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Abstract 

As fossil-fueled heating in the building sector is responsible for 16 % of Germanys total CO2 
emissions, it is of great importance to use climate-neutral alternatives for the decarbonization 
of this sector. Options for the climate-neutral heating of buildings include electricity or hydrogen 
as energy carriers, both explicitly considered by German policy. In this paper, bottom-up 
studies are conducted to investigate the role of hydrogen for the climate-neutral energy supply 
of ten selected residential buildings in comparison to electricity-based systems. Based on a 
selection of as different typical buildings as possible for single- (SFH) and multi-family houses 
(MFH) of different construction years, demand profiles are simulated for each building and the 
respective cost-optimal supply system is determined. For the construction of this system, the 
electricity-based technologies available are electric heater and heat pump as well as the 
hydrogen-based technologies hydrogen boiler and fuel cell combined heat and power (CHP) 
system. Based on the results of the optimization, sensitivity analyses are performed. These 
analyses aim to identify threshold values of the hydrogen price for the use of hydrogen in 
building energy systems as well as to make the quantities of hydrogen consumed visible. 
The identified threshold values show the significant role of hydrogen-operated CHP in MFH if 
the hydrogen price reaches 0.17 €/kWhH2 in 2050 at an electricity price of 0.31 €/kWhel. So, 
hydrogen-based energy systems represent an economically viable alternative to electricity-
based systems with heat pumps. We identify electricity to hydrogen price ratios for the 
economically viable use of hydrogen in the examined buildings that range from 1.67 to 2.82. 
According to these ratios, the economically reasonable use of hydrogen in buildings can be 
derived. For the individual building groups for the year 2050, a ratio of 2.5 can be determined 
for SFH and 1.8 for MFH, that is favored by the use of CHP which also supplies electricity to 
the buildings. However, the role hydrogen will finally play in German residential buildings in the 
future depends to a large extent on political decisions on distribution issues and price signals. 
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Highlights 

• Hydrogen can play a significant role in German residential buildings in the future 

• Price of hydrogen does not appear to be a showstopper 

• An electricity to hydrogen price ratio of 2.5 for SFH and 1.8 for MFH makes hydrogen 
economically viable in the buildings considered for 2050 

• Hydrogen can be economically viable in the future compared to heat pumps 

• Choice between hydrogen and heat pumps can be made via price signals by policy 

• It is crucial where the initially small quantities of hydrogen are to be used 

1 Introduction 

With the Climate Protection Act of 2021, the German government set the goal of reaching 
climate-neutrality in all sectors by 2045 [1]. As one of these sectors, buildings account for 16% 
(as of 2020) of Germany’s total CO2 emissions due to the use of fuels for heating and hot 
water generation [2]. In order to achieve a greenhouse gas (GHG) neutral building sector, the 
National Hydrogen Strategy explicitly specifies the use of hydrogen in the heating market as 
one of its integral components, in addition to the electrification process that is already taking 
place [3]. One way to use hydrogen in the building sector is by repurposing existing 
infrastructure, such as conversion of the natural gas grid and building energy system devices 
to be able to utilize hydrogen. The steps of such a transformation are outlined in Figure 1. The 
first phase would comprise the transition from the state-of-the-art natural gas grid to a 
demonstration grid operating with a blend of hydrogen. Such a project is currently being carried 
out by the Cadent and Northern Gas Networks in the UK: HyDeploy expects to demonstrate 
technical feasibility by blending 20% hydrogen into a distribution grid by 2023 [4]. A similar 
project is conducted by Netze BW in Germany, who plan to demonstrate a blend of even up to 
30 % hydrogen into the gas grid until 2023 [5]. After this, the final transitional step would be a 
gas infrastructure that runs exclusively on hydrogen which, e.g., is the goal of the H21 project, 
being led by Northern Gas Networks in the UK [6]. This new hydrogen infrastructure could 
consist of actual new construction or the repurposing of the existing natural gas infrastructure. 
Decentralized generation and the storage and use of hydrogen is also possible and would even 
enable hydrogen supply for buildings where there was no existing gas grid, or for which new 
construction would be too expensive. 
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The role hydrogen will play in building energy systems will depend heavily on its price and the 
heat production costs of hydrogen technologies compared to alternatives, especially heat 
pumps. On this topic, the Hydrogen Council presented a study in which the competitiveness 
of hydrogen in various sectors was examined. It revealed that falling costs for hydrogen will be 
a primary driver of its competitiveness. For the building sector, a comparison with heat pumps 
shows a threshold price, whereby the use of hydrogen becomes the more economical 
alternative, of 4.54 €/kgH2 for renovated buildings and 2.52 €/kgH2 for new ones [7]. The cost 
of climate-friendly hydrogen depends on how it is produced. According to a report by the 
International Renewable Energy Agency, green hydrogen produced by electrolysis powered 
by renewably-generated electricity costs more than 5 €/kgH2 in 2020. That is two to three times 
as high as blue hydrogen, which is produced from fossil natural gas, including storage of the 
resulting CO2 [8].  

1.1 Literature review 
As a flexible clean energy carrier, hydrogen could be a key element in the decarbonization of 
the building, transport, commercial, and industrial sectors [9]. In 2010, the European 
Parliament issued a directive on this topic, specifying that all new buildings must be nearly 
zero-energy by 2021. This new standard prescribes low energy demand among buildings, 
which is to be covered to a substantial extent by renewable sources [10]. In 2020, the European 
Commission published a strategy paper that outlined the European hydrogen roadmap. This 
strategy, in the long term, aims for widespread green hydrogen production from wind and solar 
power sources to supply all sectors, with net-zero emissions reached by the year 2050 [11]. 
This European hydrogen roadmap sees hydrogen as a decisive factor for heat supply in the 
building sector, in the most ambitious scenario for 2050. The sector is projected to account for 
26% of hydrogen demand, which corresponds to 579 TWhH2 [12]. In Germany, the National 
Hydrogen Strategy also includes infrastructure for hydrogen generation, transport, storage, 
and usage that is interconnected nationally and at the European level. Amongst other things, 
it is based on existing natural gas grids that must be adapted to the particular physical and 
chemical properties of hydrogen in order to allow for its use in heating residential buildings [3], 
[13]. 
As the importance of hydrogen is increasingly recognized by researchers and policymakers 
alike, energy scenarios are unclear regarding the role of hydrogen in the building sector. 

