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Abstract: We propose the Ramsey approach for the analysis of the kinematics of the systems built of
non-relativistic, motile point masses/particles. The approach is based on the colored graphs theory.
Point masses/particles serve as the vertices of the graph. The time dependence of the distance
between the particles determines the coloring of the links. The vertices/particles are connected with
an orange link, when the particles move away from each other or remain at the same distance. The
vertices/particles are linked with the violet edge, when the particles converge. The sign of the time
derivative of the distance between the particles dictates the color of the edge. Thus, the complete, bi-
colored, Ramsey, temporal graph emerges. The suggested coloring procedure is not transitive. The
coloring of the link is time dependent. The proposed coloring procedure is frame independent and
insensitive to Galilean transformations. At least one monochromatic triangle will inevitably appear
in the graph emerging from the motion of six particles, due to the fact that the Ramsey number
R(3,3) = 6. The approach is extended for the analysis of the systems, containing infinite number of
the moving point masses. Infinite monochromatic (violet or orange) clique will necessarily appear in
the graph.

Keywords: point masses; particles; complete graph; colored graph; temporal graph; Ramsey theorem;
Ramsey number; infinite Ramsey theorem

1. Introduction

Synthesis of novel fields of mathematics and physics is extremely fruitful, and sometimes
generates and even constitutes new fields of investigations [1-3]. Nobel Prize winner Eugene Paul
Wigner in his seminal paper even spoke about the “unreasonable effectiveness of mathematics in the
natural sciences” [1]. One of the most advanced fields of modern mathematics is a graph theory,
which was extensively developed in last decades [4,5]. Mathematical graph is a structure used to
represent relationships between objects. Simply speaking, graphs represent a set of objects and a
set of pairwise relations between them [4,5]. It consists of vertices/nodes, which are the fundamental
units or points of the graph and edges/links, which are the connections between the vertices [4-6].
One of the varieties of graphs are the so-called colored graphs, which are graphs, where colors are
assigned to its elements, typically vertices or edges [6,7]. The classical result in theory of the colored
graphs (which is referred as the Ramsey theorem) states that for any given integers r and s, there
exists a minimum number R(r.s) called the Ramsey number, such that any graph on atleast R(r,s)
vertices, with edges colored in two colors (say orange and violet), will contain either: an orange clique
of size r (i.e., a complete subgraph K, where all edges are orange), or a violet clique of size s (i.e., a
complete subgraph K where all edges are violet) [8-14]. The graph theory demonstrates a potential
for physics; however, applications of the graph theory to physics are scarce until now [15-21]. We
introduce the graph scheme, applicable for the analysis of the motion of the systems of material
points, which results, in the temporal, complete, bi-colored graph [22-24]. We extend our approach
to the infinite systems built of material points.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Results

2.1. Coloring Procedure Applicable for the Motion of Point Masses. Bi-Coloring for a Pair of Particles

Let us introduce the coloring procedure, which is applicable for the motion of N point masses
m;,i = 1,...,N. The procedure will eventually give rise to the complete, bi-colored, temporal graph.
Consider first the simplest system built of two non-relativisticc moving point masses/particles m;
and m,, depicted in Figure 1.

my, (x21 (), X2 (), X23(t)
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my, (x11(t), x12(£), x13(¢))

v
=
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0
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Figure 1. The simplest system built of a pair of point masses m,, m, is depicted.

The Cartesian coordinates of the masses are shown.

The Cartesian coordinates of the point masses m; and m, are (x11(t),x1,(t),x13(t)) and
(21 (1), x22 (1), x23(t)) respectively; the first index denotes the number of the particle and the second
index denotes the number of the Cartesian coordinate (see Figure 1). The time-dependent distance
between the point masses 7;,(t) is given by Eq. 1:

ri(t) = \/(le(t) = x11(t)? + (x22(t) — x15 (£))% + (x23(t) — x13(t))? (1)

Now we introduce following coloring procedure: from the pure kinematic point of view two
situations are possible: i) the particles get closer/(converge) in a course of their motion, or ii) they
move away from each other/remain at the same distance. When the particles move away or remain
at the same distance, Eq. 2 takes place:

d(r12(t)) > O (2)
dt -
When the particles converge Eq. 3 is true:
d(T12 (t)) < O (3)
dt

Now we make an instant photograph of the pair of particles m; and m, at t = t,.

