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Abstract

The generalized Kuramoto - Sivashinsky equation is investigated using the modified Kudrayshov equation for the
exact analytical solution. The modified Kudrayshov method converts the nonlinear partial differential equation to
algebraic equations by results of various steps which on solving the so obtained equation systems yields the analytical
solution. By this way various exact including complex solutions are found and drawn their behaviour in complex
plane by Maple to compare the uniqueness of various solutions.

Keywords : Kuramoto - Sivashinsky equation, Modified Kudrayshov method, Exact solutions, Maple graphs.
Mathematical subject classification : 60H15, 20F70, 83C15.

1 Introduction
In engineering and science, the problems arising from the wave propogation of communication between two (or) more
systems such as 1. Electromagnetic waves in wireless sensor networks, 2. Water flow in dams during earthquake, 3.
Stability of the output in current electricity, 4. Viscous flows in fluid dynamics, magneto hydro dynamics, 5. Turbulence
in microtides, and other physical phenomenons are described by the non-linear evolution equations (NLEE). The process
of solving such NLEE analytically and numerically uses symbolic computation procedures, analytical methods and
cardinal functions respectively. In modelling such media continuously takes to the Generalized Kuramoto-Sivashinsky
Equation (GKSE) [1] given by the partial differential equation nonlinearly for u = u(x, t) and non-zero α , β , γ

constants.

∂u
∂ t

+u
∂u
∂x

+α
∂ 2u
∂x2 +β

∂ 3u
∂x3 + γ

∂ 4u
∂x4 = 0. (1)

GKSE and its solutions performs ample roles on flowing in viscous fluids, feedback in the output of self loop controllers,
trajectories systems, gas dynamics. While α = γ = 1 and β = 0, GKSE (1) leads to Kuramoto-Sivashinsky Equation
(KSE). N. A. Kudryashov solved (1) by the method of Weiss-Tabor-Carnevale and obtained exact solutions in [1]. E.
J. Parkes et al applied tanh method for (1) by taking α = β = 1 and solved using Mathematica package, they also
solved (1) by taking α = −1 , β = 1 in [2]. B. Abdel-Hamid in [3] assumed the inital solution as PDE for u and
solved exactly for α = 1 , β = 0 in (1). D. Baldwin et al [4] applied tanh and sech methods to (1) with α = γ = 1
and solved using mathematica package. C. Li et al [5] solved GKSE of the form ut +βuα ux + γuτ uxx +δuxxxx = 0
using Bernoulli equation. By simplest equation method again N. A. Kudrayshov solved by considering ux = umux in
GKSE (1) and obtained solution for general m with some restrictions in [6]. A. H. Khater et al in [7] used Chebyshev
polynomials and applied its collocation points to solve approximations of (1). M. G. Porshokouhi et al in [8] solved
(1) for different values of constants and approximately solved by variational iteration method. In [9] C.M. Khalique
reduced (1) by Lie symmetry and solved exactly by simplest equation methd with Riccati and Bernoulli equations
seperately. D. Feng in [10] solved GKSE using Riccati equation where they taken β = 0 and uux = γuux in (1).
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M. Lakestani et al used B-spline approximations function solved (1) numerically in [11] and used tanh exact solutions
for error estimations. J. Yang et al in [12] used sine-cosine method and dynamic bifurcation method to solve more
generalized GKSE and its related equations to (1). In [12] J. Rashidinia et al solved (1) by Chebyshev wavelets. O.Acan
et al applied reduced differential transform method to solve (1) by taking β = 0 in [14].

For solving the nonlinear partial differential equations there as been many schemes applied such as Kudryashov
method by M. Foroutan et al in [15] and K. K. Ali et al in [16]. Modified Kudryashov method by K. Hosseini et al
in [17,18], D. Kumar et al in [19], A. K. Joardar et al in [20] and A.R. Seadawy et al in [21]. Generalized Kudryashov
method by F. Mahmud et al in [22], S. T. Demiray et al in [23] and S. Bibi et al in [24]. Sine-cosine method by K. R.
Raslan et al in [25]. Sine-Gordon method by H. Bulut et al in [26]. Sineh-Gordon equation expansion method by H.
M. Baskonus et al in [27], Y. Xian-Lin et al in [28] and A. Esen et al in [29]. Extended trial equation method by K. A.
Gepreel in [30],Y. Pandir et al in [31] and Y. Gurefe et al in [32]. Exponential − φ

2 method by L.K. Ravi et al in [33],
A. R. Seadawy et al in [34] and M. Nur Alam et al in [35]. Jacobi elliptic function method by S. Liu et al in [36].

