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Abstract 

Automatic radiology report generation (ARRG) has emerged as a promising application of deep 

learning (DL) with the potential to alleviate reporting workload and improve diagnostic consistency. 

However, despite rapid methodological advances, the field remains technically fragmented and not 

yet mature for routine clinical adoption. This systematic review maps the current ARRG research 

landscape by examining DL architectures, multimodal integration strategies, and evaluation 

practices from 2015 to April 2025. A PRISMA-compliant search identified 89 eligible studies, 

revealing a marked predominance of chest radiography datasets (87.6%), largely driven by their 

public availability and the accelerated development of automated tools during the COVID-19 

pandemic. Most models employed hybrid architectures (73%), particularly CNN–Transformer 

pairings, reflecting a shift toward systems capable of combining local feature extraction with global 

contextual reasoning. Although these approaches have achieved measurable gains in textual and 

semantic coherence, several challenges persist, including limited anatomical diversity, weak 

alignment with radiological reasoning, and evaluation metrics that insufficiently reflect diagnostic 

adequacy or clinical impact. Overall, the findings indicate a rapidly evolving but clinically immature 

field, underscoring the need for validation frameworks that more closely reflect radiological practice 

and support future deployment in real-world settings. 

Keywords: deep learning; digital images; natural language processing; radiology; transformers 

 

1. Introduction 

The interpretation of medical images and the generation of radiological reports constitute a core 

component of diagnostic assessment, treatment planning, and ongoing patient monitoring [1,2]. 

Producing a coherent and clinically meaningful report requires not only the accurate recognition of 

imaging findings but also their integration into a structured diagnostic narrative, a process that 

demands years of specialized training and contributes to workload pressures in radiology 

departments [1–3]. These constraints, together with the risk of inter-observer variability, have 

motivated growing interest in computational systems capable of supporting or partially automating 

the reporting process [1–3]. 

Deep learning (DL) has become the predominant paradigm in automatic radiology report 

generation (ARRG) [1], commonly implemented through encoder–decoder architectures in which 

convolutional neural networks (CNNs) extract visual representations and text-based decoders 
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generate the final report [3]. Early works predominantly relied on recurrent neural networks (RNNs), 

including long short-term memory (LSTM) models [1], whereas recent advances have introduced 

attention-based mechanisms such as Transformers [4] and multimodal contrastive frameworks such 

as contrastive language-image pretraining (CLIP) [5]. Further developments include domain 

knowledge-guided strategies [1,6], attention-based architectures [7], reinforcement learning [2], large 

language models (LLMs) [8,9], and hybrid approaches that integrate multiple mechanisms to 

improve clinical accuracy [1]. 

However, despite these methodological advances, the current body of evidence remains 

fragmented, with substantial gaps in clinically aligned validation, semantic faithfulness, and the 

integration of structured medical knowledge into report generation pipelines [1,2,5]. In this context, 

most published ARRG models demonstrate promising linguistic performance but remain in a stage 

of limited clinical readiness, showing insufficient validation for deployment in routine radiological 

workflows. 

The advancement of ARRG relies on specialized datasets comprising medical images paired 

with textual reports [1,5], with public benchmarks such as MIMIC-CXR and IU-Xray frequently 

supporting this line of research [1,7]. Yet, evaluating model performance remains challenging due to 

the heterogeneity of metrics: some focus on textual similarity (e.g., BLEU, ROUGE, BERTScore), while 

others estimate the correctness of clinical findings (e.g., AUC, F1 score), often lacking standardized 

clinical validation [1,5–7]. Although prior reviews have addressed selected aspects of ARRG or 

specific architectures such as Transformers and multimodal methods [3–5,11], the rapid proliferation 

of DL-based systems has produced a fragmented landscape that complicates the global 

understanding of methodological progress and its alignment with clinical readiness. 

Accordingly, the main objective of this systematic review is to explore the current research 

landscape on ARRG using DL, describing their key characteristics, methodological approaches, data 

sources, evaluation strategies, and principal findings, while also examining their alignment with the 

criteria required for future real-world adoption. 

2. Materials and Methods 

A comprehensive PRISMA-compliant search was conducted in the following electronic 

databases: IEEE Xplore, ACM Digital Library, PubMed/MEDLINE, Scopus, and Web of Science 

(WoS) Core Collection. This review included original English-language research articles from peer-

reviewed journals published between 2015 and April 2025. Eligible studies were required to address 

the automatic generation of radiology reports using deep learning (DL) architectures, including but 

not limited to CNNs, RNNs, Transformers, graph neural networks (GNNs), or hybrid models. 

Studies additionally had to employ multimodal input data, typically pairing imaging data with a 

text-generation component, with or without additional structured information, as a core element of 

the report generation pipeline. Exclusion criteria comprised studies outside the radiology domain, 

non-original publications (such as reviews or editorials), and works lacking sufficient methodological 

or outcome detail for full assessment. Grey literature was not considered in this review. 

The detailed search strategies applied to each database are presented in Table 1. After removing 

duplicates, titles and abstracts were independently screened by the first author (MP) and the second 

author (JJ) according to the predefined eligibility criteria. Full-text versions of potentially relevant 

publications were retrieved and independently evaluated by MP and JJ for final inclusion. Any 

disagreements arising at either screening stage were resolved by the third reviewer (VM). 

Data extraction focused on key study characteristics, including study objectives, radiological 

domain, datasets used, input modalities, DL architectures and methodological details, report 

generation pipeline characteristics, and evaluation metrics. Bibliometric information (authors, 

publication year, country, and publication source), reported limitations, and suggested future 

research directions were also recorded. The extraction form was jointly developed by MP and JJ, who 

independently completed and iteratively refined the dataset until consensus was reached. Studies 
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were subsequently grouped according to the DL methodology employed, and their main 

characteristics and findings were synthesized narratively. 

Table 1. Search strategies adapted by database. 

