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Abstract: To enhance thermal management efficiency of domestic SiC power semiconductor devices 

under high heat density, a multi-parameter co-optimization model based on an improved genetic 

algorithm is proposed. This model integrates thermal-structural-fluid coupling among package 

structure, heat dissipation interface, and cooling system. A multi-objective fitness function, combined 

with the NSGA-II algorithm, minimizes thermal resistance, junction temperature, and response time. 

Based on thermal network modeling, structure simplification and parameter extraction are 

performed. Experimental validation shows the optimized system significantly reduces steady-state 

junction temperature and response delay, enhancing dynamic adaptability and thermal safety, with 

strong potential for engineering applications. 

Keywords: SiC devices; thermal management optimization; improved genetic algorithm; multi-

objective co-design 

 

1. Introduction 

With advances in wide-bandgap semiconductor technology, SiC devices have become essential 

for high-density power electronic systems due to their high voltage tolerance, fast switching, and 

excellent thermal conductivity. However, in high-power, high-frequency operation, severe thermal 

accumulation impacts device reliability and system stability. During the localization of SiC chips, 

thermal management optimization is challenged by structural complexity, parameter coupling, and 

variable boundary conditions arising from the co-design of packaging, heat dissipation, and cooling 

systems [1]. Developing thermally efficient, engineering-oriented, and system-level co-optimization 

strategies is thus critical to enhancing the performance and safety margins of domestic SiC devices. 

2. Modeling of Thermal Characteristics of SiC Power Semiconductors 

2.1. Thermal Network Topology Construction 

In modeling the thermal characteristics of SiC power semiconductor devices, constructing the 

thermal network topology is essential for accurately representing heat conduction paths. Using the 

thermal-electrical analogy, each conduction unit is abstracted as an equivalent network of thermal 

resistance (R) and heat capacity (C), forming a multilayer heat flow model. This model includes the 

chip core, package, substrate, and heat dissipation interface, with nodes linked through equivalent 

thermal resistances in a series-parallel configuration. To enhance practicality, a simplified π-type 

network is adopted to balance thermal behavior complexity and real-time computation efficiency [2]. 

As shown in Figure 1, the equivalent thermal network illustrates how each resistance parameter is 
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derived from material conductivity, geometry, and interface conditions, providing the physical basis 

for subsequent modeling and optimization. 

 

Figure 1. Equivalent topology of SiC power semiconductor thermal network. 

2.2. Mathematical Model Derivation 

On the basis of the thermal network topology, the dynamic thermal behavior model of SiC power 

semiconductor devices is established based on the thermal-electrical equivalence theory, and each 

thermal resistance and heat capacity unit is correspondingly transformed into a first-order RC network 

structure. Under the simplified condition without considering the non-uniformity of heat source 

distribution, the thermal response of each layer node can be expressed by the following heat transfer 

equation [3]: 
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Where Ci denotes the i-th heat capacity, Ri is the thermal resistance between neighboring nodes, 

Ti(t) is the i-th node temperature, and P(t) is the power consumption per unit time.The thermal 

response model in a multi-node network can be unified into the following matrix form: 
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Where C, R, T(t) are the heat capacity matrix, thermal resistance matrix and temperature vector, 

respectively, which are suitable for multilayer structures to solve the thermal distribution state. 

2.3. Model Simplification and Parameter Extraction 

In order to improve the practicality and computational efficiency of the model in the engineering 

environment, the multi-node thermal network needs to be simplified moderately. Considering that 

the package shell structure with heat capacity much smaller than that of the chip area can be 

approximated as a steady-state heat transfer process, the corresponding RC branches in the network 

are simplified, and the dominant nodes of thermal resistance on the main heat transfer path are 

retained. The model further adopts the thermal resistance equivalent merging method to merge the 

units with smaller thermal resistance in the series structure to construct a three-layer node π-type 

thermal network structure. In the parameter extraction process, the thermal resistance Rth is calculated 

based on the following equation [4]: 

 A

L
Rth


=
  (3) 
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where L is the length of the heat conduction path, λ is the thermal conductivity of the material, A 

is the cross-sectional area; and the heat capacity, C, is determined as follows: 

 VcC p =   (4) 

where ρ is the material density, specific heat capacity cp, and volume V. Table 1 lists the thermal 

properties and corresponding geometrical dimensions of typical structural layers as a basis for 

subsequent thermal network parameterization. 

