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Abstract

Automatic radiology report generation (ARRG) has emerged as a promising application of deep
learning (DL) with the potential to alleviate reporting workload and improve diagnostic consistency.
However, despite rapid methodological advances, the field remains technically fragmented and not
yet mature for routine clinical adoption. This systematic review maps the current ARRG research
landscape by examining DL architectures, multimodal integration strategies, and evaluation
practices from 2015 to April 2025. A PRISMA-compliant search identified 89 eligible studies,
revealing a marked predominance of chest radiography datasets (87.6%), largely driven by their
public availability and the accelerated development of automated tools during the COVID-19
pandemic. Most models employed hybrid architectures (73%), particularly CNN-Transformer
pairings, reflecting a shift toward systems capable of combining local feature extraction with global
contextual reasoning. Although these approaches have achieved measurable gains in textual and
semantic coherence, several challenges persist, including limited anatomical diversity, weak
alignment with radiological reasoning, and evaluation metrics that insufficiently reflect diagnostic
adequacy or clinical impact. Overall, the findings indicate a rapidly evolving but clinically immature
field, underscoring the need for validation frameworks that more closely reflect radiological practice
and support future deployment in real-world settings.

Keywords: deep learning; digital images; natural language processing; radiology; transformers

1. Introduction

The interpretation of medical images and the generation of radiological reports constitute a core
component of diagnostic assessment, treatment planning, and ongoing patient monitoring [1,2].
Producing a coherent and clinically meaningful report requires not only the accurate recognition of
imaging findings but also their integration into a structured diagnostic narrative, a process that
demands years of specialized training and contributes to workload pressures in radiology
departments [1-3]. These constraints, together with the risk of inter-observer variability, have
motivated growing interest in computational systems capable of supporting or partially automating
the reporting process [1-3].

Deep learning (DL) has become the predominant paradigm in automatic radiology report
generation (ARRG) [1], commonly implemented through encoder-decoder architectures in which
convolutional neural networks (CNNs) extract visual representations and text-based decoders
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generate the final report [3]. Early works predominantly relied on recurrent neural networks (RNNs),
including long short-term memory (LSTM) models [1], whereas recent advances have introduced
attention-based mechanisms such as Transformers [4] and multimodal contrastive frameworks such
as contrastive language-image pretraining (CLIP) [5]. Further developments include domain
knowledge-guided strategies [1,6], attention-based architectures [7], reinforcement learning [2], large
language models (LLMs) [8,9], and hybrid approaches that integrate multiple mechanisms to
improve clinical accuracy [1].

However, despite these methodological advances, the current body of evidence remains
fragmented, with substantial gaps in clinically aligned validation, semantic faithfulness, and the
integration of structured medical knowledge into report generation pipelines [1,2,5]. In this context,
most published ARRG models demonstrate promising linguistic performance but remain in a stage
of limited clinical readiness, showing insufficient validation for deployment in routine radiological
workflows.

The advancement of ARRG relies on specialized datasets comprising medical images paired
with textual reports [1,5], with public benchmarks such as MIMIC-CXR and IU-Xray frequently
supporting this line of research [1,7]. Yet, evaluating model performance remains challenging due to
the heterogeneity of metrics: some focus on textual similarity (e.g., BLEU, ROUGE, BERTScore), while
others estimate the correctness of clinical findings (e.g., AUC, F1 score), often lacking standardized
clinical validation [1,5-7]. Although prior reviews have addressed selected aspects of ARRG or
specific architectures such as Transformers and multimodal methods [3-5,11], the rapid proliferation
of DL-based systems has produced a fragmented landscape that complicates the global
understanding of methodological progress and its alignment with clinical readiness.

Accordingly, the main objective of this systematic review is to explore the current research
landscape on ARRG using DL, describing their key characteristics, methodological approaches, data
sources, evaluation strategies, and principal findings, while also examining their alignment with the
criteria required for future real-world adoption.

2. Materials and Methods

A comprehensive PRISMA-compliant search was conducted in the following electronic
databases: IEEE Xplore, ACM Digital Library, PubMed/MEDLINE, Scopus, and Web of Science
(WoS) Core Collection. This review included original English-language research articles from peer-
reviewed journals published between 2015 and April 2025. Eligible studies were required to address
the automatic generation of radiology reports using deep learning (DL) architectures, including but
not limited to CNNs, RNNs, Transformers, graph neural networks (GNNs), or hybrid models.
Studies additionally had to employ multimodal input data, typically pairing imaging data with a
text-generation component, with or without additional structured information, as a core element of
the report generation pipeline. Exclusion criteria comprised studies outside the radiology domain,
non-original publications (such as reviews or editorials), and works lacking sufficient methodological
or outcome detail for full assessment. Grey literature was not considered in this review.

The detailed search strategies applied to each database are presented in Table 1. After removing
duplicates, titles and abstracts were independently screened by the first author (MP) and the second
author (J]) according to the predefined eligibility criteria. Full-text versions of potentially relevant
publications were retrieved and independently evaluated by MP and ]J for final inclusion. Any
disagreements arising at either screening stage were resolved by the third reviewer (VM).

Data extraction focused on key study characteristics, including study objectives, radiological
domain, datasets used, input modalities, DL architectures and methodological details, report
generation pipeline characteristics, and evaluation metrics. Bibliometric information (authors,
publication year, country, and publication source), reported limitations, and suggested future
research directions were also recorded. The extraction form was jointly developed by MP and JJ, who
independently completed and iteratively refined the dataset until consensus was reached. Studies
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were subsequently grouped according to the DL methodology employed, and their main
characteristics and findings were synthesized narratively.

Table 1. Search strategies adapted by database.

Database Field Search Expression Results
(“Convolutional Neural Network*” OR CNN OR “Recurrent Neural
Network*” OR RNN OR LSTM OR GRU OR Transformer OR Transformers
OR “Attention Mechanism” OR “Encoder Decoder” OR “Sequence to
Sequence” OR “Graph Neural Network*” OR GNN OR GCN OR GAT OR
PubMed [tiab] “Deep Learning” OR “Neural Network” OR “Neural Networks”) AND 158
(Radiology OR Radiolog* OR “Medical Imag*” OR “Diagnostic Imag*” OR
X-ray OR CT OR MRI OR PET) AND (“Report Generation” OR “Text
Generation” OR “Narrative Generation” OR “Automatic Report*” OR
“Clinical Report*” OR “Medical Report*”)
Scopus - Same expression as PubMed, without specific field restriction 259

Web of Science TS= Same Boolean expression adapted to the TS= field for topic-based search 217

IEEE Xplore ) Same Boolean expression adjus’Fed to the syntax requirements of the 79
respective database

Same Boolean expression adjusted to the syntax requirements of the
ACM DL - . 301
respective database
In PubMed, the [tiab] field was used to restrict the search to title and abstract. In WoS, the TS= field was used for

topic-based search. Search expressions were syntactically adapted to each database.