Database Field Search Expression Results 

PubMed [tiab] 

(“Convolutional Neural Network*” OR CNN OR “Recurrent Neural 

Network*” OR RNN OR LSTM OR GRU OR Transformer OR Transformers 

OR “Attention Mechanism” OR “Encoder Decoder” OR “Sequence to 

Sequence” OR “Graph Neural Network*” OR GNN OR GCN OR GAT OR 

“Deep Learning” OR “Neural Network” OR “Neural Networks”) AND 

(Radiology OR Radiolog* OR “Medical Imag*” OR “Diagnostic Imag*” OR 

X-ray OR CT OR MRI OR PET) AND (“Report Generation” OR “Text 

Generation” OR “Narrative Generation” OR “Automatic Report*” OR 

“Clinical Report*” OR “Medical Report*”) 

158 

Scopus - Same expression as PubMed, without specific field restriction 259 

Web of Science TS= Same Boolean expression adapted to the TS= field for topic-based search 217 

IEEE Xplore - 
Same Boolean expression adjusted to the syntax requirements of the 

respective database 
79 

ACM DL - 
Same Boolean expression adjusted to the syntax requirements of the 

respective database 
301 

In PubMed, the [tiab] field was used to restrict the search to title and abstract. In WoS, the TS= field was used for 

topic-based search. Search expressions were syntactically adapted to each database. 

Risk of bias arising from missing results was addressed qualitatively. Selective outcome 

reporting was assessed during the extraction process, and completeness of reporting was evaluated 

using the TRIPOD-LLM guideline [12]. Due to the exploratory nature of this review, no formal 

quantitative assessment of publication bias was conducted; however, potential reporting-related 

sources of bias were considered in the synthesis. The review protocol was registered in PROSPERO 

under the registration number CRD420251044453. 

3. Results 

A PRISMA flow chart of the screening and selection process is presented in Figure 1, and Table 

1 summarizes the number of articles retrieved from each database. A total of 89 studies met the 

inclusion criteria. Research activity in this field has intensified markedly in recent years: one eligible 

study was published in 2020, followed by five in 2021, nineteen in 2022, fourteen in 2023 and twenty-

nine in 2024, with a slight decline to twenty-one in the partial 2025 dataset (Figure 2). Assessment 

using the TRIPOD-LLM checklist showed that while most studies reported performance metrics in 

detail, essential elements such as participant description, sample size justification, and external 

validation were frequently absent, and none of the reviewed articles achieved full compliance. 
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Figure 1. PRISMA diagram [13] for the systematic review demonstrating the search results, included and 

excluded studies. 

 

Figure 2. Number of publications by field of clinical focus and year. 

Regarding 78. out of 89 studies (87.6%) using chest X-ray (CXR) datasets, primarily from publicly 

available repositories. Other anatomical regions such as brain CT/MRI, abdominal CT, spinal 

imaging, and oral/maxillofacial radiology were represented only sporadically, with four or fewer 

publications each (Figure 2). This distribution highlights that although ARRG has advanced rapidly, 

its development remains largely restricted to thoracic imaging. 
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Geographic distribution further reveals that ARRG research is concentrated almost exclusively 

in a small number of countries. As shown in Figure 3, China accounts for the majority of publications 

(n=56), followed at a distance by India (n=9), Pakistan (n=4), and Brazil (n=3), while all remaining 

contributing nations report no more than two studies each. This pattern reflects structural disparities 

in AI research capacity and emphasizes that most methodological innovation in ARRG is being 

driven by institutions with access to large-scale datasets and high computational resources, 

predominantly located in high-resource settings. 

 

Figure 3. Geographic distribution of the included studies by country of origin. China contributes the largest 

share of publications (n=56), followed by India (n=9), Pakistan (n=4), and Brazil (n=3). 

From a methodological perspective, hybrid DL architectures were the most frequently 

represented approach. Studies most commonly combined convolutional encoders with Transformer-

based language modeling, followed by pure Transformer-based strategies, more complex multi-

hybrid approaches, and finally CNN–RNN pipelines, which continue to appear but at a reduced rate. 

Together, these trends indicate a clear shift toward architectures that integrate localized feature 

extraction with broader contextual reasoning. This architectural distribution reflects not only 

technical preferences but also the gradual movement toward models designed to encode both 

localized saliency and global diagnostic context. To contextualize how frequently each family of 

models appears in the literature, Figure 4 summarizes the relative prevalence of the main deep 

learning approaches represented in the included studies. 

 

Figure 4. Number of publications by deep learning method. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202511.0010.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.0010.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 24 

 

To facilitate comparison across methodological strategies, the studies were categorized into four 

architectural groups according to their prevalence in the included literature: (i) CNN–Transformer 

hybrid architectures, (ii) purely Transformer-based methods, (iii) multi-hybrid combinations 

integrating multiple DL paradigms, and (iv) traditional CNN–RNN encoder–decoder pipelines. In 

addition to architectural prevalence, performance across the included studies was assessed using 

BLEU-1 as the most frequently reported textual similarity metric. As illustrated in Figure 5, BLEU-1 

values show substantial variability across models. These categories structure the subsequent analysis 

of performance characteristics and evaluation approaches (Figures 4 and 5). 

 

Figure 5. Distribution of BLEU-1 scores from the included studies. Each point on the vertical axis represents the 

BLEU-1 value obtained by a study; studies that did not report this metric are omitted. Notably, the highest scores 

were achieved on datasets other than the common IU-Xray and MIMIC-CXR benchmarks. 

3.1. CNN + Transformers 

ARRG methods have increasingly adopted encoder-decoder architectures, leveraging CNNs for 

visual encoding and Transformers networks for language decoding [14–16]. This represents a shift 

from earlier approaches utilizing RNNs like LSTMs [14,16,17], with Transformers offering superior 

capacity to model long-range dependencies and process information in parallel, resulting in richer 

contextual representations [15,18]. Widely cited examples of this framework include the Memory-

driven Transformer (R2Gen) [14,18–26] and its variant, the Cross-modal memory network 

(R2GenCMN) [16,18,19,24–28], which enhance information flow and cross-modal alignment. Other 

approaches such as RATCHET ncorporate a standard Transformer decoder guided by CNN-derived 

features [14,29], while additional enhancements include relation memory units and cross-modal 

memory matrices [30]. 

A persistent challenge for these models is the inherent data imbalance in medical datasets, where 

normal findings vastly outnumber abnormal ones [14,20–22,30]. To mitigate this, contrastive learning 

strategies have been introduced, as in the Contrastive Triplet Network (CTN), which improves the 

representation of rare abnormalities by contrasting visual and semantic embeddings [14]. Integration 

of medical prior knowledge is another common enhancement, through knowledge graphs [14,19,21], 

disease tags [19,23,31], or anatomical priors [23], helping to guide generation toward clinically 

meaningful structures [32]. Additional refinements include organ-aware decoders [31], multi-scale 

feature fusion [17,33], and adaptive mechanisms that dynamically modulate the contribution of 

visual and semantic inputs [22]. Ablation studies consistently confirm the value of these specialized 

components in improving performance [16,33–35]. 

