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Abstract: We propose the Ramsey approach for the analysis of the kinematics of the systems built of 
non-relativistic, motile point masses/particles. The approach is based on the colored graphs theory. 
Point masses/particles serve as the vertices of the graph. The time dependence of the distance 
between the particles determines the coloring of the links. The vertices/particles are connected with 
an orange link, when the particles move away from each other or remain at the same distance. The 
vertices/particles are linked with the violet edge, when the particles converge. The sign of the time 
derivative of the distance between the particles dictates the color of the edge. Thus, the complete, bi-
colored, Ramsey, temporal graph emerges. The suggested coloring procedure is not transitive. The 
coloring of the link is time dependent. The proposed coloring procedure is frame independent and 
insensitive to Galilean transformations. At least one monochromatic triangle will inevitably appear 
in the graph emerging from the motion of six particles, due to the fact that the Ramsey number 𝑅ሺ3,3ሻ = 6. The approach is extended for the analysis of the systems, containing infinite number of 
the moving point masses. Infinite monochromatic (violet or orange) clique will necessarily appear in 
the graph. 

Keywords: point masses; particles; complete graph; colored graph; temporal graph; Ramsey theorem; 
Ramsey number; infinite Ramsey theorem 
 

1. Introduction 

Synthesis of novel fields of mathematics and physics is extremely fruitful, and sometimes 
generates and even constitutes new fields of investigations [1–3]. Nobel Prize winner Eugene Paul 
Wigner in his seminal paper even spoke about the “unreasonable effectiveness of mathematics in the 
natural sciences” [1]. One of the most advanced fields of modern mathematics is a graph theory, 
which was extensively developed in last decades [4,5]. Mathematical graph is a structure used to 
represent relationships between objects.  Simply speaking, graphs represent a set of objects and a 
set of pairwise relations between them [4,5]. It consists of vertices/nodes, which are the fundamental 
units or points of the graph and edges/links, which are the connections between the vertices [4–6]. 
One of the varieties of graphs are the so-called colored graphs, which are graphs, where colors are 
assigned to its elements, typically vertices or edges [6,7]. The classical result in theory of the colored 
graphs (which is referred as the Ramsey theorem) states that for any given integers r and s, there 
exists a minimum number 𝑹ሺ𝒓. 𝒔ሻ called the Ramsey number, such that any graph on at least 𝑹ሺ𝒓, 𝒔ሻ 
vertices, with edges colored in two colors (say orange and violet), will contain either: an orange clique 
of size r (i.e., a complete subgraph 𝑲𝒓  where all edges are orange), or a violet clique of size s (i.e., a 
complete subgraph 𝑲𝒔 where all edges are violet) [8–14]. The graph theory demonstrates a potential 
for physics; however, applications of the graph theory to physics are scarce until now [15–21]. We 
introduce the graph scheme, applicable for the analysis of the motion of the systems of material 
points, which results, in the temporal, complete, bi-colored graph [22–24]. We extend our approach 
to the infinite systems built of material points.        
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2. Results 

2.1. Coloring Procedure Applicable for the Motion of Point Masses. Bi-Coloring for a Pair of Particles 

Let us introduce the coloring procedure, which is applicable for the motion of N point masses 𝑚௜, 𝑖 = 1, … , 𝑁. The procedure will eventually give rise to the complete, bi-colored, temporal graph. 
Consider first the simplest system built of two non-relativistic, moving point masses/particles 𝑚ଵ 
and 𝑚ଶ, depicted in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The simplest system built of a pair of point masses 𝑚ଵ, 𝑚ଶ is depicted. 

The Cartesian coordinates of the masses are shown. 
The Cartesian coordinates of the point masses 𝑚ଵ  and 𝑚ଶ  are ሺ𝑥ଵଵሺ𝑡ሻ, 𝑥ଵଶሺ𝑡ሻ, 𝑥ଵଷሺ𝑡ሻሻ  and ሺ𝑥ଶଵሺ𝑡ሻ, 𝑥ଶଶሺ𝑡ሻ, 𝑥ଶଷሺ𝑡ሻሻ respectively; the first index denotes the number of the particle and the second 

index denotes the number of the Cartesian coordinate (see Figure 1). The time-dependent distance 
between the point masses 𝑟ଵଶሺ𝑡ሻ is given by Eq. 1: 𝑟ଵଶሺ𝑡ሻ = ඥሺ𝑥ଶଵሺ𝑡ሻ െ 𝑥ଵଵሺ𝑡ሻଶ ൅ ሺ𝑥ଶଶሺ𝑡ሻ െ 𝑥ଵଶ ሺ𝑡ሻሻଶ ൅ ሺ𝑥ଶଷሺ𝑡ሻ െ 𝑥ଵଷሺ𝑡ሻሻଶ        (1) 