F-expansion method by A. Ebaid et al in [37]. Extended G
′

G method by E. M. E. Zayed, S. Al-Joudi et al in [38].
In this communication work we apply the Modified Kudrayshov Method (MKM) used in [17–21] to solve GKSE

(1) and gotten the new exact solutions. Description about the methodology of MKM is given in section 2, Applications
of MKM to GKSE given in the section 3, Numerical study of GKSE solutions through graphs given in the section 4,
comparative study to the previous solution given in the section 5 and processing GKSE by other methods and their
limitations are given in the section 6 followed by conclusions at the end.

2 Analysis of MKM
Given nonlinear partial differential equations (NLPDE) are converted to ordinary differential equations (ODE) by
making necessary transform. Then the initially assumed solution is applied in ODE from which the algebraic equations
are obtained and solved, when substituting in assumed solution gives the NLPDE solution. MKM takes the following
steps in solving NLPDE [17–21] as described in Algorithm 1.

Remark 1. When ln(a) = 1 in (6), Algorithm 1 gives the Kudrayshov method [15,16]. Next When ln(a) = 1 in (6)

and u(η) =
∑

N
i=0 AiQ(η)i

∑
M
j=0 BiQ(η) j in (5), Algorithm 1 gives the generalized Kudrayshov method [22–24].

3 Applications to solve GKSE
Applying the wave transformation with (3) to the GKSE (1) and integrating once by taking integration constant zero,
transforms to the following ODE.

−λu+
u2

2
+αµu(1)+β µ

2u(2)+ γµ
3u(3) = 0. (8)

where u = u(η) and the superscripts (.) represents the derivatives w. r. t. η . By homogeneous balancing of (8) gives
N = 3 and hence the initial guess solution of (8) from (5) is given by,

u(η) = A0 +A1Q(η)+A2 (Q(η))2 +A3 (Q(η))3 . (9)

Substituting (9) and (6) in (8) results in the polynomial of Q(η) order 6. Collecting the coeffecients of (Q(η))i ; i =
1,2, · · · ,7 and equating to zero gives the systems of algebraic equations which upon solving by Maple gives the
unknowns of (9) and (3). The obtained values are applied in (9) along with (7) and (3) gives the exact solution of
GKSE (1) for specific values of constants α and β . Substituting the α and β values found the from set of algebraic
equations in (1) and the unknowns Ai ; i= 0,1,2,3 in (9) where Q(η) taken from (7) gives the following exact solutions.
Let δ1 = γµ ln(a), δ2 = γµ2 ln(a)2 and δ3 = γµ3 ln(a)3 in the following cases.

Solution 1 :

A0 = A1 = A2 = 0 , A3 =−120δ3 , λ =−60δ3 , µ = µ , α = 47δ2 , β = 12δ1.
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Algorithm 1 Modified Kudrayshov method

Step 1. Consider the given NLPDE of the following form u = u(x, t) .

P(u,ut ,ux,utt ,uxx,uxt , · · ·) = 0. (2)

Step 2. Apply the wave transformation u(x, t) = u(η) in (2) where

η = µ(x−λ t). (3)

Here µ is the wave variable and λ is the velocity, both are non-zero constants. Hence (2) transforms to ODE.

O
(

u,u
′
,u
′′
,uu

′
, · · ·
)
= 0. (4)

where the prime represents the derivative w. r. t. η .
Step 3. Let the initial solution guess of (4) be,

u(η) = A0 +
N

∑
i=1

Ai [Q(η)]i . (5)

where N is non-zero and positive constant calculated by principle of homogeneous balancing of (4), Ai ; i = 0,1,2, · · ·
are unknowns to be calculated and Q(η) is the solution of following auxilary ODE.

dQ(η)

dη
= Q(η) [Q(η)−1] ln(a) ; a , 1. (6)

given by,

Q(η) =
1

1+Daη
, (7)

where D is the integral constant and assumed D = 1.
Step 4. Substituting (5) and (6) in (4) leads to the polynomial in Q(η)i ; i = 0,1,2, · · · . As Q(η)i , 0 and so
collecting its coefficients then equating to zero gives systems of overdetermined algebraic equations, upon solving
gives the unknowns of (3) and (5).
Step 5. Finally substituting the values of Step 4 in (5) and then in (3) gives the solution u(x, t) of (2).
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u1(x, t) =
120δ3

(1+aη)3 . (10)

where η = µx+60δ3µt.