Evaluations on public datasets, notably IU X-ray [14,15,23,25,28,33,36] and MIMIC-CXR 

[14,15,23,25,28,33,36], demonstrate that CNN-Transformer based methods achieve state-of-the-art 

(SOTA) results across conventional natural language generation metrics including BLEU, METEOR, 

ROUGE-L, and CIDEr [14,16,21,28,30,31,33,36]. Reported improvements include better abnormality 

description, higher sentence coherence, and enhanced medical correctness [14,15,23,24,34,37], with 

successful applications extending to cranial trauma and polydactyly reporting [18,26]. Nevertheless, 
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these models still encounter difficulty in representing uncertainty, severity, and extremely rare 

pathologies [34], indicating that although their textual fidelity has advanced considerably, their 

clinical interpretability and readiness for deployment remain limited. 

3.2. Transformers 

Transformer-based architectures have become a potent solution for ARRG, offering significant 

advancements over traditional CNN–RNN and LSTM approaches [38–43]. Their primary advantage 

lies in the ability to model long-range dependencies, which is critical for radiological reporting, where 

multiple anatomical and pathological findings must be described coherently within a single narrative 

[38,40,43,44]. These systems are typically structured as encoder–decoder framework [38–40,45–47] or 

as pure Transformer-based designs [44]. Many implementations leverage pretrained models such as 

Vision Transformers (ViT) or Swin Transformer for image encoding, paired with language models 

like GPT-2 or BERT for generation, improving performance in scenarios constrained by limited 

medical data [38,42,43,45,46,48–52]. 

Attention mechanisms play a central role in integrating multimodal features [39,40,42,43,53,54]. 

Cross-attention modules allow fine-grained alignment between visual and textual embeddings, 

improving structural coherence and semantic grounding [38,39,45,46,51]. Additional optimization 

strategies include graph-based fusion [38] multi-feature enhancement modules [54], and specialized 

mechanisms to prioritize rare or diagnostically relevant content [48]. Memory augmentation [38–

40,42,51,55,56], knowledge integration through factual priors or graphs [39,51,54–57] and object-level 

feature extraction [58] further enhance semantic accuracy. Term-weighting and vocabulary-masking 

strategies reduce overreliance on frequent normal descriptors, improving recall of abnormal findings 

[44]. 

Transformers are typically evaluated using standard natural language generation metrics such 

as BLEU, ROUGE, and METEOR [38,42,44–46,51,52,54,56,59,60], as well as semantic similarity 

measures including BERTScore and CheXbert [46,49,51,58,60]. Some studies incorporate clinical 

validation via tools such as RadGraph or expert assessment [41,46,47,60], reflecting a growing 

emphasis on clinically meaningful correctness. However, despite these advances, most models still 

rely on surrogate textual similarity metrics and have not yet demonstrated consistent alignment with 

radiological reasoning in real-world settings, indicating that their clinical maturity remains 

preliminary. 

3.3. Multihybrid 

There is a clear trend toward multi-hybrid architectures that combine different DL paradigms 

and integrate external medical knowledge to enhance semantic alignment and clinical relevance 

[61,62]. Most approaches continue to employ an encoder–decoder structure in which CNNs such as 

ResNet [61–66] or VGG19 [61,67,68]) function as visual encoders, while LSTM-based [61–63,65,66,69] 

or hierarchical RNN decoders [68,70] generate the textual output, with Transformers increasingly 

incorporated to improve long-term dependency modeling [61,62,64–73]. 

A central design objective of these hybrid configurations is to improve cross-modal alignment 

between image regions and textual concepts. To this end, memory networks are widely used to store 

or retrieve image–text correspondences [61,62,64,66,69,74,75], align medical terminology with 

localized visual features [64,72,75], or stabilize representations during generation 

[61,62,64,66,67,72,73,75,76]. Contrastive learning is also frequently adopted to reinforce semantic 

distinction between positive and negative image–text pairs, improving the detection of clinically 

relevant abnormalities [63,66,67,75]. External knowledge sources, including knowledge graphs 

[66,67,74,75], curated medical vocabularies [72,75], and retrieval-augmented mechanisms drawing 

from similar past reports [62,64,72,73,75], are increasingly used to embed domain expertise into the 

generation process. 

Some models also emulate elements of radiological reasoning by incorporating multi-expert or 

multi-stage workflows [65] or by implementing strategies that first localize salient regions and then 
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generate narratively coherent text [72]. Others address data imbalance and background noise by 

refining lesion-level representations through denoising or saliency-aware mechanisms [67,72,77], or 

by prioritizing diagnostically abnormal content through report-level reordering [70]. The 

introduction of contextual embeddings derived from large language models such as BERT further 

improves lexical richness and contextual fidelity [68,70,73]. 

Performance across this category is typically benchmarked using IU-Xray [61–64,66–76] and 

MIMIC-CXR datasets [61–67,69–76]. Reported gains are consistent across BLEU [61–72,74–77], 

METEOR [61–67,69,71,72,74,75,77,78], ROUGE-L [61–72,74–77], and CIDEr [64,68,70–72,74–77], with 

qualitative analyses [69,70,73] and ablation studies [66,71,73] confirming the contribution of hybrid 

components to improved fluency, abnormality description, and semantic correctness [65,69,71]. 

However, despite these gains, clinical deployment remains limited, as most evaluation frameworks 

still prioritize textual similarity rather than diagnostic alignment or interpretive reasoning. 

3.4. CNN + RNN Architectures 

ARRG frequently employs encoder-decoder architectures [78–84], commonly consisting of a 

CNN encoder to extract visual features from medical images [74,79–85], and a RNN decoder, often a 

LSTM or Gated Recurrent Unit (GRU), to generate the report text sequentially [74,78,79,81–84,86–88]. 

This framework seeks to translate visual representations into descriptive narratives [78,79,84,87]. 

Performance is commonly evaluated using standard NLG metrics such as BLEU [74,78,80,82–85,88–

91], ROUGE (especially ROUGE-L) [78,80,82–85,88,90,91], CIDEr [80,83,85,88–90], and METEOR 

[80,82,84,88,90] with some studies supplementing text-based evaluation with diagnostic accuracy 

pipelines or automated clinical assessment tools such as CheXpert [80,82,91]. 

Several CNN+RNN-based methods have reported competitive or even superior performance 

across multiple benchmarks [79,81,82,88,89,91]. For instance, a CNN-LSTM model incorporating 

attention achieved a BLEU-4 of 0.155 on MIMIC-CXR [79], while the G-CNX network, combining 

ConvNeXtBase with a GRU decoder, obtained BLEU-1 scores of 0.6544 on IU-Xray and 0.5593 on 

ROCOv2 [82]. Similarly, the HReMRG-MR method, based on LSTMs with reinforcement learning, 

demonstrated improvements over several baselines on both IU-Xray and MIMIC-CXR [88]. 