Now we introduce following coloring procedure: from the pure kinematic point of view two 
situations are possible: i) the particles get closer/(converge) in a course of their motion, or ii) they 
move away from each other/remain at the same distance. When the particles move away or remain 
at the same distance, Eq. 2 takes place: 

               ௗ൫௥భమሺ௧ሻ൯ௗ௧ ൒ 0                          (2) 

When the particles converge Eq. 3 is true:  

                      ௗ൫௥భమሺ௧ሻ൯ௗ௧ ൏ 0                       (3) 

Now we make an instant photograph of the pair of particles 𝑚ଵ and 𝑚ଶ at 𝑡 = 𝑡଴.  
We adopt the following coloring procedure: if the particles 𝑚ଵ and 𝑚ଶ move away or remain 

at the same distance and Eq. 2 takes place, they are connected with the orange link (they are 
“strangers” in the terms of the seminal “party problem” of the Ramsey theory [9–12]), and when the 
particles converge, and Eq. 3 is true, they are connected with a violet link (they are considered 
respectively as “friends” [9–12]), as shown in Figure 2.  

𝑥ଵ 

𝑥ଶ 

𝑥ଷ 

𝑚ଵ, ሺ𝑥ଵଵሺ𝑡ሻ, 𝑥ଵଶሺ𝑡ሻ, 𝑥ଵଷሺ𝑡ሻሻ 

𝑚ଶ, ሺ𝑥ଶଵሺ𝑡ሻ, 𝑥ଶଶሺ𝑡ሻ, 𝑥ଶଷሺ𝑡 )
)

 

0 

𝑟ଵଶሺ𝑡ሻ 
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                 A                                    B    

Figure 2. Coloring procedure is illustrated. A. Particles 𝑚ଵ and 𝑚ଶ move away or remain at the same distance ௗ൫௥భమሺ௧ሻ൯ௗ௧ ൒ 0  is true. Particles are connected with an orange link. B. Particles 𝑚ଵ  and 𝑚ଶ  converge, ௗ൫௥భమሺ௧ሻ൯ௗ௧ ൏ 0 occurs. Particles are connected with a violet link. Green arrows illustrate directions of the 

particles motion. 

The introduced coloring is time-dependent. It is noteworthy that Eq. 2 and Eq. 3 exhaust all of 
the possibilities of the relative motion for the given pair of particles. It also should be emphasized, 
that the introduced coloring is completely based on the kinematic considerations, and it neglects the 
dynamic details of interaction between the point masses. The coloring scheme is trivially extended 
for any generalized coordinates of the particles (cylindrical, spherical, etc.). The introduced coloring 
scheme is frame independent; consider that the particles are non-relativistic, thus, the distance 
between the particles is invariant in all of the frames, both inertial and non-inertial.     

2.2. Coloring for a Triad of Particles. Checking the Transitivity of the Coloring Procedure 

Now we apply the introduced procedure for the triad of moving particles 𝑚ଵ, 𝑚ଶ and 𝑚ଷ. These 
particles serve as the vertices of the graph. The coloring procedure is supplied by Eqs. 2-3. It seems 
from the first glance, that application of the introduced coloring scheme is straightforward for the 
triad of particles. However, the situation is much more subtle, and the transitivity of the coloring 
should be carefully examined [25–27]. Actually, internal logic of the graph influences its coloring [25–
27]. Let is illustrate this with the scheme, depicted in Figure 3. Consider the triad of moving particles 𝑚ଵ, 𝑚ଶ and 𝑚ଷ., shown in Figure 3. Assume, that particles 𝑚ଵ and 𝑚ଶ converge, i.e. 

ௗ൫௥భమሺ௧ሻ൯ௗ௧ ൏ 0 

takes place. We also assume that particles 𝑚ଵ and 𝑚ଷ  converge, i.e. 
ௗ൫௥భయሺ௧ሻ൯ௗ௧ ൏ 0 . Does it 

necessarily mean, that particles 𝑚ଶ and 𝑚ଷ also necessarily converge? If this is true, the suggested 
coloring procedure is transitive.   

