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Abstract

Smart-beehive technologies represent a paradigm shift in beekeeping, transitioning from traditional,
reactive methods toward proactive, data-driven management. This systematic literature review
investigates the current landscape of intelligent systems applied to beehives, focusing on the integration
of IoT-based monitoring, sensor modalities, machine learning techniques, and their applications in
precision apiculture. The review adheres to PRISMA guidelines and analyzes 135 peer-reviewed
publications identified through searches of Web of Science, IEEE Xplore, and Scopus between 1990 and
2025. It addresses key research questions related to the role of intelligent systems in early problem
detection, hive condition monitoring, and predictive intervention. Common sensor types include
environmental, acoustic, visual, and structural modalities, each supporting diverse functional goals
such as health assessment, behavior analysis, and forecasting. A notable trend toward deep learning,
computer vision, and multimodal sensor fusion is evident, particularly in applications involving
disease detection and colony behavior modeling. Furthermore, the review highlights a growing corpus
of publicly available datasets critical for the training and evaluation of machine learning models.
Despite the promising developments, challenges remain in system integration, dataset standardization,
and large-scale deployment. This review offers a comprehensive foundation for the advancement
of smart apiculture technologies, aiming to improve colony health, productivity, and resilience in
increasingly complex environmental conditions.

Keywords: smart beehives; precision apiculture; hive monitoring; intelligent systems; internet of
things; datasets

1. Introduction

Honeybees (Apis mellifera) are essential pollinators in ecosystems and agricultural systems
worldwide. However, their populations have been declining due to multiple stressors including
climate change, pesticide exposure, habitat loss, and pathogens [1-3]. This decline threatens global
food security and biodiversity and has motivated researchers to develop more efficient and non-
invasive hive monitoring strategies [4,5].

Precision apiculture, or smart beekeeping, uses embedded sensors, wireless communications, and
Al algorithms to monitor hives in real-time and support timely interventions [6-8]. These systems can
capture acoustic signals, environmental conditions, hive weight, and visual cues to detect anomalies
such as swarming, queen loss, or disease presence [9-11].

Technological advancements include the integration of wireless sensor networks (WSNs) and
low-power communication protocols such as ZigBee, LoRa, and NB-IoT [12,13]. In parallel, artificial
intelligence techniques, including convolutional neural networks (CNNs), support vector machines
(SVMs), and random forests, are increasingly used to analyze hive soundscapes, image data, and
temporal patterns [14-16].
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Despite the potential of these systems, the literature remains fragmented. Most studies focus on
proof-of-concept deployments with limited duration and controlled environments, lacking robustness
and generalizability [2,8]. Moreover, there is limited cross-comparison of sensing approaches and a
lack of publicly available datasets for benchmarking [17,18].

Despite growing interest and publication volume, the literature on smart beehives remains
fragmented. Differences in application goals, sensing modalities, communication protocols, and
data analysis methods hinder the synthesis of best practices and limit cross-study generalizability.
Furthermore, many studies are proof-of-concept implementations that lack longitudinal validation or
deployment under real-world apiary conditions [19,20].

To address these gaps, this systematic literature review analyzes 135 peer-reviewed publications
between 1990 and 2025. We categorize the reviewed works across six dimensions: sensor modality,
communication method, data storage approach, data processing algorithm, application objective which
collectively serve to inform the sixth dimension—hive state classification. To ensure transparency and
reproducibility, this systematic review follows the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines. PRISMA provides a structured framework for conducting
and reporting systematic reviews.The aim of this systematic review is to answer the following research
questions (RQ):

¢ RQ1: What types of sensing modalities are most commonly used in smart beehive systems?

*  RQ2: In which application domains are smart technologies for beehives being deployed, and how
have these focal areas evolved over time?

*  RQ3: Which data analysis and machine learning methods have been applied, and how prevalent
are advanced techniques in comparison to classical approaches?

*  RQ4: What technical and practical limitations are reported across these studies?

¢ RQ5: What publicly available datasets exist for smart-beehive research, what data modalities
do they include, and how are these datasets labeled and used to develop or evaluate machine
learning models?

Through this analysis, we identify prevailing trends, methodological limitations, and areas for
future research in smart apiculture systems.

2. Materials and methods
2.1. Eligibility Criteria

The primary eligibility criteria for inclusion in this systematic literature review were defined to
identify studies that implement intelligent systems within the scope of precision apiculture, particularly
involving smart beehive technologies. The broader term smart beehive” was utilized to encompass
studies that apply various smart technologies such as sensors, IoT (Internet of Things), artificial
intelligence (AI), machine learning (ML), and data analytics specifically targeted at beekeeping and
hive management.

Studies that focused solely on traditional beekeeping practices without technological integration,
or those dealing only with biological or ecological aspects without applying sensor technology or
data-driven analytical methods, were excluded.

Only peer-reviewed articles and conference papers published in English between January 1990
and April 2025 were considered. The detailed eligibility criteria utilized for this systematic review are
summarized in Table 1.
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Table 1. Eligibility Criteria for Systematic Review of Smart Beehive Technologies

Criteria Description

Type of Data Studies must report on environmental, acoustic, visual, or
multisensory data collected from within or around bee-
hives, supporting sensor-based monitoring or data-driven
analysis.

Algorithms or Techniques While not a mandatory component, the adoption of data-
driven approaches is widely considered advantageous for
deriving structured insights from sensor observations and
facilitating evidence-based interpretations in smart bee-
keeping research.

Comparator RQ1: Types of sensor modalities used.
RQ2: Application domains.
RQ3: Categories of ML and analytical methods used and
trends in their adoption over time.
RQ4: Reported technical and practical limitations, includ-
ing system cost, data quality, power consumption, and
deployment challenges.
RQ5: Usage of publicly available datasets, categorized by
data modality, labeling approach, and their role in model
training or evaluation.

Outcome Detailed characterization of smart beehive systems, includ-

ing sensor setups, communication methods, ML/ Al tech-
niques, goals and reported limitations.

Timing Articles published from January 1990 to April 2025.

Environmental or Geo- No restrictions; studies from any geographic region are

graphical Context considered.

Publication Type Peer-reviewed journal articles and conference papers pub-
lished in English.

2.2. Information Sources

A search of the Web of Science, IEEE Xplore, and Scopus databases was conducted on April 7,
2025, to identify relevant scientific publications related to intelligent systems in beekeeping. These
databases were chosen for their broad coverage of peer-reviewed literature in engineering, agriculture,
and computer science. The search included all publications available up to April 7, 2025.

2.3. Search Strategy

A comprehensive literature search was conducted on April 7, 2025, using three major scientific
databases: Web of Science, IEEE Xplore, and Scopus. These databases were selected for their extensive
coverage of peer-reviewed scientific and engineering literature relevant to intelligent systems and
applied technologies.

The search strategy was carefully adapted to the syntax and filtering capabilities of each database,
with a temporal range covering publications from 1990 to 2025. The aim was to identify studies
focused on the application of intelligent systems in beekeeping, particularly involving smart beehive
technologies. In the Web of Science database, the search query combined general terms such as precision,
smart, intelligent, and automated with domain-specific keywords like beekeeping, beehive, apiculture, and
apiary. These were searched within all fields using the Boolean operator OR to ensure inclusivity. Filters
were applied to restrict the document type to journal articles and conference proceedings, and the date
range was set from 1990 to 2025.

For IEEE Xplore, the query was adapted to search across all metadata fields using the same
combinations of general and domain-specific terms. The results were further refined to include only
journal and conference publications.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In Scopus, the search was conducted within titles, abstracts, and keywords using an equivalent
Boolean logic structure. Publications were filtered to include only articles and conference papers
written in English and published after 1990.

An overview of the search queries applied to each database, including Boolean logic and filtering
criteria, is provided in Table 2.

Table 2. Search strategy and number of retrieved records per database

Database Search query

Web of Science ALL=(( (precision OR smart OR intelligent OR automated) AND
(beekeeping OR beehive OR apiculture OR apiary) ) OR "precision
beekeeping" OR "smart beehive") AND DT==("ARTICLE" OR
"PROCEEDINGS PAPER") AND DOP=1990-01-01/2025-04-07

IEEE Xplore ("All Metadata":"precision beekeeping" OR "All Metadata":"smart
beehive" OR ( ("All Metadata":"precision” OR "smart" OR "in-
telligent” OR "automated") AND ("All Metadata":"beekeeping"
OR "beehive" OR "apiculture" OR "apiary") ) ) AND ("Content-
Type":"Journals" OR "ContentType":"Conferences")

Scopus TITLE-ABS-KEY( ( ( precision OR smart OR intelligent OR auto-
mated ) AND ( beekeeping OR beehive OR apiculture OR apiary
) ) OR "precision beekeeping" OR "smart beehive" ) AND PUB-
YEAR > 1990 AND ( LIMIT-TO ( DOCTYPE,"ar" ) OR LIMIT-TO (
DOCTYPE, "cp" ) ) AND ( LIMIT-TO (LANGUAGE, "English" ) )

2.4. Data Extraction and Categorization

To systematically analyze and compare smart beehive systems, we conducted a structured data
extraction process. Each reviewed study was annotated across six dimensions: Bibliographic Info, Sensor
Type, Communication Type, Method/Technique Type, Goal Category, and Key Aspects. These dimensions
enable uniform representation of heterogeneous systems and serve as the foundation for subsequent
visualizations and synthesis.

Figure 1 illustrates the structure of the extraction matrix. For each publication, binary encoding
(0/1) was applied to indicate the presence of a given feature or method. Additionally, descriptive
metadata was manually extracted and paraphrased from each study to provide contextual insight.

PUBLICATION

Bibliographic info Sensor type Communication Method/Technique Goal Category Key aspects
type type
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Figure 1. Structure of the data extraction matrix used to encode publications.

To ensure clarity and reproducibility, the coding schema was supported by a formal taxonomy
of categories, shown in Figure 2. This taxonomy was used to organize the various sensor types,
communication technologies, analytical methods, and goal categories.
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Figure 2. Overview of the classification taxonomy used during the data extraction process.