Additional architectures targeting specialized reporting tasks, such as proximal femur fracture 

assessment in Dutch, have also reported strong performance [89]. 

However, despite these promising results, CNN+RNN models are limited by their sequential 

decoding nature, which restricts long-range contextual reasoning and reduces their ability to handle 

complex radiological narratives. As a result, while these architectures remain relevant in 

benchmarking and resource-constrained settings, their suitability for clinically aligned reporting is 

inherently limited relative to Transformer-based or hybrid approaches. 

3.5. Others 

Three studies employed architectures that did not fit into the previously defined categories due 

to distinctive design choices targeting specialized aspects of ARRG. The first approach replaces free-

text generation with structured output by learning question-specific representations using tailored 

CNNs and MobileNets, which are subsequently classified with SVMs rather than decoded through a 

sequence generator [92]. This method demonstrated superior performance on the ImageCLEF2015 

Liver CT annotation task, suggesting that task-adapted feature extraction can outperform shared 

representations in structured reporting problems. A second framework integrates a ViT encoder with 

a hierarchical LSTM decoder, augmented by a MIX-MLP module for multi-label classification and a 

POS-SCAN co-attention mechanism to fuse semantic and visual priors [93]. This hybrid configuration 

leverages label-aware alignment to improve anomaly identification and text coherence, with ablation 

studies confirming the contribution of its integrated components. The third approach incorporates a 

knowledge graph derived from disease label co-occurrence statistics, combining DenseNet-based 

visual features with a Transformer text encoder and a GNN reasoning layer before final report 

generation [94], thereby enabling structured medical knowledge to inform the decoding process.
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Table 2. Summary of key characteristics, methodologies, and reported metrics for the included studies. 

Year Ref. Radiological Domain Datasets (DS) Used  Deep Learning Method Architecture Best BLEU-1 Best Outcome DS 

2020 [87] 

Ultrasound (US) 

(gallbladder, kidney, 

liver), Chest X-ray  

US image dataset (6,563 images). IU-Xray (7,470 

images, 3,955 reports) 
CNN, RNN 

SFNet (Semantic fusion network). ResNet-50. Faster RCNN. 

Diagnostic report generation module using LSTM 
0.65 US DATASET 

2021 [112] Chest CT 

COVID-19 CT dataset (368 reports, 1,104 CT 

images). CX-CHR dataset (45,598 images, 28,299 

reports), 12 million external medical textbooks 

Transformer, CNN Medical-VLBERT (with DenseNet-121 as backbone) 0.70 CX  CHR CT 

2021 [49] Chest X-ray IU-Xray  Transformer 
2 CDGPT2 (Conditioned Distil Generative Pre-trained 

Transformer) 
0.387 IU-Xray  

2021 [113] Chest X-ray 
MIMIC-CXR (377,110 images, 227,835 reports). 

IU-Xray   
CNN, Transformer BERT-base 

*0.126 

(BLEU-4) 
MIMIC-CXR 

2021 [92] Liver CT 
Liver CT annotation dataset from ImageCLEF 

2015 (50 patients) 
CNN MobileNet-V2 0.65 ZGT HOSPITAL RX 

2021 [80] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, GAN 

Encoder with two branches (CNN based on ResNet-152 and MLC). 

Hierarchical LSTM decoder with multi-level attention and a 

reward module with two discriminators. 

*0.148 

(BLEU-4) 
MIMIC-CXR 

2022 [91] 
Proximal Femur Fractures 

(X-ray) 

Main dataset: 4,915 cases with 11,606 images and 

reports. Language model dataset: 28,329 

radiological reports 

CNN, RNN 
DenseNet-169 for classification. Encoder-Decoder for report 

generation. GloVe for language modeling 
0.65 MAIN DATASET 

2022 [94] Chest X-ray MIMIC-CXR. IU-Xray GNN, Transformer Custom framework using Transformer for generation module 0.505 IU-Xray  

2022 [70] Chest X-ray IU-Xray  CNN, RNN, Transformer 
CNN VGG19 network (feature extraction). BERT (language 

generation). DistilBERT (perform sentiment) 
0.772 IU-Xray  

2022 [114] 

Liver CT and kidney, DBT 

(Digital Breast 

Tomosynthesis) 

ImageNet (25,000 images). CT abdomen and 

mammography images (750 images). CT and 

DBT medical images (150 images) 

RNN, CNN 
MLTL-LSTM model (Multi level transfer learning framework with 

a long short-term-memory model) 
0.769 CT-DBT 

2022 [88] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN 
HReMRG-MR (Hybrid reinforced report generation method with 

m-linear attention and repetition penalty mechanism) 
0.4806 MIMIC-CXR 

2022 [15] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer  CvT2DistilGPT2 0.4732 IU-Xray  

2022 [64] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 

DenseNet (encoder). LSTM or Transformer (decoder). ATAG 

(Attributed abnormality graph) embeddings. GATE (gating 

mechanism) 

**0.323 

(BLEU 

AVG) 

IU-Xray  

2022 [84] Chest X-ray IU-Xray  CNN, RNN AMLMA (Adaptive multilevel multi-attention) 0.471 IU-Xray  

2022 [22] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer MATNet (Multimodal adaptive transformer) 0.518 IU-Xray  
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2022 [78] Chest X-ray IU-Xray  
CNN, RNN, Attention 

Mechanism 

RCLN model (combining CNN, LSTM, and multihead attention 

mechanism). Pre-trained ResNet-152 (image encoder) 
0.4341 IU-Xray  

2022 [73] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
VTI (Variational topic inference) with LSTM-based and 

Transformer-based decoders 
0.503 IU-Xray  

2022 [14] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CTN built on Transformer architecture 0.491 IU-Xray  

2022 [81] Chest X-ray IU-Xray  
CNN, RNN, 

Reinforcement Learning 

CADxReport (VGG19, HLSTM with co-attention mechanism and 

reinforcement learning) 
0.577 IU-Xray  

2022 [27] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CAMANet (Class activation map guided attention network) 0.504 IU-Xray  

2022 [85] Chest X-ray IU-Xray  
CNN, RNN, Attention 

Mechanism 

CheXPrune (encoder-decoder architecture with VGG19 and 

hierarchical LSTM) 
0.5428 IU-Xray  

2022 [23] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer, VAE 
Prior Guided Transformer. ResNet101 (visual feature extractor). 