Risk of bias arising from missing results was addressed qualitatively. Selective outcome
reporting was assessed during the extraction process, and completeness of reporting was evaluated
using the TRIPOD-LLM guideline [12]. Due to the exploratory nature of this review, no formal
quantitative assessment of publication bias was conducted; however, potential reporting-related
sources of bias were considered in the synthesis. The review protocol was registered in PROSPERO
under the registration number CRD420251044453.

3. Results

A PRISMA flow chart of the screening and selection process is presented in Figure 1, and Table
1 summarizes the number of articles retrieved from each database. A total of 89 studies met the
inclusion criteria. Research activity in this field has intensified markedly in recent years: one eligible
study was published in 2020, followed by five in 2021, nineteen in 2022, fourteen in 2023 and twenty-
nine in 2024, with a slight decline to twenty-one in the partial 2025 dataset (Figure 2). Assessment
using the TRIPOD-LLM checklist showed that while most studies reported performance metrics in
detail, essential elements such as participant description, sample size justification, and external
validation were frequently absent, and none of the reviewed articles achieved full compliance.
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Figure 1. PRISMA diagram [13] for the systematic review demonstrating the search results, included and
excluded studies.
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Figure 2. Number of publications by field of clinical focus and year.

Regarding 78. out of 89 studies (87.6%) using chest X-ray (CXR) datasets, primarily from publicly
available repositories. Other anatomical regions such as brain CT/MRI, abdominal CT, spinal
imaging, and oral/maxillofacial radiology were represented only sporadically, with four or fewer
publications each (Figure 2). This distribution highlights that although ARRG has advanced rapidly,
its development remains largely restricted to thoracic imaging.
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Geographic distribution further reveals that ARRG research is concentrated almost exclusively
in a small number of countries. As shown in Figure 3, China accounts for the majority of publications
(n=56), followed at a distance by India (n=9), Pakistan (n=4), and Brazil (n=3), while all remaining
contributing nations report no more than two studies each. This pattern reflects structural disparities
in Al research capacity and emphasizes that most methodological innovation in ARRG is being
driven by institutions with access to large-scale datasets and high computational resources,
predominantly located in high-resource settings.

Figure 3. Geographic distribution of the included studies by country of origin. China contributes the largest
share of publications (n=56), followed by India (n=9), Pakistan (n=4), and Brazil (n=3).

From a methodological perspective, hybrid DL architectures were the most frequently
represented approach. Studies most commonly combined convolutional encoders with Transformer-
based language modeling, followed by pure Transformer-based strategies, more complex multi-
hybrid approaches, and finally CNN-RNN pipelines, which continue to appear but at a reduced rate.
Together, these trends indicate a clear shift toward architectures that integrate localized feature
extraction with broader contextual reasoning. This architectural distribution reflects not only
technical preferences but also the gradual movement toward models designed to encode both
localized saliency and global diagnostic context. To contextualize how frequently each family of
models appears in the literature, Figure 4 summarizes the relative prevalence of the main deep
learning approaches represented in the included studies.

35
30
25
20
15
10
5
0 — p—1 —
< 3 > S S < S
& & & & > & S
‘;\O ‘;\O \'0 N Q}x g,@
R X O R N
N BN N S &
N N N
S e S

Figure 4. Number of publications by deep learning method.
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To facilitate comparison across methodological strategies, the studies were categorized into four
architectural groups according to their prevalence in the included literature: (i) CNN-Transformer
hybrid architectures, (ii) purely Transformer-based methods, (iii) multi-hybrid combinations
integrating multiple DL paradigms, and (iv) traditional CNN-RNN encoder—decoder pipelines. In
addition to architectural prevalence, performance across the included studies was assessed using
BLEU-1 as the most frequently reported textual similarity metric. As illustrated in Figure 5, BLEU-1
values show substantial variability across models. These categories structure the subsequent analysis
of performance characteristics and evaluation approaches (Figures 4 and 5).

BEST OUTCOME DATASET
US DATASET

CX CHR CT

U XRAY

ZGT HOSPITAL RX
CT-DBT
MIMIC-CXR
COV-CTR

PTBR.
XRG-COVID-19
PAN XRAY

PD XRAY BR

Best BLEU-1 (score)
o
S
[ ]

BROWN-COVID
RSNA IHDC CT

LN N NORCNeN N N-N N N N ]

Reference number (Year)

Figure 5. Distribution of BLEU-1 scores from the included studies. Each point on the vertical axis represents the
BLEU-1 value obtained by a study; studies that did not report this metric are omitted. Notably, the highest scores
were achieved on datasets other than the common IU-Xray and MIMIC-CXR benchmarks.

3.1. CNN + Transformers

ARRG methods have increasingly adopted encoder-decoder architectures, leveraging CNN's for
visual encoding and Transformers networks for language decoding [14-16]. This represents a shift
from earlier approaches utilizing RNNs like LSTMs [14,16,17], with Transformers offering superior
capacity to model long-range dependencies and process information in parallel, resulting in richer
contextual representations [15,18]. Widely cited examples of this framework include the Memory-
driven Transformer (R2Gen) [14,18-26] and its variant, the Cross-modal memory network
(R2GenCMN) [16,18,19,24-28], which enhance information flow and cross-modal alignment. Other
approaches such as RATCHET ncorporate a standard Transformer decoder guided by CNN-derived
features [14,29], while additional enhancements include relation memory units and cross-modal
memory matrices [30].

A persistent challenge for these models is the inherent data imbalance in medical datasets, where
normal findings vastly outnumber abnormal ones [14,20-22,30]. To mitigate this, contrastive learning
strategies have been introduced, as in the Contrastive Triplet Network (CTN), which improves the
representation of rare abnormalities by contrasting visual and semantic embeddings [14]. Integration
of medical prior knowledge is another common enhancement, through knowledge graphs [14,19,21],
disease tags [19,23,31], or anatomical priors [23], helping to guide generation toward clinically
meaningful structures [32]. Additional refinements include organ-aware decoders [31], multi-scale
feature fusion [17,33], and adaptive mechanisms that dynamically modulate the contribution of
visual and semantic inputs [22]. Ablation studies consistently confirm the value of these specialized
components in improving performance [16,33-35].