 

Figure 1. Transition of the supply infrastructure and building energy systems from natural 
gas to hydrogen operation. 
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Gerhardt et al. published a study on the use of hydrogen in the future energy system, with a 
focus on heating in buildings [14]. In addition to the low energy efficiency of heating using 
hydrogen, they cite the high hydrogen demand of the building sector and high conversion costs 
for hydrogen boilers against the use of hydrogen. They advocate the extensive use of heat 
pumps, even without any renovation of existing buildings, and thereby the direct use of 
electricity. In other studies, hydrogen has also played no role in the energy supply of buildings. 
Here, heat pumps and district heating are preferred for heat supply [15]–[18]. Hanley et al. 
reviewed the role of hydrogen across different energy scenarios with different areas of focus 
[19]. They conclude that there is a correlation between hydrogen’s penetration of energy 
systems and policy ambitions such as the integration of renewable sources or decarbonization 
targets. In their review paper, Quarton et al. investigate the inconsistent role that hydrogen 
currently plays in global energy scenarios [20]. For this, they considered the model approaches 
behind the scenarios, as well as the assumptions underlying the data. Based on the studies 
surveyed, they assume a minor role of hydrogen for the heating of buildings and a great 
opportunity in the industrial and transportation sectors. Regarding energy system modeling 
approaches, Quarton et al. are also pessimistic about hydrogen. The reasons for this include 
the low level of detail of the modeling, as well as temporal variability. Brandon and Kurban see 
a vital opportunity in hydrogen for the decarbonization of heat, but also a major challenge in 
energy system transformation. They identify a need for government targets and policy 
measures to develop hydrogen infrastructure and production at scale [9].  
Schiro et al. investigated the hydrogen compatibility of domestic gas boilers and found that 
admixtures of up to 20% hydrogen with natural gas are possible. Mixtures with a higher 
hydrogen content require a higher fuel flow in order to achieve the same thermal load due to 
the lower heating value of hydrogen. Also, if the hydrogen content exceeds 20%, the burner 
must be redesigned to prevent the risk of unintended ignition and flashbacks [21]. Worcester-
Bosch, a leading manufacturer of gas boilers, expects that hydrogen-ready boilers will have 
the same costs as current natural gas ones [22]. In addition to purchasing new, hydrogen-
ready boilers, one option is to retrofit existing natural gas units with new burner tips and 
controls. Nationwide conversion measures have already been implemented in the conversion 
from town to natural gas, which can serve as an example [23]. As a field test for hydrogen 
heating, an apartment complex in the Netherlands was heated using 100% hydrogen, using 
hydrogen-ready boilers. The project aims to demonstrate heating using pure hydrogen and its 
distribution over an existing natural gas pipeline [24]. Staffell et al. discuss systems that 
consume hydrogen and provide combined heat and power (CHP) as an alternative to 
hydrogen-ready boilers [23]. Of these CHP systems, they identify fuel cells as being the most 
efficient and having the lowest emissions. For residential applications, proton exchange 
membrane (PEM) and solid oxide fuel cells (SOFC) are typically chosen, and typically feature 
micro-CHP components due to their comparatively low capacities. At present, fuel cells are 
still expensive, but their prices are rapidly decreasing. Between 2012 and 2018, the price has 
halved to about 8,400 €/kWel, and the lifetime has increased, due to their diffusion, especially 
in Japan and Europe  [23]. At present, fuel cell systems are operated using natural gas, but 
can also be converted into hydrogen with minor modifications. Nastasi evaluated the 
environmental advantages of micro-CHP systems in buildings that operate with blends of close 
to 20% hydrogen in natural gas [25]. 
Since hydrogen cannot yet be obtained for use in residential buildings, a theoretical price is 
derived from literature values for the years 2020 and 2050. Regionally produced hydrogen is 
assumed for 2020 and imported hydrogen for 2050. Production costs of green hydrogen for 
the year 2019 range from 2.8 to 6.2 €/kgH2, according to a report of the International Renewable 
Energy Agency (IRENA) [26]. This range is due to various influencing factors, such as 
fluctuations in the price of electricity or the number of operating hours. In addition to production 
costs, there are costs for transportation. For a regional production, the U. S. Department of 
Energy assumes a transport price around 1.5 €/kgH2 [27]. So, production of green hydrogen 
and its regional transport result in 4.3 to 7.7 €/kgH2 or 0.13 to 0.23 €/kgH2, regarding the lower 
heating value of hydrogen. For the distribution to residential buildings in Germany, an average 
network fee of 0.0156 €/kWhH2 is charged by the network operators in the year 2020 [28]. The 
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gas supplier also charges costs for distribution and its margin in the amount of approximately 
0.02 €/kWhH2 [29]. In addition, a sales tax in the amount of 19 % applies, while a gas tax, which 
is primarily intended to serve climate policy goals, is not considered for green hydrogen due to 
its climate neutrality [30]. Thus, the theoretical costs for regional produced green hydrogen for 
the use in German residential buildings in the year 2020 are between 0.2 and 0.31 €/kWhH2. 
For the year 2050, the import of global produced hydrogen is assumed in this paper. According 
to Heuser, global costs for green hydrogen at the export harbor will range from 3 to 5 €/kgH2 
[31]. In addition, Heuser expects transport via ship and liquid organic hydrogen carriers 
(LOHC) to cost 0.35 €/kgH2. For the transport within Germany, an existing network is assumed 
that causes insignificant additional costs. Including the same net fee for distribution, charges 
of the gas supplier and sales tax as 2020, in 2050 imported hydrogen is expected to cost 
between 0.17 and 0.24 €/kWhH2 for the use in German residential buildings, according to 
published data. According to the aforementioned report of IRENA, hydrogen production costs 
could reach 0.85 €/kgH2 in 2050 [26]. Together with the pure supply costs in the exporting 
country, which according to [31] amount to about 1 €/kgH2, and the above-mentioned costs for 
taxes, distribution and charges incurred in Germany, a hydrogen price of up to 0.12 €/kWhH2 
can be expected. 
An indicator to show the difference between electricity and gas prices is provided by the 
electricity to gas price ratio. This ratio describes the quotient of electricity and gas prices as 
they can be determined at the respective point in time on the basis of market prices for both 
energy carriers. For natural gas in Europe in 2020, this ratio ranges from 1.2 in the Netherlands 
to 4.7 in Belgium [32]. Germany has the second highest ratio with 4.2 and the European 
average is at around 2.2 in 2020. The larger the electricity to gas price ratio, the more the 
electricity price is above the gas price per kWh. 
A big disadvantage of heating with hydrogen, compared to the use of heat pumps, is the low 
efficiency. The London Energy Transformation Initiative presented an independent report in 
February 2021, in which they compared two routes of heating buildings: Using green hydrogen 
for boilers or electricity with heat pumps [33]. They state, that using green hydrogen would be 
approximately six times less energy efficient compared to the use of heat pumps. In addition, 
the use of green hydrogen would require a 150 % increase in primary energy generation [33]. 