We adopt the following coloring procedure: if the particles m; and m, move away or remain
at the same distance and Eq. 2 takes place, they are connected with the orange link (they are
“strangers” in the terms of the seminal “party problem” of the Ramsey theory [9-12]), and when the
particles converge, and Eq. 3 is true, they are connected with a violet link (they are considered
respectively as “friends” [9-12]), as shown in Figure 2.


https://doi.org/10.20944/preprints202502.0382.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2025 d0i:10.20944/preprints202502.0382.v1

3 0of 8

mq m, my m,
% %
— = — —
A B

Figure 2. Coloring procedure is illustrated. A. Particles m; and m, move away or remain at the same distance

d(ry.(t)
M > 0 is true. Particles are connected with an orange link. B. Particles m; and m, converge,

dt
d(r12())

dt
particles motion.

< 0 occurs. Particles are connected with a violet link. Green arrows illustrate directions of the

The introduced coloring is time-dependent. It is noteworthy that Eq. 2 and Eq. 3 exhaust all of
the possibilities of the relative motion for the given pair of particles. It also should be emphasized,
that the introduced coloring is completely based on the kinematic considerations, and it neglects the
dynamic details of interaction between the point masses. The coloring scheme is trivially extended
for any generalized coordinates of the particles (cylindrical, spherical, etc.). The introduced coloring
scheme is frame independent; consider that the particles are non-relativistic, thus, the distance
between the particles is invariant in all of the frames, both inertial and non-inertial.

2.2. Coloring for a Triad of Particles. Checking the Transitivity of the Coloring Procedure

Now we apply the introduced procedure for the triad of moving particles m;,m, and mj. These
particles serve as the vertices of the graph. The coloring procedure is supplied by Egs. 2-3. It seems
from the first glance, that application of the introduced coloring scheme is straightforward for the
triad of particles. However, the situation is much more subtle, and the transitivity of the coloring
should be carefully examined [25-27]. Actually, internal logic of the graph influences its coloring [25—
27]. Let is illustrate this with the scheme, depicted in Figure 3. Consider the triad of moving particles
d(r12(®)) <0

dt

< 0. Does it

my,m, and mg, shown in Figure 3. Assume, that particles m; and m, converge, i.e.

d(r13(0))
dt
necessarily mean, that particles m, and m3 also necessarily converge? If this is true, the suggested

takes place. We also assume that particles m; and mj; converge, i.e.

coloring procedure is transitive.

13(t)

Figure 3. Coloring for motion of the triad of particles m;,m, and mj is demonstrated. Green arrows depict the

directions of the particles motion. Coloring is non-transitive.

The transitivity of coloring has a crucial importance for the analysis of the emerging graph. It
was demonstrated, that the transitive Ramsey numbers are different from those, calculated for non-
transitive graphs [25-27]. This is quite understandable, indeed, if the coloring is transitive, the
monochromatic triangle immediately emerges for any pair of mono-colored, adjacent edges. It is easy
to demonstrate that the introduced coloring is not transitive. Distance between particles m, and m;
is given by:
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() = 15 () + r&(t) — 21y, (H)r3(t)coso(), (4)

where 1y,(t),113(t), 153(t) and 6(t) are shown in Figure 3. Consider the situation when
112(t) and ry3(t) are the slowly changing, decreasing functions; whereas, 6(t) <§ is a rapidly
growing function. These assumptions may be quantified within the linear approximation: consider

the motion in which 1,,(t) = 113(t) =1y — at, 6 = wt; a = const; w = const. Routine calculations

d(r23(0)
dt

the r,5(t) link is orange, when r;,(t) and ry3(t) are violet, and both of the situations depicted in

Figure 4 is possible. When 1y,(t) and r13(t) are constant, the coloring is obviously non-transitive:

demonstrate, that when wt Eg and (r, — at)w > 2a, > 0 is true. Thus, it is possible that

0(t) may grow or decrease with time.

