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Abstract: 3D-mapping-aided (3DMA) global navigation satellite system (GNSS) positioning that 

improves positioning performance in dense urban areas has been under development in the recent 

years, but it still faces many challenges. This paper details a new algorithm that explores the 

potential of using building boundary for positioning. Rather than applying complex simulations to 

analyze and correct signal reflections by buildings, the approach utilizes a convolutional neural 

network to differentiate between the sky and building in a sky-pointing fisheye image. A new 

skymask matching algorithm is then proposed to match the segmented fisheye images with 

skymasks generated from a 3D building model. Each matched skymask holds a latitude and 

longitude coordinate to determine the precise location of the fisheye image. The results are then 

compared with the conventional GNSS and advanced 3DMA GNSS positioning methods. The aims 

of the proposed algorithm are to increase positioning and heading accuracy in a rich urban 

environment. 

 

Keywords: GPS; GNSS; Localization; Navigation; Autonomous Driving; Urban Canyon; Land 

Application; Cameras; Image segmentation 

 

 

1. Introduction 

 

Global navigation satellite systems (GNSS) provide geographical longitude and latitude 

positioning with meter-level accuracy in open areas [1]. This accuracy, however, suffers in dense 

urban areas because buildings block, reflect, and diffract the signals. These cause errors in satellite 

positioning and reduces accuracy-in severe cases, the position error could exceed 50 meters [2, 3]. An 

improvement in the real time-positioning accuracy of low-cost GNSS systems in dense urban areas 

to within 5m would benefit many different potential applications [4], such as cloud-sourced mobile 

mapping and object tracking. As such, there is a need for a low-cost positioning device that has great 

solution availability and accuracy. 

To improve the positioning performance in urban environments, researchers have designed 

different methods to identify then correct or exclude the unhealthy measurements by receiver based 

GNSS or with extra equipment. The increased availability of open-sourced 3D building models 

allows utilization of 3D mapping aided (3DMA) GNSS positioning to improve urban positioning [4, 

5]. This includes shadow matching, ray tracing and likelihood-based ranging methods. Shadow 

matching utilizes 3D building models with building geometry to match satellite visibility [1, 6], 

allowing the exclusion of NLOS measurements [7]. Ray tracing GNSS [8, 9] and Skymask based 

3DMA GNSS [10] predicts the signal transmission path based on building geometry to calculate the 

reflection delay distance and provide correction on the pseudorange of the NLOS signals [8-10]. The 

likelihood-based ranging method is another pseudorange correction method, in which the 

conventional GNSS position is corrected via a statistical model [11]. In addition, the satellite visibility 

can be used to estimate the sky-visibility of the environment the receiver is located at [12]. Another 
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approach towards enhancing positioning accuracy in the urban environment is using extra 

equipment to collect additional data for positioning. This approach is most suitable for vehicular 

applications due to weight, space and power usage concerns. Two popular approach includes the use 

of 3D light detection and ranging (LiDAR) and the usage of fisheye cameras. LiDAR is used to retrieve 

surrounding buildings or obstacles information, which in turn can be used to perform NLOS 

classification [13]. With the ability to get building distance, pseudorange can be corrected by the 

NLOS propagation model [14]. Sky-pointing fisheye cameras are capable of detecting obstacles and 

buildings in the local environment. When used in conjunction with image processing algorithms [2, 

4, 14-17], they allow the exclusion of NLOS satellites from position calculations, improving 

positioning accuracy [15]. Furthermore, research indicates that if both LiDAR and fisheye cameras 

are used in conjunction, positioning accuracy in urban areas can be further enhanced [3]. 

Fisheye cameras are used in autonomous driving, where a front-facing camera is commonly 

used for lane detection and road sign identification. To facilitate its use in improving GNSS 

positioning performance, the fisheye camera is pointed towards the zenith, which reduces the 

probability of capturing uncertainties while allowing the use of the positions of immovable objects 

such as high-rise buildings. As such, this paper makes use of images captured from a zenith sky-

pointing fisheye camera, which are matched to computer-generated boundary skyplot (skymask) to 

obtain a position and heading. This is similar to the approach employed in the research paper [18]. 

However, this study differs in several ways. Firstly, in this research, the roll and pitch are fixed with 

a fisheye camera pointing upward, hence the 3D model can be used to generate skymask ahead of 

time, while the aforementioned paper utilizes real-time generation of computer-generated images 

from a 3D model. This study’s method uses less computing power, while the [18] study’s method 

allow generation of images better suited to the camera’s condition (pitch, roll, etc.). This study also 

utilizes a Convolutional Neural Network (CNN) to segment images into sky and building classes, 

while the [18] study uses the Otsu method to differentiate between sky and building. Semantic 

segmentation was chosen for this study due to its potential to segment additional classes in the future. 

The proposed matching algorithm can not only provide the position of the user but also the heading 

angle. These are the main novelties of this research paper. 