 

 

 

 

 

 

Figure 3. Coloring for motion of the triad of particles 𝑚ଵ, 𝑚ଶ and 𝑚ଷ is demonstrated. Green arrows depict the 
directions of the particles motion. Coloring is non-transitive. 

The transitivity of coloring has a crucial importance for the analysis of the emerging graph. It 
was demonstrated, that the transitive Ramsey numbers are different from those, calculated for non-
transitive graphs [25–27]. This is quite understandable, indeed, if the coloring is transitive, the 
monochromatic triangle immediately emerges for any pair of mono-colored, adjacent edges. It is easy 
to demonstrate that the introduced coloring is not transitive. Distance between particles 𝑚ଶ and 𝑚ଷ 
is given by: 

𝑚ଵ 𝑚ଶ 𝑚ଵ 𝑚ଶ 

𝑚ଵ 

𝑚ଶ 𝑚ଷ 

𝑟ଵଶሺ𝑡ሻ 𝑟ଵଷሺ𝑡ሻ 

𝑟ଶଷሺ𝑡ሻ 

𝜃ሺ𝑡ሻ 
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            𝑟ଶଷଶ ሺ𝑡ሻ = 𝑟ଵଶଶ ሺ𝑡ሻ ൅ 𝑟ଵଷଶ ሺ𝑡ሻ െ 2𝑟ଵଶሺ𝑡ሻ𝑟ଵଷሺ𝑡ሻ𝑐𝑜𝑠𝜃ሺ𝑡ሻ,                  (4) 

where 𝑟ଵଶሺ𝑡ሻ, 𝑟ଵଷሺ𝑡ሻ, 𝑟ଶଷሺ𝑡ሻ and 𝜃ሺ𝑡ሻ are shown in Figure 3. Consider the situation when 𝑟ଵଶሺ𝑡ሻ and 𝑟ଵଷሺ𝑡ሻ  are the slowly changing, decreasing functions; whereas, 𝜃ሺ𝑡ሻ ൏ గଶ  is a rapidly 
growing function. These assumptions may be quantified within the linear approximation: consider 
the motion in which 𝑟ଵଶሺ𝑡ሻ = 𝑟ଵଷሺ𝑡ሻ = 𝑟଴ െ 𝛼𝑡, 𝜃 = 𝜔𝑡;  𝛼 = 𝑐𝑜𝑛𝑠𝑡;  𝜔 = 𝑐𝑜𝑛𝑠𝑡.  Routine calculations 
demonstrate, that when 𝜔𝑡 ≅ గଶ and ሺ𝑟଴ െ 𝛼𝑡ሻ𝜔 ≫ 2𝛼, ௗ൫௥మయሺ௧ሻ൯ௗ௧ ൐ 0 is true. Thus, it is possible that 
the 𝑟ଶଷሺ𝑡ሻ link is orange, when 𝑟ଵଶሺ𝑡ሻ and 𝑟ଵଷሺ𝑡ሻ are violet, and both of the situations depicted in 
Figure 4 is possible. When 𝑟ଵଶሺ𝑡ሻ and 𝑟ଵଷሺ𝑡ሻ are constant, the coloring is obviously non-transitive: 𝜃ሺ𝑡ሻ may grow or decrease with time.    

 

 

 

 

 

 

 

A                                    B 

Figure 4. Possible coloring for motion of the triad of particles 𝑚ଵ, 𝑚ଶ and 𝑚ଷ is demonstrated. Green arrows 
depict the directions of the particles motion. A. The resulting triangle is bi-colored. B. The resulting triangle is 
mono-colored violet. 

Similar reasoning leads to the conclusion that the orange coloring is also non-transitive. We 
conclude that the suggested colored procedure defined by Eqs. (2-3) is not transitive. And, again, it 
is frame independent.  

2.3. Kinematic Graphs Emerging from the Motion of Multi-Particle Systems 

Consider the kinematic graph emerging from the motion of five particles, 𝑚௜, 𝑖 = 1, … ,5 , 
presented in Figure 5. The system of the motile particles is not necessarily 2D one; it may be 
constituted by the 3D set of motile particles. The coloring of the edges is defined by Eqs. 2-3. We 
consider the hypothetic coloring, presented in Figure 5. As it was already demonstrated, the coloring 
is non-transitive. No monochromatic triangle is recognized in the graph. This result is consistent with 
the Ramsey theory, indeed: 𝑅ሺ3,3ሻ = 6. 

