated  that  this 

dynamic system  fully replicates  the original  to within   O  . Furthermore,  the simplified product, 

being a nonnegative system [4], is well suited to partner with Artificial Intelligence automation such 

as nonnegative spiking neural networks. Such automation can be expected in the near future.     

The Author is an Independent Researcher. 
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Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org.�Reside in the ICI algorithm as described in full detail within the Review.�
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