Each of the main categorical dimensions is described in detail below:
Sensor Type: This dimension captures which physical sensing technologies were used in each
system. A total of 41 binary-coded sensor types were grouped into six high-level categories:

*  Environmental/Weather Sensors (e.g., temperature, humidity, air pressure)
*  Acoustic/Vibration Sensors (e.g., microphones, piezoelectric sensors)

*  Imaging Sensors (e.g., cameras, optical counters, thermal imaging)

*  Hive Structural Sensors (e.g., weight/load cells, strain gauges)

e Motion/Orientation Sensors (e.g., accelerometers, gyroscopes)

e Air Composition Sensors (e.g., COp, VOC, Oy)

®  Bee Activity Counters (e.g., infrared gates, tags)

Communication Type: This category encodes the technologies used to transmit data from the
hive. The classification includes:

®  Short-Range Wireless (e.g., Zigbee, Wi-Fi, Bluetooth)
*  Long-Range Wireless (e.g., LoRa, NB-IoT, Sigfox, GSM)
e Wired Communication (e.g., Ethernet, PowerLine)

Method/Technique Type: This is the most granular dimension, with over 180 tags, grouped into
ten parent categories:

e Statistical and Time-Series Analysis (e.g., regression, correlation, ARIMA, VAR)

e Feature Extraction and Signal Processing (e.g., FFT, MFCC, DWT)

®  Classical Machine Learning (e.g., SVM, Random Forest, k-NN, Naive Bayes)

®  Deep Learning and Neural Networks (e.g., CNN, LSTM, Transformer-based models)

e Computer Vision and Image Analysis (e.g., contour detection, image segmentation)

e Unsupervised Learning and Anomaly Detection (e.g., clustering, outlier detection)

®  Rule-Based Systems and Thresholding (e.g., thresholding (T1, T2, T3, T*), Custom swarming algo-
rithm)

e Data Fusion and Ensemble Methods (e.g., Weighted multi-criteria aggregation algorithm, Majority
voting)

®  Expert Systems and Fuzzy Logic(e.g., Fuzzy-stranded-NN,fuzzy logic model (FLM))

*  Sensor Analysis/Domain-Specific(e.g., BECI formula: 6 - T + b - P + ¢ - W (weather scoring))

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Goal Category: Each system was also classified by its intended application, which helps contextu-
alize the chosen sensors and methods. The following seven goal categories were used:

*  Monitoring: Real-time reporting of hive metrics.

®  Behavior Detection: Recognizing bee behaviors.

®  Health Assessment: Detecting disease or colony vitality issues.

e Prediction / Forecasting: Estimating future events like swarming or yield.

e Optimization / Decision Support: Guiding interventions and hive management.

e System /IoT Development: Engineering and infrastructure for sensing platforms.
e Threat Detection: Identifying predators, theft, or environmental hazards.

Key Aspects: This field contains a brief textual summary of the study’s technical contribution,
extracted from the abstract or discussion. It often includes insights into the system’s novelty, testing
conditions, or dataset characteristics. Although not used for quantitative analysis, it adds interpretive
richness to the dataset.

Bibliographic Info: For traceability, each entry includes citation metadata (author, title, year,
source type) alongside classification. This enables filtering by publication date, venue type (confer-
ence/journal), or other bibliometric properties.

The result of this data extraction process is a multidimensional matrix that enables consistent,
reproducible analysis across the reviewed literature. All subsequent quantitative results and visualiza-
tions—including heatmaps, frequency distributions, and co-occurrence charts—are derived from this
underlying structure.

3. Results and Discussion
3.1. Corpus and Structured Summary of Included Studies

The selection of studies was conducted following the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) 2020 guidelines. A total of 917 records were identified through
database searches on April 7, 2025, across three major scientific databases: Web of Science (n = 409),
Scopus (n = 377), and IEEE Xplore (n = 131). After automatic removal of duplicates, 532 unique records
remained.

Title screening excluded 246 records based on relevance. The remaining 286 articles were subjected
to abstract screening and full-text assessment, during which 151 were excluded for not meeting the
inclusion criteria (e.g., lacking empirical data, not involving intelligent systems, or focusing solely on
ecological aspects). Ultimately, 135 studies were retained for full analysis.

The complete selection workflow is illustrated in Figure 3.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Records identified from

database serach:
- Web of Science (n = 409) Record§ removed before
. Scopus (n = 377) screening:
+ |EEEXplore (n =131) * Duplicate records
removed (n = 385)

Total (n =917)

Titles screened (n = 532) »| Records excluded (n = 246)

l

Abstracts screened and full texts

assessed for eligibility (where is
applicable) Records excluded (n = 151)

(n = 286)

Studies included in review

(n = 135)

Figure 3. Flow diagram illustrating the publication identification and screening process following PRISMA
guidelines (template adapted from Page et al.[21], CC BY 4.0).

The selected studies were systematically coded into a structured extraction matrix, as described in
Subsection 2.4. This matrix forms the empirical foundation for all subsequent analyses of technological

patterns, analytical techniques, and system goals. A condensed version of the data is presented in
Table 3.
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Table 3. Summary of included studies (N = 135), categorized by sensor modality, communication protocol, and analytical technique.

PUBLICATION

Sensor Type

Communication Type

Method/Algorithm

Henry et al. [1]
Ochoa et al.[3]
Khairul et al.[4]
Zabasta et al.[5]
Komasilovs et al. [6]
Zacepins et al.[2]
Sanchez et al.[7]
Lietal.[9]

Kale et al.[10]
Gil-Lebrero et al.[8]
Kviesis et al.[11]
Rybin et al.[12]
Edwards-Murphy et
al.[13]
Edwards-Murphy et
al.[14]

Kridi et al.[15]
Edwards-Murphy et
al.[16]
Edwards-Murphy et
al.[22]

Zgank [23]
Marstaller et al. [24]
Kulyukin, et al.[25]

Kulyukin, et al.[26]
LIU, et al. [27]

Tu, et al.[28]
Szczurek, et al.[29]
STRUYE, et al.[30]
Ramsey, et al.[31]
Andrijevi¢ et al. [32]

Voudiotis et al.[33]
Mrozek et al.[34]

Temperature, Humidity, Microphone

Temperature, Humidity, Weight scale

Temperature, Humidity, Weight scale

Temperature, Humidity, Weight scale, Camera
Temperature, Weight scale, Microphone

Temperature

Temperature, Humidity

Temperature, Humidity

Camera

Temperature, Humidity, Weight scale

Temperature

Temperature, Humidity, Weight scale, Microphone
Temperature, Humidity, CO2, O2, NO2, Pollutant levels,
Accelerometer

Temperature, Humidity, CO2, O2, NO2, Pollutant levels,
Accelerometer

Temperature

Microphone, Accelerometer, Infrared camera, Thermal
camera

Temperature, Humidity, CO2, 02, NO2, Pollutant levels,
Accelerometer

Microphone

Camera

Temperature, Microphone

Temperature, Microphone, Camera

Temperature, Solar radiation, Wind speed and direction,
Weight scale

Camera

Gas sensor

Counter

Accelerometer

Temperature, Gas sensors (TGS serise from Figaro Eng),
Solar radiation, UV index, IR inensity, Rain detection,
Wind speed and direction, Humidity, Microphone, Air
Quality, Counter

Camera

Camera

WiFi, Ethernet

WiFi

WiFi

WiFi, GSM/GPRS, RF
WiFi, GSM/GPRS
WiFi

ZigBee

RF

GSM/GPRS, ZigBee

GSM/GPRS, ZigBee

ZigBee
GSM/GPRS, ZigBee

GSM/GPRS, ZigBee

WiFi, GSM/GPRS

GSM/GPRS

LoRaWAN, WiFi
GSM/GPRS

Fast Fourier Transform (FFT), Data aggregation techniques (AVG, COUNT)
Custom swarming algorithm

ANOVA
Gaussian Mixture Models (GMM), Cascade classification, Optical flow

Neural network
Wavelet transformation, Neural network
Custom temperature and humidity algorithm and CO2

Decision Trees (C4.5), Custom temperature and humidity algorithm and CO2

k-means clustering

Hidden Markov Models (HMM), Mel-Frequency Cepstral Coefficients (MFCC)

Neural network

k-means clustering, Non-Uniform Fast Fourier Transform(NFFT), Short term Fourier
transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Neural network, Support
vector machine (SVM), Logistic Regression, Random Forest

Neural network, Support vector machine (SVM), Random Forest

k-means clustering, Linear regression
ANOVA, Tukey'’s test
asynchronous sequential algorithm

LSTM neural networks, Facebook Prophet, ARIMA

CNN
CNN

Continued on next page
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PUBLICATION

Sensor/Data Type

Communication Type

Method/Algorithm

Aydin et al.[35]

Robustillo et al.[36]

Hong et al.[37]

Kviesis et al.[38]
Braga et al.[39]

Li et al.[40]

Imoize et al.[41]
Cecchi et al.[42]
Kaplan et al.[43]
Zacepins et al.[44]
Bermig et al.[45]
Braga et al.[46]
Alves et al.[47]

Ngo et al.[48]

Sevin et al.[49]

Kim et al.[50]

Catania et al.[51]

Braga et al.[52]
Schurischuster et al.[53]
Williams, et al.[54]
Zgank [55]

Rodias et al.[56]
Libal et al.[57]

Chien et al.[58]
Penaloza-Aponte et
al.[59]

Degenfellner et al.[60]

Kongsilp et al.[61]

Temperature, Air Pressure, Gas sensors (TGS serise
from Figaro Eng), Humidity, Weight scale
Temperature, Air Pressure, Solar radiation, Rain
detection, Wind speed and direction, Humidity,
Pollutant levels

Temperature, Humidity, Weight scale, Microphone,
Counter

Temperature

Temperature, Dew point, Solar radiation, Rain detection,
Wind speed and direction, Weight scale

Temperature, Humidity, Weight scale, Microphone,
Counter

Temperature, Microphone

Temperature, Humidity, CO2, Weight scale, Microphone
Camera

Temperature, Humidity, Weight scale

Temperature, Humidity, Camera, Counter
Temperature, Humidity, Weight scale

Camera

Temperature, Light illuminance, Rain detection, Wind
speed and direction, Humidity, Camera

Camera

Microphone

Temperature, Wind speed and direction, Humidity,
Weight scale

Temperature, Humidity, Weight scale, Microphone
Camera

Camera, Thermal camera

Microphone

Temperature, Humidity, GPS module, LIDAR
Microphone

Camera
Tags, Camera

Weight scale, Enviromental data

Camera

WiFi, ZigBee

WiFi

Bluetooth
WiFi, GSM/GPRS

WiFi, GSM/GPRS
WiFi, Ethernet

WiFi

WiFi

WiFi

Bluetooth

WiFi, GSM/GPRS

WiFi
WiFi

GSM/GPRS

Vector Autoregressive (VAR), Dynamic Linear Model (DLM), Generalized Additive Model
(GAM)

fuzzy logic model (FLM)
Neural network, Random Forest, k-nearest neighbors (KNN)

Data correlation

Signal patterns

Signal patterns

VGG19, GoogLeNet

event detection via thresholds and time-interval-based rules

Manual video inspection and Robber’s test

k-means clustering, Random Forest, k-nearest neighbors (KNN)

CNNs (MobileNet, DenseNet, Inception, ResNet, etc.), U-Net for segmentation, CHT for
detection, Naive Bayes (NB)

Yolov3-tiny, Majority voting, Object tracking

Shape and color-based image filtering (bee and mite templates), 3-stage detection process
Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Random
Forest, XGBoost (gradient boosting), VGG19, Shallow CNN, Grad- CAM, CQT (Constant Q
transform)

statistical correlation + environmental trend analysis

LSTM neural networks, AdamX optimizer

AlexNet, ResNet, Deeplabv3 (semantic segmentation)