 

 

 

 

 

 

 

 

Figure 5. Kinematic graph emerging from the motion of five, particles, 𝑚௜, 𝑖 = 1, … ,5. 

𝑚ଵ 𝑚ଵ 

𝑚ଶ 𝑚ଶ 𝑚ଷ 𝑚ଷ 

𝑚ଵ 

𝑚ଶ 

𝑚ଷ 𝑚ସ 

𝑚ହ 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2025 doi:10.20944/preprints202502.0382.v1

https://doi.org/10.20944/preprints202502.0382.v1


 5 of 8 

 

No monochromatic triangle is recognized in the graph. 
Thus, we conclude, that there exists the physical situation for the system comprised of five 

particles, in which the triad of converging particles or particles moving away from each 
other/remaining at the same distance will be absent in the system built of five point motile masses.    

Now we address the system built of six point motile masses (it also may be a 3D system of 
particles).  

We address hypothetic coloring, described by Eqs. 2-3, shown in Figure 6. Monochromatic 
orange triangles ሺ𝑚ଵ, 𝑚ଷ, 𝑚ହሻ and ሺ𝑚ଶ, 𝑚ସ, 𝑚଺ሻ are recognized in the graph. This means that within 
the triads of point masses ሺ𝑚ଵ, 𝑚ଷ, 𝑚ହሻ and ሺ𝑚ଶ, 𝑚ସ, 𝑚଺ሻ the particles move away each from other 
or, perhaps, remain at the same distance each from other. Moreover, the Ramsey theorem states that 
within any graph describing the motion of six particles, we inevitably will find at least one 
monochromatic triangle. In other words, we always will find the triangle built of three particles, in 
which the particles will converge or move away each from other/remain at the same distance. Indeed, 
the Ramsey number 𝑅ሺ3,3ሻ = 6. It should be emphasized that the Ramsey theorem do not predict 
what kind/color of triangles will appear in a graph, and this should be established with a brute force 
method, based on the analysis of the dynamics of the addressed system [9–12].  

 

 

 

 

 

 

  

 

 

Figure 6. Kinematic graph emerging from the motion of six motile particles, 𝑚௜, 𝑖 = 1, … ,6. Monochromatic 
orange triangles ሺ𝑚ଵ, 𝑚ଷ, 𝑚ହሻ and ሺ𝑚ଶ, 𝑚ସ, 𝑚଺ሻ are recognized in the graph. 

Graphs, depicted in Figures 3–6 are temporal graphs, and their coloring will change with time 
[22–24]. The total number of mono-colored triangles within the given graph is supplied with  

              𝑛௧௢௧ሺ𝑡ሻ = 𝑛௢௥௔௡௚௘ሺ𝑡ሻ ൅ 𝑛௩௜௢௟௘௧ሺ𝑡ሻ,                     (5) 

where 𝒏𝒐𝒓𝒂𝒏𝒈𝒆ሺ𝒕ሻ 𝐚𝐧𝐝 𝒏𝒗𝒊𝒐𝒍𝒆𝒕ሺ𝒕ሻ  are the time-dependent numbers of orange and violet 
monochromatic triangles in a given graphs. It is noteworthy, that 𝒏𝒕𝒐𝒕ሺ𝒕ሻ, 𝒏𝒐𝒓𝒂𝒏𝒈𝒆ሺ𝒕ሻ 𝐚𝐧𝐝 𝒏𝒗𝒊𝒐𝒍𝒆𝒕ሺ𝒕ሻ 
are frames independent. 

2.4. Generalization for Infinite Systems of Material Points 

Consider now infinite, however countable system of moving material points/particles ሼ𝒎𝟏, 𝒎𝟐, … 𝒎𝒏 … ሽ . The particles form the vertices of the infinite, bi-colored graph. The 
vertices/particles are connected with an orange link, when the particles move away from each 
other/remain at the same distance in a course of their motion (in other words Eq. 2 is true). The 
vertices/particles are connected with the violet link, when the particles converge (Eq. 3 is correct). 
Figure 7 represents the graph, corresponding to the instant photo of the motion. According to the 
Ramsey infinite theorem, the infinite monochromatic (violet or orange) clique will necessarily appear 
in the graph [12,28]. 
  

𝑚ଵ 𝑚ଶ 

𝑚ଷ 

𝑚ସ 𝑚ହ 

𝑚଺ 
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Figure 7. Infinite, however countable system of moving material points/particles ሼ𝒎𝟏, 𝒎𝟐, … 𝒎𝒏 … ሽ is depicted. 
The particles form the vertices of the infinite, bi-colored graph. The vertices/particles are connected with an 
orange link, when the particles move away from each other/remain at the same distance. The vertices/particles 
are connected with the violet link, when the particles converge. Infinite monochromatic (violet or orange) clique 
will necessarily appear in the graph. 

