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Abstract: 3D-mapping-aided (3DMA) global navigation satellite system (GNSS) positioning that
improves positioning performance in dense urban areas has been under development in the recent
years, but it still faces many challenges. This paper details a new algorithm that explores the
potential of using building boundary for positioning. Rather than applying complex simulations to
analyze and correct signal reflections by buildings, the approach utilizes a convolutional neural
network to differentiate between the sky and building in a sky-pointing fisheye image. A new
skymask matching algorithm is then proposed to match the segmented fisheye images with
skymasks generated from a 3D building model. Each matched skymask holds a latitude and
longitude coordinate to determine the precise location of the fisheye image. The results are then
compared with the conventional GNSS and advanced 3DMA GNSS positioning methods. The aims
of the proposed algorithm are to increase positioning and heading accuracy in a rich urban
environment.

Keywords: GPS; GNSS; Localization; Navigation; Autonomous Driving; Urban Canyon; Land
Application; Cameras; Image segmentation

1. Introduction

Global navigation satellite systems (GNSS) provide geographical longitude and latitude
positioning with meter-level accuracy in open areas [1]. This accuracy, however, suffers in dense
urban areas because buildings block, reflect, and diffract the signals. These cause errors in satellite
positioning and reduces accuracy-in severe cases, the position error could exceed 50 meters [2, 3]. An
improvement in the real time-positioning accuracy of low-cost GNSS systems in dense urban areas
to within 5m would benefit many different potential applications [4], such as cloud-sourced mobile
mapping and object tracking. As such, there is a need for a low-cost positioning device that has great
solution availability and accuracy.

To improve the positioning performance in urban environments, researchers have designed
different methods to identify then correct or exclude the unhealthy measurements by receiver based
GNSS or with extra equipment. The increased availability of open-sourced 3D building models
allows utilization of 3D mapping aided (3DMA) GNSS positioning to improve urban positioning [4,
5]. This includes shadow matching, ray tracing and likelihood-based ranging methods. Shadow
matching utilizes 3D building models with building geometry to match satellite visibility [1, 6],
allowing the exclusion of NLOS measurements [7]. Ray tracing GNSS [8, 9] and Skymask based
3DMA GNSS [10] predicts the signal transmission path based on building geometry to calculate the
reflection delay distance and provide correction on the pseudorange of the NLOS signals [8-10]. The
likelihood-based ranging method is another pseudorange correction method, in which the
conventional GNSS position is corrected via a statistical model [11]. In addition, the satellite visibility
can be used to estimate the sky-visibility of the environment the receiver is located at [12]. Another
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approach towards enhancing positioning accuracy in the urban environment is using extra
equipment to collect additional data for positioning. This approach is most suitable for vehicular
applications due to weight, space and power usage concerns. Two popular approach includes the use
of 3D light detection and ranging (LiDAR) and the usage of fisheye cameras. LIDAR is used to retrieve
surrounding buildings or obstacles information, which in turn can be used to perform NLOS
classification [13]. With the ability to get building distance, pseudorange can be corrected by the
NLOS propagation model [14]. Sky-pointing fisheye cameras are capable of detecting obstacles and
buildings in the local environment. When used in conjunction with image processing algorithms [2,
4, 14-17], they allow the exclusion of NLOS satellites from position calculations, improving
positioning accuracy [15]. Furthermore, research indicates that if both LiDAR and fisheye cameras
are used in conjunction, positioning accuracy in urban areas can be further enhanced [3].

Fisheye cameras are used in autonomous driving, where a front-facing camera is commonly
used for lane detection and road sign identification. To facilitate its use in improving GNSS
positioning performance, the fisheye camera is pointed towards the zenith, which reduces the
probability of capturing uncertainties while allowing the use of the positions of immovable objects
such as high-rise buildings. As such, this paper makes use of images captured from a zenith sky-
pointing fisheye camera, which are matched to computer-generated boundary skyplot (skymask) to
obtain a position and heading. This is similar to the approach employed in the research paper [18].
However, this study differs in several ways. Firstly, in this research, the roll and pitch are fixed with
a fisheye camera pointing upward, hence the 3D model can be used to generate skymask ahead of
time, while the aforementioned paper utilizes real-time generation of computer-generated images
from a 3D model. This study’s method uses less computing power, while the [18] study’s method
allow generation of images better suited to the camera’s condition (pitch, roll, etc.). This study also
utilizes a Convolutional Neural Network (CNN) to segment images into sky and building classes,
while the [18] study uses the Otsu method to differentiate between sky and building. Semantic
segmentation was chosen for this study due to its potential to segment additional classes in the future.
The proposed matching algorithm can not only provide the position of the user but also the heading
angle. These are the main novelties of this research paper.