The proposed skymask matching method integrates GNSS, supervised deep learning, and a 

matching algorithm. This approach takes advantage of sky-pointing fisheye images and matching it 

with candidate skymask. The results are then compared with other enhanced methods of positioning. 

The rest of the paper is organized as follows. The proposed algorithm will be explained in detail in 

section 2. Section 3 describes the experimentation results. Section 4 contains the concluding remarks. 

 

2. Proposed Skymask Matching Method 

 

An overview of the skymask matching method is shown in Figure 1. This study proposes the 

calculation of the position solution and heading solution with sky-pointing fisheye image and 3D 

building model generated skymask. The method is divided into 2 main categories-offline processes 

and online processes. The offline process is done before the real-time processing. It consist of training 

the CNN and generating skymasks, which are generated outside of buildings in square grid 

intersections, with a length and width separation of 2m. In the online process, the user captures a sky 

pointing fisheye image, with initial position and heading estimated by a conventional GNSS receiver. 

Then, candidate positions are distributed around the initial positioning in a 50m radius to generate 

candidate skymasks. Meanwhile, the image is simultaneously segmented using the convolutional 

neural network to distinguish between building and sky, then converted to a binary format. Then, 

the binary image is converted from pixel format to azimuth and elevation format for comparison. The 

image converted skymask is compared to candidate skymasks using GMSD, FMSDD, FMBPD and 

HD techniques. The techniques were weighted and combined into a score to calculate the likelihood 

of the candidates. The chosen position and heading solution is determined by the highest combined 

score.  
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Figure 1. Flowchart of the Proposed Skymask Matching based on Images taken by Sky-

pointing Fisheye Camera and Skymask Generated by 3D Building Models. 

 

2.1 Skymask Generation 

 

In this paper, the sky-pointing fisheye image is compared to precompute skymasks that are 

identical to those utilized in shadow matching and skymask 3DMA GNSS. Skymasks store the 

highest elevation angle of the surrounding building boundaries (where buildings meet the sky) at 

each azimuth angle. When used in Skymask Matching, these skymasks are generated in the offline 

stage and stored in a database, an example is shown above in Figure 1. As the offline stage is done 

ahead of time, skymask matching requires less computing power and reduces processing times by a 

factor of 10 when compared to the real-time use of the 3D building model [19]. The precomputed 

skymasks are then used in the online phase for matching. The details of the generation processes are 

listed in [15]. Each skymask has a resolution of 360 azimuth angles with 1-degree resolution, and 90 

elevation angles with 0.1-degree resolution. They also contain the WGS84 latitude and longitude of 

the location in decimal degrees format. 

 

2.2 Semantic Segmentation of the Image Taken by Sky-pointing Camera 

 

Pre-processing is needed before matching the fisheye camera image with the skymask in the 

online stage. There are two main steps for the image processing used: 1) image segmentation by a 

neural network; 2) image coordinate conversion from pixel to elevation and azimuth angles. These 

will be discussed in sub-section 2.2.1 and 2.2.2, respectively. 

 

2.2.1 Convolutional Neural Network (CNN) Training 

 

Training datasets were collected at deep urban canyons in Hong Kong. The locations were 

chosen due to its challenging urban topography. The high density of skyscrapers and other tall 

buildings create steep urban canyons, reducing the accuracy of conventional GNSS positioning. The 

high concentration of skyscrapers also leads to an abundance of features in a sky pointing image, 

providing an ideal testing ground for skymask matching. 

Over 1200 daytime images were taken using a Canon DSLR camera. Of these, 570+ images were 

manually labelled and used to train the CNN semantic segmentation network. The dataset is split 
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into three parts: 60% are used as a training set, 20% as the cross-validation set, and the remaining 20% 

as the test set. The training dataset was labelled manually with Image Labeler application in 

MATLAB, which is part of the Computer Vision Toolbox [20]. MATLAB’s Deep Learning toolbox 

was also utilized to retrain Resnet50, a 50-layer CNN [21]. The trained CNN is then used for semantic 

segmentation. In this paper, semantic segmentation is used to differentiate between the sky and 

buildings only. In the future, however, more classes could be added. This will be discussed in further 

detail in Section 4. 

To further improve the segmentation accuracy, Active Contours is also applied. Active 

contouring utilizes the Chan-Vese segmentation algorithm [22]. The Chan-Vese method is based on 

the approach to curve evolution to separate foreground from background based on the means of two 

regions.  

 

2.2.2 Image Coordination Transformation: Pixel to GNSS Skyplot  

 

To match the segmented fisheye image with the pre-computed skymask, the segmented image 

is first converted into a format that is identical to that of the precomputed skymask, known as the 

GNSS skyplot format (elevation and azimuth angles). The resolution of elevation and azimuth angle 

information are identical to the pre-computed skymask in Section 2.1. For a given position in pixel, 

the calculation to convert into azimuth and elevation angle is the same approach described in [3]. 