Gaussian Mixture Models (GMM), Neural network, Support vector machine (SVM), Random
Forest, k-nearest neighbors (KNN)

Hidden Markov Models (HMM), Gaussian Mixture Models (GMM), Linear Predictive Coding
(LPC), Mel-Frequency Cepstral Coefficients (MFCC)

BECI formula: 6 - T + b - P + ¢ - W (weather scoring);

Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Linear
Discriminant Analysis (LDA), Random Forest, k-nearest neighbors (KNN)

YOLOv7

Facebook Prophet, Similar Trend Monitoring (STM), Similar Trend Monitoring (STM).1,
Principal Component Analysis (PCA), MM-Regression
Kalman filter, Hungarian algorithm, Mask R-CNN

Continued on next page
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PUBLICATION Sensor/Data Type Communication Type Method/Algorithm
Divason et al.[62] Camera - Faster R-CNN with ResNet18/50/152 + FPN backbones, DeblurGAN
Chowdhury et al.[63] Camera - YOLOv8
Libal et al.[64] Microphone = Mel-Frequency Cepstral Coefficients (MFCC), LASSO regression, Autoencoder neural
networks
Bairo et al.[65] Weight scale GSM/GPRS Custom calibration model using linear regression on resistance-voltage-weight relationship
Camayo et al.[66] Temperature, Humidity, CO2, TVOC WiFi Neural network, Random Forest, Decision Trees (C4.5), Weighted multi-criteria aggregation
algorithm, Data aggregation techniques (AVG, COUNT), XGBoost (gradient boosting)
Liyanage et al.[67] Temperature, Rain detection, Humidity, Air Quality WiFi event detection via thresholds and time-interval-based rules
Narcia-Macias et al.[68] Temperature, Humidity, Camera = YOLOv7
Minaud et al.[69] Temperature - Generalized Additive Model (GAM), event detection via thresholds and time-interval-based
rules, RP_median thermal index, GLM validations
Garcao et al.[70] Temperature, Humidity, Microphone WiFi CNN, Logistic Regression, k-nearest neighbors (KNN), Principal Component Analysis (PCA),
YAMNET, VGGish, Feedforward neural network (FNN), Kendall’s tau
Pérez-Delgado et al.[71] Camera - CNN
Kamga et al.[72] Enviromental data, Local land cover quality index = ANFIS-SC (Adaptive Neuro-Fuzzy Inference System + Subtractive Clustering)
(LLCQI),
Kontogiannis et al.[73] Temperature, Humidity, Microphone WiFi CNNs (VGG-16/19, ResNet-18/50, WideResNet, Inception), Fuzzy-stranded-NN
Smerkol et al.[74] Temperature, Air Pressure, Rain detection, Humidity, NBIoT Support vector machine (SVM), Random Forest, Decision Trees (C4.5), ADABOOST, Gradient
Weight scale Boost
Lei et al. [75] Camera - YOLOv8m, OC-SORT, BOX-METHOD
Nguyen et al.[76] Camera - CNN, YOLOVS5, Faster RCNN, Focal Loss, Overlap Sampler
Robles-Guerrero et Microphone - CNNs: EfficientNet, ConvNeXt, MobileNet, ShuffleNet, ResNet18, etc.
al.[77]
Hall et al.[78] Microphone, Camera - Principal Component Analysis (PCA), Discriminant Function Analysis (DFA), 2D Fourier
Transform (2DFT), classification via DF-space projection
Bono et al.[79] Temperature, UV index, Rain detection, Wind speed GSM/GPRS Vector Autoregressive (VAR), impulse response functions (IRF), Granger causality tests
and direction, Humidity, Weight scale, Microphone
Ramirez-Diaz et al.[80] Enviromental data - Random Forest, Decision Trees (C4.5), XGBoost (gradient boosting), Boruta FS
Ho et al.[81] Microphone - Fast Fourier Transform (FFT), Short term Fourier transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCC), Support vector machine (SVM), Logistic Regression, Random Forest,
Extra Trees (ET), k-nearest neighbors (KNN), CQT (Constant Q transform), Spectral Contrast
Varkonyi et al.[82] Microphone = Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Spectral
Centroid, Zero Crossing Rate, Histogram-based Gradient Boosting + GA-based feature
selection (regression)
Karan et al.[83] Temperature, Light illuminance, Humidity, Weight WiFi event detection via thresholds and time-interval-based rules

Lee et al.[84]

Robustillo et al.[85]

Sledevic et al.[86]
Otesbelgue et al.[87]

scale, Microphone, Accelerometer
Temperature, Humidity, CO2, O2, Weight scale, Counter

Temperature, Air Pressure, Light illuminance, Rain
detection, Wind speed and direction, Humidity,
particulate matter, Weight scale

Camera

Temperature, Humidity, Microphone

IR, power line
communication (PLC)

Vector Autoregressive (VAR), Dynamic Factor Analysis (DFA), ombining data from multiple
time series (CMTS), eneral multivariate auto-regressive state-space (MARSG), Vector Error
Correction (VEC)

YOLOv8-pose (nano, medium, large)

Support vector machine (SVM), Random Forest, k-nearest neighbors (KNN), multilayer
perceptron (MLP), extreme learning machine (ELM)
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PUBLICATION

Sensor/Data Type

Communication Type

Method/Algorithm

Libal et al.[88]

Kulyukin et al.[89]
Micheli et al.[90]

Dickson et al.[91]
Gaikwad et al.[92]
Sledevic et al.[93]

Luz et al.[94]

Igbal et al.[95]

De Simone et al.[96]
Newton et al.[97]
Zheng et al.[98]
Alifieris et al.[99]
Janetzky et al.[100]

Rathore et al.[101]
Borgianni et al.[102]

Kulyukin et al.[103]

Varkonyi et al.[104]

Williams et al.[105]

Mahajan et al.[106]

Cota et al.[107]

Vallone et al.[108]
Abdollahi et al.[109]

Microphone

Temperature, Weight scale, Camera
Camera

Camera
Temperature, Humidity, Weight scale
Camera

Microphone

Microphone

Microphone

Temperature, Humidity, CO2, Weight scale, Vibration
Temperature, Humidity, Microphone, Camera
Temperature, Air Pressure, Humidity, Weight scale,
Enviromental data, Microphone

Microphone

Camera
Microphone

Electromgnetic radiation (EMR), Air Pressure, Solar
radiation, Rain detection, Wind speed and direction,
Humidity, Camera

Microphone

Camera, Doppler radar counter

Microphone, Camera

Temperature, Lid microswitch, Humidity, Weight scale,
Microphone, GPS module

Temperature, Humidity, Weight scale, Microphone
Microphone

LoRaWAN

WiFi
LoRaWAN, WiFi,
GSM/GPRS

WiFi

GSM/GPRS

Mel-Frequency Cepstral Coefficients (MFCC), gammatone cepstral coefficients (GTCC),
BURG algorithm, MU]tiple SIgnal Classification (MUSIC), Autoencoder, thresholding (T1, T2,
T3, T*), empirical Bayes classifier (ML thresholding)

ANN, CNN, LSTM neural networks, ARIMA

Gaussian derivative (GDER), Gray-level local variance (GLLV), Steerable filters (SFIL),
Tenengrad (TENG), and Tenengrad variance (TENV), t-distributed Stochastic Neighbor
Embedding (t-SNE)

Kalman filter, YOLOVS, Optical Flow + polynomial regression

event detection via thresholds and time-interval-based rules

YOLOvV8m + YOLOv8n-seg for detection & direction, rule-based behavior detection for 4
patterns (foraging, fanning, defense, washboarding), BoT-SORT, ByteTrack, StrongSORT,
DeepOC-SORT, OC-SORT tracking algorithms

Mel-Frequency Cepstral Coefficients (MFCC), Support vector machine (SVM), Random Forest,
multilayer perceptron (MLP), VGG16/ResNet50/MobileNet/YOLO, Mel spectrograms
Mel-Frequency Cepstral Coefficients (MFCC), CNN, LSTM neural networks, Support vector
machine (SVM), k-nearest neighbors (KNN), Naive Bayes (NB), Mel spectrograms,
transformer mode

Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), TinyML
neural network (3-layer NN)

analysis based on signal tracking, vibration spectrograms, and time-series trends

YOLOVS5, DeepSORT, rule-based bee entry /exit/count logic

rule-based journaling, checklist mapping, data stream aggregation

Random Forest, Isolation Forrest, Principal Component Analysis (PCA), Autoencoder neural
networks, Spectrograms

CLAHE (contrast enhancement), Bilateral filter, Hough Circle Transform

DenseNet121, ResNet50, InceptionV3, VGG16; Federated Averaging (FedAvg), CNN-based
DNNs (spectrogram input)

Support vector machine (SVM), Linear regression, Random Forest

Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), MFCC
differential coefficients (MFCC delta), CNN, LSTM neural networks, Spectral Centroid, Zero
Crossing Rate, DANi NF method, Chroma

Linear Predictive Coding (LPC), Support vector machine (SVM), DenseNet, Log Area Ratios
(LAR)

Mel-Frequency Cepstral Coefficients (MFCC), YOLOv7, YOLOVS, Mel spectrograms, Single
Shot Multibox Detector (SSD), Detection Transformer (DETR), Dense NN (2-layer MLP on
MFCC+Mel features)