Table 1. Thermal parameters and geometric properties of each structural layer 

structural layer makings 

Thermal 

conductivity 

λ(W/m-K) 

Density ρ 

(kg/m³) 

Specific heat 

capacity 

cp(J/kg-K) 

Thickness 

L(mm) 

Cross-

sectional 

area A 

(mm²) 

Chip (SiC) SiC 370 3210 690 0.15 
1.5 × 1.5 = 

2.25 

solder layer SnAgCu 50 7400 230 0.10 2.25 

DBC Ceramic 

Layer 
AlN 180 3300 740 0.38 2.25 

Copper Substrate 

(Heat 

Dissipation) 

Cu 390 8960 385 1.00 
10.0 × 10.0 = 

100.00 

TIM Thermally 

Conductive 

Interface 

Material 

silicone 

grease 
5.5 2200 1300 0.20 100.00 

Radiator base 

plate 

aluminum 

(chemistry) 
205 2700 900 5.00 100.00 

3. Improved Genetic Algorithm Design 

3.1. Question Coding Design 

Due to the diversity of variables and complex constraints in the SiC power semiconductor thermal 

management optimization problem, traditional binary coding fails to meet the needs of continuous 

parameter precision and structural representation. This study adopts floating-point real number 

coding, mapping key design parameters—such as thermal resistance distribution, material thickness, 

and cooling structure size—sequentially to chromosomal loci, forming a real-number string of length 

n [5]. The coding sequence aligns with the heat flow path to maintain parameter logic and exclude 

physically invalid combinations. To improve the feasibility rate post-crossover, chromosome 

boundaries are normalized, and a validity check mechanism is embedded. 

3.2. Adaptation Function Construction 

To optimize key parameters in the SiC thermal management system, a multi-objective fitness 

function is constructed, targeting the minimum steady-state junction temperature, equivalent thermal 

resistance, and thermal response delay. The function incorporates normalized temperature terms and 

a constraint penalty mechanism. Let the optimization variables be X={x1,x2,...,xn}, with the fitness 

function defined as [6]: 
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where Tmax(X) is the peak junction temperature, Rth,eq(X) the main path thermal resistance, τ(X) the 

response time per unit power, and P(X) the penalty term for constraint violations. Weights w1,w2,w3 

are empirically calibrated based on thermal design needs. This formulation balances thermal 

performance with structural constraints, ensuring search convergence within feasible boundaries [7]. 

Normalization enhances indicator comparability, while constraint filtering improves solution 

feasibility and search stability in the multi-parameter space. 

3.3. Genetic Operator Improvement 

To enhance convergence efficiency and maintain population diversity in thermal management 

optimization, several improvements are introduced to the genetic operators. For selection, a hybrid 

strategy combining Pareto sorting and double roulette is applied, with an elite retention rate of 20% to 

preserve top-performing individuals while ensuring cross-population coverage. The crossover 

operator employs an adaptive distribution-based crossover (SBX), with the crossover probability pc 

dynamically adjusted between 0.7 and 0.95 based on the generation count. This allows a balanced 

transition from global exploration to precise local search. The mutation operator uses a normal 

perturbation mechanism, where the mutation probability pm varies within [0.01, 0.15], and the 

perturbation amplitude is scaled by the current population’s variance. The mutation step is defined as: 

 )(),,0( 2

iiiii XstdNxx =+=   (6) 

where β=0.5 is the control coefficient and std(Xi) represents the standard deviation of the i-th variable. 

These operator designs together improve convergence quality and robustness across different 

optimization stages, without sacrificing diversity or feasibility [8]. 