Vanilla Transformer (baseline) 
0.482 IU-Xray  

2022 [44] Chest X-ray MIMIC-CXR. IU-Xray Transformer Pure Transformer-based Framework (custom architecture) 0.496 IU-Xray  

2022 [79] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN 
VGG16 (visual geometry group CNN network). LSTM with 

attention 
0.580 IU-Xray  

2022 [41] Chest X-ray MIMIC-CXR. CheXpert Transformer 
Meshed-memory augmented transformer architecture with visual 

extractor using ImageNet and CheXpert pre-trained weights 
0.348 MIMIC-CXR 

2023 [54] Chest X-ray MIMIC-CXR. IU-Xray Transformer MFOT (Multi-feature optimization transformer) 0.517 IU-Xray  

2023 [42] Chest X-ray IU-Xray  Transformer 
TrMRG (Transformer Medical Report Generator) using ViT as 

encoder, MiniLM as decoder 
0.5551 IU-Xray  

2023 [116] Chest X-ray MIMIC-CXR. IU-Xray Transformer, CNN, RNN 
ASGMD (Auxiliary signal guidance and memory-driven) network. 

ResNet-101 and ResNet-152 as visual feature extractors 
0.489 IU-Xray  

2023 [36] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer Visual Prior-based Cross-modal Alignment Network 0.489 IU-Xray  

2023 [55] Chest X-ray, CT COVID-19 MIMIC-CXR. IU-Xray. COV-CTR (728 images) Transformer ICT (Information calibrated transformer) 0.768 COV-CTR 

2023 [16] Chest X-ray MIMIC-CXR. IU-Xray 
CNN, Transformer, Self-

Supervised Learning 
S3-Net (Self-supervised dual-stream network) 0.499 IU-Xray  

2023 [83] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN TriNet (custom architecture) 0.478 IU-Xray  

2023 [89] Chest X-ray IU-Xray. Chexpert (224,316 images) CNN, RNN 
ResNet50. CVAM+MVSL (Cross-view attention module and 

Medical visual-semantic LSTMs) 
0.460 IU-Xray  

2023 [86] Chest X-ray IU-Xray  CNN, RNN 
Encoder-Decoder framework with UM-VES and UM-TES 

subnetworks and LSTM decoder 
0.5881 IU-Xray  

2023 [57] Chest X-ray MIMIC-CXR. IU-Xray Transformer 
ResNet101 (visual extractor). 3-layer Transformer structure 

(encoder-decoder framefork). BLIP architecture 
0.513 IU-Xray  

2023 [56] Chest X-ray IU-Xray  
Transformer, Contrastive 

Learning 

MKCL (Medical knowledge with contrastive learning). ResNet-

101. Transformer 
0.490 IU-Xray  

2023 [62] Chest X-ray, Dermoscopy IU-Xray, NCRC-DS (81 entities, 536 triples) CNN, RNN, Transformer DenseNet-121. ResNet-101. Memory-driven Transformer 0.494 IU-Xray  
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2023 [115] 
US (gallbladder, fetal 

hearth), Chest X-ray 

US dataset (6,563 images and reports). Fetal 

Heart (FH) dataset (3,300 images and reports). 

MIMIC-CXR. IU-Xray 

CNN, RNN AERMNet (Attention-Enhanced Relational Memory Network) 0.890 US DATASET 

2023 [59] Chest X-ray 
NIH Chest X-ray (112,120 images). MIMIC-CXR. 

IU-Xray 
Transformer 

ViT. GNN. Vector Retrieval Library. Multi-label contrastive 

learning. Multi-task learning 
0.478 IU-Xray  

2024 [17] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer Swin-Transformer 0.499 IU-Xray  

2024 [51] Chest X-ray IU-Xray  Transformer ViGPT2 model 0.571 IU-Xray  

2024 [28] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer FMVP (Flexible multi-view paradigm) 0.499 IU-Xray  

2024 [43] Chest X-ray 
Proposed Dataset (21,970 images). IU-Xray. NIH 

Chest X-ray  
Transformer 

XRaySwinGen (Swin Transformer as image encoder, GPT-2 as 

textual decoder) 
0.731 PT BR 

2024 [33] Chest X-ray IU-Xray  CNN, Transformer FDT-Dr 2 T (custom famework) 0.531 IU-Xray  

2024 [118] Chest X-ray 
IU-Xray. XRG-COVID-19 (8676 scans, 8676 

reports) 
CNN, Transformer DSA-Transformer with ResNet-101 as the backbone 0.552 XRG-COVID-19 

2024 [32] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer DenseNet-121. Transformer encoder. GPT-4 0.491 IU-Xray  

2024 [58] Oral Panoramic X-ray 
Oral panoramic X-ray image-report dataset (562 

sets of images and reports). MIMIC-CXR 
Transformer MLAT (Multi-Level objective Alignment Transformer) 0.5011 PAN XRAY 

2024 [66] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
MRARGN (Multifocal Region-Assisted Report Generation 

Network) 
0.502 IU-Xray  

2024 [21] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer 
Memory-driven Transformer (based on standard Transformer 

architecture with relational memory added to the decoder) 
0.508 IU-Xray  

2024 [68] Chest X-ray IU-Xray  CNN, RNN, Transformer 

VGG19 (CNN) pre-trained over ImageNet dataset. GloVe, fastText, 

ElMo, and BERT (extract textual features from the ground truth 

reports). Hierarchical LSTM (generate reports) 

0.612 IU-Xray  

2024 [93] Chest X-ray MIMIC-CXR. IU-Xray RNN, Transformer, MLP 

Transformer (encoder). MIX-MLP multi-label classification 

network. CAM (Co-attention mechanism) based on POS-SCAN. 