event detection via thresholds and time-interval-based rules

Rule-based trend evaluation for honey production and swarm behavior prediction
Short-Time Energy, WebRTC VAD, CRDNN
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PUBLICATION Sensor/Data Type Communication Type Method/Algorithm
Vit et al.[110] Camera - CNNs (VGG19, DenseNet121, EfficientNetV2S, ResNet50, InceptionV3)
Kulyukin et al.[111] Camera WiFi YOLOv3, YOLOv4-tiny, YOLOv7-tiny, OmniBeeM
Jeon et al.[112] Camera GSM/GPRS YOLOVvV5s
Wu et al.[113] Tags, Dew point, Air Pressure, Solar radiation, UV - LSTM neural networks, gated recurrent unit (GRU)
index, Rain detection, Wind speed and direction,
Humidity
Safie et al.[114] Camera - YOLOV3, SqueezeNet (18-layer CNN), DarkNet-53 (53-layer CNN)
Milovanovic et al.[115] 64 IR opto-reflective sensors WiFi -
Phan et al.[116] Microphone - Logistic Regression, Random Forest, Decision Trees (C4.5), Extra Trees (ET), XGBoost
(gradient boosting), k-nearest neighbors (KNN)
Kviesis et al.[117] Temperature, Weight scale GSM/GPRS event detection via thresholds and time-interval-based rules, CNN-based DNNs
(spectrogram input)
Abdollahi et al.[118] Temperature, Humidity, Microphone - discrete wavelet transform (DWT), Mel-Frequency Cepstral Coefficients (MFCC),
Spectrograms
Campell et al.[119] Temperature, Humidity, Weight scale, Microphone, - Short term Fourier transform (STFT), Non-Negative Matrix Factorization (NMF), Masked
Camera NME, Minimum Covariance Determinant (MCD), ANN
Grammalidis et al.[120] Temperature, Humidity, Camera, Microscope images, - CNN, Mask R-CNN, U-TAE (Transformer + U-Net), YOLOv6
Satellite images
Florea et al.[121] Temperature, Air Pressure, Humidity, Microphone, - event detection via thresholds and time-interval-based rules
ultrasonic distance
Libal et al.[122] Microphone - Fast Fourier Transform (FFT), BURG algorithm, Autoencoder neural networks,
Blackman-Tukey
Chen et al.[123] Temperature, Humidity, Weight scale, Counter LoRaWAN event detection via thresholds and time-interval-based rules
Sledevic et al.[124] Camera - YOLOv8m
Sharma et al.[125] Camera - CLAHE (contrast enhancement), CNN (ResNet-50, Inception V3)
Sledevic et al.[126] Camera - YOLOv8m
Barbisan et al.[127] Microphone - Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), Support
vector machine (SVM), multilayer perceptron (MLP)
Durga et al.[128] Camera - Vision Transformer (ViT14, ViT16, ViT32)
De Simone et al.[129] Microphone - Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), 2-layer
NN
Hamza, et al.[130] Temperature, Humidity, Weight scale, Microphone - event detection via thresholds and time-interval-based rules
Sanz, et al.[131] Temperature, Air Pressure, Humidity LoRaWAN Statistical analysis (ANOVA + Fisher LSD)
Ruvinga, et al.[132] Microphone - Short term Fourier transform (STFT), Mel-Frequency Cepstral Coefficients (MFCC), CNN,
LSTM neural networks, Logistic Regression, multilayer perceptron (MLP)
Thi, et al.[133] Microphone - Genetic Programming (GP)
Lee, et al.[134] Camera - ORB (Oriented FAST and Rotated BRIEF), Contrast-Limited Adaptive Histogram
Equalization (CLAHE), RGB/HSV /Lab/Gray/YCrCb color models, Histogram Equalization
Capela, et al.[135] Weight scale, Camera - DeepBee# (custom-trained CNN)
Dokukin, et al.[136] Microphone = Support vector machine (SVM), Logistic Regression, Random Forest, XGBoost (gradient
boosting), Statistically Weighted Syndrome (SWS), OVP method
Nasir et al.[137] Camera, Infrared camera - Xception, GoogLeNet, Ensemble Bagged Trees, Multi-evidence fusion via weighted voting
Milovanovic¢ et al.[138] 900 IR photo reflectors GSM/GPRS Reflectivity-based classification (voltage thresholds), Absorption spectroscopy
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Divason et al.[139] Camera - Faster R-CNN + ResNet50-FPN backbone, Enhanced Deep Super-Resolution (EDSR),
Stochasticgradientdescent(SGD)

Braga et al.[140] Vibration, GPS module GSM/GPRS Rule-based detection: vibration triggers + GPS tracking + notification logic
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3.2. Qverview

This organizational framework enables structured comparison of methodological approaches,
sensor configurations, and system goals. By categorizing studies based on their intended purpose, the
review highlights prevailing trends, emerging directions, and underexplored topics within the domain
of smart beekeeping systems.

Figure 4 illustrates the distribution of the reviewed works by publication type and research
objective. Among the 135 included studies, 93 were journal articles (68.9%) and 42 were conference

papers (31.1%), indicating a preference for peer-reviewed journal publication within the research
community.

Publication Type
B Journal article
B Conference paper

Figure 4. Distribution of publication types.

Figure 5 presents a heatmap illustrating the distribution of reviewed journal publications by year.
The data reveal a steady increase in research activity related to smart beehive technologies, with a
notable surge beginning around 2020. Computers and Electronics in Agriculture is the most prominent
journal, publishing 15 of the reviewed studies. This reflects the strong alignment between agricultural
engineering and the development of digital monitoring systems.

Other leading publication venues include Sensors, Applied Sciences, and Ecological Informatics,
all of which support interdisciplinary research at the intersection of sensing technologies, environ-
mental monitoring, and applied sciences. The “Others” category consolidates several journals with
smaller contributions, indicating broader, though more dispersed, interest in the topic across additional
academic platforms.
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Figure 5. Number of reviewed publications by journal and year.

Figure 6 presents the distribution of reviewed conference publications by year. Although con-
ferences represent a smaller share of the overall scholarly output compared to journals, they remain
an essential channel for disseminating technical innovations in smart-beehive systems. Among them,
IEEE SOUTHEASTCON contributes the highest number of papers, consistently serving as a venue for
research on sensor systems, communication protocols, and embedded platforms relevant to apiculture.

Other conferences, including Engineering Veracruz, CSCITA, and the Internet of Sounds Symposium,
each contributed a single publication, highlighting the growing interdisciplinary interest in applying
domain-specific technologies to beekeeping. The “Others” category similarly comprises venues with
one publication each.

. 40
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Figure 6. Number of reviewed publications by conference and year.

Overall, the trend lines across both publication types reflect an emerging, but rapidly profession-
alizing research landscape. While journal publications dominate the discourse, conferences continue
to provide a dynamic space for the presentation of nascent research and the cultivation of scholarly
dialogue. The consistent appearance of certain venues over multiple years affirms the establishment of
recurring academic communities interested in precision apiculture.
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In terms of research focus, the most prevalent functional goals across the reviewed literature
were Health Assessment (36 papers) and Behavior Detection (35 papers), which together comprise over
half of the corpus. Health Assessment studies typically aimed to evaluate colony condition or detect
signs of disease and stress, while Behavior Detection focused on identifying bee activities such as
foraging, swarming, or in-hive movement patterns through visual, acoustic, or motion-based cues. The
Monitoring category included 27 studies centered on real-time tracking of environmental or hive-level
parameters. Prediction / Forecasting, found in 17 papers, involved anticipating future hive states such as
swarming events or honey yield. Optimization / Decision Support appeared in 8 studies and focused
on data-driven recommendations for hive management. System /IoT Development, present in 7 works,
primarily addressed sensor integration, platform engineering, or hardware optimization. Finally,
Threat Detection was the least represented category, with only 5 studies focused on identifying risks
such as predators, theft, or environmental anomalies. These distributions are illustrated in Figure 7,
while a complete mapping of publications by goal category is provided in Table 5.

Final Goal Category
Health Assessment
Behavior Detection
Monitoring
Prediction / Forecasting
Optimization / Decision Support
System / loT Development
Threat Detection

Figure 7. Distribution of primary research goals.

Table 5. Mapping of included studies to their primary research goal categories.

Main Goal Cate- Publications

gory

Monitoring [4,7,8,13,15,16,22,27,35,37 41 ,42,44,51,65,83,92,98,107,109,115,117,
123,130,131,135,138]

Behavior Detection [9,10,12,23,25,26,28,30,31,45,48,54,55,57,59,61,63,75,76,81,86,88,
90,91,93,95,100,104,105,111,114,122,124,126,133]

Health Assessment [11,14,24,29,34,38-40,43,47,49,50,53,60,62,66,68,70,73,77,87,94,96,
97,101,102,106,118,125,127-129,132,134,136,139]

Prediction / Fore- [2,32,33,36,46,52,64,69,72,79,80,82,85,89,103,113,119]

casting

Optimization / De- [56,67,74,108,110,116,120,121]

cision Support

System / IoT Devel- [1,3,5,6,84,99,140]

opment

Threat Detection [58,71,78,112,137]

Beyond static category counts, Figure 8 illustrates the temporal progression of the four most
prevalent research goals from 2020 to 2024 (a), along with a snapshot of their current distribution in
early 2025 (b).

Health Assessment consistently remained the dominant category throughout this period, with
notable peak in 2024. This sustained trend highlights the continued importance of diagnosing colony

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2193.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2025 d0i:10.20944/preprints202507.2193.v1

17 of 42

conditions and detecting signs of disease using sensor-derived data such as audio, weight, or thermal
profiles.

Behavior Detection showed a steady increase in interest, peaking in 2024 with 11 publica-
tions—making it the second most active category that year after Health Assessment. This underscores
growing research attention to behavioral analysis using video, acoustic, and motion sensing, often
paired with computer vision and machine learning techniques.

Monitoring was highly active in 2020 but declined in later years, with minor resurgence in 2023
and 2024. These early peaks likely reflect the foundational role of IoT-based data collection systems
that support more advanced analytics downstream.

Prediction / Forecasting showed a clear upward trajectory, with activity growing steadily from
2020 (1 paper) to a peak in 2024 (6 papers). This progression indicates a shift toward model-based,
anticipatory systems that leverage historical and real-time data for proactive decision-making.

Together, these trends point to a maturing research landscape—moving from sensor infrastructure
and basic data reporting toward complex behavioral inference and predictive analytics in smart
apiculture.

-
v

[ Goal Category
—e— Behavior Detection
[ —e— Health Assessment
[ —e— Monitoring
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Figure 8. Combined visualization of publication trends for the four most common research goal categories. (a)
shows the yearly evolution from 2020 to 2024, while (b) highlights current progress in 2025.

Figure 9 presents a word cloud generated from the abstracts of the reviewed studies, highlighting
the most frequently occurring terms in smart beehive literature. Dominant keywords such as system,
monitoring, data, honey, and colony reflect the field’s central focus on automated hive management
and data-centric decision-making. The prominence of terms like monitoring and data reinforces the
foundational role of sensor networks and continuous observation, while frequent mentions of honey
and colony emphasize biological productivity and colony-level welfare as key research drivers.
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Figure 9. Word cloud of the most frequent terms appearing in abstracts of publications.

A wide range of sensor types have been employed across the reviewed smart beehive. Figure 10
summarizes the distribution of sensor modalities by indicating how many of the 135 studies involved
each sensor type. It is important to note that the presence of a sensor in a study does not necessarily
imply that the sensor was physically deployed by the authors. In many cases, the researchers either
collected their own data using such sensors or utilized publicly available datasets obtained from hives
instrumented with the corresponding sensor types. Consequently, multiple sensors may be counted
per study, and the totals in Figure 10 exceed the number of studies reviewed.

Motion/Orientation Sensors [
Air Composition Sensors

Bee Activity/Counter Sensors |
Hive Structural Sensors
Imaging Sensors |
Acoustic/Vibration Sensors

Environmental/Weather Sensors |

0 10 20 30 40 50 60
Number of Papers

Figure 10. Prevalence of different sensor types in smart beehive studies.

Several clear patterns emerge from Figure 10. Environmental sensors are the most commonly used,
featured in 66 studies, which accounts for approximately 49% of the publications. This prevalence
reflects the foundational importance of internal/external climate monitoring for assessing hive health
and the relative ease of collecting such data [131] [108] [138] [7].
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Close behind are acoustic/vibration sensors, used in 52 studies, representing about 39% of the total.
Their popularity underscores the value of hive sound patterns—acoustic signals provide insights into
colony behavior, queen status, swarming tendencies, and stress indicators [23][50][57][70][31].