Evaluations on public datasets, notably IU X-ray [14,15,23,25,28,33,36] and MIMIC-CXR
[14,15,23,25,28,33,36], demonstrate that CNN-Transformer based methods achieve state-of-the-art
(SOTA) results across conventional natural language generation metrics including BLEU, METEOR,
ROUGE-L, and CIDEr [14,16,21,28,30,31,33,36]. Reported improvements include better abnormality
description, higher sentence coherence, and enhanced medical correctness [14,15,23,24,34,37], with
successful applications extending to cranial trauma and polydactyly reporting [18,26]. Nevertheless,
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these models still encounter difficulty in representing uncertainty, severity, and extremely rare
pathologies [34], indicating that although their textual fidelity has advanced considerably, their
clinical interpretability and readiness for deployment remain limited.

3.2. Transformers

Transformer-based architectures have become a potent solution for ARRG, offering significant
advancements over traditional CNN-RNN and LSTM approaches [38—43]. Their primary advantage
lies in the ability to model long-range dependencies, which is critical for radiological reporting, where
multiple anatomical and pathological findings must be described coherently within a single narrative
[38,40,43,44]. These systems are typically structured as encoder—-decoder framework [38-40,45-47] or
as pure Transformer-based designs [44]. Many implementations leverage pretrained models such as
Vision Transformers (ViT) or Swin Transformer for image encoding, paired with language models
like GPT-2 or BERT for generation, improving performance in scenarios constrained by limited
medical data [38,42,43,45,46,48-52].

Attention mechanisms play a central role in integrating multimodal features [39,40,42,43,53,54].
Cross-attention modules allow fine-grained alignment between visual and textual embeddings,
improving structural coherence and semantic grounding [38,39,45,46,51]. Additional optimization
strategies include graph-based fusion [38] multi-feature enhancement modules [54], and specialized
mechanisms to prioritize rare or diagnostically relevant content [48]. Memory augmentation [38—
40,42,51,55,56], knowledge integration through factual priors or graphs [39,51,54-57] and object-level
feature extraction [58] further enhance semantic accuracy. Term-weighting and vocabulary-masking
strategies reduce overreliance on frequent normal descriptors, improving recall of abnormal findings
[44].

Transformers are typically evaluated using standard natural language generation metrics such
as BLEU, ROUGE, and METEOR [38,42,44-46,51,52,54,56,59,60], as well as semantic similarity
measures including BERTScore and CheXbert [46,49,51,58,60]. Some studies incorporate clinical
validation via tools such as RadGraph or expert assessment [41,46,47,60], reflecting a growing
emphasis on clinically meaningful correctness. However, despite these advances, most models still
rely on surrogate textual similarity metrics and have not yet demonstrated consistent alignment with
radiological reasoning in real-world settings, indicating that their clinical maturity remains
preliminary.

3.3. Multihybrid

There is a clear trend toward multi-hybrid architectures that combine different DL paradigms
and integrate external medical knowledge to enhance semantic alignment and clinical relevance
[61,62]. Most approaches continue to employ an encoder—decoder structure in which CNNs such as
ResNet [61-66] or VGG19 [61,67,68]) function as visual encoders, while LSTM-based [61-63,65,66,69]
or hierarchical RNN decoders [68,70] generate the textual output, with Transformers increasingly
incorporated to improve long-term dependency modeling [61,62,64-73].

A central design objective of these hybrid configurations is to improve cross-modal alignment
between image regions and textual concepts. To this end, memory networks are widely used to store
or retrieve image-text correspondences [61,62,64,66,69,74,75], align medical terminology with
localized visual features [64,72,75], or stabilize representations during generation
[61,62,64,66,67,72,73,75,76]. Contrastive learning is also frequently adopted to reinforce semantic
distinction between positive and negative image—text pairs, improving the detection of clinically
relevant abnormalities [63,66,67,75]. External knowledge sources, including knowledge graphs
[66,67,74,75], curated medical vocabularies [72,75], and retrieval-augmented mechanisms drawing
from similar past reports [62,64,72,73,75], are increasingly used to embed domain expertise into the
generation process.

Some models also emulate elements of radiological reasoning by incorporating multi-expert or
multi-stage workflows [65] or by implementing strategies that first localize salient regions and then
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generate narratively coherent text [72]. Others address data imbalance and background noise by
refining lesion-level representations through denoising or saliency-aware mechanisms [67,72,77], or
by prioritizing diagnostically abnormal content through report-level reordering [70]. The
introduction of contextual embeddings derived from large language models such as BERT further
improves lexical richness and contextual fidelity [68,70,73].

Performance across this category is typically benchmarked using IU-Xray [61-64,66-76] and
MIMIC-CXR datasets [61-67,69-76]. Reported gains are consistent across BLEU [61-72,74-77],
METEOR [61-67,69,71,72,74,75,77,78], ROUGE-L [61-72,74-77], and CIDEr [64,68,70-72,74-77], with
qualitative analyses [69,70,73] and ablation studies [66,71,73] confirming the contribution of hybrid
components to improved fluency, abnormality description, and semantic correctness [65,69,71].
However, despite these gains, clinical deployment remains limited, as most evaluation frameworks
still prioritize textual similarity rather than diagnostic alignment or interpretive reasoning.

3.4. CNN + RNN Architectures

ARRG frequently employs encoder-decoder architectures [78-84], commonly consisting of a
CNN encoder to extract visual features from medical images [74,79-85], and a RNN decoder, often a
LSTM or Gated Recurrent Unit (GRU), to generate the report text sequentially [74,78,79,81-84,86-88].
This framework seeks to translate visual representations into descriptive narratives [78,79,84,87].
Performance is commonly evaluated using standard NLG metrics such as BLEU [74,78,80,82-85,88—
91], ROUGE (especially ROUGE-L) [78,80,82-85,88,90,91], CIDEr [80,83,85,88-90], and METEOR
[80,82,84,88,90] with some studies supplementing text-based evaluation with diagnostic accuracy
pipelines or automated clinical assessment tools such as CheXpert [80,82,91].