Hierarchical LSTM (decoder) 

0.521 IU-Xray  

2024 [45] Chest X-ray MIMIC-CXR  Transformer CheXReport (Swin-B fully transformer) 0.354 MIMIC-CXR 

2024 [25] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer 

RAMT (Relation-Aware Mean Teacher). GHFE (Graph-guided 

hybrid feature encoding) module. DenseNet121 (visual feature 

extractor). Standard Transformer (decoder) 

0.482 IU-Xray  

2024 [31] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer ResNet-101. Transformer (multilayer encoder and decoder) 0.514 IU-Xray  

2024 [40] Chest X-ray MIMIC-CXR. IU-Xray Transformer Team Role Interaction Network (TRINet) 0.445 MIMIC-CXR 

2024 [26] Polydactyly X-ray Custom dataset (16,710 images and reports) CNN, Transformer Inception-V3 CNN. Transformer Architecture 0.516 PD XRAY BR   

2024 [46] Chest X-ray MIMIC-CXR  Transformer ViT. GPT-2 (with custom positional encoding and beam search) 
*0.095 

(BLEU-4) 
MIMIC-CXR 
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2024 [90] 
Chest X-ray, Chest CT 

(COVID-19) 
MIMIC-CXR. IU-Xray. COV-CTR CNN, RNN HDGAN (Hybrid Discriminator Generative Adversarial Network) 0.765 COV-CTR 

2024 [117] Chest X-ray 
IU-Xray. Custom dataset (1,250 image and 

reports) 
CNN-Transformer CNX-B2 (CNN encoder, BioBERT transformer) 0.479 IU-Xray  

2024 [37] Chest X-ray NIH ChestX-ray. IU-Xray  CNN, Transformer CSAMDT (Conditional self attention memory-driven ransformer) 0.504 IU-Xray  

2024 [53] 
Ultrasound (gallbladder, 

kidney, liver), Chest X-ray  

MIMIC-CXR. IU-Xray. LGK US (6,563 images 

and reports).  
Transformer CGFTrans (Cross-modal global feature fusion transformer) 0.684 US DATASET 

2024 [52] Chest X-ray MIMIC-CXR. IU-Xray Transformer TSGET (Two-stage global enhanced transformer) 0.500 IU-Xray  

2024 [35] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer 

VCIN (Visual-textual cross-modal interaction network). ACIE 

(Abundant clinical information embedding). Bert-based Decoder-

only Generator 

0.508 IU-Xray  

2024 [76] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer Memory-driven Transformer 0.539 IU-Xray  

2024 [30] Chest X-ray 

MIMIC-CXR. Chest ImaGenome (237,853 

images). Brown-COVID (1021 images). Penn-

COVID (2879 images) 

CNN, Transformer MRANet (Multi-modality regional alignment network) 0.504 BROWN-COVID 

2024 [34] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer ResNet-101. Multilayer Transformer (encoder and decoder) 0.472 IU-Xray  

2024 [65] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
MeFD-Net (proposed multi expert diagnostic module). ResNet101 

(visual encoder). Transformer (text generation module) 
0.505 IU-Xray  

2024 [19] Chest X-ray 
MIMIC-CXR. Chest ImaGenome (242,072 scene 

graphs) 
CNN, Transformer 

Faster R-CNN (object detection). GPT-2 Medium (report 

generation) 
0.391 MIMIC-CXR 

2025 [77] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
Denoising multi-level cross-attention. Contrastive learning model 

(with ViTs-B/16 as visual extractor, BERT as text encoder) 
0.507 IU-Xray  

2025 [75] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
KCAP (Knowledge-guided cross-modal alignment and 

progressive fusion) 
0.517 IU-Xray  

2025 [71] Chest X-ray MIMIC-CXR. IU-Xray 
CNN, RNN, Transformer, 

ViT 

ATL-CA (Adaptive topic learning and fine-grained crossmodal 

alignment) 
0.487 IU-Xray  

2025 [63] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 
ADCNet (Anomaly-driven cross-modal contrastive network). 

ResNet-101 and Transformer encoder-decoder architecture 
0.493 IU-Xray  

2025 [50] Chest X-ray IU-Xray  Transformer ChestX-Transcribe (combines Swin Transformer and DistilGPT) 0.675 IU-Xray  

2025 [18] Brain CT and MRI scans 
RSNA-IHDC dataset (674,258 brain CT images, 

19,530 patients) 
CNN, Transformer 

AC-BiFPN (Augmented convolutional bi-directional feature 

pyramid network). Transformer model 
0.382 RSNA IHDC CT 

2025 [61] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer DCTMN (Dual-channel transmodal memory network) 0.506 IU-Xray  

2025 [74] Chest X-ray MIMIC-CXR. IU-Xray 

CNN, Transformer, Graph 

reasoning network (GRN), 

Cross-modal Gated 

Fusion Network (CGFN) 

ResNet101 (visual feature extraction). GRN. CGFN (Cross-modal 

gated fusion network). Transformer (decoder) 
0.514 IU-Xray  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202511.0010.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.0010.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 24 

 

2025 [47] Spine CT VerSe20 (300 MDCT spine images) Transformer ViT-Base. BioBERT BASE. MiniLM 0.7291 IU-Xray  

2025 [48] Chest X-ray IU-Xray  Transformer 
ResNet-101 with CBAM (convolutional block attention module). 

Cross-attention mechanism 
0.456 IU-Xray  

2025 [39] Chest X-ray MIMIC-CXR. IU-Xray Transformer MMG (Multi-modal granularity feature fusion) 0.497 IU-Xray  

2025 [24] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer RCAN (Recalibrated cross-modal alignment network) 0.521 IU-Xray  

2025 [82] Chest X-ray IU-Xray  CNN, RNN 
G-CNX (hybrid encoder–decoder architecture). ConvNeXtBase 

(encoder side). GRU-based RNN (decoder side) 
0.6544 IU-Xray  

2025 [67] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 

DPN (Dynamics priori networks) with components including DGN 

(Dynamic graph networks), Contrastive learning, PrKN (Prior 

knowledge networks). ResNet-152 (image feature extraction). 

SciBert (report embedding) 

0.409 IU-Xray  

2025 [29] 
Chest X-ray, Bladder 

Pathology 

MIMIC-CXR. IU-Xray.  4,253 bladder 

Pathology images.  
Transformer, CNN AHP (Adapter-enhanced hierarchical cross-modal pre-training) 0.502 IU-Xray  

2025 [119] Chest X-ray 

COVIDx-CXR-2 (29,986 images). COVID-CXR 

(more than 900 images). BIMCV-COVID-19 

(more than 10,000 images). COV-CTR. MIMIC-

CXR. NIH ChestX-ray 

CNN, Transformer 

ResNet-50 (image encoder). BERT (text encoder). Transformer-

based model (with variants using LLAMA-2-7B and Transformer-

BASE, decoder) 

*0.63 (BLEU-

4) 

COVID-19 

DATASETS 

2025 [20] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CECL (Clustering enhanced contrastive learning) 0.485 IU-Xray  

2025 [69] Chest X-ray MIMIC-CXR. IU-Xray 
Diffusion Models, RNN, 

CNN, Transformer 

Diffusion Model-based architecture. ResNet34. Transformer 

structure using cross-attention 
0.422 IU-Xray  

2025 [60] Chest X-ray MIMIC-CXR. IU-Xray Transformer 

STREAM (Spatio-temporal and retrieval-augmented modelling). 