Solution 2 :

A0 = A1 = 0 , A2 = 120δ3 , A3 =−120δ3 , λ = 6δ3 , µ = µ , α = δ2 , β = 4δ1.

u2(x, t) =
120δ3aη

(1+aη)3 . (11)

where η = µx−6δ3µt.

Solution 3 :

A0 = A1 = 0 , A2 = 180δ3 , A3 =−120δ3 , λ = 30δ3 , µ = µ , α =−19δ2 , β = 0.

u3(x, t) =
60δ3 (1+3aη)

(1+aη)3 . (12)

where η = µx−30δ3µt.

Solution 4 :

A0 = 0 , A1 =−
720
11

δ3 , A2 = 180δ3 , A3 =−120δ3 , λ =−30
11

δ3 , µ = µ , α =
19
11

δ2 , β = 0.

u4(x, t) =−
60δ3

11

[
1−9aη +12a2η

(1+aη)3

]
. (13)

where η = µx+ 30
11 δ3µt.

Solution 5 :

A0 = 0 , A1 =−120δ3 , A2 = 240δ3 , A3 =−120δ3 , λ =−6δ3 , µ = µ , α = δ2 , β =−4δ1.

u5(x, t) =−
120δ3a2η

(1+aη)3 . (14)

where η = µx+6δ3µt.

Solution 6 :

A0 = 8iδ3 , A1 =−60µ
3 ln(a)3(γ + iγ) , A2 = 180δ3 +60iδ3 , A3 =−120δ3 , λ = 4iδ3 , µ = µ , α =−δ2 , β =−4iδ1.

u6(x, t) =
8δ3

(1+aη)3

[
i+ ia3η −

(
15+9i

2

)
a2η +

(
15−9i

2

)
aη

]
. (15)

where η = µx−4iδ3µt and i2 =−1.
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Solution 7 :

A0 = 0 , A1 =−60µ
3 ln(a)3(γ + iγ) , A2 = 180δ3 +60iδ3 , A3 =−120δ3 , λ =−4iδ3 , µ = µ , α =−δ2 , β =−4iδ1.

u7(x, t) =−
60δ3aη (i−1+(i+1)aη)

(1+aη)3 . (16)

where η = µx+4iδ3µt and i2 =−1.

Solution 8 :

A0 = 180δ3 , A1 = 0 , A2 =−60δ3 , A3 =−120δ3 , λ = 90δ3 , µ = µ , α = 73δ2 , β = 16δ1.

u8(x, t) =
60δ3

(
8aµxe2η +9a2µxeη +3a3µx

)
(eη +aµx)3 . (17)

where η = 90δ3µ ln(a)t.

Solution 9 :

A0 =−12δ3 , A1 = 0 , A2 = 120δ3 , A3 =−120δ3 , λ =−6δ3 , µ = µ , α = δ2 , β = 4δ1.

u9(x, t) =−
12δ3

(
1+a3µxe3η +3a2µxe2η −7aµxeη

)
(1+aµxeη)3 . (18)

where η = 6δ3µ ln(a)t.

Solution 10 :

A0 = 180δ3 , A1 =−480δ3 , A2 = 420δ3 , A3 =−120δ3 , λ = 90δ3 , µ = µ , α = 73δ2 , β =−16δ1.

u10(x, t) =
60δ3

(
a2µxeη +3a3µx

)
(eη +aµx)3 . (19)

where η = 90δ3µ ln(a)t.

Solution 11 :

A0 =−60δ3 , A1 = 0 , A2 = 180δ3 , A3 =−120δ3 , λ =−30δ3 , µ = µ , α =−19δ2 , β = 0.

u11(x, t) =−
60δ3e2η

(
a3µxeη +3a2µx

)
(1+aµxeη)3 . (20)

where η = 30δ3µ ln(a)t.

Solution 12 :

A0 =
60
11

δ3 , A1 =−
720
11

δ3 , A2 = 180δ3 , A3 =−120δ3 , λ =
30
11

δ3 , µ = µ , α =
19
11

δ2 , β = 0.

u12(x, t) =
60δ3aη

(
a2η −9aη +12

)
11(1+aη)3 . (21)

where η = µx− 30
11 δ3µt.
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Solution 13 :

A0 = 120δ3 , A1 = A2 = 0 , A3 =−120δ3 , λ = 60δ3 , µ = µ , α = 47δ2 , β = 12δ1.

u13(x, t) =
120δ3

(
3aµxe2η +3a2µxeη +a3µx

)
(aµx + eη)3 . (22)

where η = 60δ3µ ln(a)t.