1.2 Research objectives 
The literature review highlights that in many scenario studies, hydrogen is considered to play 
little or no role in the building sector. Quarton et al. trace the pessimistic results regarding 
hydrogen in this sector to a low level of detail in the models and low temporal variability [20]. 
Thus, the aim of this paper is to provide a detailed techno-economic analysis of ten selected 
buildings that are typical of German building stock. This analysis compares hydrogen-based 
building energy systems with those based on renewable electricity for the target years 2020 
and 2050. It does not consider the national energy system as a whole but looks at individual 
buildings. In contrast to the studies cited, we develop an individual microeconomic 
optimization, rather than a macroeconomic one. For this purpose, the analysis is carried out in 
two steps. First, cost-optimal supply systems are determined for each building at fixed costs 
for hydrogen and electricity in order to make the preference of the energy carrier choice and 
its technological use visible. In the second step, sensitivity analyses are conducted to highlight 
the threshold values of hydrogen use and corresponding technologies. We utilize typical 
building types to derive initial and basic statements regarding the question of how the role of 
hydrogen in German buildings should be evaluated for the years 2020 and 2050 from a 
technical and microeconomic perspective. 

2 Methodology and basis data 

In this study, an optimization of climate-neutral building energy systems is carried out with the 
aim of minimizing investment and operating costs for single systems using a mixed-integer 
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linear program (MILP) optimization model. For this goal, we proceeded as shown in Figure 2. 
We selected 10 buildings built between 1919 and 2016 that substantially differed from an 
existing archetypal building catalog to serve as examples with the aim of covering as wide a 
range of building types as possible. For these buildings, demand profiles and renewable 
generation profiles for heat pumps and photovoltaic (PV) systems were created. These profiles 
served as input for building energy system models containing the technical and economic 
parameters of various supply systems powered by renewable electricity or green hydrogen. 
During the optimization process, the cost-optimal energy system for each building was 
determined by drawing on the offered supply systems.  
 

 

Figure 2. Flowchart depicting the methodological procedures followed in this study. 

2.1 Basis building data and simulation of demand and renewable generation 
profiles 

The TABULA database contains the physical building characteristics of archetype buildings 
from different construction years that are representative of the entire German building stock 
[34]. There are 40 generic buildings in total, divided into four types, namely single-family 
houses (SFHs), terraced houses (THs), multi-family houses (MFHs), and apartment buildings 
(ABs) with building years ranging from 1859 to 2016. In this study, because we conduct 
extensive sensitivity analyses, we limit our selection to ten of these archetypal buildings with 
construction years between 1919 and 2016 and analyze their cost-optimal energy systems. 
These buildings were selected to be as different, and to cover as wide a range of building 
archetypes, as possible. The buildings considered were seven SFHs with terraced and 
detached construction styles, as well as three MFHs with 6, 12, and 20 households. ABs were 
not considered due to the especially long computational times their analysis would require. 
Basic building parameters for each selected building are presented in Table 5. 
Optimization of the building energy systems has the goal of covering the energy requirements 
of the systems in a cost-optimal manner. These energy requirements are represented by 
electricity and heat load profiles, which are simulated with an hourly resolution using the Python 
packages, LPG2 and TSIB3.  
The LPG simulates the behavior of every single resident of a household and generates 
corresponding agent-based activity profiles. Based on these, individual demand for hot water 
and electricity is determined. The activity profiles and hot water demand are then passed on 
to TSIB in order to calculate the total heat demand. Here, the heat output of single residents 

 
2 Load Profile Generator (LPG), available at: https://github.com/FZJ-IEK3-VSA/LoadProfileGenerator 

3 Time Series Initialization for Buildings (TSIB), available at: https://github.com/FZJ-IEK3-VSA/tsib 

2.1

• Selection of ten buildings from the German building stock

• Simulation of demand and renewable generation profiles.

2.2
• Modeling of the building energy systems and provision of technical 

and economic data for 2020 and 2050.

2.3
• Optimization of the building energy system models in order to identify 

cost-optimal systems for each building.
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is calculated based on their activity profiles. Furthermore, the heating load is determined via 
TSIB by means of a simplified 5R1C thermal building model [35]. This model combines the 
heat transfer coefficients of the selected buildings from the TABULA database and the heat 
output of the individual residents. Together with the weather data on outside irradiance and 
temperature, the load profiles for heating are calculated for the reference years 2020 and 2050 
[36]. For each of the ten buildings, the building envelopes are considered without renovation, 
as well as with two levels thereof, with each of the three having different supply temperatures. 
If no renovation is considered, the original building envelope from the TABULA database is 
used. With respect to the renovation levels, level 1 reduces specific heating demand by 74% 
and level 2 by 78% compared to an un-renovated building for the oldest SFH selected. The 
renovation costs, specific heat demand levels, and heat supply temperature for each building 
and all three renovation levels, are shown in Table 6.  
As these levels of renovation were each considered for the ten selected buildings and two 
reference years, 60 heating profiles were generated. Figure 2 lists the selected buildings by 
building year, house type, and number of inhabitants per household. The diagram also displays 
the living space per household, as well as its specific heat demand and level of renovation. 
 

 

Figure 3. Building selection from the German building stock with living space and heat 
demand for three different levels of renovation. 

In addition to the demand profiles, there is also a need for time series of the possible generation 
power of heat pumps and PV systems as inputs for the energy system optimization. These 
renewable generation profiles are calculated using the already-mentioned Python package 
TSIB, in accordance with Knosala et al. [37]. 

2.2 Modeling of building energy systems 
The cost-optimal energy system for each building is determined during the optimization 
process. For this purpose, a pool of components is parameterized, from which the energy 
systems can then be assembled. The building energy system model investigated in this study 
is based on renewable electricity and green hydrogen as energy carriers, as well as the energy 
conversion and storage components displayed in Figure 4.  
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Figure 4. Technology pool and interconnection of possible building energy systems. 