The proposed skymask matching method integrates GNSS, supervised deep learning, and a
matching algorithm. This approach takes advantage of sky-pointing fisheye images and matching it
with candidate skymask. The results are then compared with other enhanced methods of positioning.
The rest of the paper is organized as follows. The proposed algorithm will be explained in detail in
section 2. Section 3 describes the experimentation results. Section 4 contains the concluding remarks.

2. Proposed Skymask Matching Method

An overview of the skymask matching method is shown in Figure 1. This study proposes the
calculation of the position solution and heading solution with sky-pointing fisheye image and 3D
building model generated skymask. The method is divided into 2 main categories-offline processes
and online processes. The offline process is done before the real-time processing. It consist of training
the CNN and generating skymasks, which are generated outside of buildings in square grid
intersections, with a length and width separation of 2m. In the online process, the user captures a sky
pointing fisheye image, with initial position and heading estimated by a conventional GNSS receiver.
Then, candidate positions are distributed around the initial positioning in a 50m radius to generate
candidate skymasks. Meanwhile, the image is simultaneously segmented using the convolutional
neural network to distinguish between building and sky, then converted to a binary format. Then,
the binary image is converted from pixel format to azimuth and elevation format for comparison. The
image converted skymask is compared to candidate skymasks using GMSD, FMSDD, FMBPD and
HD techniques. The techniques were weighted and combined into a score to calculate the likelihood
of the candidates. The chosen position and heading solution is determined by the highest combined
score.
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pointing Fisheye Camera and Skymask Generated by 3D Building Models.
2.1 Skymask Generation

In this paper, the sky-pointing fisheye image is compared to precompute skymasks that are
identical to those utilized in shadow matching and skymask 3DMA GNSS. Skymasks store the
highest elevation angle of the surrounding building boundaries (where buildings meet the sky) at
each azimuth angle. When used in Skymask Matching, these skymasks are generated in the offline
stage and stored in a database, an example is shown above in Figure 1. As the offline stage is done
ahead of time, skymask matching requires less computing power and reduces processing times by a
factor of 10 when compared to the real-time use of the 3D building model [19]. The precomputed
skymasks are then used in the online phase for matching. The details of the generation processes are
listed in [15]. Each skymask has a resolution of 360 azimuth angles with 1-degree resolution, and 90
elevation angles with 0.1-degree resolution. They also contain the WGS84 latitude and longitude of
the location in decimal degrees format.

2.2 Semantic Segmentation of the Image Taken by Sky-pointing Camera

Pre-processing is needed before matching the fisheye camera image with the skymask in the
online stage. There are two main steps for the image processing used: 1) image segmentation by a
neural network; 2) image coordinate conversion from pixel to elevation and azimuth angles. These
will be discussed in sub-section 2.2.1 and 2.2.2, respectively.

2.2.1 Convolutional Neural Network (CNN) Training

Training datasets were collected at deep urban canyons in Hong Kong. The locations were
chosen due to its challenging urban topography. The high density of skyscrapers and other tall
buildings create steep urban canyons, reducing the accuracy of conventional GNSS positioning. The
high concentration of skyscrapers also leads to an abundance of features in a sky pointing image,
providing an ideal testing ground for skymask matching.

Over 1200 daytime images were taken using a Canon DSLR camera. Of these, 570+ images were
manually labelled and used to train the CNN semantic segmentation network. The dataset is split
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into three parts: 60% are used as a training set, 20% as the cross-validation set, and the remaining 20%
as the test set. The training dataset was labelled manually with Image Labeler application in
MATLAB, which is part of the Computer Vision Toolbox [20]. MATLAB’s Deep Learning toolbox
was also utilized to retrain Resnet50, a 50-layer CNN [21]. The trained CNN is then used for semantic
segmentation. In this paper, semantic segmentation is used to differentiate between the sky and
buildings only. In the future, however, more classes could be added. This will be discussed in further
detail in Section 4.