4. Co-Optimization of Thermal Management Systems 

4.1. Optimization Objective Analysis 

The optimization targets system-level thermal performance, incorporating chip, package, and 

cooling interface layers. To ensure device reliability, the objective function minimizes steady-state 

junction temperature and total thermal resistance, while controlling dynamic response to enable rapid 

thermal fallback under power fluctuations [9]. Due to thermal-geometric-material coupling, variables 

such as encapsulation thickness and thermal conductivity impact diffusion rates, while cooling 

structure dimensions impose size and cost constraints. Thus, both thermal behavior and structural 

limits must be integrated into the objective system. Based on global conduction path analysis, steady-

state metrics (temperature, resistance) and dynamic indicators (time constant) are weighted and 

combined, forming a constraint-aware optimization indicator set that guides collaborative design. 

4.2. Optimization of Thermal Structure Parameters 

This study redesigns the thermal conduction path from the SiC junction to the ambient by 

optimizing the geometry and materials of key layers. The base structure includes a 0.15 mm SiC chip, 

0.10 mm SnAgCu solder, 0.38 mm AlN substrate, copper baseplate, 0.2 mm silicone grease TIM, and a 

5.0 mm aluminum radiator. The optimization vector is defined as S=[L1,L2,A1,A2,N,H], where L1 and 
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L2 are the thicknesses of the copper baseplate and radiator, A1 and A2 are the dissipation and contact 

areas, and NNN, HHH are the fin density and height, respectively. Constraints include a total vertical 

thickness under 8 mm and a 10 mm × 10 mm interface size. A thermal resistance model identifies 

dominant contributors to junction-to-ambient resistance. COMSOL simulations show that increasing 

L1 from 0.8 mm to 1.4 mm reduces solder-TIM interface temperature by 5.3 K at 100 W, while 

expanding A1 from 60 mm² to 120 mm² cuts lateral resistance by 22.5%. A fin density of 30 fins/cm² at 

18 mm height improves convection without excessive pressure drop. After iterative optimization, the 

optimal set—L1=1.4, L2=4.5, A1=120mm², A2=180mm², N=30, H=18mm—achieves a 17.8% reduction 

in total thermal resistance and lowers peak junction temperature by 13.4 °C compared to the 

baseline.Figure 2 shows a schematic diagram of the packaging structure, heat dissipation interface, 

and cooling system. 

 

Figure 2. Illustration of Package Structure, Heat Dissipation Interface, and Cooling System 

4.3. Optimization of Cooling System Parameters 

The optimization of cooling system parameters should focus on the dual objectives of cooling 

medium flow characteristics and heat exchange efficiency, with emphasis on the linkage control of key 

variables such as flow rate, inlet temperature, channel structure and interfacial heat transfer coefficient. 

By establishing the cooling system design parameter set C = {v, Tin, h, Dc}, the cooling flow rate v, 

flow channel diameter Dc and heat transfer coefficient h are included in the coupled optimization 

framework, and the empirical formula is used to construct the heat transfer evaluation index [10]: 

 cDNuh /=  (7) 

Where Nu is the Nussell number and λ is the fluid thermal conductivity. Considering the influence 

of thermal-fluid impedance on the structure volume and power consumption, the microchannel 

structure and fluid guide plate are introduced in the optimized design to take into account the local 

forced convection and system flow resistance control. 

4.4. Multi-Parameter Co-Optimization Strategy 

The multi-parameter co-optimization strategy is based on the idea of coupled modeling, in which 

the heat dissipation structure parameter set S = {L1, A1, N} and the cooling system parameter set C = 

{v, h, Tin} are jointly constructed into the thermal-fluid-structural multi-dimensional optimization 

space. The unified expression of thermal response performance and structural constraints is realized 

by constructing the joint objective function: 

 
)()()()()( 32max1 XPXwXRwXTwXF th +++= 
 (8) 
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where X contains all the design variables. In order to enhance the ability of capturing the nonlinear 

interactions among variables, NSGA-II, a multi-objective genetic algorithm based on Pareto front, is 

used, and an adaptive search guide factor is introduced to dynamically balance the convergence of 

junction temperature and flow resistance control. During the co-optimization process, all constraint 

mapping functions are uniformly normalized to enhance the search stability and convergence speed. 