The energy system model can draw hydrogen from the hydrogen gas grid and electricity from 
the public power grid, as well as generate its own electricity with a photovoltaic system. If 
hydrogen is purchased from the public grid, we assume that this grid, including connection of 
the end customer, is available and all corresponding costs are included in the assumed 
hydrogen price. Electricity can be converted into heat with an electric heater, as well as with a 
heat pump. The heat pump is an air source type that is modeled as three different sub-
components, each with a different supply temperature, TSup (35, 50, and 70 °C), depending on 
the level of renovation and a fourth for the supply of hot water at 60 °C. For each sub-
component, the COP is calculated according to its TSup. The calculated COP time-series for 
the three sub-components are shown in Figure 17 in the appendix. A discounted tariff for the 
operation of the heat pump and the income from the feed-in of surplus electricity are defined 
here as shares of the electricity price. The heat pump tariff is assumed to be 70 % of the normal 
price for electricity. Income from feeding surplus electricity into the grid results in a revenue of 
16 % in 2020 and 26 % in 2050 of the present electricity price. This corresponds to a heat 
pump tariff of 0.22 €/kWhel at an electricity price of 0.31 €/kWhel and revenues for feeding 
electricity into the grid of 0.05 €/kWhel in 2020 and 0.08 €/kWhel in 2050. 
Hydrogen from the public gas grid can be converted into heat by means of a hydrogen boiler, 
or into heat and electricity using a fuel cell. The fuel cell is modeled as two different sub-
components, depending on the respective technology. The SOFC generates 600 °C of heat 
[38], which is then reduced to 70 °C to be used in the system and is able to operate by 
modulating between 33 and 100 % of its capacity. The PEM-FC has a heat output of 60 °C 
and modulates freely between 0 and 100 % of its capacity. Both fuel cells are modeled with an 
operational subsidy for 2020, corresponding to the German Federal Office of Economics and 
Export Control (bafa). This subsidy is paid for 6,000 full load hours per year over 10 years, 
which is the lifetime of the fuel cells. It includes 0.04 €/kWhel for self-consumed electricity and 
0.08 €/kWhel for electricity sold into the grid [39]. On top of the funding for grid sales, a CHP-
Index of 0.05 €/kWhel is paid. With respect to storage components, the technology pool 
contains a lithium-ion battery and a thermal storage system that is set to a capacity of 300 
liters. In order to represent a single thermal storage with multiple levels of temperature, the 
thermal storage is modeled as five sub-components sharing the storage volume with 
temperatures of 35, 50, 60, 70, and 90 °C each. From these sub-components, the heat 
demands are met. As previously noted, the temperature level of the heat demand depends on 
the level of renovation. Figure 4 illustrates these levels, which are supplemented by the hot 
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water demand. A sink that can be used to remove excess heat from the system was also 
modeled. 
The model contains two sets of parameters, each of which is for the years 2020 and 2050. 
Economic parameters, as shown in Table 1 for 2020 and in Table 2 for 2050, are defined for 
the system components, both for purchasable energy carriers, salable electricity, and the 
funding of the fuel cells. The price for hydrogen for the year 2020 is assumed, relatively 
conservatively, to be in the upper third of the price range of green hydrogen stated by Powell, 
with 0.2 €/kWhth [40]. For the year 2050, we assume that the price of green hydrogen is halved. 
Technical parameters are presented in Table 3, both for 2020 and 2050. 
 

Component Capex Opex Lifetime Source 

 Fix Variable Fix Variable    

Photovoltaic 
system 

1000 € 1300 €/kWel 10 € 13 €/kWel 20 years Own 
as. 

PEM fuel cell 3500 € 8800 €/kWel 300 € 20 €/kWel 10 years Own 
as. 

SOC fuel cell 4300 € 5500 €/kWel 600 € 0 €/kWel 10 years Own 
as. 

Heat pump  5000 € 600 €/kWth 50 € 6 €/kWth 20 years Own 
as. 

Electric 
heater 

100 € 60 €/kWth 0  1.2 % 
Inv./a 

20 years Own 
as. 

Hydrogen 
boiler 

2800 € 100 €/kWth 42 € 1.5 % 
Inv./a 

20 years Own 
as. 

Thermal 
storage 

23 € 34 €/kWhth 0  0  25 years Own 
as. 

Lithium-ion 
battery 

2000 € 700 €/kWhel 0  0  15 years [41] 

Table 1. Economic parameters for 2020. Parameters from internal sources of IEK-3 are 
marked as own assumptions (own as.). Costs for balance of plant, energy 
management and safety controlling systems are included in the component 
costs. We assume an annual economic interest rate for the building owners of 
3%. CAPEX: capital expenditures, OPEX: operational expenditures; PEM: 
proton-exchange membrane; SO: Solid Oxide 

 

Component Capex Opex Lifetime Source 

 Fix Variable Fix Variable    

Photovoltaic 
system 

1000 € 650 €/kWel 10 € 6.5 €/kWel 20 years [42, p.] 

PEM fuel cell 4000 € 1500 €/kWel 120 € 45 €/kWel 15 years [43] 

SOC fuel cell 4000 € 1500 €/kWel 120 € 45 €/kWel 15 years [43] 

Heat pump  5000 € 600 €/kWth 50 € 6 €/kWth 20 years Own 
as. 

Electric 
heater 

100 € 60 €/kWth 0  1.2 % 
Inv./a 

20 years Own 
as. 

Hydrogen 
boiler 

2800 € 100 €/kWth 42 € 1.5 % 
Inv./a 

20 years Own 
as. 

Thermal 
storage 

23 € 34 €/kWhth 0  0  25 years Own 
as. 

Lithium-ion 
battery 

1000 € 200 €/kWhel 0  0  15 years [41] 
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Table 2. Economic parameters for 2050. Parameters from internal sources of IEK-3 are 
marked as own assumptions (own as.). Costs for balance of plant, energy 
management and safety controlling systems are included in the component 
costs. We assume an annual economic interest rate for the building owners of 
3%. CAPEX: capital expenditures, OPEX: operational expenditures; PEM: 
proton-exchange membrane; SO: Solid Oxide 

 
Component Efficiency Source 

 2020 2050 2020 2050 

Inverter ηel 97 % 97 % Own assumptions 

PEM fuel cell 
ηel 55 % 55 % Own assumptions 

ηth 30 % 30 % Own assumptions 

SOC fuel cell 
ηel 55 % 55 % Own assumptions 

ηth 30 % 30 % Own assumptions 

Heat pump at 35 °C 
COPmin 3.3 

Own calculations according to [45] 
COPmax 5.0 

Heat pump at 50 °C 
COPmin 2.7 

Own calculations according to [45] 
COPmax 4.6 

Heat pump at 70 °C 
COPmin 2.2 

Own calculations according to [45] 
COPmax 3.5 

Electric heater ηth 95 % 100 % Own assumptions 

Hydrogen boiler ηth 100 % 100 % Own assumptions 

Lithium-ion battery 

ηcharge 95 % 95 % [41] [46] 

ηdischarge 95 % 95 % [41] [46] 

Self-
discharge 

0.01 %/h 0.01 %/h Own assumptions [46] 

Thermal storage 

ηcharge 99 % 99 % [45] 

ηdischarge 99 % 99 % [45] 

Self-
discharge 

0.1 %/h 0.1 %/h Own assumptions 

Table 3. Technical parameters for 2020 and 2050. 