To further improve the segmentation accuracy, Active Contours is also applied. Active
contouring utilizes the Chan-Vese segmentation algorithm [22]. The Chan-Vese method is based on
the approach to curve evolution to separate foreground from background based on the means of two
regions.

2.2.2 Image Coordination Transformation: Pixel to GNSS Skyplot

To match the segmented fisheye image with the pre-computed skymask, the segmented image
is first converted into a format that is identical to that of the precomputed skymask, known as the
GNSS skyplot format (elevation and azimuth angles). The resolution of elevation and azimuth angle
information are identical to the pre-computed skymask in Section 2.1. For a given position in pixel,
the calculation to convert into azimuth and elevation angle is the same approach described in [3].
Assuming the optical center of the camera is zenith pointing, each pixel inside the sky view image
will be converted to a corresponding azimuth and elevation angle.

0 = E _ elimage

2 zZ
6 M
d,pix = 2 fc tan (E) ,Z € {index of pixels}

To determine the elevation angle for a pixel (x;;?fe, yzifgffe) the focal length (f;) of the fish-eye

camera is needed. Where d, ,;, is the pixel distance from the center of the sky-pointing image and
image

correlated with the elevation angle el, of the pixel. Given the center of the sky-pointing image
in pixel position (xggffe, yé?&ge), the azimuth and elevation angle can be expressed as follows:
image _ _image image
z,pix ~ “c,pix + dpiX ) cos(azz )
image _ _ image . image (2)
yz,pix - yc,pix - dpiX Tsin (aZz )

The expression is a quadratic equation that solves the azimuth and elevation angles
simultaneously. For practicality, the relationships between the angles and corresponding pixel
coordinates is precomputed offline and stored in a database. This means that during the online
matching process, the angles information can be retrieved by mapping given pixel coordinates in the
pre-compute lookup table, reducing computational load and time.

Mimage

image ;image image limage]
Z,pix e

= [azO ,ely ... az, -

®)
2.3 Skymask Matching Positioning and Heading Resolution

In the online stage, the sky-pointing fisheye image converted skymask is rotated 359 times with
an increment of 1-degree clockwise to generate 360 skymasks, each with a different heading angle.
The image converted skymask is then compared to the skymask generated from each candidate. The
matching algorithm will provide two pieces of information: 1) the location of the fisheye camera, and
2) the heading angle of the camera. The target function is to find the candidate skymask with the
smallest differences with respect to elevation angle, standard deviation, feature and heading angle.
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X, = [P, pi°"), k € {distributed candidates}
el = [ely, ..., el ..., els3s9],az = [0°,359°]
el3P model — skymask(x,,) (4)
el = image(y;) ,j = [0°,359°]

There are four methods to compare two skymasks, which are 1) Global Matching Simple
Difference (GMSD), 2) Feature Matching Standard Deviation Difference (FMSDD), 3) Feature
Matching Breaking Points Difference (FMBPD) and 4) Heading Difference (HD). In total, four set of
differences can be obtained to use for the estimation of the likelihood of the distributed candidates.

2.3.1 Global Matching Simple Difference (GMSD)

At each azimuth angle, the difference of elevation angles between the image converted skymask,

and the skymask at different candidates based on 3D model is calculated and averaged. The
image,3D model

averaged elevation angle difference will be known as the gmsd; value.

image,3D model __ |elj

image 3D model

d —ely |

gmsd;
jk

©)

360

The average elevation angle difference is obtained by summing the absolute elevation angle
difference at each azimuth angle. This difference is summed up and divided by 360 (the number of
azimuths) to acquire the average elevation angle difference at a specific heading angle. A large
average difference means the candidate skymask has a low probability to be the image converted
skymask, whereas a smaller value represents a similar overall average elevation difference, and thus
a higher probability of the candidate skymask being similar to the image converted skymask.

2.3.2 Feature Matching Standard Deviation Difference (FMSDD)

The second technique is FMSDD. At each azimuth, the elevation angle is compared to the

1mmage
average (el™®

and el3P™md¢l) to calculate its deviation from the mean. Features are defined as a
change in elevation angle between two adjacent azimuth points. The standard deviation algorithm
is used to measure the features in specified skymask. A small standard deviation indicates little to
no features, whereas a large standard deviation indicates an abundance of them. The standard
deviation of the candidate skymask is then compared to the standard deviation of the image
converted skymask. A smaller difference means higher similarity.

image _ _ ,image; 3D model 3D modely 2

360 360 (6)

fmsddj.r.rliage,SD model — \/

2.3.3 Feature Matching Breaking Points Difference (FMBPD)

The third one calculates the feature breaking points only. Breaking points are defined as points
where the elevation angle suddenly changes 10-degree or more between two adjacent azimuth points,
an example of which can be seen in Figure 2. In this secenario, the rest of the data points are treated
as being at 0 elevation angle. Algorithm 1 shows the feature identifying process in a skymask.