Several CNN+RNN-based methods have reported competitive or even superior performance
across multiple benchmarks [79,81,82,88,89,91]. For instance, a CNN-LSTM model incorporating
attention achieved a BLEU-4 of 0.155 on MIMIC-CXR [79], while the G-CNX network, combining
ConvNeXtBase with a GRU decoder, obtained BLEU-1 scores of 0.6544 on IU-Xray and 0.5593 on
ROCOv2 [82]. Similarly, the HReMRG-MR method, based on LSTMs with reinforcement learning,
demonstrated improvements over several baselines on both IU-Xray and MIMIC-CXR [88].
Additional architectures targeting specialized reporting tasks, such as proximal femur fracture
assessment in Dutch, have also reported strong performance [89].

However, despite these promising results, CNN+RNN models are limited by their sequential
decoding nature, which restricts long-range contextual reasoning and reduces their ability to handle
complex radiological narratives. As a result, while these architectures remain relevant in
benchmarking and resource-constrained settings, their suitability for clinically aligned reporting is
inherently limited relative to Transformer-based or hybrid approaches.

3.5. Others

Three studies employed architectures that did not fit into the previously defined categories due
to distinctive design choices targeting specialized aspects of ARRG. The first approach replaces free-
text generation with structured output by learning question-specific representations using tailored
CNNs and MobileNets, which are subsequently classified with SVMs rather than decoded through a
sequence generator [92]. This method demonstrated superior performance on the ImageCLEF2015
Liver CT annotation task, suggesting that task-adapted feature extraction can outperform shared
representations in structured reporting problems. A second framework integrates a ViT encoder with
a hierarchical LSTM decoder, augmented by a MIX-MLP module for multi-label classification and a
POS-SCAN co-attention mechanism to fuse semantic and visual priors [93]. This hybrid configuration
leverages label-aware alignment to improve anomaly identification and text coherence, with ablation
studies confirming the contribution of its integrated components. The third approach incorporates a
knowledge graph derived from disease label co-occurrence statistics, combining DenseNet-based
visual features with a Transformer text encoder and a GNN reasoning layer before final report
generation [94], thereby enabling structured medical knowledge to inform the decoding process.
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Table 2. Summary of key characteristics, methodologies, and reported metrics for the included studies.
Year Ref. Radiological Domain Datasets (DS) Used Deep Learning Method  Architecture Best BLEU-1Best Outcome DS
Ultrasound ((S5) . . .
. US image dataset (6,563 images). [U-Xray (7,470 SFNet (Semantic fusion network). ResNet-50. Faster RCNN.
2020 [87] (gallbladder, kidney, . CNN, RNN , i , , 0.65 US DATASET
images, 3,955 reports) Diagnostic report generation module using LSTM

liver), Chest X-ray
COVID-19 CT dataset (368 reports, 1,104 CT
2021 [112] ChestCT images). CX-CHR dataset (45,598 images, 28,299Transformer, CNN Medical-VLBERT (with DenseNet-121 as backbone) 0.70 CX CHRCT
reports), 12 million external medical textbooks
2 CDGPT2 (Conditioned Distil Generative Pre-trained

2021  [49] Chest X-ray IU-Xray Transformer 0.387 IU-Xray
Transformer)
MIMIC-CXR (377,110 images, 227,835 reports). *0.126
2021 [113] Chest X-ray CNN, Transformer BERT-base MIMIC-CXR
IU-Xray (BLEU-4)
Liver CT annotation dataset from ImageCLEF
2021 [92] LiverCT . CNN MobileNet-V2 0.65 ZGT HOSPITAL RX
2015 (50 patients)
Encoder with two branches (CNN based on ResNet-152 and MLC)'*O 148
2021  [80] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, GAN Hierarchical LSTM decoder with multi-level attention and a MIMIC-CXR

(BLEU-4)
reward module with two discriminators.

Main dataset: 4,915 cases with 11,606 images and

Proximal Femur Fractures DenseNet-169 for classification. Encoder-Decoder for report0 65