2.3 Optimization with FINE 
During the optimization process, the cost-minimal energy system for each building is 
determined, together with its operational profile. For this, the energy systems, as described in 
chapter 2.2, were modeled as a MILP within the Framework for Integrated Energy System 
Assessment (FINE)4 [47]. The optimization goal is to minimize the total annualized costs 
(TACs) of each building’s energy system for the target years of 2020 and 2050. 
For this purpose, this paper performs two studies. First the optimal TACs are determined for 
each building with a fixed electricity and hydrogen price for each target year. The electricity 
price for Germany is assumed to be 0.308 €/kWhel for both target years, and 0.218€/kWhel for 
the use in heat pumps. With respect to hydrogen, a price of 0.2€/kWhH2, referring to the lower 
heating value, is assumed for 2020, and 0.1 €/kWhH2 for 2050.  
For the second study, we performed a sensitivity analysis of hydrogen and electricity prices in 
the ranges presented in Table 4. This study was intended to identify thresholds of the hydrogen 
price at which it would become economically viable to use. In addition, this approach can be 

 
4 Framework for Integrated Energy System Assessment (FINE), available at: https://github.com/FZJ-

IEK3-VSA/FINE 
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used to identify how the amount of hydrogen used, as well as the exact choice of technologies, 
depends on the ratio of the price of electricity and hydrogen. 
In both studies, the renovation costs and reduced heating demand due to improved insulation, 
as listed in Table 6 in the appendix, are taken into account. 
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Commodity Price Source 

Fuel cell subsidy for self-
consumed electricity (only for 
2020 and for 6,000 vlh) 

0.04 €/kWhel 

[39] 

Fuel cell subsidy for electricity 
sold into the grid (only for 2020 
and for 6,000 vlh) 

0.08 €/kWhel 

[39] 

Photovoltaic subsidy for 
electricity sold into the grid 
(only for 2020) 

0.0316 €/kWhel 

Own 
assumptions 

Electricity purchasing for heat 
pumps (2020 & 2050) 

0.218 €/kWhel 
Own 
assumptions 

Electricity sales (2020 & 2050) 
0.05 

€/kWhel Own 
assumptions 
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Commodity Price Source 

Electricity purchasing (2020 & 
2050) 

0.308 
€/kWhel Own 

assumptions 

Hydrogen purchasing (2020) 
0.2 

€/kWhth Own 
assumptions 

Hydrogen purchasing (2050) 0.1 €/kWhth  
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Commodity Price range Source 

Electricity purchasing (2020 & 
2050) 

0.15, 0.18, 
…, 0.62 

€/kWhel Own 
assumptions 

Hydrogen purchasing (2020 & 
2050) 

0.05, 0.06, 
…, 0.4 

€/kWhth Own 
assumptions 

Table 4. Prices for the subsidy, purchasing and sale of commodities for both analytical 
approaches. 

3 Results 

In this study we investigate the role of hydrogen in German buildings. First, we examined the 
selected buildings and their cost-optimal energy systems for fixed prices for the purchasing of 
electricity and hydrogen. Techno-economic assumptions were made for the target years of 
2020 and 2050, as described in chapter 2.2 and 2.3. In a second analysis, we analyzed the 
sensitivity of the electricity and hydrogen prices with the aim of identifying the quantitative use 
of energy sources and the technology selection made. In order to gain deeper insight into the 
impact of a declining hydrogen price on technology selection and renovation efforts, the 
development of energy systems is also viewed from this perspective. Figure 5 shows the 
structure of this chapter. 
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Figure 5. Flowchart of the proceedings in the results and discussion chapter. 

3.1 Optimal TAC with fixed electricity and hydrogen prices 
The first analysis in this study examined the selected buildings and their cost-optimal energy 
systems for fixed prices for the purchasing of electricity and hydrogen. Figure 6 illustrates the 
TAC structure for these of the cost-optimal energy systems regarding the examined SFHs and 
THs for both target years, taking into account the renovation levels. Figure 7 illustrates the 
same for MFHs. For the target year 2020, energy systems use heat pump systems with a high 
share of electricity drawn from the grid for all three building types. These results are consistent 
with those of Gerhardt et al., who argued for the widespread use of heat pumps [14]. The 
results for the target year of 2020 also indicate that the renovation of buildings that were 
originally built before 1990 is part of the optimal TAC structure for lowering the heating demand. 
That the cost-optimal renovation of buildings is performed after 30 years is in accordance with 
the recommendations of the European Commission, which notes an equally long period in its 
delegated regulation from 2012 [48]. 
The results for the target year of 2050 significantly differ. For SFHs and THs, hydrogen boilers 
are used everywhere except in the oldest buildings due to the comparatively low assumed 
price of hydrogen of 0.10 €/kWhH2 for the target year of 2050, with a constant high electricity 
price of 0.31 €/kWhel, respectively 70 % of it (0.22 €/kWhel) as reduced price for heat pumps. 
In the oldest building, a heat pump is used in combination with a PEM fuel cell system that 
produces electricity that the heat pump uses to cover the peaks (even if renovated) of the high 
heat demand. The cost-optimal energy systems for MFHs use fuel cells for the target year 
2050. Fuel cells are used as CHP systems to produce heat and electricity due to the low price 
of hydrogen and because of the proportionally high electricity demand and comparatively low 
rooftop PV potential of MFHs with regard to their heat demand. Less renovation was chosen 
for the target year of 2050 in comparison to the results of 2020. For 2050, only SFHs built 
around 1960 and earlier are renovated for the cost-optimal coverage of their heating demand, 
and so the period before a renovation becomes economical and extends from 30 to 90 years. 
The diminished economic benefits of renovation measures are due to the cheaper hydrogen 
price assumed for 2050, which reduces the need for lower heating demand. 

3.1
• Cost-optimal building energy systems with fixed energy costs.

3.2.1
• Sensitivity analysis of the electricity and hydrogen price.

3.2.2
• Impact of a declining hydrogen price on technology selection and 

renovation efforts.
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Figure 6. Optimal TAC structure for the examined SFHs and THs sorted by building year 
and renovation level. 
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Figure 7. Optimal TAC structure for the examined MFH sorted by building year and level of 
renovation. 

3.2 Sensitivity analysis of the hydrogen and electricity price 
In the second analysis, the sensitivity of the electricity and hydrogen price is analyzed with the 
aim of identifying the quantitative use of energy sources and the technology selection made to 
determine a general threshold price for hydrogen use over all of the buildings analyzed. In 
order to gain deeper insight into the impact of a declining hydrogen price on technology 
selection and renovation efforts, the development of individual energy systems is also viewed 
from this perspective. In this second step, we identify threshold prices for the degree of 
hydrogen utilization in individual buildings. 