Assuming the optical center of the camera is zenith pointing, each pixel inside the sky view image 

will be converted to a corresponding azimuth and elevation angle. 

𝜃 =
𝜋

2
− 𝑒𝑙𝑧

image
 

𝑑𝑧,pix = 2 ∙ 𝑓𝑐 tan (
𝜃

2
) , 𝑧 ∈ {𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠} 

(1)  

To determine the elevation angle for a pixel (𝑥𝑧,pix
image

, 𝑦𝑧,pix
image

) the focal length (𝑓𝑐) of the fish-eye 

camera is needed. Where 𝑑𝑧,𝑝𝑖𝑥, is the pixel distance from the center of the sky-pointing image and 

correlated with the elevation angle 𝑒𝑙𝑧
image

 of the pixel. Given the center of the sky-pointing image 

in pixel position (𝑥c,pix
image

, 𝑦c,pix
image

), the azimuth and elevation angle can be expressed as follows: 

𝑥𝑧,pix
image

= 𝑥𝑐,pix
image

+ 𝑑pix ∙ cos(𝑎𝑧𝒛
image

) 

𝑦𝑧,pix
image

= 𝑦𝑐,pix
image

− 𝑑pix ∙ 𝑠𝑖𝑛 (𝑎𝑧𝒛
image

) 
(2)  

 The expression is a quadratic equation that solves the azimuth and elevation angles 

simultaneously. For practicality, the relationships between the angles and corresponding pixel 

coordinates is precomputed offline and stored in a database. This means that during the online 

matching process, the angles information can be retrieved by mapping given pixel coordinates in the 

pre-compute lookup table, reducing computational load and time. 

 

𝐌𝑧,pix
image

= [𝑎𝑧0
image

, 𝑒𝑙0
image

… 𝑎𝑧𝑧
image

, 𝑒𝑙𝑧
image

] 

 
(3)  

2.3 Skymask Matching Positioning and Heading Resolution 

 

In the online stage, the sky-pointing fisheye image converted skymask is rotated 359 times with 

an increment of 1-degree clockwise to generate 360 skymasks, each with a different heading angle. 

The image converted skymask is then compared to the skymask generated from each candidate. The 

matching algorithm will provide two pieces of information: 1) the location of the fisheye camera, and 

2) the heading angle of the camera. The target function is to find the candidate skymask with the 

smallest differences with respect to elevation angle, standard deviation, feature and heading angle.  
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𝐱𝑘 = [𝑝𝑘
𝑙𝑎𝑡 , 𝑝𝑘

𝑙𝑜𝑛], 𝑘 ∈ {𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠} 
𝐞𝐥 = [𝑒𝑙0, … , 𝑒𝑙𝑎𝑧 , … , 𝑒𝑙359], 𝑎𝑧 = [0°, 359°] 

𝐞𝐥𝑘
3D model = skymask(𝐱𝑘)  

𝐞𝐥𝑗
image

= image(𝜓𝑗) , 𝑗 = [0°, 359°] 

(4)  

There are four methods to compare two skymasks, which are 1) Global Matching Simple 

Difference (GMSD), 2) Feature Matching Standard Deviation Difference (FMSDD), 3) Feature 

Matching Breaking Points Difference (FMBPD) and 4) Heading Difference (HD). In total, four set of 

differences can be obtained to use for the estimation of the likelihood of the distributed candidates. 

 

2.3.1 Global Matching Simple Difference (GMSD) 

 

At each azimuth angle, the difference of elevation angles between the image converted skymask, 

and the skymask at different candidates based on 3D model is calculated and averaged. The 

averaged elevation angle difference will be known as the 𝑔𝑚𝑠𝑑𝑗.𝑘
image,3D model

 value. 

𝑔𝑚𝑠𝑑𝑗.𝑘
image,3D model

=
|𝐞𝐥𝑗

image
− 𝐞𝐥𝑘

3D model|

360
 (5)  

 The average elevation angle difference is obtained by summing the absolute elevation angle 

difference at each azimuth angle. This difference is summed up and divided by 360 (the number of 

azimuths) to acquire the average elevation angle difference at a specific heading angle. A large 

average difference means the candidate skymask has a low probability to be the image converted 

skymask, whereas a smaller value represents a similar overall average elevation difference, and thus 

a higher probability of the candidate skymask being similar to the image converted skymask. 

 

2.3.2 Feature Matching Standard Deviation Difference (FMSDD) 

 

The second technique is FMSDD. At each azimuth, the elevation angle is compared to the 

average (𝐞𝐥𝑗
image̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐞𝐥𝑘

3D model̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) to calculate its deviation from the mean. Features are defined as a 

change in elevation angle between two adjacent azimuth points. The standard deviation algorithm 

is used to measure the features in specified skymask. A small standard deviation indicates little to 

no features, whereas a large standard deviation indicates an abundance of them. The standard 

deviation of the candidate skymask is then compared to the standard deviation of the image 

converted skymask. A smaller difference means higher similarity. 