2022 [91] reports. Language model dataset: 28,329CNN, RNN MAIN DATASET
(X-ray) . . generation. GloVe for language modeling
radiological reports
2022 [94]  Chest X-ray MIMIC-CXR. IU-Xray GNN, Transformer Custom framework using Transformer for generation module 0.505 IU-Xray
CNN VGG19 network (feature extraction). BERT (language
2022 [70] Chest X-ray IU-Xray CNN, RNN, Transformer 0.772 IU-Xray
generation). DistilBERT (perform sentiment)
Liver CT and kidney, DBTImageNet (25,000 images). CT abdomen and
MLTL-LSTM model (Multi level transfer learning framework with
2022 [114] (Digital Breastmammography images (750 images). CT andRNN, CNN 0.769 CT-DBT
. o . a long short-term-memory model)
Tomosynthesis) DBT medical images (150 images)
HReMRG-MR (Hybrid reinforced report generation method with
2022 [88]  Chest X-ray MIMIC-CXR. TU-Xray CNN, RNN . . . ) 0.4806 MIMIC-CXR
m-linear attention and repetition penalty mechanism)
2022 [15]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CvT2DistilGPT2 0.4732 IU-Xray
DenseNet (encoder). LSTM or Transformer (decoder). ATAG**0.323
2022 [64] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer (Attributed abnormality graph) embeddings. GATE (gating(BLEU IU-Xray
mechanism) AVG)
2022 [84]  Chest X-ray IU-Xray CNN, RNN AMLMA (Adaptive multilevel multi-attention) 0471 IU-Xray
2022 [22]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer MATNet (Multimodal adaptive transformer) 0.518 TU-Xray
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CNN, RNN, AttentionRCLN model (combining CNN, LSTM, and multihead attention
2022 [78] Chest X-ray IU-Xray . ] ) ) 0.4341 IU-Xray
Mechanism mechanism). Pre-trained ResNet-152 (image encoder)
VTI (Variational topic inference) with LSTM-based and
2022 [73] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 0.503 IU-Xray
Transformer-based decoders
2022 [14] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CTN built on Transformer architecture 0.491 IU-Xray
CNN, RNN,CADxReport (VGG19, HLSTM with co-attention mechanism and
2022 [81] Chest X-ray IU-Xray ) . . ) 0.577 IU-Xray
Reinforcement Learning reinforcement learning)
2022 [27]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CAMANet (Class activation map guided attention network) 0.504 IU-Xray
CNN, RNN, AttentionCheXPrune (encoder-decoder architecture with VGG19 and
2022 [85]  Chest X-ray IU-Xray . . . 0.5428 IU-Xray
Mechanism hierarchical LSTM)
Prior Guided Transformer. ResNet101 (visual feature extractor).
2022 [23] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer, VAE 0.482 IU-Xray
Vanilla Transformer (baseline)
2022 [44] Chest X-ray MIMIC-CXR. IU-Xray Transformer Pure Transformer-based Framework (custom architecture) 0.496 IU-Xray
VGG16 (visual geometry group CNN network). LSTM with
2022 [79]  Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN . 0.580 IU-Xray
attention
Meshed-memory augmented transformer architecture with visual
2022 [41] Chest X-ray MIMIC-CXR. CheXpert Transformer . . . 0.348 MIMIC-CXR
extractor using ImageNet and CheXpert pre-trained weights
2023 [54]  Chest X-ray MIMIC-CXR. IU-Xray Transformer MFOT (Multi-feature optimization transformer) 0.517 IU-Xray
TrMRG (Transformer Medical Report Generator) using ViT as
2023 [42]  Chest X-ray [U-Xray Transformer 0.5551 IU-Xray
encoder, MiniLM as decoder
ASGMD (Auxiliary signal guidance and memory-driven) network.
2023  [116] Chest X-ray MIMIC-CXR. IU-Xray Transformer, CNN, RNN . 0 IU-Xray
ResNet-101 and ResNet-152 as visual feature extractors
2023  [36] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer Visual Prior-based Cross-modal Alignment Network 0.489 IU-Xray
2023 [55]  Chest X-ray, CT COVID-19MIMIC-CXR. IU-Xray. COV-CTR (728 images) Transformer ICT (Information calibrated transformer) 0.768 COV-CTR
CNN, Transformer, Self-
2023 [16]  Chest X-ray MIMIC-CXR. IU-Xray . . S3-Net (Self-supervised dual-stream network) 0.499 IU-Xray
Supervised Learning
2023 [83] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN TriNet (custom architecture) 0.478 IU-Xray
) ResNet50. CVAM+MVSL (Cross-view attention module and
2023 [89]  Chest X-ray IU-Xray. Chexpert (224,316 images) CNN, RNN . . . 0.460 IU-Xray
Medical visual-semantic LSTMs)
Encoder-Decoder framework with UM-VES and UM-TES
2023 [86]  Chest X-ray IU-Xray CNN, RNN 0.5881 IU-Xray
subnetworks and LSTM decoder
ResNet101 (visual extractor). 3-layer Transformer structure
2023 [57]  Chest X-ray MIMIC-CXR. IU-Xray Transformer 0.513 IU-Xray
(encoder-decoder framefork). BLIP architecture
Transformer, ContrastiveMKCL (Medical knowledge with contrastive learning). ResNet-
2023 [56]  Chest X-ray IU-Xray . 0.490 IU-Xray
Learning 101. Transformer
2023  [62]  Chest X-ray, Dermoscopy IU-Xray, NCRC-DS (81 entities, 536 triples) CNN, RNN, Transformer DenseNet-121. ResNet-101. Memory-driven Transformer 0.494 1U-Xray
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US dataset (6,563 images and reports). Fetal
US (gallbladder, fetal . ) .
2023  [115] hearth), Chest X Heart (FH) dataset (3,300 images and reports).CNN, RNN AERMNet (Attention-Enhanced Relational Memory Network) 0.890 US DATASET
ARSI MIMIC-CXR. TU-Xray
NIH Chest X-ray (112,120 images). MIMIC-CXR. ViT. GNN. Vector Retrieval Library. Multi-label contrastive
2023 [59]  Chest X-ray Transformer . . . 0 IU-Xray
IU-Xray learning. Multi-task learning
2024 [17] Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer Swin-Transformer 0.499 IU-Xray
2024 [51]  Chest X-ray IU-Xray Transformer ViGPT2 model 0.571 IU-Xray
2024 [28]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer FMVP (Flexible multi-view paradigm) 0.499 IU-Xray
Proposed Dataset (21,970 images). [U-Xray. NIH, XRaySwinGen (Swin Transformer as image encoder, GPT-2 as
2024  [43] Chest X-ray Transformer 0.731 PTBR
Chest X-ray textual decoder)
2024 [33]  Chest X-ray IU-Xray CNN, Transformer FDT-Dr 2 T (custom famework) 0.531 IU-Xray
IU-Xray. XRG-COVID-19 (8676 scans, 8676
2024 [118] Chest X-ray s) CNN, Transformer DSA-Transformer with ResNet-101 as the backbone 0.552 XRG-COVID-19
reports
2024 [32]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer DenseNet-121. Transformer encoder. GPT-4 0.491 IU-Xray
Oral panoramic X-ray image-report dataset (562
2024 [58]  Oral Panoramic X-ray . ransformer MLAT (Multi-Level objective Alignment Transformer) 0.5011 PAN XRAY
sets of images and reports). MIMIC-CXR
MRARGN  (Multifocal Region-Assisted Report Generation
2024  [66] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer 0.502 IU-Xray
Network)
Memory-driven Transformer (based on standard Transformer
2024 [21]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer IU-Xray
architecture with relational memory added to the decoder)
VGG19 (CNN) pre-trained over ImageNet dataset. GloVe, fastText,
2024  [68] Chest X-ray IU-Xray CNN, RNN, Transformer EIMo, and BERT (extract textual features from the ground truth0.612 IU-Xray
reports). Hierarchical LSTM (generate reports)
Transformer (encoder). MIX-MLP multi-label classification
2024  [93] Chest X-ray MIMIC-CXR. IU-Xray RNN, Transformer, MLP network. CAM (Co-attention mechanism) based on POS-SCAN.0.521 IU-Xray
Hierarchical LSTM (decoder)
2024 [45]  Chest X-ray MIMIC-CXR Transformer CheXReport (Swin-B fully transformer) 0.354 MIMIC-CXR
RAMT (Relation-Aware Mean Teacher). GHFE (Graph-guided
2024 [25]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer hybrid feature encoding) module. DenseNet121 (visual feature0.482 IU-Xray
extractor). Standard Transformer (decoder)
2024 [31]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer ResNet-101. Transformer (multilayer encoder and decoder) 0.514 IU-Xray
2024 [40]  Chest X-ray MIMIC-CXR. IU-Xray Transformer Team Role Interaction Network (TRINet) 0.445 MIMIC-CXR
2024 [26]  Polydactyly X-ray Custom dataset (16,710 images and reports) CNN, Transformer Inception-V3 CNN. Transformer Architecture 0.516 PD XRAY BR
*0.095
2024 [46]  Chest X-ray MIMIC-CXR Transformer ViT. GPT-2 (with custom positional encoding and beam search) MIMIC-CXR