Comparison between Skymask and its Breaking Points
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Figure 2. Comparison between Skymask and its Breaking Points
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Algorithm 1: Determining the Feature Matching Breaking Points in a Skymask

Input: Skymask, el
Output: Skymask Breaking Points, el’

1 for each azimuth, az in el

2 calculate az and az + 1 elevation angle difference,

3 if any(|8| < 10°)

4 update el'(az) =0 (7)

5 end if

6 if any(|B| = 10°)

7 update el’(az) and adjacent azimuths to

8 end if

9 end for each azimuth, az

The breaking points are calculated for both image converted skymask (el]i.mage) and candidate

skymask (el3”™m°9¢h) By using the extremly distinctive features on a skymask only, a third FMBPD
score can be obtained by both skymask with breaking point estimation.

N ,
|el]{mage + |e13Dmodel’| — o

image,3D model __ No score
fmbpd; T ) qimage’ 3D model’ image’
el. —ely |elj

3D model’ o 8
; + |elzPmodel’| > g (8)

2.3.4 Heading Difference (HD)

The forth one calculates the heading difference between the rotated image converted skymask
and the conventional heading, which is the heading recorded by the Broadcom BCM47755 used in
this study. A smaller heading difference from the conventional heading of the image converted
skymask when matched with a candidate skymask means they are more similar to one another.

0= lljjl_f';(lageBD model _ }_:onventlonal
_ @ +360° @ < —180° )
hdjl-;?ageSD model ={p-— 360° ) > 180°
0 ~180° < ¢ < 180°

2.4 Candidate Scoring

A higher score is given to the candidate position with a higher similarity between the image
converted skymask and the candidate skymask. Gaussian distributions are assumed and used to
model the the similarity of the candidate skymasks. In theory, the sky pointing fisheye image taken
at the corresponding computer-generated GT skymask should have the smallest difference. Ten sky
pointing fisheye images are taken at the corresponding known GTs to calibrate the Gaussian
probability distribution function (PDF). A smaller elevation angle difference will obtain a bigger
probability value and therefore a higher similarity to the image converted skymask and vice versa.
The four differences are used to calculate the corresponding probability value in their respective
distributions. The combined likelihood becomes the weightings of each candicate.
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Finally, the candidate skymask with the largest combined score will be selected as the chosen
candidate skymask. The combined score will then be normalized and rescaled between 0 to 100%,
which represents the total score of the candidate. Heading angle offset corresponds to the chosen
candidate skymask.

3. Experiments Results and Analysis
3.1 Experiment Setup

In this study, the experiment locations were selected within the Tsim Sha Tsui area of Hong
Kong as shown in Figure 3. These locations were selected using the following factors, proximity to
obstacles, the height and features of nearby buildings, and ability to determine location relative to
landmarks both on the ground and by satellite image. Images were then taken at each of the selected
ground truths using a digital single-lens reflex (DSLR) camera. The DSLR (Canon 5D Mk III DSLR)
with the fisheye-len (8-15 mm f/4L EF Fisheye USM Lens) was used to capture the image and the
Galaxy Note 9 Broadcom BCM47755 was used to record the low-cost GNSS solutions and heading.
The images taken were manually categoried into 4 distinctive environments, with distinctions
specified in Table 1 below. Categorization was based on the frequency of different obstacles,
buildings and its features. Four images were chosen, one from each category, to demonstrate the
proposed algorithm.