𝑓𝑚𝑠𝑑𝑑𝑗.𝑘
image,3D model

= √
(𝐞𝐥𝑗

image
− 𝐞𝐥𝑗

image̅̅ ̅̅ ̅̅ ̅̅ ̅)2

360
− √(𝐞𝐥𝑘

3D model − 𝐞𝐥𝑘
3D model)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

360
 

 

(6)  

2.3.3 Feature Matching Breaking Points Difference (FMBPD) 

 

The third one calculates the feature breaking points only. Breaking points are defined as points 

where the elevation angle suddenly changes 10-degree or more between two adjacent azimuth points, 

an example of which can be seen in Figure 2. In this secenario, the rest of the data points are treated 

as being at 0 elevation angle. Algorithm 1 shows the feature identifying process in a skymask. 

 

 
Figure 2. Comparison between Skymask and its Breaking Points 
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Algorithm 1: Determining the Feature Matching Breaking Points in a Skymask 

Input:      Skymask, 𝐞𝐥 

Output:    Skymask Breaking Points, 𝐞𝐥′ 

 

1      for each azimuth, 𝑎𝑧 in 𝐞𝐥 

2        calculate 𝑎𝑧 and 𝑎𝑧 + 1 elevation angle difference, 𝛽 

3        if any(|𝛽| < 10°) 

4          update 𝐞𝐥′(𝑎𝑧) = 0 

5        end if 

6        if any(|𝛽| ≥ 10°) 

7          update 𝐞𝐥′(𝑎𝑧) and adjacent azimuths to 𝛽 

8        end if 

9      end for each azimuth, 𝑎𝑧 

 

(7)  

 The breaking points are calculated for both image converted skymask (𝐞𝐥𝑗
image

) and candidate 

skymask (𝐞𝐥𝑘
3D model). By using the extremly distinctive features on a skymask only, a third FMBPD 

score can be obtained by both skymask with breaking point estimation. 

 

𝑓𝑚𝑏𝑝𝑑𝑗.𝑘
image,3D model

= {
No score |𝐞𝐥𝑗

image′

| + |𝐞𝐥𝑘
3D model′

| = 0°

𝐞𝐥𝑗
image′

− 𝐞𝐥𝑘
3D model′

|𝐞𝐥𝑗
image′

| + |𝐞𝐥𝑘
3D model′

| > 0°
 

 

(8)  

 

2.3.4 Heading Difference (HD) 

 

 The forth one calculates the heading difference between the rotated image converted skymask 

and the conventional heading, which is the heading recorded by the Broadcom BCM47755 used in 

this study. A smaller heading difference from the conventional heading of the image converted 

skymask when matched with a candidate skymask means they are more similar to one another. 

𝜑 = 𝜓𝑗,𝑘
image,3D model

− 𝜓𝑗
conventional 

ℎ𝑑𝑗,𝑘
image,3D model

= {

𝜑 + 360𝑜 𝜑 < −180𝑜

𝜑 − 360𝑜 𝜑 > 180𝑜

𝜑 −180𝑜 ≤ 𝜑 ≤ 180𝑜
 

(9)  

 

2.4 Candidate Scoring 

 

A higher score is given to the candidate position with a higher similarity between the image 

converted skymask and the candidate skymask. Gaussian distributions are assumed and used to 

model the the similarity of the candidate skymasks. In theory, the sky pointing fisheye image taken 

at the corresponding computer-generated GT skymask should have the smallest difference. Ten sky 

pointing fisheye images are taken at the corresponding known GTs to calibrate the Gaussian 

probability distribution function (PDF). A smaller elevation angle difference will obtain a bigger 

probability value and therefore a higher similarity to the image converted skymask and vice versa. 

The four differences are used to calculate the corresponding probability value in their respective 

distributions. The combined likelihood becomes the weightings of each candicate. 
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𝑠𝑔𝑚𝑠𝑑,𝑗,𝑘
image,3D model

=
1

8 ∗ √2𝜋
𝑒

−
1
2

(
𝑔𝑚𝑠𝑑𝑗.𝑘

image,3D model

8
)

2

 

𝑠𝑓𝑚𝑠𝑑𝑑,𝑗,𝑘
image,3D model

=
1

15 ∗ √2𝜋
𝑒

−
1
2

(
𝑓𝑚𝑠𝑑𝑑𝑗.𝑘

image,3D model

15
)

2

 

𝑠𝑓𝑚𝑏𝑝𝑑,𝑗,𝑘
image,3D model

=
1

20 ∗ √2𝜋
𝑒

−
1
2

(
𝑓𝑚𝑏𝑝𝑑𝑗.𝑘

image,3D model

20
)