N\ LA\

Figure 4. Possible coloring for motion of the triad of particles m;,m, and m; is demonstrated. Green arrows
depict the directions of the particles motion. A. The resulting triangle is bi-colored. B. The resulting triangle is

mono-colored violet.

Similar reasoning leads to the conclusion that the orange coloring is also non-transitive. We
conclude that the suggested colored procedure defined by Egs. (2-3) is not transitive. And, again, it
is frame independent.

2.3. Kinematic Graphs Emerging from the Motion of Multi-Particle Systems

Consider the kinematic graph emerging from the motion of five particles, m;,i=1,..,5,
presented in Figure 5. The system of the motile particles is not necessarily 2D one; it may be
constituted by the 3D set of motile particles. The coloring of the edges is defined by Egs. 2-3. We
consider the hypothetic coloring, presented in Figure 5. As it was already demonstrated, the coloring
is non-transitive. No monochromatic triangle is recognized in the graph. This result is consistent with
the Ramsey theory, indeed: R(3,3) = 6.

my

m
my 3

Figure 5. Kinematic graph emerging from the motion of five, particles, m;,i = 1, ...,5.
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No monochromatic triangle is recognized in the graph.

Thus, we conclude, that there exists the physical situation for the system comprised of five
particles, in which the triad of converging particles or particles moving away from each
other/remaining at the same distance will be absent in the system built of five point motile masses.

Now we address the system built of six point motile masses (it also may be a 3D system of
particles).

We address hypothetic coloring, described by Egs. 2-3, shown in Figure 6. Monochromatic
orange triangles (my, mz, ms) and (m,, my, mg) are recognized in the graph. This means that within
the triads of point masses (m;, msz, ms) and (m,, my, me) the particles move away each from other
or, perhaps, remain at the same distance each from other. Moreover, the Ramsey theorem states that
within any graph describing the motion of six particles, we inevitably will find at least one
monochromatic triangle. In other words, we always will find the triangle built of three particles, in
which the particles will converge or move away each from other/remain at the same distance. Indeed,
the Ramsey number R(3,3) = 6. It should be emphasized that the Ramsey theorem do not predict
what kind/color of triangles will appear in a graph, and this should be established with a brute force
method, based on the analysis of the dynamics of the addressed system [9-12].

m o m,

msg my

Figure 6. Kinematic graph emerging from the motion of six motile particles, m;,i = 1, ...,6. Monochromatic

orange triangles (my, ms, ms) and (m,, my, me) are recognized in the graph.

Graphs, depicted in Figures 3-6 are temporal graphs, and their coloring will change with time
[22-24]. The total number of mono-colored triangles within the given graph is supplied with

ntot(t) = norange(t) + nviolet(t)/ (5)

where  N,pange(t) and nyo(t) are the time-dependent numbers of orange and violet
monochromatic triangles in a given graphs. It is noteworthy, that 1,¢(t), Torange(t) and M4 (L)
are frames independent.

2.4. Generalization for Infinite Systems of Material Points

Consider now infinite, however countable system of moving material points/particles
{my,m,,..m, ..} . The particles form the vertices of the infinite, bi-colored graph. The
vertices/particles are connected with an orange link, when the particles move away from each
other/remain at the same distance in a course of their motion (in other words Eq. 2 is true). The
vertices/particles are connected with the violet link, when the particles converge (Eq. 3 is correct).
Figure 7 represents the graph, corresponding to the instant photo of the motion. According to the
Ramsey infinite theorem, the infinite monochromatic (violet or orange) clique will necessarily appear
in the graph [12,28].
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Figure 7. Infinite, however countable system of moving material points/particles {mq,m,,...m,, ...} is depicted.
The particles form the vertices of the infinite, bi-colored graph. The vertices/particles are connected with an
orange link, when the particles move away from each other/remain at the same distance. The vertices/particles
are connected with the violet link, when the particles converge. Infinite monochromatic (violet or orange) clique

will necessarily appear in the graph.