Figure 3. Experiment Locations
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Table 1 Fisheye Image Categories, and Experiment Locations
Pos Category Environment Mean of Skymask Std of Skymask
# p (degree) [25] o (degree) [25]
1 Clean Few bu11d1ng§ and 18.18 g.44
obstacles visible
2 TtJr‘.ban‘— . Ijhgh‘ rise bulldmgs., 50 44 18.04
Distinctive distinctive feature visible
3 Urban - ngb rise buildings, 56.14 18.84
Complex mixed features
4 Multiplex High frequency of trees 36.65 18.29
and other obstacles

The experimental results are then post-processed and compared to the ground truth and

different positioning algorithms, including:
1) Allystar: Commercial GNSS solution by Allystar TAU1302+AGR6303 active antenna.
2) Broadcom: Low-cost convetional GNSS solution by Galaxy note 9 Broadcom BCM47755
3) WLS: Weighted-least-square. (WLS) [23]
4) 3DMA: Integrated solution by 3DMA GNSS algorithm on shadow matching, skymask
3DMA and likelihood-based ranging GNSS. [24]
5) SM: The skymask matching algorithm proposed in this paper.
6) Ground Truth: Data was collected at the landmark location on Google Earth. The
accurarcy is within 1-2 meters based on our experience.

The images used for testing were not used in training the CNN. In the images, the heading of
the camera (and thus the fisheye image) faces north at 0 degree in azimuth angle. During the image
collection process, the camera was aligned to true north. The north was determined by estimation
using Google Earth and observations of nearby objects. Slight manual adjustments +2¢ to the heading
was made after the images were taken to ensure heading of the image faces north for verification
purposes. Manual adjustments were also determined based on Google Earth. It is important to note
the conventional heading was also adjusted the same magnitude based to the manual adjustments.

To evaluate the accuracy of the segmentation processing on the images, they were compared to
their corresponding hand-labelled counterparts. As seen in Table 2, four images were tested to see if
the proposed method provides a consistent segmentation to differentiate between building and sky.

Table 2. Close view of Experiment Locations 1 to 4 and comparison between Neural Network
Segmented Images, Labelled Images, their respective skymasks and GT skymasks

Neural Hand
Neural Hand Network Labelled 3D Model
Pos . . Network Labelled Segmented Generated
Location Fisheye Image Image
# Segmented Image Image GT Skymask
Converted
Image Converted Skymask (i) (iii)
Skymask (i) y
1
2
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3.2 Evaluation of the Skymask generated based on Image and 3D building models

Inaccuracies were largely the result of two sources; 1) overexposure of the image due to sunlight,
and 2) failure to recognize reflective surfaces of glass buildings or buildings of a similar color to the
sky. This poses a significant challenge for the segmentation process, as all these error sources are
quite commonly encountered in the dense urban areas where the skymask matching is designed to
be most helpful. Position 3 reflects this inaccuracy. These error sources can be mitigated in several
ways. Improving the convolutional neural network could help refine pixel classification and prevent
the mislabeling of pixels. To prevent the overexposure, narrowing the aperture setting could also
help.

The skymasks included:

(i) The image converted skymask, segmented by the CNN.
(ii) The hand-labelled image converted skymask.
(iii) The ground truth (GT) skymask generated from 3D model.

The comparison calculation of the skymasks can be found below. The first comparison between
(i) and (ii) measures the accuracy of the Neural Network. Ideally, there should be no mean difference
(MD) and standard deviation difference (SDD) in elevation angles. The second comparison between
(i) and (iii) measures the discrepancy of the image converted skymask to the GT skymask generated
by 3D building model at the same location. In theory, the elevation angles MD and SDD should also

be the same. Similarity results are shown in Table 3.
el* € {elhand labelled image‘ el?&? model}

MD = el'mage — ]

op j(elimage — ety j(el* ey

(11)

360 360
Table 3. Comparison between Image-Converted Skymask and Ground Truth Skymask.

Image Converted Skymask vs Hand Image Converted Skymask vs GT Skymask
Labelled Image Skymask (degree) generated from 3D Model (degree)
Ex# | Mean Difference S.D Difference Mean Difference S.D Difference
1 1.42 0.12 -4.02 -5.05
2 -3.90 -0.22 -10.52 -1.93
3 -6.32 2.38 -9.69 0.30
4 -0.77 -0.69 8.28 9.3

The mean difference and S.D difference between the fisheye image converted skymask
compared to the hand labelled fisheye image converted skymask ranges from -6.32 to 1.42 degrees
and -0.69 to 2.38 degrees respectively. The difference is due to segmentation inaccuracy, which may
incorrectly identify building boundaries in the image. The mean difference between the fisheye image
skymask compared to the GT skymask ranges from -10.52 to 8.28 degrees. Mentioned earlier, the
segmentation inaccuracy from the neural network contributes to the difference. The second main
reason suspected is the assumption that the images are taken at mean sea level, however during the
experiments, the images might not exactly be at sea level due to handling difficulties. The change in
position will decrease the size of buildings in the image and therefore reduce the elevation angle.
Thirdly, as shown in the experiment 4, the generated skymask suggests some inaccuracies in the 3D
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building model. The level of detail in the 3D building model directly affects the accuracy of the
generated skymasks.