2

 

𝑠ℎ𝑑,𝑗,𝑘
image,3D model

=
1

40 ∗ √2𝜋
𝑒

−
1
2

(
ℎ𝑑𝑗.𝑘

image,3D model

40
)

2

 

 

𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑗,𝑘
image,3D model

= 𝑠𝑔𝑚𝑠𝑑,𝑗,𝑘
image,3D model

+ 𝑠𝑓𝑚𝑠𝑑𝑑,𝑗,𝑘
image,3D model

+ 𝑠𝑓𝑚𝑏𝑝𝑑,𝑗,𝑘
image,3D model

+ 𝑠ℎ𝑑,𝑗,𝑘
image,3D model

 

(10)  

  

Finally, the candidate skymask with the largest combined score will be selected as the chosen 

candidate skymask. The combined score will then be normalized and rescaled between 0 to 100%, 

which represents the total score of the candidate. Heading angle offset corresponds to the chosen 

candidate skymask. 

 

3. Experiments Results and Analysis 

 

3.1 Experiment Setup 

 

In this study, the experiment locations were selected within the Tsim Sha Tsui area of Hong 

Kong as shown in Figure 3. These locations were selected using the following factors, proximity to 

obstacles, the height and features of nearby buildings, and ability to determine location relative to 

landmarks both on the ground and by satellite image. Images were then taken at each of the selected 

ground truths using a digital single-lens reflex (DSLR) camera. The DSLR (Canon 5D Mk III DSLR) 

with the fisheye-len (8-15 mm f/4L EF Fisheye USM Lens) was used to capture the image and the 

Galaxy Note 9 Broadcom BCM47755 was used to record the low-cost GNSS solutions and heading. 

The images taken were manually categoried into 4 distinctive environments, with distinctions 

specified in Table 1 below. Categorization was based on the frequency of different obstacles, 

buildings and its features. Four images were chosen, one from each category, to demonstrate the 

proposed algorithm. 

 

 
Figure 3. Experiment Locations 
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Table 1 Fisheye Image Categories, and Experiment Locations 

Pos 

# 

Category Environment Mean of Skymask 

𝝁 (degree) [25] 

Std of Skymask 

𝝈 (degree) [25] 

1 Clean Few buildings and 

obstacles visible 
18.18 8.44 

2 Urban – 

Distinctive 

High rise buildings, 

distinctive feature visible 
52.44 18.04 

3 Urban – 

Complex 

High rise buildings, 

mixed features 
56.14 18.84 

4 Multiplex High frequency of trees 

and other obstacles 
36.65 18.29 

 

The experimental results are then post-processed and compared to the ground truth and 

different positioning algorithms, including: 

1) Allystar: Commercial GNSS solution by Allystar TAU1302+AGR6303 active antenna. 

2) Broadcom: Low-cost convetional GNSS solution by Galaxy note 9 Broadcom BCM47755 

3) WLS: Weighted-least-square. (WLS) [23] 

4) 3DMA: Integrated solution by 3DMA GNSS algorithm on shadow matching, skymask 

3DMA and likelihood-based ranging GNSS. [24] 

5) SM: The skymask matching algorithm proposed in this paper. 

6) Ground Truth: Data was collected at the landmark location on Google Earth. The 

accurarcy is within 1-2 meters based on our experience. 

The images used for testing were not used in training the CNN. In the images, the heading of 

the camera (and thus the fisheye image) faces north at 0 degree in azimuth angle. During the image 

collection process, the camera was aligned to true north. The north was determined by estimation 

using Google Earth and observations of nearby objects. Slight manual adjustments ±2º to the heading 

was made after the images were taken to ensure heading of the image faces north for verification 

purposes. Manual adjustments were also determined based on Google Earth. It is important to note 

the conventional heading was also adjusted the same magnitude based to the manual adjustments. 

To evaluate the accuracy of the segmentation processing on the images, they were compared to 

their corresponding hand-labelled counterparts. As seen in Table 2, four images were tested to see if 

the proposed method provides a consistent segmentation to differentiate between building and sky.  

 

Table 2. Close view of Experiment Locations 1 to 4 and comparison between Neural Network 

Segmented Images, Labelled Images, their respective skymasks and GT skymasks  

Pos 

# 
Location Fisheye Image 

Neural 

Network 

Segmented 

Image 

Hand 

Labelled 

Image 

 

Neural 

Network 

Segmented 

Image 

Converted 

Skymask (i) 

Hand 

Labelled 

Image 

Converted 

Skymask (ii) 

3D Model 

Generated 

GT Skymask 

(iii) 

1 

       

2 

       

3 
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4 

       

 

3.2 Evaluation of the Skymask generated based on Image and 3D building models 

 

Inaccuracies were largely the result of two sources; 1) overexposure of the image due to sunlight, 

and 2) failure to recognize reflective surfaces of glass buildings or buildings of a similar color to the 

sky. This poses a significant challenge for the segmentation process, as all these error sources are 

quite commonly encountered in the dense urban areas where the skymask matching is designed to 

be most helpful. Position 3 reflects this inaccuracy. These error sources can be mitigated in several 

ways. Improving the convolutional neural network could help refine pixel classification and prevent 

the mislabeling of pixels. To prevent the overexposure, narrowing the aperture setting could also 

help.  