(BLEU-4)
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Chest X-ray, Chest CT o . )
2024 [90] (COVID-19) MIMIC-CXR. IU-Xray. COV-CTR CNN, RNN HDGAN (Hybrid Discriminator Generative Adversarial Network)0.765 COV-CTR
IU-Xray. Custom dataset (1,250 image and .
2024 [117] Chest X-ray ts) CNN-Transformer CNX-B2 (CNN encoder, BioBERT transformer) 0.479 IU-Xray
reports
2024 [37]  Chest X-ray NIH ChestX-ray. IU-Xray CNN, Transformer CSAMDT (Conditional self attention memory-driven ransformer) 0.504 IU-Xray
Ultrasound  (gallbladder, MIMIC-CXR. IU-Xray. LGK US (6,563 images .
2024  [53] . ] Transformer CGFTrans (Cross-modal global feature fusion transformer) 0.684 US DATASET
kidney, liver), Chest X-ray and reports).
2024 [52]  Chest X-ray MIMIC-CXR. IU-Xray Transformer TSGET (Two-stage global enhanced transformer) 0.500 IU-Xray
VCIN (Visual-textual cross-modal interaction network). ACIE
2024 [35]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer (Abundant clinical information embedding). Bert-based Decoder-0.508 IU-Xray
only Generator
2024 [76]  Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer Memory-driven Transformer 0.539 IU-Xray
MIMIC-CXR. Chest ImaGenome (237,853
2024  [30] Chest X-ray images). Brown-COVID (1021 images). Penn-CNN, Transformer MRANet (Multi-modality regional alignment network) 0.504 BROWN-COVID
COVID (2879 images)
2024 [34]  Chest X-ray MIMIC-CXR. TU-Xray CNN, Transformer ResNet-101. Multilayer Transformer (encoder and decoder) 0.472 IU-Xray
MeFD-Net (proposed multi expert diagnostic module). ResNet101
2024  [65] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer . 0.505 IU-Xray
(visual encoder). Transformer (text generation module)
MIMIC-CXR. Chest ImaGenome (242,072 scene Faster R-CNN (object detection). GPT-2 Medium (report
2024 [19] Chest X-ray CNN, Transformer . 0.391 MIMIC-CXR
graphs) generation)
Denoising multi-level cross-attention. Contrastive learning model
2025  [77] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer . . IU-Xray
(with ViTs-B/16 as visual extractor, BERT as text encoder)
KCAP  (Knowledge-guided cross-modal alignment and
2025 [75] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer . . 0.517 IU-Xray
progressive fusion)
CNN, RNN, Transformer,ATL-CA (Adaptive topic learning and fine-grained crossmodal
2025 [71]  Chest X-ray MIMIC-CXR. IU-Xray 0.487 IU-Xray
ViT alignment)
ADCNet (Anomaly-driven cross-modal contrastive network).
2025 [63] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer . 0.493 IU-Xray
ResNet-101 and Transformer encoder-decoder architecture
2025 [50]  Chest X-ray IU-Xray Transformer ChestX-Transcribe (combines Swin Transformer and DistilGPT)  0.675 IU-Xray
RSNA-IHDC dataset (674,258 brain CT images, AC-BiFPN (Augmented convolutional bi-directional feature
2025 [18] Brain CT and MRI scans CNN, Transformer 0.382 RSNA IHDC CT
19,530 patients) pyramid network). Transformer model
2025 [61]  Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer DCTMN (Dual-channel transmodal memory network) 0.506 IU-Xray
CNN, Transformer, Graph
reasoning network (GRN),ResNet101 (visual feature extraction). GRN. CGFN (Cross-modal
2025 [74]  Chest X-ray MIMIC-CXR. IU-Xray 0.514 IU-Xray

Cross-modal
Fusion Network (CGFN)

Gatedgated fusion network). Transformer (decoder)
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2025 [47]  Spine CT VerSe20 (300 MDCT spine images) Transformer ViT-Base. BioBERT BASE. MiniLM 0.7291 IU-Xray
ResNet-101 with CBAM (convolutional block attention module).
2025 [48]  Chest X-ray IU-Xray Transformer ) ] 0.456 IU-Xray
Cross-attention mechanism
2025 [39]  Chest X-ray MIMIC-CXR. IU-Xray Transformer MMG (Multi-modal granularity feature fusion) 0.497 TU-Xray
2025 [24]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer RCAN (Recalibrated cross-modal alignment network) 0.521 IU-Xray
G-CNX (hybrid encoder—decoder architecture). ConvNeXtBase
2025  [82] Chest X-ray IU-Xray CNN, RNN . ) 0.6544 IU-Xray
(encoder side). GRU-based RNN (decoder side)
DPN (Dynamics priori networks) with components including DGN
(Dynamic graph networks), Contrastive learning, PrKN (Prior
2025  [67] Chest X-ray MIMIC-CXR. IU-Xray CNN, RNN, Transformer . . . IU-Xray
knowledge networks). ResNet-152 (image feature extraction).
SciBert (report embedding)
Chest  X-ray, BladderMIMIC-CXR. IU-Xray. 4,253 bladder
2025  [29] . Transformer, CNN AHP (Adapter-enhanced hierarchical cross-modal pre-training)  0.502 IU-Xray
Pathology Pathology images.
COVIDx-CXR-2 (29,986 images). COVID-CXR
ResNet-50 (image encoder). BERT (text encoder). Transformer-
(more than 900 images). BIMCV-COVID-19 ) . . *0.63 (BLEU-COVID-19
2025 [119] Chest X-ray ] CNN, Transformer based model (with variants using LLAMA-2-7B and Transformer-
(more than 10,000 images). COV-CTR. MIMIC- 4) DATASETS
BASE, decoder)
CXR. NIH ChestX-ray
2025 [20]  Chest X-ray MIMIC-CXR. IU-Xray CNN, Transformer CECL (Clustering enhanced contrastive learning) 0.485 IU-Xray
Diffusion Models, RNN,Diffusion Model-based architecture. ResNet34. Transformer
2025 [69]  Chest X-ray MIMIC-CXR. IU-Xray 0.422 IU-Xray
CNN, Transformer structure using cross-attention
STREAM (Spatio-temporal and retrieval-augmented modelling).
2025 [60]  Chest X-ray MIMIC-CXR. IU-Xray Transformer SwinTransformer  (Swin-Base) (encoder).  TinyLlama-1.1B0.506 IU-Xray
(decoder).
2025  [72] Chest X-ray MIMIC-CXR. ROCO (over 81,000 images) CNN, RNN, Transformer CAT (Cross-modal augmented transformer) 0.491 IU-Xray
2025  [38] Chest X-ray IU-Xray . COV-CTR Transformer MedVAG (Medical vision attention generation) 0.808 COV-CTR