Let us formulate rigorously the infinite Ramsey theorem. Let K, denote the complete colored
graph on the vertex set N. For every { > 0, if we color the edges of K, with { distinguishable
colors, then there must be present an infinite monochromatic clique [12]. The infinite Ramsey theorem
re-formulates the seminal Dirichlet pigeonhole principle, which states that if there exists »
pigeonholes containing n + 1 pigeons, one of the pigeonholes necessarily must contain at least two
pigeons [12]. Thus, the monochromatic clique will necessary appear in the kinematic graph, shown
in Figure 7. And. again, the coloring of the graph is time-dependent but frame independent. Infinite
Ramsey theorem does not predict the exact color of the monochromatic clique.

3. Discussion

We introduced the mathematic procedure applicable for the analysis of motion of material
points/particles. The mathematical scheme is based on the theory of colored graphs and it converts
the instant photo of the motion into the Ramsey bi-colored graph [8-12,29]. Particles serve as the
vertices of the graph. Coloring of edges/links is based on the time dependence of the distance between
the particles. If the distance between a pair of particles grows with time in a course of motion (or
remains the same), the edge is colored with the orange color (the vertices/particles are seen as
“strangers” [29]); if the distance between the particles is decreased with time the edge is colored with
violet (the vertices/particles are seen as “friends”). Thus, the complete, bi-colored, temporal graph
emerges. The coloring is time dependent; however, it is frame independent. In our future
investigations we plan:

i)  toextend the suggested approach to relativistic particles.
ii) to extend the approach to the motion of deformable bodies.

4. Conclusions

We conclude that the graphs theory supplies the powerful tools for the analysis of the motion of
the systems of material points/particles. We completely neglected the details of interaction between
the particles and we based our analysis on the time dependence of the distance between particles;
thus adopting pure kinematic approach. The distance between the motile particles, numbered i and
k, denoted 1y (t) may grow with time/remain the same, i.e. % >0 , or, alternatively it may
drik

dt
particles, themselves, serve as the vertices of the graph. The distinguishing in the temporal behavior

decrease with time in a course of the motion of the particles, i.e. < 0 takes place. The motile

of the function 7 (t), prescribed by the sign of its derivative, enables bi-coloring of the edges linking
the particles. Particles moving away from each other/remaining at the same distance are connected
with the orange link; the converging particles are, in turn, connected with the violet link. We
demonstrated that the suggested coloring scheme is not transitive. This is important in a view of
application of the Ramsey graph theory to the analysis of the complete, bi-colored, complete,
temporal graph, emerging from the motion of the particles. The Ramsey number R(3,3) = 6. This
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means that for any physical system built of six particles, will correspond the bi-colored, complete
graph, drawn according the aforementioned mathematical scheme, which will contain at least one
monochromatic triangle. In other words, the addressed physical system will necessarily contain at
least one triad of particles which move away each from other/remain at the same system or converge.
The proposed scheme completely ignores the peculiarities of the Hamiltonian/Lagrangian of the
system. It is based on the analysis of the temporal behavior of the distances between the particles.
The introduced mathematical scheme is time-dependent, the temporal bi-colored graph corresponds
to the system [22-24,30]. However, the emerging graph is frame-independent. The number of the
monochromatic triangles is frame-independent. The extension of the suggested approach to the
analysis of the systems built of arbitrary number of point masses is straightforward. However,
calculation of large Ramsey number remains the challenging and unsolved mathematical task.
Generalization of the suggested approach to the infinite systems of particles is reported. The
relativistic extension of the suggested method should be developed.
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