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Abstract: To enhance thermal management efficiency of domestic SiC power semiconductor devices
under high heat density, a multi-parameter co-optimization model based on an improved genetic
algorithm is proposed. This model integrates thermal-structural-fluid coupling among package
structure, heat dissipation interface, and cooling system. A multi-objective fitness function, combined
with the NSGA-II algorithm, minimizes thermal resistance, junction temperature, and response time.
Based on thermal network modeling, structure simplification and parameter extraction are
performed. Experimental validation shows the optimized system significantly reduces steady-state
junction temperature and response delay, enhancing dynamic adaptability and thermal safety, with
strong potential for engineering applications.
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objective co-design

1. Introduction

With advances in wide-bandgap semiconductor technology, SiC devices have become essential
for high-density power electronic systems due to their high voltage tolerance, fast switching, and
excellent thermal conductivity. However, in high-power, high-frequency operation, severe thermal
accumulation impacts device reliability and system stability. During the localization of SiC chips,
thermal management optimization is challenged by structural complexity, parameter coupling, and
variable boundary conditions arising from the co-design of packaging, heat dissipation, and cooling
systems [1]. Developing thermally efficient, engineering-oriented, and system-level co-optimization
strategies is thus critical to enhancing the performance and safety margins of domestic SiC devices.

2. Modeling of Thermal Characteristics of SiC Power Semiconductors

2.1. Thermal Network Topology Construction

In modeling the thermal characteristics of SiC power semiconductor devices, constructing the
thermal network topology is essential for accurately representing heat conduction paths. Using the
thermal-electrical analogy, each conduction unit is abstracted as an equivalent network of thermal
resistance (R) and heat capacity (C), forming a multilayer heat flow model. This model includes the
chip core, package, substrate, and heat dissipation interface, with nodes linked through equivalent
thermal resistances in a series-parallel configuration. To enhance practicality, a simplified m-type
network is adopted to balance thermal behavior complexity and real-time computation efficiency [2].

As shown in Figure 1, the equivalent thermal network illustrates how each resistance parameter is
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derived from material conductivity, geometry, and interface conditions, providing the physical basis

for subsequent modeling and optimization.

Figure 1. Equivalent topology of SiC power semiconductor thermal network.

2.2. Mathematical Model Derivation

On the basis of the thermal network topology, the dynamic thermal behavior model of SiC power
semiconductor devices is established based on the thermal-electrical equivalence theory, and each
thermal resistance and heat capacity unit is correspondingly transformed into a first-order RC network
structure. Under the simplified condition without considering the non-uniformity of heat source
distribution, the thermal response of each layer node can be expressed by the following heat transfer

equation [3]:

¢ 910, TO-TL0
dt R; 1)

Where Ci denotes the i-th heat capacity, Ri is the thermal resistance between neighboring nodes,
Ti(t) is the i-th node temperature, and P(t) is the power consumption per unit time.The thermal

response model in a multi-node network can be unified into the following matrix form:

cITO  rory =Py
dt )
Where C, R, T(t) are the heat capacity matrix, thermal resistance matrix and temperature vector,

respectively, which are suitable for multilayer structures to solve the thermal distribution state.

2.3. Model Simplification and Parameter Extraction

In order to improve the practicality and computational efficiency of the model in the engineering
environment, the multi-node thermal network needs to be simplified moderately. Considering that
the package shell structure with heat capacity much smaller than that of the chip area can be
approximated as a steady-state heat transfer process, the corresponding RC branches in the network
are simplified, and the dominant nodes of thermal resistance on the main heat transfer path are
retained. The model further adopts the thermal resistance equivalent merging method to merge the
units with smaller thermal resistance in the series structure to construct a three-layer node m-type
thermal network structure. In the parameter extraction process, the thermal resistance Rth is calculated
based on the following equation [4]:

L

R, =
th 21-A (3)
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where L is the length of the heat conduction path, A is the thermal conductivity of the material, A

is the cross-sectional area; and the heat capacity, C, is determined as follows:
C=p-c,V ( 4)
where o is the material density, specific heat capacity cp, and volume V. Table 1 lists the thermal

properties and corresponding geometrical dimensions of typical structural layers as a basis for

subsequent thermal network parameterization.