3.3 Positioning Results

Dots on the heatmap (score map) represent the similarity of the candidates skymasks to the
image converted skymask, ranging from dark blue (0% similarity) to dark red (100% similarity). The
heat maps are displayed below in Figure 4, with each diamond represents a different method. The
positioning error of each method is also recorded in Table 4.

Experiment 1 Experiment 2
1 22.297 § 1
22.3017
0. 222969 - 9
22.3016 | — : 0.8
e 0. L vy
g g 22.2968 24 ®
$ 22.3015 of ® 07
=] © 222067 -
= : X i =
£ 223014 (g P PROSE $ 0 g 06
8 A 22.2966 -
< 344 of = sodni 0.5
§ 223013 § podns
22.2965
0 }
% 22.3012 = o4
= g
2 of 2222941 ogt® -
B 223011 )
o
= 5523 o] 3 222063 02
223011 ¢ GT o WLS
¢ Conv ¢ 3DMA & 22,2962 94
223009| ¢ SM ¢ NMEA $83%: ’
s - 0
Atz ”“'Tit . (\1/\1/2;‘.7541;‘0 ) 11["[‘)’716 144718 114.1718 114.172 141722 1141724
atitude ecimal Degrees) Latitude (WGS84 Decimal Degrees)
Experiment 3 Experiment 4
1
| 22.2952 ...M
222081 oo SSSESE | R ) 9 goet2? __ae v oy o8 9
222979 e R e d : o
3 q &
222078 © 22295
g 48 q
a a 2
T 222077 T 22.2949 %S |
£ * o % i 10
s | :
2 222976, a !
e L d S 222048 ¢ J
b7l 2 ;
B 222075 & i
2 of = 2229471 o
@ 222074 P
£ ] 3 9
2 2 222046
2 222073 2
s 3 4 s q
222972| ¢ GT ¢ WLS . 22.2945 N ‘Gf e WLS =
¢ Conv ¢ 3DMA peaaiiiess 0 : . '
222971 6 SM ¢ NMEA ; 2204 g&”" . 3%"2’“
| . ; J
1141682 1141684  114.1686 1141688  114.169  114.1692 NMEA]
Latitude (WGS84 Decimal Degrees) 114.1742 114.1744 114.1746 114.1748 114175
Latitude (WGS84 Decimal Degrees)

Figure 4. Heatmap on the similarity between the skymasks generated based on the fisheye images
and 3D models based on the proposed skymask matching algorithm

Table 4. Performance Comparison of Positioning Results for Different Methods. Unit: meter.

Position 1 Position 2 Position 3 Position 4
Along- | Across- Along- | Across- Along- | Across Along | Across-
Method 2D 2D 2D 2D
Street Street Street Street Street -Street -Street Street
Error Error Error Error
Error Error Error Error Error Error Error Error
BroadCom 1.21 0.77 0.90 21.24 15.28 12.13 30.03 4.30 28.16 48.23 26.92 41.33
WLS 2.76 1.96 1.81 10.41 9.87 2.52 40.00 10.59 37.95 14.67 13.91 6.79
Allystar 2.31 1.26 1.70 43.72 24.73 31.66 9.39 9.33 1.06 4.54 1.19 4.46
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3DMA 3.83 3.83 0.00 2.56 1.33 1.82 10.37 9.97 2.86 17.74 7.74 14.87
SM 12.30 10.39 5.82 7.03 6.93 0.85 10.69 9.30 5.45 15.41 9.92 10.33

In Experiment 1, the results show the accuracy of the proposed Skymask Matching lags behind
other methods in open-sky areas. A 2D error increase of 12m from the low-cost GNSS position
suggests that SM should not be used in open areas. Other methods makes the positioning more
inaccurate (1-2m) as well. This result was expected, as the lack of nearby structures meant that there
were few building features to match. This is represented by the high similarity on most candidate
skymask in the open areas, as seen in the heat map, most candidate skymask are deep red in color.
There is a risk of increasing the along/across street error if the image converted skymask is matched
with a wrong skymask, demonstrated in this experiment. A simple workaround to address this
problem is to disable skymask matching when the sky takes up more than 50% of the area in a sky
pointing image. In such situations, relying on the conventional GNSS coordinates would yield better
results as satellite measurements are likely in LOS to the receiver.