3.2.1 Analysis of hydrogen usage and technology selection by building type 
The results shown in Figure 8 indicate the threshold values for the economical use of hydrogen 
in the selected SFHs and THs with building years between 1995 and 2016. The colors indicate 
how strong the share of hydrogen in the heat supply of the considered buildings is. For values 
above one, hydrogen is also used for electricity generation in addition to heat generation using 
CHP. From 2020 to 2050, the price thresholds for hydrogen supply technology for the assumed 
electricity price of 0.31 €/kWhel are both at 0.13 €/kWhH2. The influence of the different 
assumed hydrogen prices for 2020 (0.2 €/kWhH2) and 2050 (0.1 €kWhH2) can also be seen in 
Figure 8. There is virtually no usage of hydrogen in 2020 due to the economic advantage of 
electricity in its assumed price range. For 2050, a high use of hydrogen is observed, such that 
100 % of heat demand is covered by hydrogen. From these results, an electricity to hydrogen 
price ratio can be derived, above which the use of hydrogen is economically viable. This ratio 
ranges between 2.14 and 2.71 for 2020 and 2050 for the examined SFH. 
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Figure 8. Price sensitivity for SFHs and THs with building years between 1995 and 2016 
with cost-optimal technology configurations and renovation choices. The colors 
indicate the factor of hydrogen purchasing to total heat demand (space heating 
and warm water) in kWh per year. 

Figure 9 shows the afore mentioned results for SFHs with building years from 1919 to 1979. 
Here as well, the price thresholds for hydrogen supply technology for the assumed electricity 
price of 0.31 €/kWhel are the same but lower as for the newer buildings at 0.11 €/kWhH2, for 
2020 and 2050. The derived electricity to hydrogen price ratio ranges between 2.14 and 2.82 
for 2020 and 2050. 

 

Figure 9. Price sensitivity for SFHs and THs with building years between 1919 and 1979 
with cost-optimal technology configurations and renovation choices. The colors 
indicate the factor of hydrogen purchasing to total heat demand (space heating 
and warm water) in kWh per year. 
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A slightly different picture can be drawn for MFHs. For these buildings, the price threshold for 
hydrogen supply technology for the assumed electricity price of 0.31 €/kWhel increases slightly 
between 2020 and 2050, from 0.14 €/kWhH2 up to 0.15 €/kWhH2 for the MFH built 1919 and 
from 0.16 €/kWhH2 up to 0.17 €/kWhH2 for the MFHs built 1984 and 2010. The two MFHs from 
1984 and 2010 are shown in Figure 10. These results indicate that hydrogen is more 
economically viable in MFHs than SFHs and THs, and becomes even more viable in the year 
2050 for MFHs. The reason, that hydrogen is used more in 2050 than in 2020 in MFHs, is that 
fuel cell CHP systems are used there to cogenerate heat and power. These fuel cell CHP 
systems are assumed to be less expensive in 2050 than 2020, so, in contrast do SFH, where 
hydrogen boilers are used, the use of hydrogen becomes economically more viable in 2050 
than in 2020. The electricity to hydrogen price ratios derived for 2020 range from 1.84 to 2.14 
and for 2050 it is between 1.67 and 1.82. 
 

 

Figure 10. Price sensitivity for MFHs built 1984 and 2010 with cost-optimal technology 
configurations and renovation choices. The colors indicate the factor of 
hydrogen purchasing to total heat demand (space heating and warm water) in 
kWh per year. 

The cost-optimal technology selection for SFHs and THs depending on the price of hydrogen 
and electricity can be seen in Figure 11. These results support the analysis in chapter 3.1, 
which concerns the use of hydrogen boilers in 2020. For the target year of 2050, the technology 
selection is more complex, featuring a combination of different technologies. For a hydrogen 
price below 0.08 €/kWhH2 and a low to medium-high electricity price, hydrogen boilers are 
favored. With an increasing hydrogen price, these are combined with electric heaters. An even 
higher electricity price with a simultaneously rising hydrogen price in combination with heat 
pumps and fuel cells represents the cost-optimal technology selection. Fuel cells alone are 
only used when a high electricity price meets a low hydrogen price of less than 0.07 €/kWhH2. 
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Figure 11. Price sensitivity for SFHs and THs with cost-optimal technology configurations 
and renovation choices. The colors indicate the predominant supply technology 
for heating over the building type group. 

Technology selections for MFHs, depending on hydrogen and electricity prices, are displayed 
in Figure 12. For the target year of 2020, the already in the previous chapter identified use of 
heat pumps can be observed, in combination with electric heaters. If the ratio of hydrogen and 
electricity prices decreases in favor of hydrogen, the combination of heat pumps with fuel cells 
is used in cost-optimal systems. For 2050, fuel cell systems are used in combination with heat 
pumps. If the hydrogen price is below 0.09 €/kWhH2, the aforementioned combination is 
extended by hydrogen boilers. Fuel cell systems are economically reasonable, as they provide 
both heat and electricity. For this reason, fuel cell systems are used on their own if the 
electricity price is in the extreme high end of the assumed range above 0.57 €/kWhel and the 
hydrogen price is extremely low, below 0.06 €/kWhH2, which is a fairly unrealistic constellation. 
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Figure 12. Price sensitivity for MFHs with cost-optimal technology configurations and 
renovation choices. The colors indicate the predominant supply technology for 
heating over the building type group. 

3.2.2 Analysis of the hydrogen-sensitive system structure for two selected buildings 
A deeper insight into the structure and operation of building energy systems, dependent on the 
price of hydrogen, is provided by the results presented in this section. Individual buildings are 
considered and include the technology selection, the use of hydrogen, as well as the electricity 
drawn from the grid and own PV production. Furthermore, the renovation choice and resulting 
heat generation, including hot water, is presented, all of which depend on the price of 
hydrogen. The price of electricity is assumed to be 0.308 €/kWhel for the selected target year 
of 2050. The results are presented for two of the ten selected buildings from this study, and all 
other diagrams can be found in the appendix. 
First, a TH for single families optimized for the year 2050 is considered, which was built in 1979 
and features 108 m² of living area. The optimization results for this building can be seen in 
Figure 13. Without renovation, its annual heat generation, including warm water, is nearly 
16,500 kWhth. Up to a hydrogen price of 0.07 €/kWhH2, only a hydrogen boiler is used for heat 
generation purposes. For a higher hydrogen price of up to 0.09 €/kWhH2, a photovoltaic 
operated electric heater supports the hydrogen boiler, which reduces its operation. Beyond 
this price, up to nearly 0.11 €/kWhH2, the operation of the hydrogen boiler is significantly 
reduced by half, and a renovation choice is made to reduce the heat demand. Above 0.11 
€/kWhH2, hydrogen is no longer used in the building’s energy system, and heat pumps are 
used instead.  
On the basis of this development, two threshold prices of the degree of hydrogen utilization for 
the year 2050 can be identified for the considered TH that was built in 1979. With a hydrogen 
price of up to 0.09 €/kWhH2, heating is primarily performed with hydrogen, in part with minor 
support from an electric heater. Beyond this threshold, the building is renovated for a lower 
heating demand. At 0.11 €/kWhH2, there is a second threshold price for hydrogen at which it is 
no longer utilized, but a heat pump is used instead. For renovation measures, the observed 
building indicates that a not unrealistic low hydrogen price of 0.09–0.10 €/kWhH2 leads to the 
fact that no renovation must be carried out for a cost-optimal building heat supply. 
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Figure 13. Price sensitivity for a TH (built in 1979, 108 m² living area) with its cost-optimal 
technology configuration and renovation choices for 2050.  