Imaging sensors appear in 49 studies, making up roughly 36% of the reviewed publications. The
growth in computer vision methods, driven by increasingly accessible hardware and advances in
image processing, has made visual analysis a leading choice for bee traffic monitoring and pathogen
detection [10] [33][43][47].

Hive weight/structural sensors are used in 34 studies, which corresponds to approximately 25%.
This highlights the utility of weight measurements for tracking honey accumulation, food reserves,
and colony strength with load cells or strain gauges [4][37][60] [65].

More specialized sensor types are used less frequently. Bee activity counters appear in 13 studies,
amounting to about 10%, and are often implemented through tags and cameras, infrared gates, or
other entryway counters for quantifying foraging activity or ingress/egress patterns [30][32] [45][59].

Air composition sensors are used in 10 studies, which represents roughly 7%. While potentially valu-
able for correlating gas levels with colony metabolism or health, their cost and limited interpretability
may explain the relatively low adoption [29] [66][97][84].

Finally, motion/orientation sensors are the least utilized, appearing in just 6 studies—approximately
4% of the total. Their use is typically limited to detecting external disturbances such as hive displace-
ment due to wind, physical impact, or theft. As these events are relatively rare or peripheral to core
hive monitoring objectives, such sensors are less commonly integrated into smart beehive systems
[83][16].

It is worth noting that the average smart hive study employs multiple sensor types to gain a more
holistic view of the colony. In our dataset, systems used on average about 1.7 distinct sensor modalities
each. As shown in Figure 11, about 55% of studies (74 out of 135) used exactly one sensor type—often
these were single-modality systems such as purely acoustic or image monitoring setups. In contrast,
approximately 45% of the studies employed a combination of two or more sensor types.

Number of Sensor Types Used

B WN =

54.8%

Figure 11. Distribution of smart hive studies by number of distinct sensor types used.

A significant portion (26%) of studies integrated two sensor types, while 13% used three distinct
modalities. Only a small fraction (6%) of projects incorporated four sensor types in a single system
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like [37][42] [32]. This multi-sensor approach reflects the principle of sensor fusion: by combining
complementary data sources, researchers can cross-validate findings and detect complex colony
conditions that may not be evident through a single modality alone.

However, adding more sensors inevitably increases system complexity, cost, and power require-
ments—likely explaining why very few projects go beyond three or four sensing modalities.

The intelligence in smart beehive systems comes from the data analysis algorithms that process
sensor inputs into meaningful predictions, detections, or decisions. The reviewed studies span a broad
spectrum of analytical approaches, from simple statistical thresholding to cutting-edge deep learning
models. Figure 12 shows the distribution of major classes of Al/analysis methods used across the 135
studies (many studies employ more than one type of analysis, so counts are overlapping).

Fuzzy Logic & Expert Systems

Data Fusion & Ensemble Methods

Sensor Analysis/Domain-Specific Methods

Unsupervised & Anomaly Detection
Rule-based Methods

Computer Vision & Imaging |

Classical ML (Supervised) |

Statistical & Time Series Analysis [
Feature Extraction & Signal Processing [

Deep Learning & Neural Networks

0 10 20 30 40
Number of Studies

Figure 12. Frequency of various data analysis and machine learning method categories in the literature.

Deep learning and neural networks have become the most widely used analytical approach, with 44
studies accounting for about 33% of the corpus employing such techniques. This category includes
the use of Convolutional Neural Networks (CNNs) for image classification (e.g., identifying pests or
classifying bee species/health from images) [62][76], as well as other neural network architectures for
analyzing audio spectrograms or multivariate sensor time-series [102]. The prevalence of deep learning
indicates that many researchers have started leveraging large datasets and powerful computing to
improve detection accuracy in complex tasks like image-based mite detection or audio-based behavior
classification. Indeed, deep learning often outperforms classical methods given sufficient data, which
aligns with its adoption in about one-third of the studies.

Almost equally common are feature extraction and signal processing techniques, recorded in 42
studies, representing approximately 31% of the total. This category represents the foundational step in
many analyses: for example, calculating the Fourier transform of audio to get frequency features [81]
or doing image preprocessing and segmentation to isolate regions of interest (like bee or mite shapes
in an image) [49]. Such techniques often precede other analyses and are pervasive as a component of
the methodology, hence their high count.

Basic statistical and time-series analysis methods were employed in 41 studies, accounting for
around 30%. These include approaches like correlation analysis [103], ARIMA models for time-
series forecasting of hive parameters [89], or simple regression models [60]. Many papers rely on
statistical analysis to interpret trends (for example, to see daily patterns in weight or temperature)
or to set adaptive thresholds (like control charts for abnormal sensor readings). The substantial
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usage of statistical methods reflects that not all smart hive research relies on complex Al—sometimes
straightforward statistical modeling suffices to derive insights from sensor data [40][67].

Turning to classical machine learning, supervised ML techniques appear in 25 studies, making
up roughly 18% of the corpus. These methods include algorithms such as support vector machines,
random forests, k-nearest neighbors, or naive Bayes classifiers. They have been applied, for instance,
to classify sound patterns (using features like Mel-frequency cepstral coefficients from audio) [57], to
distinguish normal vs. abnormal hive states [50], or to predict outcomes like swarm occurrence based
on multivariate sensor inputs [13][14]. While classical ML is less dominant than deep learning in recent
literature, it remains relevant, especially for moderate-sized datasets or where model interpretability is
valued.

Applications of computer vision and image analysis techniques were noted in 22 studies, correspond-
ing to approximately 16%. This category overlaps partially with deep learning because many vision
tasks now use CNNs; however, it also covers conventional image processing (background subtraction,
contour detection, etc.) and classical vision algorithms. The presence of computer vision methods
reflects the significant subset of works dealing with camera data—counting bees at the entrance [10],
detecting mite specks on bees [134], tracking bee motion in video [28], etc. Some studies combined
traditional vision algorithms with newer ones (e.g., using feature detectors alongside CNNs to improve
robustness [34]).

We also observed rule-based methods in 17 studies, which amounts to about 13% of the total. These
are systems using predefined rules or logic, such as if-then rules triggered by sensor thresholds or
expert system approaches. They tend to appear in early or simpler systems: for example, a system that
sends an alert if weight drops by more than X in a day (indicating a swarm) or if temperature falls
outside a band [107][3]. While conceptually straightforward and easy to implement, pure rule-based
systems are less adaptive and may not handle complex patterns, which is likely why their relative
usage has diminished over time in favor of learning-based methods.

A smaller portion of studies applied unsupervised learning or anomaly detection techniques, with 14
studies representing around 10%. These include clustering algorithms to group similar hive conditions,
or outlier detection methods to flag unusual sensor patterns without pre-labeled examples. Such
approaches are valuable when trying to detect novel or unexpected events (for instance, an unknown
type of anomaly in hive sound or climate that wasn't specifically trained for) [119] [15]. However,
unsupervised methods require careful interpretation and have seen limited use, often complementing
other analyses rather than being standalone solutions.

A smaller subset of studies employed other, less common analytical strategies. These include
domain-specific methods, data fusion, ensemble methods, and fuzzy logic systems, collectively ap-
pearing in only a handful of cases. Such approaches often aim to integrate multiple data sources
or model outputs, or to handle uncertainty through rule-based reasoning. While conceptually valu-
able—particularly for combining sensor modalities or managing ambiguity in biological systems—their
limited presence likely reflects practical constraints such as small datasets, system complexity, or the
dominance of more scalable data-driven techniques in the field [6,38,66,73,137].

To understand the progression of analytical approaches in smart beehive research, Figure 13
displays the distribution of data analysis methods across three distinct periods: 2015-2018, 2019-2022,
and 2023-2025. Table 6 complements this by summarizing the overall adoption rate of analytical
techniques, including the period prior to 2015.

Table 6. Adoption of analytical methods across publication periods

Publication Period Total Publications Used Analytical Methods % with Methods

Before 2015 2 0 0.0%

2015-2018 16 11 68.8%
2019-2022 32 26 81.2%
2023-2025 85 81 95.3%
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Before 2015, no studies employed analytical methods, reflecting the field’s early focus on hardware
prototyping and sensor integration rather than data interpretation.

Between 2015 and 2018, 68.8% of studies utilized at least one analytical technique. This period was
marked by methodological diversity rather than dominance, with various approaches each appearing
in only a few studies. These early adopters explored a broad range of techniques, indicating a formative
stage of experimentation without clear methodological convergence.

In the 2019-2022 period, the use of analytics increased to 81.2% of studies. Deep Learning & Neural
Networks emerged as the most frequently used method, featuring in 12 studies—quadrupling its earlier
usage. Statistical & Time Series Analysis and Feature Extraction & Signal Processing also gained traction,
used in 9 and 7 studies respectively. This indicates a shift toward more robust modeling strategies,
particularly suited for capturing temporal patterns and supporting health diagnostics or forecasting
applications.

By 2023-2025, analytical methods were nearly universal, applied in 95.3% of studies. Feature
Extraction & Signal Processing led with 31 studies, followed closely by Deep Learning & Neural Networks
(29) and Statistical & Time Series Analysis (28). Notably, Computer Vision & Imaging methods rose
sharply to 20 studies, reflecting increased emphasis on visual behavior tracking and swarm detection.
Meanwhile, Classical ML (Supervised) maintained stable adoption (16 studies), suggesting it is being
complemented or gradually supplanted by more advanced architectures. This period marks the
transition toward integrated, multimodal, and predictive systems in smart apiculture.

Together, these trends highlight the maturation of smart beehive research—from early-stage
experimentation to a data-driven discipline where neural networks, signal processing, and vision-
based analytics play a central role in colony monitoring and decision-making.

Deep Learning & Neural Networks

Feature Extraction & Signal Processing

Statistical & Time Series Analysis
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Rule-based Methods

Unsupervised & Anomaly Detection ;
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Figure 13. Temporal evolution of key data analysis methods used in smart beehive studies.
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3.3. Meta-analysis of Publications

An interesting question is how the choice of sensor modalities correlates with the research goal of
a study. Different application domains might favor certain sensors. To explore this, Figure 14 shows
the co-occurrence of sensor types with each main goal category, highlighting patterns of association
between sensing modalities and research objectives.
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Figure 14. Heatmap showing the usage frequency of each sensor modality within each main goal category of
studies.

Several clear patterns can be observed in Figure 14:

Behavior Detection studies heavily rely on imaging and acoustic sensors. This category includes
the highest concentration of works utilizing cameras or visual tracking, along with a strong presence
of studies using acoustic sensing. This aligns with expectations—analyzing bee behaviors such as
foraging or in-hive activity often depends on direct observation through visual or auditory cues.