The skymasks included: 

(i) The image converted skymask, segmented by the CNN. 

(ii) The hand-labelled image converted skymask. 

(iii) The ground truth (GT) skymask generated from 3D model.  

 

The comparison calculation of the skymasks can be found below. The first comparison between 

(i) and (ii) measures the accuracy of the Neural Network. Ideally, there should be no mean difference 

(MD) and standard deviation difference (SDD) in elevation angles. The second comparison between 

(i) and (iii) measures the discrepancy of the image converted skymask to the GT skymask generated 

by 3D building model at the same location. In theory, the elevation angles MD and SDD should also 

be the same. Similarity results are shown in Table 3. 

𝐞𝐥∗ ∈ {𝐞𝐥hand labelled image, 𝐞𝐥𝐺𝑇
3D model} 

 

MD = 𝐞𝐥𝐢𝐦𝐚𝐠𝐞̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐞𝐥∗
̅̅ ̅̅  

 

SDD = √
(𝐞𝐥image − 𝐞𝐥image̅̅ ̅̅ ̅̅ ̅̅ ̅)2

360
− √

(𝐞𝐥∗ − 𝐞𝐥∗
̅̅ ̅̅ )2

360
 

(11)  

Table 3. Comparison between Image-Converted Skymask and Ground Truth Skymask.  

 Image Converted Skymask vs Hand 

Labelled Image Skymask (degree) 

Image Converted Skymask vs GT Skymask 

generated from 3D Model (degree) 

Ex# Mean Difference S.D Difference Mean Difference S.D Difference 

1 1.42 0.12 -4.02 -5.05 

2 -3.90 -0.22 -10.52 -1.93 

3 -6.32 2.38 -9.69 0.30 

4 -0.77 -0.69 8.28 -9.3 

 

 The mean difference and S.D difference between the fisheye image converted skymask 

compared to the hand labelled fisheye image converted skymask ranges from -6.32 to 1.42 degrees 

and -0.69 to 2.38 degrees respectively. The difference is due to segmentation inaccuracy, which may 

incorrectly identify building boundaries in the image. The mean difference between the fisheye image 

skymask compared to the GT skymask ranges from -10.52 to 8.28 degrees. Mentioned earlier, the 

segmentation inaccuracy from the neural network contributes to the difference. The second main 

reason suspected is the assumption that the images are taken at mean sea level, however during the 

experiments, the images might not exactly be at sea level due to handling difficulties. The change in 

position will decrease the size of buildings in the image and therefore reduce the elevation angle. 

Thirdly, as shown in the experiment 4, the generated skymask suggests some inaccuracies in the 3D 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2020                   

Peer-reviewed version available at Sensors 2020, 20, 4728; doi:10.3390/s20174728

https://doi.org/10.3390/s20174728


 10 of 16 

 

building model. The level of detail in the 3D building model directly affects the accuracy of the 

generated skymasks. 

 

3.3 Positioning Results 

 

Dots on the heatmap (score map) represent the similarity of the candidates skymasks to the 

image converted skymask, ranging from dark blue (0% similarity) to dark red (100% similarity). The 

heat maps are displayed below in Figure 4, with each diamond represents a different method. The 

positioning error of each method is also recorded in Table 4. 

 

Experiment 1  Experiment 2  

  

Experiment 3  Experiment 4  

 
 

Figure 4. Heatmap on the similarity between the skymasks generated based on the fisheye images 

and 3D models based on the proposed skymask matching algorithm 

 

Table 4. Performance Comparison of Positioning Results for Different Methods. Unit: meter. 

Method 

Position 1 Position 2 Position 3 Position 4 

2D 

Error 

Along-

Street 

Error 

Across-

Street 

Error 

2D 

Error 

Along-

Street 

Error 

Across-

Street 

Error 

2D 

Error 

Along-

Street 

Error 

Across

-Street 

Error 

2D 

Error 

Along 

-Street 

Error 

Across-

Street 

Error 

BroadCom 1.21 0.77 0.90 21.24 15.28 12.13 30.03 4.30 28.16 48.23 26.92 41.33 

WLS 2.76 1.96 1.81 10.41 9.87 2.52 40.00 10.59 37.95 14.67 13.91 6.79 

Allystar 2.31 1.26 1.70 43.72 24.73 31.66 9.39 9.33 1.06 4.54 1.19 4.46 
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3DMA 3.83 3.83 0.00 2.56 1.33 1.82 10.37 9.97 2.86 17.74 7.74 14.87 

SM 12.30 10.39 5.82 7.03 6.93 0.85 10.69 9.30 5.45 15.41 9.92 10.33 

 

In Experiment 1, the results show the accuracy of the proposed Skymask Matching lags behind 

other methods in open-sky areas. A 2D error increase of 12m from the low-cost GNSS position 

suggests that SM should not be used in open areas. Other methods makes the positioning more 

inaccurate (1-2m) as well. This result was expected, as the lack of nearby structures meant that there 

were few building features to match. This is represented by the high similarity on most candidate 

skymask in the open areas, as seen in the heat map, most candidate skymask are deep red in color. 