For the second building, an MFH optimized for 2050 was chosen, which was built in 1984 with 
a total living area of 778 m² for 12 households. This corresponds to a living area per household 
of close to 65 m². Figure 14 presents the optimization results for this building, and the following 
insight can be drawn from its data. The lowest assumed hydrogen price results in limited PV 
production and heat generation through a combination of heat pumps, hydrogen boilers and 
SOFCs. With an increasing hydrogen price, PV production is maximized and increasingly more 
heat is generated by the heat pump and less by the hydrogen boiler. At a price of 0.1 €/kWhH2, 
a significant change in the system structure can be observed. In order to reduce the heat 
demand, the building is renovated, and heat is generated through a combination for a heat 
pump and PEM fuel cell. With this change in the system’s structure, the purchasing of hydrogen 
is halved. The PEM is chosen because of its higher operational flexibility. This is due to its 
ability to modulate freely, whereas the SOFC operates with at least 0.33 % of its capacity. With 
an increasing hydrogen price of up to 0.163 €/kWhH2, the purchase of hydrogen decreases, as 
more electricity is drawn from the grid. Above this price, no more hydrogen is purchased, and 
the building is renovated to the best possible level. The reduced heat demand is then covered 
exclusively by the heat pump. 
Based on this development of hydrogen utilization as a function of an increasing hydrogen 
price for the year 2050, two individual threshold values for the hydrogen price can be derived 
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for the analyzed MFH built in 1984. At a price of 0.01 €/kWhH2, a change from high to low 
hydrogen use takes place, which is compensated by renovation measures. The next threshold 
value is 0.163 €/kWhH2, above which no hydrogen is used, and renovation measures are 
intensified. 

 

Figure 14. Price sensitivity for an MFH (built in 1984, with 778 m² total living area for 12 
households) with its cost-optimal technology configuration and renovation 
choices for 2050.  

4 Discussion 

In this study, we have identified threshold prices for the use of hydrogen in ten cost-optimized 
buildings, as is illustrated in Figure 15. With our results, we aim to derive initial basic 
statements regarding the role of hydrogen for typical buildings from the German building stock. 
For the examined SFHs, including terraced houses, a hydrogen price of up to 0.11 €/kWhH2 
leads to the use of hydrogen in building energy systems for 2020 and 2050. The corresponding 
threshold price for the investigated MFHs, except for the oldest one, is 0.16 €/kWhH2 for 2020 
and 0.17 €/kWhH2 for 2050, mainly triggered by fuel cell operation. We identify a hydrogen 
price of up to 0.11 €/kWhH2 in order to heat all the buildings studied with hydrogen in 2050 in 
an economically viable for the assumed energy carrier prices. 
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For 2020, no economically viable use of hydrogen in German residential buildings can be 
derived from the results, as the costs of green hydrogen in German residential buildings were 
determined to be 0.2 to 0.31 €/kWhH2. This does not match with any of the identified threshold 
values for 2020. For 2050, the costs determined from [31] range between 0.17 and 
0.24 €/kWhH2. At this cost, hydrogen could be used in an economically viable only in the MFHs 
from 1984 and 2010. Though, according to [26], production costs of green hydrogen could 
decrease significantly more, which would result in a hydrogen price for residential buildings of 
0.12 €/kWhH2. For this price, all buildings examined, except the four oldest SFHs, could use 
hydrogen in an economically viable way for their energy systems. As for those four older SFHs, 
renovation and thereby reducing the heat demand and supply temperature in combination with 
heat pumps which draw electricity from a PV system is economically more viable, than the use 
of hydrogen. For those four SFHs, where no economically viable use of hydrogen could be 
investigated for 2050, price signals such as subsidies from policy could help make hydrogen 
usable on a large scale. 
The threshold values for SFHs do not differ between either target year, because hydrogen 
boilers are cost-optimal in combination with heat pumps, which purchase electricity at 70% of 
the regular cost of electricity. We do not assume an increase in either efficiency or the costs 
of hydrogen boilers. In contrast, threshold values differ for both target years if MFHs are 
considered. This is because fuel cell CHPs are used in combination with hydrogen boilers and 
heat pumps. In MFHs, there is proportionally higher electricity demand compared to SFHs, and 
so the cogeneration of heat and power makes fuel cell CHPs profitable, even more so with the 
lower hydrogen price assumed for 2050. This analysis reveals that the hydrogen price is not 
prohibitive for the use of hydrogen in buildings. Much more important is the question of how to 
distribute, at least initially, small amounts of hydrogen, which is a political decision. 

 

Figure 15. Threshold prices for the use of hydrogen, based on a sensitivity analysis of SFHs 
and MFHs. 
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The electricity to hydrogen price ratio, as presented in Figure 16, shows the relation of the 
electricity to the hydrogen price, above which the use of hydrogen is economically viable in 
each building group and target year. These ratios range from 1.67 to 2.82, based on our 
assumptions for the technological and economic parameters for both target years. If the 
individual building groups are considered for the year 2050, a ratio of 2.5 can be determined 
for SFH and 1.8 for MFH, which is favored by the use of CHP. The lower ratio indicates that 
hydrogen could be more expensive, compared to the electricity price, than with a higher ratio, 
for an economically viable use of hydrogen. Our ratios determined are pretty low, compared to 
the corresponding ratio for natural gas in Germany, which is at 4.2 due to the high electricity 
and low natural gas price. 
Renovation measures are made cost-optimal by significantly reducing the heat demand if the 
hydrogen price is high and hydrogen-fueled technologies are not economical. In this regard, 
they compete with high-performance heat pumps. Our analysis of the buildings’ cost-optimal 
technology pathways and renovation measure shows that buildings built in 1990 and earlier 
are renovated based on our assumptions for 2020. With our assumptions for the target year of 
2050, buildings built around 1960 and earlier are renovated for the cost-optimal coverage of 
their heat demand, due to the lesser hydrogen price, which makes it possible to achieve a 
large heating capacity at a relatively low cost. 
In the building sector as it currently stands, heat pumps are a well-functioning alternative for 
hydrogen. They are almost six times more efficient than heating with green hydrogen fueled 
boilers, which reduces necessary primary energy generation significantly [33]. Despite these 
clear disadvantages in terms of efficiency, our analyses show that a comparatively low 
hydrogen price can compensate for the advantages of heat pumps. A key argument for the 
use of hydrogen in general is its ability to provide flexibility in the process of decarbonizing 
multiple sectors [8]. In general, hydrogen is seen as a major chance for decarbonization of the 
industrial and transportation sectors due to its high energy density and low GHG emissions, 
and its role in the building sector is considered to be minor [20]. However, it can be observed 
that due to an increased emergence in the industrial and transport sectors, regional systems 
are emerging that could make hydrogen usable in buildings. Predestined for this are areas in 
northern Germany, where electrolyzers are operated from surplus electricity from wind power, 
as well as in the Ruhr area, where industrial demand is particularly high. In addition, 
rededication of existing gas grids prevents their complex and cost-intensive dismantling. 
Finally, electrification of some types of houses is not possible in some cases due to space 
restrictions or monument protection. Here, the supply of hydrogen can represent an alternative 
to the district heating network. The technology selection can be controlled by price signals. If 