Experiment 2 is located in an urban environment, an environment with multiple distinctive
high-rise buildings, which provided the features for image matching. When within these feature-rich
environments, the skymask matching method improved upon the low-cost GNSS accuracy. The 2D
error is 7m for the SM method. Overall, SM improved positioning accuracy to an acceptable degree,
and performed second best out of the post-processing methods, coming behind only 3DMA GNSS
processing, which had a position error of approximately 2 meters. The inability of NMEA and WLS
to establish an accurate position was likely due to the nature of the highly urbanized environment.
This environment, however, proved advantageous to SM, which had a bounty of distinctive features
to match with.

Experiment 3 was categorized as urban with complex features. This meant that while buildings
occupied a larger portion of these locations, resulting in poorer GNSS reception, SM also had more
complex features to match with. The SM method yielded good improvements compared to
conventional GNSS solutions and WLS method. The 2D error is about 11m for the SM method, which
is 19m improvement from the conventional result. While a noticeable improvement, the positioning
accuracy still leaves something to be desired. It should be noted that SM had similar accuracy to
3DMA GNSS. Overall, these results suggest that SM can and should be considered being
implemented in a complex feature environment and used in conjunction with other methods.

The 4th experiment belongs to the multiplex category, an environment with a balanced mix of
trees, buildings and other urban clutter. The fourth experiment showed improvements in the
accuracy of the positioning. Skymask matching reduced the positioning error from 48 to 15 meters,
with both along and across street error being substantially reduced. In this case, SM performed well,
but lacks behind other methods. This suggests SM can be used in positioning in a complex
environment and would be enhanced if SM can identify other obstacles such as trees and other urban
clutter.

3.5 Heading Resolution Results

Before any images were taken, the camera (and thus the fisheye image) was aligned to north to
as described in 3.1. Skymask matching heading error and conventional heading error for each image
relative to the true north is shown in Table 5 (positive is clockwise).

Table 5. Skymask Matching Heading Error and Conventional Heading Error
st Skymask Matching Conventional
Heading Error (°) Heading Error (°)
1 -1 -8
2 0 8
3 0 -1
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The predicted bearing offsets for images 1, 2, 3 and 4 are all within acceptable parameters. The
results show that in an urban environment with features, the boundary of buildings can be used to
accurately estimate the heading offset. Figure 5, below, compares the boundaries of the image
converted skymask and predicted candidate skymask. The boundaries of image converted skymask
is rotated/adjusted for the predicted bearing offset.

Experiment 1, Image Converted Skymask vs Candidate Skymask | Candidate Skymask
[ [ [ I
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Experiment 4, Image Converted Skymask vs Candidate Skymask
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Figure 5. E, Azimuth & Elevation comparison between Image Converted Skymask and Candidate
Skymask

All experiments show elevation angle discrepancies between the rotated image converted
skymasks and predicted candidate skymasks. In experiment 1, features were lacking, nonetheless the
few features were enough for SM to successfully gauge the orientation of the image converted
skymask by comparing to the candidate skymask. Experiment 2 shows high accuracy, likely due to
the distinctive building boundaries in the image. The accurate prediction of the bearing offset in turn
increased position accuracy. Experiment 3’s high accuracy suggests that skymask matching can
perform well in an urban environment with complex building features. Experiment 4 shows the large
discrepancies to the candidate skymask elevation. Despite this challenge, the predicted bearing offset
was only 1°. Hence, SM matching can be considered an accurate approach to estimate the heading of
the user in a rich urban environment.

3.6 Discussions
Table 6 displays the limitations and assumptions made during this study. These factors will

now be explained in further detail. The proposed skymask matching concept is similar to GNSS
shadow matching by matching satellite visibilities and building boundaries, but the Skymask
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Matching provides more features to be matched with. For example, the building edges can be
matched between image and skymask generated from 3D building model.