* Indicates the BLEU-4 value, as the study did not report the BLEU-1 metric. ** Indicates an average of the BLEU metrics, as the study did not report the BLEU-1 metric.
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Although these methods differ from CNN-Transformer or hybrid pipelines, they collectively
illustrate a movement toward architectures that incorporate structured reasoning or external
supervision to compensate for dataset and interpretability limitations. However, because their
adoption remains technically experimental and narrowly scoped, their translational maturity is still
preliminary relative to the more broadly validated families of models.

4. Discussion

The evolution of ARRG architectures reflects a progressive shift from sequential language
models toward more expressive, attention-based frameworks capable of capturing long-range
semantic dependencies. Early CNN-RNN pipelines demonstrated the feasibility of translating
image-derived representations into coherent textual descriptions, but their reliance on stepwise
decoding limited their ability to capture global contextual dependencies within radiological
narratives [95,96]. Subsequent extensions attempted to mitigate these constraints through multi-task
learning and co-attention mechanisms, which improved alignment between visual features and
semantic structure but remained fundamentally restricted by the sequential nature of RNN-based
decoding [97]. The introduction of Transformer-based models marked a methodological inflection
point by enabling parallelized processing, improved feature integration, and richer contextual
reasoning [95]. Hybrid architectures further enhanced performance by combining CNNs for localized
feature extraction with Transformers for global semantic modeling, while more recent developments
incorporate memory augmentation, medical priors, or retrieval-based alignment mechanisms to
compensate for limited contextual cues in public datasets.

More recent research has explored advanced strategies to further improve report quality and
strengthen alignment with radiological reasoning. Memory-augmented architectures and models
that incorporate structured medical knowledge have shown promising performance, particularly on
large public benchmarks such as MIMIC-CXR [96]. These systems typically enrich representation
space through the integration of pre-built knowledge graphs or retrieval-based mechanisms that
draw from similar reports or pathology patterns [49,98,99], moving closer to the way radiologists
ground their interpretation in prior clinical context. However, although these mechanisms improve
semantic alignment, they do not yet guarantee diagnostic accountability or case-level reasoning,
limiting their contribution to true clinical readiness.

Other innovations include Region-guided Report Generation (RGRG), which enhances
explainability by anchoring narrative content to localized anatomical regions [100]; RECAP, which
introduces temporal reasoning to capture disease progression and longitudinal consistency [101]; and
UAR (“unify, align, and refine”), a framework designed to align visual and textual features across
multiple semantic levels [102]. Progressive-generation strategies have also been proposed to
iteratively refine report outputs, leading to more stable, coherent, and clinically focused narratives
[103]. These advances indicate that recent improvements in ARRG extend beyond raw language-
modeling capacity to increasingly incorporate mechanisms that emulate elements of human
diagnostic reasoning.

Collectively, this architectural trajectory demonstrates substantial technical maturation,
although increased model complexity has not yet translated into consistent improvements in
clinically grounded interpretability or translational maturity.

However, evaluating ARRG systems remains one of the most critical challenges in the field.
Widely used NLG metrics such as BLEU [104] and ROUGE [105] primarily measure surface-level
similarity based on n-gram overlap [105-107]. While useful in some contexts, these metrics often fail
to capture deeper semantic equivalence, paraphrastic variation, or clinically relevant word ordering.
In fact, studies have shown that BLEU correlates poorly with human judgment in image captioning
tasks [106,107], and its alignment with expert radiologist evaluations for CXR reports is particularly
weak [108].

Another limitation lies in the availability of reference reports. It is estimated that around 50
human-written reports per image are needed to achieve reliable consensus, yet most public datasets
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provide only five [107]. Overcoming these limitations will require not only more sophisticated model
architectures but also the development of large, high-quality datasets, such as MIMIC-CXR,
combined with clinically aligned evaluation metrics like RadGraph F1 and RadCliQ [108], which
better reflect the true diagnostic quality and clinical usefulness of generated reports.

Medical databases often demonstrate a tenuous connection to authentic clinical scenarios. The
process of capturing real-world medical data is fraught with challenges, leading to datasets that are
limited and biased towards common cases while marginalizing critical abnormalities. Such
limitations restrict linguistic diversity and impede the development of varied descriptions,
particularly for rare and nuanced cases, which are crucial for precise clinical diagnosis. Moreover,
these biases not only constrain linguistic variability but also undermine the generalizability of models
across different institutions and clinical contexts, ultimately reducing their applicability in diverse
real-world settings. As a result, models dependent on these datasets may experience deficiencies in
accuracy and reliability when deployed in clinical practice.

Compared to previous reviews, this work provides a broader and more up-to-date overview of
automated radiology report generation. While Kaur et al. [109] focused exclusively on CXR, limiting
generalization to other modalities, our review highlights the need to extend ARRG research beyond
thoracic imaging. Similarly, the review by Monshi et al. [110] emphasized early CNN-RNN
approaches but does not cover recent advances such as Transformer-based models and knowledge-
enhanced frameworks. Furthermore, although Liao et al. [111] provided a systematic analysis of
datasets and evaluation methods, their discussion lacks a strong connection to clinical challenges and
real-world applicability. In contrast, this review not only synthesizes current technical trends but also
situates them within the broader clinical workflow, emphasizing integration into diagnostic practice,
highlighting limitations of existing evaluation metrics, and proposing future research directions
aimed at improving both the accuracy and practical utility of ARRG systems.