Let us formulate rigorously the infinite Ramsey theorem. Let 𝑲𝝎 denote the complete colored 
graph on the vertex set N. For every 𝜻 ൐ 𝟎, if we color the edges of 𝑲𝝎 with 𝜻 distinguishable 
colors, then there must be present an infinite monochromatic clique [12]. The infinite Ramsey theorem 
re-formulates the seminal Dirichlet pigeonhole principle, which states that if there exists n 
pigeonholes containing 𝒏 ൅ 𝟏 pigeons, one of the pigeonholes necessarily must contain at least two 
pigeons [12]. Thus, the monochromatic clique will necessary appear in the kinematic graph, shown 
in Figure 7. And. again, the coloring of the graph is time-dependent but frame independent. Infinite 
Ramsey theorem does not predict the exact color of the monochromatic clique. 

3. Discussion 

We introduced the mathematic procedure applicable for the analysis of motion of material 
points/particles. The mathematical scheme is based on the theory of colored graphs and it converts 
the instant photo of the motion into the Ramsey bi-colored graph [8–12,29]. Particles serve as the 
vertices of the graph. Coloring of edges/links is based on the time dependence of the distance between 
the particles. If the distance between a pair of particles grows with time in a course of motion (or 
remains the same), the edge is colored with the orange color (the vertices/particles are seen as 
“strangers” [29]); if the distance between the particles is decreased with time the edge is colored with 
violet (the vertices/particles are seen as “friends”). Thus, the complete, bi-colored, temporal graph 
emerges. The coloring is time dependent; however, it is frame independent. In our future 
investigations we plan: 
i) to extend the suggested approach to relativistic particles. 
ii) to extend the approach to the motion of deformable bodies.    

4. Conclusions 

We conclude that the graphs theory supplies the powerful tools for the analysis of the motion of 
the systems of material points/particles. We completely neglected the details of interaction between 
the particles and we based our analysis on the time dependence of the distance between particles; 
thus adopting pure kinematic approach. The distance between the motile particles, numbered i and 
k, denoted 𝒓𝒊𝒌ሺ𝒕ሻ  may grow with time/remain the same, i.e. 𝒅𝒓𝒊𝒌𝒅𝒕 ൒ 𝟎  , or, alternatively it may 

decrease with time in a course of the motion of the particles, i.e. 𝒅𝒓𝒊𝒌𝒅𝒕 ൏ 𝟎 takes place. The motile 
particles, themselves, serve as the vertices of the graph. The distinguishing in the temporal behavior 
of the function 𝒓𝒊𝒌ሺ𝒕ሻ, prescribed by the sign of its derivative, enables bi-coloring of the edges linking 
the particles. Particles moving away from each other/remaining at the same distance are connected 
with the orange link; the converging particles are, in turn, connected with the violet link. We 
demonstrated that the suggested coloring scheme is not transitive. This is important in a view of 
application of the Ramsey graph theory to the analysis of the complete, bi-colored, complete, 
temporal graph, emerging from the motion of the particles. The Ramsey number 𝑹ሺ𝟑, 𝟑ሻ = 𝟔. This 

𝑚ଵ 𝑚ଶ 𝑚ଷ 𝑚ସ 
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means that for any physical system built of six particles, will correspond the bi-colored, complete 
graph, drawn according the aforementioned mathematical scheme, which will contain at least one 
monochromatic triangle. In other words, the addressed physical system will necessarily contain at 
least one triad of particles which move away each from other/remain at the same system or converge. 
The proposed scheme completely ignores the peculiarities of the Hamiltonian/Lagrangian of the 
system. It is based on the analysis of the temporal behavior of the distances between the particles. 
The introduced mathematical scheme is time-dependent, the temporal bi-colored graph corresponds 
to the system [22–24,30]. However, the emerging graph is frame-independent. The number of the 
monochromatic triangles is frame-independent. The extension of the suggested approach to the 
analysis of the systems built of arbitrary number of point masses is straightforward. However, 
calculation of large Ramsey number remains the challenging and unsolved mathematical task. 
Generalization of the suggested approach to the infinite systems of particles is reported. The 
relativistic extension of the suggested method should be developed. 
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