 

Figure 16. Electricity to hydrogen price ratio for the examined building groups. 
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heat pumps in buildings are politically desired, the price of electricity must be determined 
accordingly and fall significantly. Under the current regulatory framework, hydrogen can play 
a major role for supplying the heat demand of the buildings if the prices develop as predicted. 
Nevertheless, in order to favor heat pumps as supply option, as the macro-analysis of other 
researchers request, the price of electricity must be determined accordingly and fall 
significantly. 

5 Conclusions 

This bottom-up study investigated the role of hydrogen for the climate-neutral energy supply, 
taking into account renovation measures of German residential buildings in comparison to 
electricity-based systems, based on a selection of archetype buildings for single- and multi-
family houses of different construction years. We performed sensitivity analyses which resulted 
in threshold values of the hydrogen price for its use in residential buildings. These results show 
that under the current regulatory framework hydrogen can play a significant role in German 
residential buildings in the future and the price of hydrogen does not appear to be a 
showstopper for its use in this sector. We identified a hydrogen price of up to 0.11 €/kWhH2 in 
order to heat all the buildings studied in parts with hydrogen in 2050 in an economically viable 
way. Also, electricity to hydrogen price ratios for the economically viable use of hydrogen in 
the examined buildings was determined. Our ratios range from 1.67 to 2.82 and we can make 
the general statement that above these values an economically reasonable use of hydrogen 
in buildings can be possible, not only in Germany. For the individual building groups for the 
year 2050, a ratio of 2.5 can be determined for SFH and 1.8 for MFH, which is favored by the 
use of CHP. 
A well-functioning and more efficient alternative for hydrogen in the building sector are heat 
pumps, often in combination with energy refurbishment. Nevertheless, in order to favor heat 
pumps as supply option, as the macro-analysis of other researchers request, the price of 
electricity must be determined accordingly and fall significantly and refurbishment rates must 
be defined, and their realization supported. The technology choice, whether hydrogen- or 
electricity-based systems, can be driven by price signals, which in turn requires a policy 
decision. If there is an existing gas grid that can be used for hydrogen transportation and 
distribution, it would be reasonable to assume that this could be possible at low costs. 
In the next step, further research is needed on the topic of future costs of green hydrogen for 
the use in residential buildings, considering costs for the hydrogen distribution grids for the 
connection of buildings. Also, more detailed investigations could be useful with regard to the 
use of hybrid gas boiler/heat pump appliances, as this combination is being heavily promoted 
at the time of writing. The scope of this paper’s topic could be expanded in order to investigate 
the entire building stock in Germany, and to be able to make comprehensive qualitative as well 
as quantitative statements about the use of hydrogen in German residential buildings. 
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6 Appendices 

Building TABULA Code Living 
space (per 
house-hold) 
[m²] 

Roof 
area 
[m²] 

Roof 
type 

House-
holds 

Residents per 
building (per 
houshold) 

year type 

1919 SFH DE.N.SFH.03.Gen. 
ReEx.001.001 

303 214 Gabled 1 5 

1919 TH DE.N.TH.03.Gen. 
ReEx.001.001 

113 50 Flat 1 5 

1919 MFH DE.N.MFH.03.Gen. 
ReEx.001.001 

385 (64,17) 190 Gabled 6 18 (3) 

1958 SFH DE.N.SFH.05.Gen. 
ReEx.001.001 

121 190 Gabled 1 5 

1979 TH DE.N.TH.07.Gen. 
ReEx.001.001 

108 98 Flat 1 5 

1984 MFH DE.N.MFH.08.Gen. 
ReEx.001.001 

778 (64,83) 249 Flat 12 36 (3) 

1995 SFH DE.N.SFH.09.Gen. 
ReEx.001.001 

122 116 Gabled 1 5 

2002 TH DE.N.TH.10.Gen. 
ReEx.001.001 

152 91 Gabled 1 5 

2010 MFH DE.N.MFH.11.Gen. 
ReEx.001.001 

1,305 321 Flat 20 60 (3) 

2016 SFH DE.N.SFH.12.Gen. 
ReEx.001.001 

187 132 Gabled 1 5 

Table 5: Building parameters of the building selection [34]. 

 
 

Building ID 
from 
TABULA 
[34]  

No 
renovation 

(Tsup=70 °C) 

Level 1 renovation 

(Tsup=50 °C) 

Level 2 renovation 

(TSup=35 °C) 

  

 
Spec. heat. 
[kWhth/m2] 

Cost [EUR] Spec. 
heat. 
[kWhth/m

2] 

Cost [€] Spec. 
heat. 
[kWhth/m

2] 

Hot Water 
[kWhth/pers.] 

Elec. Appl. 
[kWhel/pers.] 

DE.N.SFH.03 210.65 47,344.86 54.94 59,558.95 45.92 811.67 884.88 

DE.N.TH.03 141.76 15,300.11 42.37 18,767.55 34.94 811.67 884.88 

DE.N.MFH.03 191.41 57,186.22 45.86 71,165.86 37.10 794.85 767.12 

DE.N.SFH.05 231.13 30,490.17 64.73 38,730.19 52.53 811.67 884.88 

DE.N.TH.07 115.81 19,350.17 44.68 23,841.14 37.18 811.67 884.88 

DE.N.MFH.08 102.45 116,417.36 40.33 144,011.54 32.61 913.92 875.97 

DE.N.SFH.09 96.20 27,164.83 49.86 33,954.40 40.48 811.67 884.88 

DE.N.TH.10 59.68 27,105.69 39.39 33,679.42 31.78 811.67 884.88 

DE.N.MFH.11 51.84 171,321.32 36.55 211,933.88 30.62 926.82 1049.23 

DE.N.SFH.12 61.22 37,436.64 47.52 46,840.82 40.33 811.67 884.88 

Table 6: Renovation costs and specific heat demand for each building and all three 
renovation levels. Hot water demand and the demand of electric appliances is the same for 
all renovation levels for each building. 
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Figure 17. COP time-series for each heat pump sub-component, calculated according to 
[45]. 
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