This review provides a comprehensive and up-to-date overview of the current state of ARRG
using DL, with a particular focus on architectural trends, evaluation practices, and clinical
applications. Additionally, by capturing not only technical details but also clinical context, this work
contributes to bridging the gap between algorithmic development and real-world diagnostic needs.
Nevertheless, some limitations should be acknowledged. The review predominantly reflects research
efforts focused on CXR, largely influenced by the accessibility of public datasets like MIMIC-CXR
and the urgency created by the COVID-19 pandemic. Consequently, other anatomical regions and
imaging modalities remain underexplored, highlighting the need for broader dataset development
and more diverse applications. Furthermore, while the review describes prevailing evaluation
metrics, it also reveals the ongoing limitations of these measures in capturing true clinical relevance.
Looking forward, future research should prioritize clinically aligned evaluation frameworks, expand
model development beyond thoracic imaging, and explore the integration of large language models
and domain-specific knowledge to improve both report quality and diagnostic accuracy. Addressing
these gaps is essential to realizing the full potential of automated report generation in supporting
radiologists and enhancing healthcare delivery.

5. Conclusions

This systematic review synthesizes the current state of ARRG using DL, highlighting both its
methodological evolution and its emerging clinical relevance. The key findings can be summarized
as follows:

e  The field remains heavily concentrated on chest radiography, with more than 87% of studies
based on CXR datasets. This reflects public data availability and the acceleration of thoracic
imaging research during the COVID-19 pandemic, but also exposes a lack of anatomical
diversity that limits generalizability to other diagnostic domains encountered in routine
radiological practice.

e  Hybrid architectures, particularly CNN-Transformer combinations, represent the dominant
methodological trend (73% of included studies). By leveraging CNNs for localized visual

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202511.0010.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2025 d0i:10.20944/preprints202511.0010.v1

16 of 24

encoding and Transformer modules for contextual reasoning, these models generate reports

with greater coherence and abnormality representation, reducing variability and supporting

more consistent documentation.

e  The increased use of memory modules, medical knowledge graphs, and cross-modal alignment
mechanisms demonstrates a clear shift toward clinically informed modeling. These strategies
improve factual grounding by embedding structured domain knowledge into the generation
process and aligning outputs more closely with expert reasoning.

e  However, current evaluation frameworks remain poorly aligned with clinical decision-making.
Metrics such as BLEU and ROUGE capture surface-level similarity but do not reflect diagnostic
adequacy or patient management utility, underscoring the need for evaluation standards that
measure whether generated reports truly support radiological interpretation and workflow
reliability.

Overall, ARRG has achieved meaningful technical progress, yet its translation into real clinical
environments remains constrained by limited anatomical coverage, shallow evaluation standards,
and insufficient external validation. For these systems to evolve from experimental prototypes into
trustworthy decision support tools, future research must prioritize clinically grounded
benchmarking, greater dataset diversity, and integration pathways that reflect the realities of
radiological practice. As these gaps are progressively addressed, ARRG has the potential to become
a scalable and clinically accountable complement to radiological reporting, provided that future
developments successfully bridge the remaining gap in clinical readiness.
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Abbreviations

The following abbreviations are used in this manuscript:

ARRG Automatic Radiology Report Generation

DL Deep learning

PRISMA Preferred reporting items for systematic reviews and meta-analyses
COVID-19  Coronavirus disease 2019

CNNs Convolutional neural networks

RNNs Recurrent neural networks

LSTM Long short-term memory

CLIP Contrastive language-image pretraining

LLMs Large language models

MIMIC Medical information mart for intensive care database
MIMIC-CXR MIMIC-Chest X-ray

IU-Xray Indiana university chest X-ray collection
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BLEU
ROUGE
BERT
AUC
IEEE
ACM
WoS
GNNs
GAT
TRIPOD
CXR

CT

MRI

CTN
SOTA
METEOR
CIDEr
ViT

GPT
NLG
GRU
SVMs

KG

DS

Us

DBT
SFNet
CDGPT
MLTL
HReMRG
ATAG
AMLMA
VTI
CAMANet
MFOT
TrMRG
ASGMD
ICT
CVAM
MVSL
MKCL
AERMNet
FMVP
RAMT
GHFE
CSAMDT
CGFTrans
TSGET
VCIN
ACIE
MRANet
KCAP
ATL-CA
ADCNet
AC-BiFPN
DCTMN
GRN
CGFN
CBAM

Bilingual evaluation understudy

Recall-oriented understudy for gisting evaluation
Bidirectional encoder representations from transformers
Area under the curve

Institute of electrical and electronics engineers
Association for computing machinery

Web of science

Graph neural networks

Graph attention network
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Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis

Chest X-ray

Computed tomography

Magnetic resonance imaging

Contrastive triplet network

State of the art

Metric for evaluation of translation with explicit ordering
Consensus-based image description evaluation

Vision transformers

Generative pre-trained transformers

Natural language generation

Gated recurrent unit

Support vector machines

Knowledge graph

Dataset

Ultrasound

Digital breast tomosynthesis

Semantic fusion network

Conditioned distil generative pre-trained transformer
Multi level transfer learning

Hybrid reinforced medical report generation method
Attributed abnormality graph

Adaptive multilevel multi-attention

Variational topic inference

Class activation map guided attention network
Multi-feature optimization transformer

Transformer medical report generator

Auxiliary signal guidance and memory-driven
Information calibrated transformer

Cross-view attention module

Medical visual-semantic LSTMs

Medical knowledge with contrastive learning
Attention-Enhanced Relational Memory Network
Flexible multi-view paradigm

Relation-aware mean teacher

Graph-guided hybrid feature encoding

Conditional self attention memory-driven transformer
Cross-modal global feature fusion transformer
Two-stage global enhanced transformer
Visual-textual cross-modal interaction network
Abundant clinical information embedding
Multi-modality regional alignment network
Knowledge-guided cross-modal alignment and progressive fusion
Adaptive topic learning and fine-grained crossmodal alignment
Anomaly-driven cross-modal contrastive network
Augmented convolutional bi-directional feature pyramid network
Dual-channel transmodal memory network

Graph reasoning network

Cross-modal gated fusion network

Convolutional block attention module
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MMG Multi-modal granularity feature fusion

RCAN Recalibrated cross-modal alignment network

DPN Dynamics priori networks

DGN Dynamic graph networks

PrKN Prior knowledge networks

AHP Adapter-enhanced hierarchical cross-modal pre-training
CECL Clustering enhanced contrastive learning

STREAM  Spatio-temporal and retrieval-augmented modelling
CAT Cross-modal augmented transformer

MedVAG  Medical vision attention generation

RGRG Region-guided report generation

UAR Unify, align and refine
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