Table 6. Summary on the Limitations of the Proposed Skymask Matching

Process Assumptions/Limitations in this Experiment

Assumes images taken from mean sea level

Sky-pointing Fisheye Image Assumes center of images are zenith pointing

Images were only taken during the day with sunlight

Requires fully accurate training datasets

Training Dataset
raimning Latasers Hand-labelled inaccuracy

Risk of overfitting

Semantic Segmentation
& Limited number of identifying classes

Skymask Database 3D model might be outdated and/or imprecise

Limited search radius small than the error of the initial
Skymask Matching guess

Only one elevation angle at each azimuth angle

There are several limitations stemming from the usage of sky-pointing fisheye images. The first
drawback comes from the location at which the fisheye images are taken. In this study, images are
assumed to be taken at mean sea level. Due to human error in this experiment, the fisheye image
may be slightly slanted in one direction or otherwise not taken correctly, negatively affecting
accuracy because the building heights visible on the image will change. This problem can be
mitigated when used for vehicular purposes, where the mounted sky-pointing fisheye camera will
stay level.

Precautions must also be taken with the image datasets used to train the convolutional neural
network. Because the network labels each individual pixel, the images must be highly accurate. This
is a significant problem due to the hand-labelled nature of these images, human errors may result in
inconsistent labelling, especially around objects like trees. This can largely be mitigated by setting
strict guidelines on how to segment images. For example, in this project, trees were assumed to be
solid objects, any patches of sky visible between leaves and branches were ignored.

The semantic segmentation process also had some limitations. First, it requires many unique
images in the dataset to increase variation and validation accuracy, there is the risk of overfitting on
the images in the dataset. Another flaw is the limited number of classes, the current iteration of the
code can identify only 2 classes, the Sky, Building classes. This means that objects that are not
buildings, such as trees, signposts, and vehicles, are also classified as buildings. This also limits the
usefulness of semantic segmentation, as different building materials are not identified. The former
problem can be solved by labelling more unique images to increase the accuracy of the network. The
latter problem can be solved by implementing more classes for objects, including building materials.

Another limitation comes from the inaccurate precomputed skymasks. This can occur in several
ways, the 3D building model used to generate the skymask could be inaccurate, or the 3D model
was out of date, new buildings could have been constructed, or old ones were torn down, leading to
discrepancies between the fisheye image and skymask. The limitation can be solved by ensuring that
the utilized 3D maps are highly accurate and constantly updated.

The primary limitation in skymask matching comes from the search radius of 50m. If the
convolutional GNSS position error is larger than 50m, then the ability of the image matching code to
return an accurate result is limited by the search radius, reducing the ability of the code to return an
accurate result. This could be offset by increasing the size of the search radius but would also increase
computing time and power required.

4. Conclusion and Future Works
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This paper proposes a new method by introducing a new source of fisheye image data. First, a
fisheye camera is used to capture the sky view fisheye image. Then, a convolutional neural network
works in conjunction with active contouring to segment the fisheye image. The segmented image is
then converted into a skymask and matched with its pre-computed counterparts. The similarity
between the image skymask and pre-computed skymask is then regarded as the score of the position
candidate. Compared with the ray-tracing based 3DMA GNSS, the proposed algorithm can provide
similar correction in an environment with distinctive building features. In addition, the heading angle
estimated by the proposed skymask matching algorithm is very accurate. As such, skymask matching
is a promising candidate for use in vehicular navigation.

However, the proposed skymask matching method still has limitations. The image capture
process may be affected by a number of factors. The CNN is time-consuming to train due to the hand-
labelled nature of the datasets. Even after training, semantic segmentation may sometimes mislabel
building surfaces due to lens flare or reflections. The nature of algorithm used in this research also
means it only compares one elevation angle at each azimuth angle. Additionally, the precomputed
skymasks may not be accurate due to poor model quality or being outdated, while too large of a
conventional GNSS position error and lack of building features may limit the accuracy of image
matching.

In the future, the algorithm is to distinguish between not only sky and buildings but also classes
like trees and materials. Subclasses of building material will be added as well, as larger amounts of
details provide the possibility for higher position accuracy. Allowing distinction between these
semantic classes opens further avenues to increase segmentation accuracy, as areas with vehicles and
tree labels can be weighted less in scoring. While building materials can be factored into similarity
matching to allow improve results in Skymask Matching and other 3DMA GNSS processing
techniques, because different materials reflect GNSS signals differently, the ability to identify textures
could benefit raytracing GNSS. The skymask matching could also be further improved by extending
the functionality in different weather, e.g. only sunny visible weathers, for safety concern.
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