SwinTransformer (Swin-Base) (encoder). TinyLlama-1.1B 

(decoder).  

0.506 IU-Xray  

2025 [72] Chest X-ray MIMIC-CXR. ROCO (over 81,000 images) CNN, RNN, Transformer CAT (Cross-modal augmented transformer) 0.491 IU-Xray  

2025 [38] Chest X-ray IU-Xray . COV-CTR Transformer MedVAG (Medical vision attention generation) 0.808 COV-CTR 

* Indicates the BLEU-4 value, as the study did not report the BLEU-1 metric. ** Indicates an average of the BLEU metrics, as the study did not report the BLEU-1 metric. 
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Although these methods differ from CNN–Transformer or hybrid pipelines, they collectively 

illustrate a movement toward architectures that incorporate structured reasoning or external 

supervision to compensate for dataset and interpretability limitations. However, because their 

adoption remains technically experimental and narrowly scoped, their translational maturity is still 

preliminary relative to the more broadly validated families of models. 

4. Discussion 

The evolution of ARRG architectures reflects a progressive shift from sequential language 

models toward more expressive, attention-based frameworks capable of capturing long-range 

semantic dependencies. Early CNN–RNN pipelines demonstrated the feasibility of translating 

image-derived representations into coherent textual descriptions, but their reliance on stepwise 

decoding limited their ability to capture global contextual dependencies within radiological 

narratives [95,96]. Subsequent extensions attempted to mitigate these constraints through multi-task 

learning and co-attention mechanisms, which improved alignment between visual features and 

semantic structure but remained fundamentally restricted by the sequential nature of RNN-based 

decoding [97]. The introduction of Transformer-based models marked a methodological inflection 

point by enabling parallelized processing, improved feature integration, and richer contextual 

reasoning [95]. Hybrid architectures further enhanced performance by combining CNNs for localized 

feature extraction with Transformers for global semantic modeling, while more recent developments 

incorporate memory augmentation, medical priors, or retrieval-based alignment mechanisms to 

compensate for limited contextual cues in public datasets. 

More recent research has explored advanced strategies to further improve report quality and 

strengthen alignment with radiological reasoning. Memory-augmented architectures and models 

that incorporate structured medical knowledge have shown promising performance, particularly on 

large public benchmarks such as MIMIC-CXR [96]. These systems typically enrich representation 

space through the integration of pre-built knowledge graphs or retrieval-based mechanisms that 

draw from similar reports or pathology patterns [49,98,99], moving closer to the way radiologists 

ground their interpretation in prior clinical context. However, although these mechanisms improve 

semantic alignment, they do not yet guarantee diagnostic accountability or case-level reasoning, 

limiting their contribution to true clinical readiness. 

Other innovations include Region-guided Report Generation (RGRG), which enhances 

explainability by anchoring narrative content to localized anatomical regions [100]; RECAP, which 

introduces temporal reasoning to capture disease progression and longitudinal consistency [101]; and 

UAR (“unify, align, and refine”), a framework designed to align visual and textual features across 

multiple semantic levels [102]. Progressive-generation strategies have also been proposed to 

iteratively refine report outputs, leading to more stable, coherent, and clinically focused narratives 

[103]. These advances indicate that recent improvements in ARRG extend beyond raw language-

modeling capacity to increasingly incorporate mechanisms that emulate elements of human 

diagnostic reasoning. 

Collectively, this architectural trajectory demonstrates substantial technical maturation, 

although increased model complexity has not yet translated into consistent improvements in 

clinically grounded interpretability or translational maturity. 

However, evaluating ARRG systems remains one of the most critical challenges in the field. 

Widely used NLG metrics such as BLEU [104] and ROUGE [105] primarily measure surface-level 

similarity based on n-gram overlap [105–107]. While useful in some contexts, these metrics often fail 

to capture deeper semantic equivalence, paraphrastic variation, or clinically relevant word ordering. 

In fact, studies have shown that BLEU correlates poorly with human judgment in image captioning 

tasks [106,107], and its alignment with expert radiologist evaluations for CXR reports is particularly 

weak [108]. 

Another limitation lies in the availability of reference reports. It is estimated that around 50 

human-written reports per image are needed to achieve reliable consensus, yet most public datasets 
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provide only five [107]. Overcoming these limitations will require not only more sophisticated model 

architectures but also the development of large, high-quality datasets, such as MIMIC-CXR, 

combined with clinically aligned evaluation metrics like RadGraph F1 and RadCliQ [108], which 

better reflect the true diagnostic quality and clinical usefulness of generated reports. 

Medical databases often demonstrate a tenuous connection to authentic clinical scenarios. The 

process of capturing real-world medical data is fraught with challenges, leading to datasets that are 

limited and biased towards common cases while marginalizing critical abnormalities. Such 

limitations restrict linguistic diversity and impede the development of varied descriptions, 

particularly for rare and nuanced cases, which are crucial for precise clinical diagnosis. Moreover, 

these biases not only constrain linguistic variability but also undermine the generalizability of models 

across different institutions and clinical contexts, ultimately reducing their applicability in diverse 

real-world settings. As a result, models dependent on these datasets may experience deficiencies in 

accuracy and reliability when deployed in clinical practice. 

Compared to previous reviews, this work provides a broader and more up-to-date overview of 

automated radiology report generation. While Kaur et al. [109] focused exclusively on CXR, limiting 

generalization to other modalities, our review highlights the need to extend ARRG research beyond 

thoracic imaging. Similarly, the review by Monshi et al. [110] emphasized early CNN-RNN 

approaches but does not cover recent advances such as Transformer-based models and knowledge-

enhanced frameworks. Furthermore, although Liao et al. [111] provided a systematic analysis of 

datasets and evaluation methods, their discussion lacks a strong connection to clinical challenges and 

real-world applicability. In contrast, this review not only synthesizes current technical trends but also 

situates them within the broader clinical workflow, emphasizing integration into diagnostic practice, 

highlighting limitations of existing evaluation metrics, and proposing future research directions 

aimed at improving both the accuracy and practical utility of ARRG systems. 

This review provides a comprehensive and up-to-date overview of the current state of ARRG 

using DL, with a particular focus on architectural trends, evaluation practices, and clinical 

applications. Additionally, by capturing not only technical details but also clinical context, this work 

contributes to bridging the gap between algorithmic development and real-world diagnostic needs. 