Health Assessment studies make substantial use of acoustic and imaging sensors, as many health diag-
noses involve detecting anomalies in either sound—such as changes in buzzing from sick colonies—or
visual patterns, like images of bees or brood used to identify mites or disease symptoms. These studies
also frequently incorporate environmental sensors, since temperature shifts may signal brood issues or
colony decline, and certain diseases can manifest through subtle changes in microclimate. A small
subset of health-focused research has explored the use of air composition sensors to detect chemical
markers of illness or elevated CO; resulting from poor ventilation in weakened hives. On the other
hand, structural sensors such as those measuring hive weight appear less commonly in this context, as
weight is generally more associated with food reserves than with disease—although significant weight
loss can still indicate potential problems. Overall, health-monitoring systems tend to be multi-modal,
designed to detect a broad spectrum of physiological and behavioral symptoms.

Monitoring studies, as expected, prioritize the use of environmental and hive structural sensors.
These general-purpose platforms often focus on recording vital hive parameters such as internal and
external temperature and humidity, air pressure, wind speed, and hive weight. Their goal is usually to
provide a comprehensive overview of hive status by capturing key physical indicators. Some studies
also incorporate acoustic sensors to detect sound-related anomalies, such as sudden silence following
colony collapse or excessive noise indicating disturbance.

Prediction and Forecasting studies frequently rely on environmental data, along with a notable
presence of structural and acoustic inputs. For example, models predicting honey yield often use weather
conditions and historical weight trends, while forecasts of swarming behavior might incorporate
temperature and sound cues. The strong emphasis on environmental parameters is logical, given that
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many colony events—like nectar flow or swarm triggers—are closely tied to seasonal and weather-
related patterns.

The remaining categories—Optimization and Decision Support, System and IoT Development, and
Threat Detection—exhibit more specific sensor usage patterns, reflecting their narrower focus or ear-
lier stage of maturity. Optimization-focused studies, although limited in number, typically employ
environmental sensors to support yield improvement or management recommendations. System de-
velopment papers consistently incorporate environmental, and frequently also structural and acoustic,
sensors—suggesting that a standard sensing suite (e.g., temperature, humidity, weight, sound) is
considered essential when building general-purpose platforms. In contrast, imaging sensors are less
common in this group due to power and complexity constraints. Meanwhile, threat detection studies
rely almost exclusively on imaging, sometimes complemented by acoustic sensing, to visually identify
external aggressors such as hornets. The absence of environmental and weight sensors in these works
highlights the highly targeted nature of this application domain.

These correlations underscore that the selection of sensors in a smart beehive project is closely
aligned with its objectives. If the goal is to monitor or predict general hive status, environmental
and weight sensors are the go-to choices for tracking broad trends. For researchers and engineers,
this insight can guide the design of future systems: depending on the primary application, one can
prioritize certain sensor modalities to maximize the likelihood of success.

The sensor co-occurrence heatmap shown in Figure 15 provides a quantitative overview of how
different sensor modalities are jointly used in smart beehive systems.

Environmental/Weather Sensors 9 - 26 4 8 10 60
Air Composition Sensors- 9 10 3 3 3 2 0 50
Hive Structural Sensors 3 34 14 1 4 4
40
Acoustic/Vibration Sensors = 26 3 14 52 2 3 6
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Figure 15. Sensor modality co-occurrence matrix across smart beehive studies.

The most prominent co-occurrence is observed between environmental and hive structural sensors.
This pairing reflects a foundational design in beekeeping technology, where ambient conditions such
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as temperature and humidity are monitored in parallel with hive weight to assess colony growth,
honey production, or seasonal changes. In many cases, the weight sensor serves as a proxy for biomass
or food reserves, while temperature provides thermal context—although the two data streams are
often analyzed independently.

Another commonly observed combination involves environmental sensors and acoustic/vibration
sensors. These systems typically use microphones or accelerometers to monitor hive activity, agitation,
or swarming behavior, while simultaneously recording internal /external temperature. However, the
data are frequently interpreted in isolation: acoustic features are used for classification or anomaly
detection, whereas temperature readings are either passively logged or used to validate overall hive
conditions.

A moderately common pattern includes the co-occurrence of hive structural and acoustic/vibration
sensors, a setup that theoretically enables the study of behavioral states in relation to hive mass or
movement. Similarly, the combination of environmental sensors with imaging systems is often found in
platforms that monitor entrance traffic or thermal vision, though true fusion of visual and thermal
features remains rare.

Other co-occurrences—such as those involving bee activity counters, motion/orientation sensors, or
air composition sensors—are less frequently encountered and tend to serve more specialized roles. For
instance, gas sensors like CO; or O, are typically used to investigate hive respiration or ventilation,
while accelerometers may be included for structural monitoring or theft detection. These modalities are
rarely integrated with others in a unified analytical framework, although there are notable exceptions.
Newton et al. [97], for example, combine CO,, temperature, vibration, and weight data to infer colony
behavior during overwintering. Similarly, Robustillo et al. [36] apply vector autoregressive models to
jointly analyze temperature, humidity, weight, and meteorological variables for predicting internal
hive conditions. Henry et al. [1] also examine variability in acoustic and environmental data to assess
colony stress under electromagnetic exposure, suggesting potential for integrated interpretations. In
another example, the b+WSN platform [14] incorporates gas, temperature, and weight sensors into a
rule-based decision model that triggers alerts at the hive level.

A key insight drawn from the literature is that while sensor integration at the hardware level
is common, true multimodal analysis or data fusion remains largely absent. Even in more complex
systems that include multiple sensor types, data from each source are typically processed in isolation.
As such, the co-occurrence heatmap primarily reflects design choices and hardware configurations
rather than analytical integration.

The sensor-model co-occurrence heatmap, shown in Figure 16, reveals several dominant patterns
in the design of smart beehive systems, each reflecting how particular sensor modalities are suited to
specific types of analysis as dictated by the intended application goals.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2193.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2025 d0i:10.20944/preprints202507.2193.v1

26 of 42

Environmental/Weather Sensors - 10 11 6 6 2 3 2
25

Air Composition Sensors - 3 2 2 0 2 0 0 3 1 0
o~ ) 20
£ Hive Structural Sensors - 6 10 3 2 6 0 0 8 1 1
g
= Acoustic/Vibration Sensors 7 3 1 7 1 2 15
S
2
8 Motion/Orientation Sensors - 0 0 1 0 0 0 3 0 0 - 10

o
-
o
N
o
N

Bee Activity/Counter Sensors - 1 3 0

Imaging Sensors

Classical ML (Supervised) -

Unsupervised & Anomaly Detection -
Computer Vision & Imaging

Fuzzy Logic & Expert Systems -

Rule-based Methods -

Data Fusion & Ensemble Methods -

=
o
»
Deep Learning & Neural Networks H IS o
H
IS
=
~N
1)
o

Feature Extraction & Signal Processing
Statistical & Time Series Analysis -
Sensor Analysis/Domain-Specific Methods -

ML Model Category

Figure 16. Heatmap showing the co-occurrence between sensor modalities and machine learning (ML) model
categories across surveyed smart-beehive systems.

The sensor-model co-occurrence heatmap reveals several dominant patterns in the design of
smart beehive systems, each reflecting how particular sensor modalities are suited to specific types of
analysis as dictated by the intended application goals.

One of the strongest associations is between Acoustic/Vibration Sensors and a diverse range of
analytical methods, including Feature Extraction & Signal Processing, Statistical & Time Series Analysis,
Classical ML (Supervised), and Deep Learning & Neural Networks. This pattern reflects a substantial
body of research focused on monitoring colony behavior, detecting stress responses, and identifying
anomalies through audio-based cues. These systems typically rely on time-frequency representations
of hive sound, such as spectrograms, which are then processed using machine learning or deep learning
models. The focus in these works is often on non-invasive, real-time diagnostics aimed at swarm
prediction or general hive health assessment.

Environmental/Weather Sensors are frequently paired with Statistical & Time Series Analysis. These
studies generally seek to model colony microclimate, identify seasonal or daily patterns, and detect
deviations from thermal norms that may indicate brood disturbance or weakening colonies. Given the
scalar and temporal nature of the data, statistical methods such as trend analysis or control charts are
both practical and interpretable, especially for low-cost, field-deployable systems.

Imaging Sensors show strong co-occurrence with Deep Learning & Neural Networks and Computer
Vision & Imaging. These combinations are common in studies targeting automation of visual tasks
such as bee counting, motion tracking, or disease detection based on visual symptoms. Convolutional
neural networks (CNNs) dominate this space due to their ability to learn hierarchical visual features.
Such systems are typically high-precision and are designed for monitoring hive entrance activity;,
external threats, or internal brood conditions.

Hive Structural Sensors, such as those used to measure weight, are most often linked with Statistical
& Time Series Analysis. These systems often aim to infer honey production rates, colony strength, or
feeding patterns by analyzing trends in weight data. Because weight is a cumulative and slowly
varying signal, it naturally lends itself to forecasting models such as regression or ARIMA.

Other sensors—including Air Composition Sensors, Motion/Orientation Sensors, and Bee Activ-
ity/Counter Sensors—appear much less frequently and are mostly found in exploratory or proof-of-
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concept studies. Their limited analytical pairing reflects either the novelty of their application or the
challenges of integrating their outputs into broader data pipelines. While some of these modalities
show promise, their adoption remains sparse.

Overall, the co-occurrence analysis reveals that sensor selection and model choice are closely
aligned with the nature of the data and the functional goals of the system. Acoustic and imaging data,
being high-dimensional and temporally dynamic, are typically matched with learning-based models
capable of complex pattern recognition. In contrast, environmental and structural data, which are
scalar and trend-oriented, are more often analyzed using statistical or threshold-based techniques.

Understanding how different sensor modalities are implemented and transmitted is crucial for
designing efficient and scalable smart beehive systems. Various sensor type require distinct communi-
cation strategies depending on factors such as data rate, energy consumption, and deployment context.
Figure 17 provides an overview of the co-occurrence patterns between sensor categories and com-
munication technologies used in the reviewed literature. This visual summary helps illustrate which
sensor types are commonly paired with wired, short-range, or long-range wireless communication,
highlighting both standard practices and emerging trends in smart hive design.
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Figure 17. Co-occurrence between sensor categories and communication types across reviewed smart beehive
systems.

Environmental/Weather Sensors, Hive Structural Sensors, and Acoustic/Vibration Sensors are most
frequently paired with Short-Range Wireless and Long-Range Wireless communication technologies. This
common pairing reflects their central role in smart beehive systems, where real-time or continuous
data—such as temperature, humidity, hive weight, or sound—must be transmitted efficiently from
remote or outdoor environments. The low data rate and power requirements of these sensors make
them particularly suitable for low-energy wireless protocols. As a result, they are widely adopted in
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both experimental setups and field-deployable platforms, offering a balance between communication
efficiency, scalability, and monitoring reliability.