5. Experimental Validation and Result Analysis 

5.1. Experimental Platform Construction 

To validate the co-optimization strategy, a modular experimental platform was developed, 

integrating thermal load, multi-point sensing, and adaptive cooling control (Figure 3). It includes: 

(1)Thermal Load Module: A SiC MOSFET (Cree C3M0065090D) on a custom board driven by a 

programmable DC supply (Keysight N8957APV) generates heat fluxes from 50–150 W. (2)Sensing 

System: A 16-channel K-type thermocouple array (Omega TJ36-CAXL-116U-6) is embedded along the 

heat path with 0.5 mm resolution, and data are acquired at 1 MHz via NI PXIe-6368. (3)Cooling System: 

A microchannel cooler (Cooliance MD-01) with PWM-controlled pump and PID-regulated chiller 

(Julabo FP89) maintains flow rates (0.3–1.5 m/s) and temperatures (20–35 °C). (4)Control & Acquisition: 

LabVIEW 2023 manages real-time power, flow, and data logging. Infrared thermography (FLIR 

T1030sc) complements thermocouple readings, revealing surface temperatures and lateral heat spread. 

 

Figure 3. Experimental platform composition and signal acquisition flowchart 

5.2. Optimization Effect Analysis 

(1) Steady-state performance: The co-optimized system was tested at power levels of 50 W, 100 W, 

and 150 W with coolant flow rates from 0.3 to 1.5 m/s. At 100 W and v=1.0m/s, the junction temperature 

Tj dropped to 108.7 °C, 10.5% lower than the baseline (121.4 °C). Thermal resistance Rth decreased by 

21.7% (0.233 K/W vs. 0.298 K/W), as shown in Figure 4a,b. Infrared imaging revealed a more uniform 

temperature field and an 18.3% reduction in hotspot intensity. (2) Dynamic response: In transient tests 

(0→100 W in 10 ms), the thermal time constant τ dropped from 3.82 s to 2.97 s at v=0.5 m/s (Table 2), 

owing to improved lateral heat spreading and lower interfacial resistance from TIM optimization. (3) 

Multi-scenario validation: Tests under ambient temperatures of 25 °C, 35 °C, and 45 °C, and using 

water and 50% ethylene glycol as coolants, showed the optimized system maintained Tj<125 °C under 

all conditions (Figure 4). The use of glycol introduced a thermal resistance penalty of ≤8%, confirming 

design compatibility with industrial-grade coolants. 
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TABLE 2. THERMAL PERFORMANCE COMPARISON UNDER MULTIPLE FLOW RATES 

Flow Rate (m/s) State Tj,max (°C) Rth,eq (K/W) τ90% (s) 

0.5 Baseline 127.8 0.336 3.82 

0.5 Optimized 116.3 0.282 2.97 

1.0 Baseline 121.4 0.298 3.12 

1.0 Optimized 108.7 0.233 2.26 

 

Figure 4. (a) Junction temperature reduction at 100 W; (b) Thermal resistance vs. flow rate. 

 

Figure 5. Infrared images showing reduced hotspot intensity in the optimized design (left: baseline; 

right: optimized) 

6. Conclusions 

This study addresses thermal management challenges of SiC power semiconductor devices by 

establishing a multilevel thermal network model and applying an improved genetic algorithm to 

form a complete loop from modeling to experimental validation. Key innovations include: (1) 

constructing a multi-dimensional optimization space integrating structure, material, and cooling 

parameters; (2) employing a multi-objective fitness function with the NSGA-II algorithm to enhance 

convergence quality; and (3) building a real-condition experimental platform for model validation. 

However, the current strategy does not account for dynamic effects such as thermal fatigue and long-

term stability. Future work may incorporate multi-physics coupling and reinforcement learning to 

improve adaptability under extreme thermal conditions, supporting broader applications in new 

energy vehicles, power systems, and other high-power-density fields. 
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