There is a risk of increasing the along/across street error if the image converted skymask is matched 

with a wrong skymask, demonstrated in this experiment. A simple workaround to address this 

problem is to disable skymask matching when the sky takes up more than 50% of the area in a sky 

pointing image. In such situations, relying on the conventional GNSS coordinates would yield better 

results as satellite measurements are likely in LOS to the receiver. 

Experiment 2 is located in an urban environment, an environment with multiple distinctive 

high-rise buildings, which provided the features for image matching. When within these feature-rich 

environments, the skymask matching method improved upon the low-cost GNSS accuracy. The 2D 

error is 7m for the SM method. Overall, SM improved positioning accuracy to an acceptable degree, 

and performed second best out of the post-processing methods, coming behind only 3DMA GNSS 

processing, which had a position error of approximately 2 meters. The inability of NMEA and WLS 

to establish an accurate position was likely due to the nature of the highly urbanized environment. 

This environment, however, proved advantageous to SM, which had a bounty of distinctive features 

to match with.  

 Experiment 3 was categorized as urban with complex features. This meant that while buildings 

occupied a larger portion of these locations, resulting in poorer GNSS reception, SM also had more 

complex features to match with. The SM method yielded good improvements compared to 

conventional GNSS solutions and WLS method. The 2D error is about 11m for the SM method, which 

is 19m improvement from the conventional result. While a noticeable improvement, the positioning 

accuracy still leaves something to be desired. It should be noted that SM had similar accuracy to 

3DMA GNSS. Overall, these results suggest that SM can and should be considered being 

implemented in a complex feature environment and used in conjunction with other methods. 

The 4th experiment belongs to the multiplex category, an environment with a balanced mix of 

trees, buildings and other urban clutter. The fourth experiment showed improvements in the 

accuracy of the positioning. Skymask matching reduced the positioning error from 48 to 15 meters, 

with both along and across street error being substantially reduced. In this case, SM performed well, 

but lacks behind other methods. This suggests SM can be used in positioning in a complex 

environment and would be enhanced if SM can identify other obstacles such as trees and other urban 

clutter. 

 

3.5 Heading Resolution Results 

 

Before any images were taken, the camera (and thus the fisheye image) was aligned to north to 

as described in 3.1. Skymask matching heading error and conventional heading error for each image 

relative to the true north is shown in Table 5 (positive is clockwise).  

 

Table 5. Skymask Matching Heading Error and Conventional Heading Error  

Experiment 
Skymask Matching 

Heading Error (°) 

Conventional 

Heading Error (°) 

1 -1 -8 

2 0 8 

3 0 -1 
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4 1 -45 

 

The predicted bearing offsets for images 1, 2, 3 and 4 are all within acceptable parameters. The 

results show that in an urban environment with features, the boundary of buildings can be used to 

accurately estimate the heading offset. Figure 5, below, compares the boundaries of the image 

converted skymask and predicted candidate skymask. The boundaries of image converted skymask 

is rotated/adjusted for the predicted bearing offset.  

 

 

 

 

 
Figure 5. E, Azimuth & Elevation comparison between Image Converted Skymask and Candidate 

Skymask 

 

All experiments show elevation angle discrepancies between the rotated image converted 

skymasks and predicted candidate skymasks. In experiment 1, features were lacking, nonetheless the 

few features were enough for SM to successfully gauge the orientation of the image converted 

skymask by comparing to the candidate skymask. Experiment 2 shows high accuracy, likely due to 

the distinctive building boundaries in the image. The accurate prediction of the bearing offset in turn 

increased position accuracy. Experiment 3’s high accuracy suggests that skymask matching can 

perform well in an urban environment with complex building features. Experiment 4 shows the large 

discrepancies to the candidate skymask elevation. Despite this challenge, the predicted bearing offset 

was only 1°. Hence, SM matching can be considered an accurate approach to estimate the heading of 

the user in a rich urban environment. 

 

3.6 Discussions  

 

Table 6 displays the limitations and assumptions made during this study. These factors will 

now be explained in further detail. The proposed skymask matching concept is similar to GNSS 

shadow matching by matching satellite visibilities and building boundaries, but the Skymask 
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Matching provides more features to be matched with. For example, the building edges can be 

matched between image and skymask generated from 3D building model.  