Imaging Sensors are more selectively paired, predominantly with Short-Range Wireless communi-
cation. This likely reflects their high data bandwidth requirements, which are better handled with
nearby base stations or local edge processing units. These sensors often appear in vision-based systems
focused on tasks such as bee counting, foraging activity monitoring, or intrusion detection at the hive
entrance.

Across all sensor types, Wired Communication is used infrequently, primarily in early-stage pro-
totypes or laboratory settings where simplicity and data stability are prioritized over deployment
flexibility. Most modern implementations prefer wireless connectivity, reinforcing the field’s emphasis
on modularity, scalability, and field-readiness.

In summary, the communication strategy in smart beehive systems is closely aligned with sensor
function, data rate requirements, and deployment context. Foundational sensors like environmental
and structural ones appear across a wide range of systems and communication protocols, while high-
bandwidth or specialized sensors show more constrained and deliberate communication pairings.

3.4. Practical and Technical Limitations

A cross-study analysis of recent literature reveals a variety of practical and technical limitations
that hinder the deployment, reliability, and scalability of smart beehive monitoring systems. These
challenges arise across multiple layers—from data collection and algorithm design to hardware
constraints and environmental conditions.

One major limitation is the availability and quality of data. Many studies report small dataset sizes
and a lack of environmental diversity, making models vulnerable to overfitting and poor generalization.
Edwards-Murphy et al. [14] and Braga et al. [39] highlight issues such as the absence of representative
samples for different hive states and the geographic confinement of data collection. Zgank [55] and
Campell et al. [119] emphasize that insufficient variability in training data can severely impact model
performance—for instance, by causing convergence to trivial identity matrices in swarm detection
methods based on matrix factorization. In addition, Gil-Lebrero et al. [8] point out that the inherent
biological variability in beehive activity introduces further inconsistency into datasets.

On the algorithmic side, many models rely on computationally intensive methods such as deep
learning or spectral decomposition, which often exceed the capabilities of resource-constrained edge
devices used in field settings. Kulyukin et al. [26] note that deep models demand significant processing
power, limiting their real-time deployment potential. Campell et al. [119] raise additional concerns
about convergence behavior in spectral methods, while Kulyukin et al. [89] describe how sensor faults
and environmental disruptions can create discontinuities in time-series data, degrading the reliability
of forecasting models. Cecchi et al. [42] also report performance limitations in vision-based systems
due to segmentation errors.

Hardware, energy, and communication constraints present further obstacles. Solar-powered hives
often fail to harvest sufficient energy for continuous monitoring, as observed by Edwards-Murphy
et al. [22]. Scalability is another concern—Kviesis et al. [117] report that their system could securely
support only ten IoT nodes. High costs and lack of flexibility in commercial platforms limit their
adaptability in field conditions, as pointed out by Hamza et al. [130]. Other authors [44,140] note that
general-purpose computing platforms are often unsuitable due to their energy inefficiency and lack of
durability. Multiple studies [13,22] independently report the inadequacy of solar energy harvesting,
indicating this is a widespread challenge.

Environmental sensitivity adds another layer of complexity. Sensor placement within the hive can
significantly affect measurement accuracy—Catania and Vallone [51] demonstrate that temperature
readings vary depending on probe location. Lighting conditions, occlusion, and hive structure all affect
the reliability of visual data [2,42], illustrating how fragile sensor performance can be in uncontrolled
environments.
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Lastly, the maturity of many systems remains limited. Numerous solutions are still in early-stage
or prototype phases. Kulyukin and Mukherjee [26] provide only preliminary evaluations of their
models, and Szczurek et al. [29] explicitly call for further validation of gas-based detection techniques.
The absence of long-term, multi-seasonal field testing makes it difficult to assess whether these systems
can maintain reliability under natural variability and operational stress.

Taken together, these limitations reflect the growing pains of a research field still transitioning
from proof-of-concept studies to practical, field-ready technologies. Addressing them will require
robust datasets, computational efficiency, resilient hardware, and sustained validation efforts.

4. Publicly-Available Datasets for Smart-Beehive Research

Effective machine learning models for monitoring honey bee colonies rely on access to structured,
labeled datasets that reflect the complexity of hive dynamics across multiple sensing modalities. Over
the past several years, a number of high-quality public datasets have emerged, capturing audio signals,
visual observations, and environmental telemetry relevant to colony health and behavior. These
resources support tasks such as swarm prediction, parasite detection, behavior classification, and
vitality forecasting. A summary of the most prominent datasets, categorized by modality and typical

machine learning application, is provided in Table 7.

Table 7. Summary of publicly available smart-beehive datasets by modality and ML application.

Dataset Title Modality Typical ML Purpose

To bee or not to bee: An annotated Acoustic Binary sound classification (Bee vs. noBee)

dataset for beehive sound recogni-

tion [141]

Audio-Based identification of Beehive Acoustic Multi-class classification of calm/pre-

states: The dataset [142] swarm/swarm hive states

Beehive Sounds [143] Acoustic State classification (healthy, distressed, empty);
anomaly detection

Dataset for honey bee audio detec- Acoustic Species classification (bee vs. drone) using spec-

tion [144] trograms

Queenless honeybee acoustic pat- Acoustic Queen state detection

terns [145]

Labeled dataset for bee detection and  Visual Object detection, pose estimation, and behavior

direction estimation on beehive landing tracking from video

boards [146]

Dataset for varroa mite detection on Visual Varroa mite detection

sticky boards [147]

VarroaDataset [148] Visual Parasite detection (Varroa destructor); object de-
tection with bounding boxes

VnPollenBee Dataset [149] Visual Pollen-bee classification

Honey Bee Annotated Images [150] Visual Bee detection and classification

Research project on field data collec- Multimodal Colony behavior/risk modeling; multi-source in-

tion for honey bee colony model evalu- tegration

ation [151]

Bee colony remote monitoring based on  Environmental Colony state monitoring using temperature,

IoT using ESP-NOW protocol [152] weight, battery data for predictive modeling

Winter carbon dioxide measurements Environmental Winter vitality prediction

in UK honeybee hives 2022 /2023 [153]

NASA POWER [154] Environmental External environmental feature augmentation for

beehive activity modeling
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4.1. Acoustic Datasets

Acoustic monitoring offers a non-invasive method for assessing beehive conditions, providing
valuable insights into colony behavior and health.

The "To bee or not to bee: An annotated dataset for beehive sound recognition” dataset, created by
Inés Nolasco and Emmanouil Benetos from Queen Mary University of London [141], focuses on
the automatic recognition of beehive sounds. This dataset is composed of 78 recordings, totaling
approximately 12 hours of audio, sourced from the Open Source Beehive (OSBH) project and the NU-
Hive project. The audio segments are primarily labeled into two classes: "Bee" (pure beehive sounds)
and "noBee" (periods where external sounds are perceived, superimposed on bee sounds). Annotation
was performed by volunteers using Sonic Visualiser, leveraging both auditory perception and visual
analysis of log-mel frequency spectrums. This dataset is explicitly designed for investigating machine
learning approaches to beehive sound recognition and evaluating developed methods. A related
dataset, "Audio-Based identification of Beehive states: The dataset” created by Ines Nolasco, Alessandro
Terenzi, Stefania Cecchi, Simone Orcioni, Helen L. Bear, and Emmanouil Benetos [142], also contains
audio files and a state_labels.csv for the audio-based identification of beehive states. Another publicly
available beehive audio dataset contains 10,000 audio files, each 8.203125 seconds long, sampled at 8000
Hz in WAV format, identified by date, time, and hive ID [155]. Another relevant source is the "Smart
bee colony monitor: Clips of beehive sounds” dataset published on Kaggle by Anna Jyang [143]. It includes
multiple recordings of beehive audio categorized by labels such as “healthy,” “distressed,” and “empty.”
The dataset serves as a foundation for machine learning applications focused on recognizing bee colony
states through sound analysis, and complements existing audio datasets in offering class-labeled audio
in various beehive conditions.

The "Dataset for honey bee audio detection,” by Pawel Biernacki from the University of Science
and Technology Wroclaw [144], provides 10,000 one-second recordings of bees and 1,700 one-second
recordings of drones. All recordings are in WAV format without compression, sampled at 44.1 kHz.
The specific labeling of "bees" and "drones" makes this dataset directly applicable for developing and
evaluating ML models for audio detection and classification of different honey bee types.

The “Queenless honeybee acoustic patterns” dataset, contributed by Antonio Robles-Guerrero [145],
contains acoustic patterns from five Carniola honeybee colonies in Zacatecas, Mexico. The dataset
includes recordings from healthy queenright colonies (with huge and moderate populations) and
queenless colonies (with low populations), established by removing queens from two colonies. Each
sample is 30 seconds long, recorded at a sampling frequency of 4 kHz with 12-bit resolution. The
explicit hypothesis is that the queenless state can be identified by comparing acoustic patterns with
healthy colonies using machine learning techniques and feature extraction methodologies.

4.2. Visual Datasets

Visual data provides direct observational insights into bee activity, health, and interactions within
the hive environment.

The “Labeled dataset for bee detection and direction estimation on beehive landing boards,” contributed
by Tomyslav Sledevic [146], includes several visual datasets:

® A detection dataset with 7,200 frames (1920x1080 resolution) for bee detection/segmentation.

* A segmentation dataset with 2,300 cropped bee images labeled with a triangle shape for direction
vector estimation.

® A pose directory containing 400 frames from 8 beehive entrances, where annotations include two
points (head and stinger, or front and back if partially visible) for bee direction estimation.

e A ramp detection dataset with 156 images, annotated with bounding box coordinates and four
keypoints.

e  Tracking and behavior datasets consist of annotated MP4 files with bee tracks during foraging,
defense, fanning, and washboarding activities within the entrance zone.
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All annotations are in YOLO format, supporting the development of ML models for object detection,
segmentation, pose estimation, tracking, and classification of specific bee behaviors.

The "Dataset for varroa mite detection on sticky boards,” created by Jose Divasoén et al. [147], provides
64 high-resolution images (8064 x 6048) of sticky boards with Varroa mites, along with their labels. The
dataset also includes a version of these images after deblurGAN techniques have been applied. This
dataset is intended for use with deep learning techniques to analyze Varroa mite colony infestation
levels and includes predefined training and validation splits, as well as developed deep learning
models.

The "VarroaDataset” developed by Schurischuster Stefan and Martin Kampel [148], offers high-
resolution images (160x280px) of honeybees, specifically focusing on the presence of the Varroa
destructor parasite. The dataset contains 13,509 samples, with approximately 3,947 manually annotated
as infected (class 1) and 9,562 as healthy (class 0). It includes predefined dataset splits for training,
testing, and validation. Bounding box coordinates are provided for the annotations. This dataset
is explicitly designed for detecting parasites on honeybees using machine learning, particularly for
image classification and object detection tasks.