Nevertheless, some limitations should be acknowledged. The review predominantly reflects research 

efforts focused on CXR, largely influenced by the accessibility of public datasets like MIMIC-CXR 

and the urgency created by the COVID-19 pandemic. Consequently, other anatomical regions and 

imaging modalities remain underexplored, highlighting the need for broader dataset development 

and more diverse applications. Furthermore, while the review describes prevailing evaluation 

metrics, it also reveals the ongoing limitations of these measures in capturing true clinical relevance. 

Looking forward, future research should prioritize clinically aligned evaluation frameworks, expand 

model development beyond thoracic imaging, and explore the integration of large language models 

and domain-specific knowledge to improve both report quality and diagnostic accuracy. Addressing 

these gaps is essential to realizing the full potential of automated report generation in supporting 

radiologists and enhancing healthcare delivery. 

5. Conclusions 

This systematic review synthesizes the current state of ARRG using DL, highlighting both its 

methodological evolution and its emerging clinical relevance. The key findings can be summarized 

as follows: 

• The field remains heavily concentrated on chest radiography, with more than 87% of studies 

based on CXR datasets. This reflects public data availability and the acceleration of thoracic 

imaging research during the COVID-19 pandemic, but also exposes a lack of anatomical 

diversity that limits generalizability to other diagnostic domains encountered in routine 

radiological practice. 

• Hybrid architectures, particularly CNN–Transformer combinations, represent the dominant 

methodological trend (73% of included studies). By leveraging CNNs for localized visual 
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encoding and Transformer modules for contextual reasoning, these models generate reports 

with greater coherence and abnormality representation, reducing variability and supporting 

more consistent documentation. 

• The increased use of memory modules, medical knowledge graphs, and cross-modal alignment 

mechanisms demonstrates a clear shift toward clinically informed modeling. These strategies 

improve factual grounding by embedding structured domain knowledge into the generation 

process and aligning outputs more closely with expert reasoning. 

• However, current evaluation frameworks remain poorly aligned with clinical decision-making. 

Metrics such as BLEU and ROUGE capture surface-level similarity but do not reflect diagnostic 

adequacy or patient management utility, underscoring the need for evaluation standards that 

measure whether generated reports truly support radiological interpretation and workflow 

reliability. 

Overall, ARRG has achieved meaningful technical progress, yet its translation into real clinical 

environments remains constrained by limited anatomical coverage, shallow evaluation standards, 

and insufficient external validation. For these systems to evolve from experimental prototypes into 

trustworthy decision support tools, future research must prioritize clinically grounded 

benchmarking, greater dataset diversity, and integration pathways that reflect the realities of 

radiological practice. As these gaps are progressively addressed, ARRG has the potential to become 

a scalable and clinically accountable complement to radiological reporting, provided that future 

developments successfully bridge the remaining gap in clinical readiness. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ARRG Automatic Radiology Report Generation 

DL Deep learning  

PRISMA Preferred reporting items for systematic reviews and meta-analyses 

COVID-19  Coronavirus disease 2019 

CNNs Convolutional neural networks 

RNNs Recurrent neural networks  

LSTM Long short-term memory  

CLIP Contrastive language-image pretraining 

LLMs Large language models  

MIMIC Medical information mart for intensive care database 

MIMIC-CXR  MIMIC-Chest X-ray 

IU-Xray Indiana university chest X-ray collection 
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BLEU Bilingual evaluation understudy 

ROUGE Recall-oriented understudy for gisting evaluation 

BERT Bidirectional encoder representations from transformers 

AUC Area under the curve 

IEEE Institute of electrical and electronics engineers 

ACM Association for computing machinery 

WoS Web of science 

GNNs Graph neural networks 

GAT Graph attention network 

TRIPOD Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis 

CXR Chest X-ray  

CT Computed tomography 

MRI Magnetic resonance imaging  

CTN Contrastive triplet network  

SOTA State of the art 

METEOR Metric for evaluation of translation with explicit ordering 

CIDEr Consensus-based image description evaluation 

ViT Vision transformers 

GPT Generative pre-trained transformers 

NLG Natural language generation  

GRU Gated recurrent unit  

SVMs Support vector machines 

KG Knowledge graph  

DS Dataset 

US Ultrasound 

DBT Digital breast tomosynthesis 

SFNet Semantic fusion network 

CDGPT Conditioned distil generative pre-trained transformer 

MLTL Multi level transfer learning  

HReMRG Hybrid reinforced medical report generation method  

ATAG Attributed abnormality graph 

AMLMA Adaptive multilevel multi-attention 

VTI Variational topic inference 

CAMANet Class activation map guided attention network 

MFOT Multi-feature optimization transformer 

TrMRG Transformer medical report generator 

ASGMD Auxiliary signal guidance and memory-driven 

ICT Information calibrated transformer 

CVAM Cross-view attention module  

MVSL Medical visual-semantic LSTMs 

MKCL Medical knowledge with contrastive learning 

AERMNet Attention-Enhanced Relational Memory Network  

FMVP Flexible multi-view paradigm 

RAMT Relation-aware mean teacher  

GHFE Graph-guided hybrid feature encoding 

CSAMDT Conditional self attention memory-driven transformer 

CGFTrans Cross-modal global feature fusion transformer 

TSGET Two-stage global enhanced transformer 

VCIN Visual-textual cross-modal interaction network 

ACIE  Abundant clinical information embedding 

MRANet Multi-modality regional alignment network 

KCAP Knowledge-guided cross-modal alignment and progressive fusion 

ATL-CA  Adaptive topic learning and fine-grained crossmodal alignment 

ADCNet Anomaly-driven cross-modal contrastive network 

AC-BiFPN  Augmented convolutional bi-directional feature pyramid network 

DCTMN Dual-channel transmodal memory network 

GRN Graph reasoning network  

CGFN Cross-modal gated fusion network  

CBAM Convolutional block attention module 
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MMG Multi-modal granularity feature fusion 

RCAN Recalibrated cross-modal alignment network 

DPN Dynamics priori networks 

DGN Dynamic graph networks 

PrKN Prior knowledge networks 

AHP  Adapter-enhanced hierarchical cross-modal pre-training 

CECL Clustering enhanced contrastive learning 

STREAM Spatio-temporal and retrieval-augmented modelling 

CAT  Cross-modal augmented transformer 

MedVAG Medical vision attention generation 

RGRG Region-guided report generation  

UAR Unify, align and refine  
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