 

Table 6. Summary on the Limitations of the Proposed Skymask Matching  

Process Assumptions/Limitations in this Experiment 

Sky-pointing Fisheye Image 

Assumes images taken from mean sea level 

Assumes center of images are zenith pointing 

Images were only taken during the day with sunlight 

Training Datasets 
Requires fully accurate training datasets 

Hand-labelled inaccuracy 

Semantic Segmentation 
Risk of overfitting 

Limited number of identifying classes 

Skymask Database 3D model might be outdated and/or imprecise 

Skymask Matching 

Limited search radius small than the error of the initial 

guess  

Only one elevation angle at each azimuth angle 

 

There are several limitations stemming from the usage of sky-pointing fisheye images. The first 

drawback comes from the location at which the fisheye images are taken. In this study, images are 

assumed to be taken at mean sea level. Due to human error in this experiment, the fisheye image 

may be slightly slanted in one direction or otherwise not taken correctly, negatively affecting 

accuracy because the building heights visible on the image will change. This problem can be 

mitigated when used for vehicular purposes, where the mounted sky-pointing fisheye camera will 

stay level. 

Precautions must also be taken with the image datasets used to train the convolutional neural 

network. Because the network labels each individual pixel, the images must be highly accurate. This 

is a significant problem due to the hand-labelled nature of these images, human errors may result in 

inconsistent labelling, especially around objects like trees. This can largely be mitigated by setting 

strict guidelines on how to segment images. For example, in this project, trees were assumed to be 

solid objects, any patches of sky visible between leaves and branches were ignored. 

The semantic segmentation process also had some limitations. First, it requires many unique 

images in the dataset to increase variation and validation accuracy, there is the risk of overfitting on 

the images in the dataset. Another flaw is the limited number of classes, the current iteration of the 

code can identify only 2 classes, the Sky, Building classes. This means that objects that are not 

buildings, such as trees, signposts, and vehicles, are also classified as buildings. This also limits the 

usefulness of semantic segmentation, as different building materials are not identified. The former 

problem can be solved by labelling more unique images to increase the accuracy of the network. The 

latter problem can be solved by implementing more classes for objects, including building materials.  

Another limitation comes from the inaccurate precomputed skymasks. This can occur in several 

ways, the 3D building model used to generate the skymask could be inaccurate, or the 3D model 

was out of date, new buildings could have been constructed, or old ones were torn down, leading to 

discrepancies between the fisheye image and skymask. The limitation can be solved by ensuring that 

the utilized 3D maps are highly accurate and constantly updated. 

The primary limitation in skymask matching comes from the search radius of 50m. If the 

convolutional GNSS position error is larger than 50m, then the ability of the image matching code to 

return an accurate result is limited by the search radius, reducing the ability of the code to return an 

accurate result. This could be offset by increasing the size of the search radius but would also increase 

computing time and power required. 

 

4. Conclusion and Future Works 
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This paper proposes a new method by introducing a new source of fisheye image data. First, a 

fisheye camera is used to capture the sky view fisheye image. Then, a convolutional neural network 

works in conjunction with active contouring to segment the fisheye image. The segmented image is 

then converted into a skymask and matched with its pre-computed counterparts. The similarity 

between the image skymask and pre-computed skymask is then regarded as the score of the position 

candidate. Compared with the ray-tracing based 3DMA GNSS, the proposed algorithm can provide 

similar correction in an environment with distinctive building features. In addition, the heading angle 

estimated by the proposed skymask matching algorithm is very accurate. As such, skymask matching 

is a promising candidate for use in vehicular navigation. 

However, the proposed skymask matching method still has limitations. The image capture 

process may be affected by a number of factors. The CNN is time-consuming to train due to the hand-

labelled nature of the datasets. Even after training, semantic segmentation may sometimes mislabel 

building surfaces due to lens flare or reflections. The nature of algorithm used in this research also 

means it only compares one elevation angle at each azimuth angle. Additionally, the precomputed 

skymasks may not be accurate due to poor model quality or being outdated, while too large of a 

conventional GNSS position error and lack of building features may limit the accuracy of image 

matching. 

In the future, the algorithm is to distinguish between not only sky and buildings but also classes 

like trees and materials. Subclasses of building material will be added as well, as larger amounts of 

details provide the possibility for higher position accuracy. Allowing distinction between these 

semantic classes opens further avenues to increase segmentation accuracy, as areas with vehicles and 

tree labels can be weighted less in scoring. While building materials can be factored into similarity 

matching to allow improve results in Skymask Matching and other 3DMA GNSS processing 

techniques, because different materials reflect GNSS signals differently, the ability to identify textures 

could benefit raytracing GNSS. The skymask matching could also be further improved by extending 

the functionality in different weather, e.g. only sunny visible weathers, for safety concern.  
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