Solution 14 :

A0 = 0 , A1 =−360δ3 , A2 = 360δ3 , A3 =−120δ3 , λ =−60δ3 , µ = µ , α = 47δ2 , β =−12δ1.

u14(x, t) =−
120δ3

(
3a2µxe2η +3aµxeη +1

)
(1+aµxeη)3 . (23)

where η = 60δ3µ ln(a)t.

Solution 15 :

A0 = A1 = 0 , A2 =−60δ3 , A3 =−120δ3 , λ =−90δ3 , µ = µ , α = 73δ2 , β = 16δ1.

u15(x, t) =−
60δ3 (3+aη)

(1+aη)3 . (24)

where η = µx+90δ3µt.

Solution 16 :

A0 = 0 , A1 =−480δ3 , A2 = 420δ3 , A3 =−120δ3 , λ =−90δ3 , µ = µ , α = 73δ2 , β =−16δ1.

u16(x, t) =−
60δ3

(
8a2µxe2η +9aµxeη +3

)
(1+aµxeη)3 . (25)

where η = 90δ3µt.

Solution 17 :

A0 = 0 , A1 =−60µ
3 ln(a)3 (γ− iγ) , A2 = 180δ3−60iδ3 , A3 =−120δ3 , λ = 4iδ3 , µ = µ , α =−δ2 , β = 4iδ1.

u17(x, t) =
60δ3aη

(1+aη)3 [i+1+(i−1)aη ] . (26)

where η = µx−4iδ3µt.

Solution 18 :

A0 = 12δ3 , A1 =−120δ3 , A2 = 240δ3 , A3 =−120δ3 , λ = 6δ3 , µ = µ , α = δ2 , β =−4δ1.

u18(x, t) =
12δ3

(
a3η −7a2η +3aη +1

)
(1+aη)3 . (27)

where η = µx−6δ3µt.
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Solution 19 :

A0 = 120δ3 , A1 =−360δ3 , A2 = 360δ3 , A3 =−120δ3 , λ = 60δ3 , µ = µ , α = 47δ2 , β =−12δ1.

u19(x, t) =
120δ3a3η

(1+aη)3 . (28)

where η = µx−60δ3µt.

Solution 20 :

A0 =−8iδ3 , A1 =−60µ
3 ln(a)3 (γ− iγ) , A2 = 180δ3−60iδ3 , A3 =−120δ3 , λ =−4iδ3 , µ = µ , α =−δ2 , β = 4iδ1.

u20(x, t) =−
8δ3

(1+aη)3

[
i(1+a3η)+

(
15−9i

2

)
a2η −

(
15+9i

2

)
aη

]
. (29)

where η = µx+4iδ3µt.

Remark 2. All the solutions (10) through (29) are verified in Maple by substituting them in origianl equation (1) with
respective values of α and β which satisfies the GKSE. As far as the references we collected, we trust all the solutions
in this communication are new. Also we believe the complex valued solutions (15), (16), (26) and (29) are appearing
for the first time in this work.

4 Graphical study of solutions
The three dimensional graph of solutions (11), (13), (14) for a = 3 and µ = γ = 1 are drawn in Figure 1. The real and
imaginary part of solutions (15) and (16) for a = 5 and µ = γ = 1 are drawn in Figure 2 and Figure 3 respectively.
The three dimensional graph of solutions (18) for a = 3, µ = γ = 1, (21) for a = 5, µ = γ = 0.5 and (24) for a = 3,
µ = γ = 0.5 are drawn in Figure 4. All the complex graphs are plotted in the domain [−5,5] for x and t. Also the
graphical simulations shows the solutions are unique.

(a) u(x, t) in Eq (11) (b) u(x, t) in Eq (13) (c) u(x, t) in Eq (14)

Figure 1: Solutions 2, 4 and 5 of (1) respectively from left to right for a = 3 and µ = γ = 1 in x ∈ [−5,5] and
t ∈ [−5,5]
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(a) Real part of u(x, t) in Eq (15) (b) Imaginary part of u(x, t) in Eq (15)

Figure 2: Real and Imaginary part of Solution 6 of (1) respectively from left to right for a = 5 and µ = γ = 1 in
x ∈ [−5,5] and t ∈ [−5,5]

5 Comparision of results from the literature
N.A. Kudryashov in [6] for the exact solution of (1) based on the homogeneous balancing taken the following initial
solution.

u(η) = A0 +A1g(η)+A2g(η)2 +A3g(η)3.

where g(η) is the solution of dg(η)
dη

= b−g(η)2 and obtained the following values.