The “VnPollenBee Dataset” is specifically built for detecting pollen-bearing bees from videos
captured at hive entrances [149]. It comprises over 2,000 images, manually annotated, containing 1,758
pollen-bearing bees and 59,068 non-pollen-bearing bees. The images were extracted from 1920x1080
resolution videos recorded at 60 frames per second under varying natural light conditions. Annotations
were initially manual using Labelme Annotation tools and refined with an object detection model. The
dataset is pre-divided into training, validation, and test sets (70:20:10 ratio) to facilitate comparative
studies of deep learning models for pollen bee detection. The "The Beelmage dataset: Annotated honey bee
images” dataset on Kaggle, created by Jenny Yang [150], provides a collection of annotated bee images
aimed at object detection tasks. The dataset consists of over 1,000 labeled images with bounding boxes
around honey bees, intended to facilitate training and evaluation of deep learning models for detection
and classification tasks. It is particularly useful for preliminary experimentation in object detection
pipelines.

4.3. Environmental and Multi-Modal Datasets

These datasets combine various sensor measurements to provide a comprehensive understanding
of beehive dynamics and their external influences.

A bee colony monitoring system, detailed in the study “Bee colony remote monitoring based on IoT
using ESP-NOW protocol” collected real-time environmental data [152]. The study makes available
the "Measurements for the experimental period" dataset as supplemental information. This dataset
includes battery discharge rates, temperature measurements (inside and outside the hive), and weight
measurements of bee colonies. This data, collected from five colonies in Latvia from June to August
2022, was used to evaluate the efficiency of the IoT system and to analyze colony weight dynamics
for active foraging periods, as well as in-hive temperature for colony state assessment. Such data is
fundamental for developing ML models for predictive monitoring of colony health, activity levels,
and resource availability.

The "Research project on field data collection for honey bee colony model evaluation - datasets” (also known
as the MUSTB field data collection), created by Dupont Yoko L. et al. [151], provides a comprehensive
set of data for evaluating honey bee colony models [151]. It includes various data modalities:

¢  Environmental/Physiological data, such as hive weight obtained from automatic logging by a
hive scale, and adult bee strength from weight assessment of combs.

*  Visual data, including data on brood development and food provision from image analysis of
combs, and forager activity from automatic video recordings and image analysis by a bee counter.

*  Observational and management logs, detailing colony management actions (e.g., input/output of
materials, queen loss, swarming, clinical signs) and observations of honey bee waggle dances
(orientation and direction).
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e  Chemical and biological analysis results, including laboratory analyses of pollen, pesticide
residues, and parasites/pathogens.
*  Geographical information for sites and polygons, including UTM coordinates.

The data is reported according to a specific data model and stored in a relational database, providing a
rich, multi-modal resource for developing and evaluating diverse machine learning models related to
bee colony health, behavior, and environmental interactions.

The "Winter carbon dioxide measurements in UK honeybee hives 2022/2023" dataset, contributed by
Michael Newton [153], specifically reports carbon dioxide measurements in wintering beehives in
the UK. This data is also compared with hive scale and vibration sensor measurements. While not
explicitly detailing ML model use within the source, CO2 levels, hive mass, and vibration patterns
are crucial environmental indicators that can be used to train and evaluate ML models for assessing
colony vitality, wintering success, and overall health without manual inspection. This data supports
"Giving Beekeeping Guidance by cOmputatiOnal-assisted Decision making," implying its relevance
for ML-driven decision support systems.

Although not directly a beehive-specific dataset, NASA POWER (Prediction Of Worldwide Energy
Resources) provides publicly accessible solar and meteorological datasets [154]. The "Agroclimatology
Archive" specifically targets agricultural needs and provides parameters formatted for input to crop
models. While it doesn’t contain bee-specific labels, this external environmental data, such as tem-
perature, solar radiation, and other meteorological parameters, is highly relevant for smart-beehive
research. It can be integrated into ML models to contextualize bee behavior, foraging patterns, and
colony health responses to broader environmental conditions.

4.4. Summary

In summary, a growing number of publicly available datasets are instrumental in advancing
smart-beehive research. These datasets offer diverse data modalities, including acoustic signals for
sound recognition and queen state detection, visual imagery for bee and parasite detection, and a
range of environmental and physiological measurements for comprehensive colony monitoring. The
detailed labeling and structured organization of these datasets directly support the development,
training, and evaluation of various machine learning models for tasks such as classification, object
detection, pose estimation, tracking, and behavioral analysis, ultimately contributing to more effective
precision apiculture.

5. Discussion and Future Work

The findings from this review illustrate the remarkable progress made in integrating sensing,
communication, and Al technologies into beekeeping. However, a closer analysis reveals a number
of systematic limitations that, if addressed, could lead to significantly more robust, scalable, and
intelligent smart hive systems.

5.1. Sensor Modalities and Deployment Gaps

Environmental sensors—particularly those for temperature, humidity, and hive weight—remain
the most commonly deployed modalities due to their affordability and ease of integration [2,4,8].
Acoustic sensors rank second and are widely used for non-invasive detection of hive events such as
queen loss or swarming [1,156,157]. These audio-based methods have proven particularly effective for
identifying critical changes in colony behavior.

However, other sensor types remain underutilized despite their potential value. Gas sensors
such as CO, and NO, sensors can offer insight into hive respiration and ventilation patterns [158],
while infrared imaging and tag-based bee counters can provide information on thermal dynamics
and foraging rates [159,160]. Despite their promise, few reviewed systems integrated these additional
modalities, indicating a narrow focus in current experimental designs.
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Moreover, most systems use only a single sensor modality, which limits resilience in noisy or
uncertain environments. Multimodal sensor fusion—where acoustic, environmental, and even image-
based signals are combined—remains rare in practical deployments despite its proven benefit in
robustness and accuracy [3,161]. Furthermore, calibration protocols, sensor placement standards, and
long-term durability studies are seldom reported, which impairs reproducibility.

5.2. Novel Opportunity: Signal-Layer Metrics as Passive Sensors

A promising research direction for smart beehive systems is the use of wireless communication
signal metrics—such as Received Signal Strength Indicator (RSSI) and Signal-to-Noise Ratio (SNR)—as
low-cost, passive sensing modalities. These metrics, inherent to radio communication technologies
like LoRaWAN, can exhibit environmental sensitivity and offer insights without requiring dedicated
physical sensors.

Recent studies have demonstrated that fluctuations in signal strength can be correlated with
changes in environmental parameters, such as soil moisture [162], occupancy and shadowing effects
[163], or spatial positioning [164]. In these applications, RSSI and SNR patterns are interpreted
using classical and machine learning techniques to infer states that would traditionally require more
expensive and power-consuming sensors.

Applied to apiculture, similar principles could be exploited. For instance, changes in hive weight,
bee clustering behavior, or humidity buildup may impact the wireless signal propagation between
nodes. This opens the door to designing low-power, low-cost hives that leverage communication
signals not just for data transmission, but also as sensing elements. Given that many smart beehive
platforms already include long-range communication modules, signal-layer analysis could yield
significant savings in hardware complexity and power consumption.

To our knowledge, no reviewed papers apply such differential signal-based sensing in beekeep-
ing. However, the approach is promising due to its low power requirements, passive nature, and
ability to integrate with existing LoORaWAN deployments. This form of “virtual sensing” could be
especially valuable in constrained deployments and represents a novel research opportunity with wide
applicability. We recommend future studies examine RSSI/SNR sensitivity to key beehive conditions,
explore training ML models on such features for anomaly detection, and benchmark their accuracy
against conventional sensors.

5.3. Data Processing and Machine Learning Approaches

The review also shows a clear evolution from rule-based alert systems to ML-powered classi-
fication and prediction. Traditional ML models like decision trees, support vector machines, and
random forests are widely adopted for swarm prediction and audio classification tasks [6,15]. Deep
learning models—including CNNs and LSTMs—are increasingly being used for vision and time-series
inference [14,16,159].

Nonetheless, several methodological shortcomings were identified. First, the majority of models
are trained on small or private datasets, reducing reproducibility and generalizability [165,166]. Sec-
ond, comparative model evaluation using standard metrics is rare, making it difficult to benchmark
performance. Finally, and most notably, very few systems implement TinyML—machine learning
designed to run on microcontrollers—for real-time inference on edge devices.

This lack of on-device inference is a missed opportunity, particularly for remote apiaries with
limited connectivity. TinyML models can process acoustic signals, environmental data, and even signal-
layer features like changes in signal strenght locally, enabling real-time decisions without requiring
constant uplink.

5.4. Deployment and Reproducibility Challenges

Despite their technical promise, many reviewed systems were only validated in laboratory settings
or over short time intervals [2,4]. Very few reported long-term, in-situ deployments that accounted for
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seasonal or geographic variation [167,168]. As a result, many systems remain proof-of-concept rather
than field-ready solutions.

Reproducibility is another critical issue. Fewer than 10% of the reviewed papers provide access
to source code or raw datasets [17,18]. Even when data is shared, it is often poorly labeled or lacks
critical metadata, preventing meaningful reuse or comparison. The absence of benchmark datasets
impedes progress and creates artificial barriers to entry for new researchers.

5.5. Future Research Directions

To advance the field, we recommend the following concrete actions:

* Design and deploy multimodal sensing platforms that combine multiple sensor types, and
communication-layer signals (RSSI, SNR) for holistic hive monitoring.

¢  Explore fluctuations in signal strength using internal vs. external LoRaWAN nodes as a novel
passive anomaly detection method.

¢ Develop lightweight, interpretable TinyML models capable of real-time inference on embedded
microcontrollers using features like sound patterns, temperature, and RSSI fluctuations.

e Standardize data annotation, sharing, and benchmarking protocols through the creation of open-
access, multi-season, multi-location datasets.

e Investigate privacy-preserving distributed learning techniques such as federated learning to
enable collaborative model training across apiaries.

By addressing these gaps, the community can transition from fragmented, lab-scale studies to
robust, reproducible, and scalable smart hive systems capable of supporting both commercial and
ecological beekeeping practices.

6. Conclusions

This review systematically analyzed 135 peer-reviewed papers on smart beehive systems, identi-
fying major technological trends, challenges, and research opportunities in the domain of precision
apiculture. Environmental and acoustic sensors were found to be the most frequently used, while
visual and gas sensing remain underexplored. Communication architectures favor short-range wireless
protocols, though long-range low-power options like LoRa and NB-IoT are increasingly adopted.
Methodologically, a transition is underway from rule-based systems to machine learning, though deep
learning remains limited by data availability and deployment complexity.

The study reveals key gaps in sensor fusion, data transparency, and longitudinal validation.
Addressing these will be crucial for the development of robust, scalable, and reproducible smart
hive platforms. Future systems must emphasize multimodal sensing, edge intelligence, and open
science principles. By consolidating existing work and outlining clear directions for research, this
paper contributes a foundational synthesis for scientists, engineers, and beekeepers seeking to harness
technology for sustainable apiculture.
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