1.

A0 =−
β 3

576γ2 , A1 =
5β 2

4γ
, A2 =−15β , A3 = 120γ , α =

47β 2

144γ
, b =

β 2

576γ2 , C0 =−
5β 3

144γ2 .

2.

A0 =
30β 3

128γ2 , A1 =−
30β 2

16γ
, A2 =−30β , A3 = 120γ , α =

β 2

16γ
, b =

β 2

64γ2 , C0 =
3β 3

32γ2 .

N.A. Kudryashov in [6] solved (1) with the auxiliary equations
(

dg(z)
dz

)2
+ 4g(z)3 − ag(z)2 − 2bg(z) + d = 0 and

d2g(z)
dz2 +6g(z)2−ag(z)−b = 0 and obtained other values for unknowns.

C.M. Khalique in [9] solved (1) by Bernoulli equation dh(η)
dη

= ah(η) + bh(η)2 and Riccati equation dh(η)
dη

=

ah(η)2+bh(η)+c and obtained the following values respectively for each auxiliary equations with a= 1 , b= 3 , c= 1
for Riccati equation.

1.

A0 = ν−6a3
γ , A1 =−120a2bγ , A2 = 240ab2

γ , A3 =−120b3
γ , α = a2

γ , β = 4aγ.
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(a) Real part of u(x, t) in Eq (16) (b) Imaginary part of u(x, t) in Eq (16)

Figure 3: Real and Imaginary part of Solution 7 of (1) respectively from left to right for a = 5 and µ = γ = 1 in
x ∈ [−5,5] and t ∈ [−5,5]

2.

A0 =−990γ +60γk+ν , A1 = 60γ +180γk , A2 = 60γk , A3 =−120γ , α = 365γ , β =−36γ−4γk.

When comparing the above values from [6] and [9] our solutions of GKSE in this work are new to the literature as far
as we reviewed.

6 Constraints of solving GKSE by other methods
1. For solving GKSE (1) by generalized Kudrayshov method [22–24] mentioned in Remark 1, homogeneous

balancing of (8) gives N = M+3 having infinite solutions. For the least value M = 1 takes N = 4. So,

u(η) =
A0 +A1Q(η)+A2 (Q(η))2 +A3 (Q(η))3

B0 +B1Q(η)
.

where dQ(η)
dη

= Q(η)(Q(η)−1), Applying these equations in (8) leads to the polynomial in Q(η) and its powers.
Collecting the coefficients of Q(η) attempting to solve the equations results in continuous execution of Maple,
which does not solves the overdetermined equations. However for M = 0 takes N = 3 which may solve the (1)
but if we consider only the non-zero solutions of N = M+3 the second case is also ignored. Therefore we believe
GKSE cannot be solved by generalized Kudrayshov method.

2. Next for solving GKSE (1) by Sine-Gordon equation expansion method [26], the homogeneous balancing is
same as MKM calculated N = 3 Thus,

u(η) = A0 +A1 tanh(η)+B1sech(η)+A2 tanh2(η)+B2 tanh(η)sech(η)+A3 tanh3(η)+B3 tanh2(η)sech(η).

Substituting the above u(η) in (8) and following the steps in [26] leads to the polynomials in sin(w), cos(w), their
products, powers. Collecting the coefficients and equating to zero then solving in Maple executes continulosuly.
Hence we believe GKSE cannot be solved by Sine-Gordon equation expansion method.

9
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(a) u(x, t) in Eq (18) (b) u(x, t) in Eq (21) (c) u(x, t) in Eq (24)

Figure 4: Solution 9 for a = 3 and µ = γ = 1, solution 12 for a = 5 and µ = γ = 0.5, solution 15 for a = 3 and
µ = γ = 0.5 of (1) respectively from left to right in x ∈ [−5,5] and t ∈ [−5,5]

7 Conclusion
The MKM is implemented for solving GKSE analytically and twenty cases of unique exact solutions are gotten for the
nonlinear partial differential equation. For six set of solutions complex plots are drawn and shown their uniqueness in
Figures 1 and 4. Complex solutions structures are obtained for the first time in this work and shown their simulations
of real and imaginary parts in Figures 2 and 3. The constraints of other methods for solving GKSE are analysed and
proved the effectiveness of MKM.
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