Table 1. Thermal parameters and geometric properties of each structural layer

o Cross-
. Thern?al. Density o Spec1f1c.heat Thickness  sectional
structural layer =~ makings conductivity (kg/m?) capacity L(mm) area A
AW/m-K) cp(J/kg-K) (mm?2)
15x15=
Chip (SiC) SiC 370 3210 690 0.15 > 2x 5 55
solder layer SnAgCu 50 7400 230 0.10 2.25
PBC Ceramic AIN 180 3300 740 0.38 2.25
Layer
Copper Substrate
10.0x 10.0 =
(Heat Cu 390 8960 385 1.00 0.010.0
o 100.00
Dissipation)
TIM Thermally
Conductive silicone
5.5 2200 1300 0.20 100.00
Interface grease
Material
Radiator base - aluminum 205 2700 900 5.00 100.00
plate (chemistry)

3. Improved Genetic Algorithm Design

3.1. Question Coding Design

Due to the diversity of variables and complex constraints in the SiC power semiconductor thermal
management optimization problem, traditional binary coding fails to meet the needs of continuous
parameter precision and structural representation. This study adopts floating-point real number
coding, mapping key design parameters—such as thermal resistance distribution, material thickness,
and cooling structure size—sequentially to chromosomal loci, forming a real-number string of length
n [5]. The coding sequence aligns with the heat flow path to maintain parameter logic and exclude
physically invalid combinations. To improve the feasibility rate post-crossover, chromosome

boundaries are normalized, and a validity check mechanism is embedded.

3.2. Adaptation Function Construction

To optimize key parameters in the SiC thermal management system, a multi-objective fitness
function is constructed, targeting the minimum steady-state junction temperature, equivalent thermal
resistance, and thermal response delay. The function incorporates normalized temperature terms and
a constraint penalty mechanism. Let the optimization variables be X={x1,x2,...xn}, with the fitness

function defined as [6]:
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. Rth,eq (x) +
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where Tmax(X) is the peak junction temperature, Rth,eq(X) the main path thermal resistance, t(X) the
response time per unit power, and P(X) the penalty term for constraint violations. Weights w1,w2,w3
are empirically calibrated based on thermal design needs. This formulation balances thermal
performance with structural constraints, ensuring search convergence within feasible boundaries [7].
Normalization enhances indicator comparability, while constraint filtering improves solution

feasibility and search stability in the multi-parameter space.

3.3. Genetic Operator Improvement

To enhance convergence efficiency and maintain population diversity in thermal management
optimization, several improvements are introduced to the genetic operators. For selection, a hybrid
strategy combining Pareto sorting and double roulette is applied, with an elite retention rate of 20% to
preserve top-performing individuals while ensuring cross-population coverage. The crossover
operator employs an adaptive distribution-based crossover (SBX), with the crossover probability pc
dynamically adjusted between 0.7 and 0.95 based on the generation count. This allows a balanced
transition from global exploration to precise local search. The mutation operator uses a normal
perturbation mechanism, where the mutation probability pm varies within [0.01, 0.15], and the

perturbation amplitude is scaled by the current population’s variance. The mutation step is defined as:

X =x+N(0,07), o =p-std(X,) (6)

where (3=0.5 is the control coefficient and std(Xi) represents the standard deviation of the i-th variable.
These operator designs together improve convergence quality and robustness across different

optimization stages, without sacrificing diversity or feasibility [8].
4. Co-Optimization of Thermal Management Systems

4.1. Optimization Objective Analysis

The optimization targets system-level thermal performance, incorporating chip, package, and
cooling interface layers. To ensure device reliability, the objective function minimizes steady-state
junction temperature and total thermal resistance, while controlling dynamic response to enable rapid
thermal fallback under power fluctuations [9]. Due to thermal-geometric-material coupling, variables
such as encapsulation thickness and thermal conductivity impact diffusion rates, while cooling
structure dimensions impose size and cost constraints. Thus, both thermal behavior and structural
limits must be integrated into the objective system. Based on global conduction path analysis, steady-
state metrics (temperature, resistance) and dynamic indicators (time constant) are weighted and

combined, forming a constraint-aware optimization indicator set that guides collaborative design.

4.2. Optimization of Thermal Structure Parameters

This study redesigns the thermal conduction path from the SiC junction to the ambient by
optimizing the geometry and materials of key layers. The base structure includes a 0.15 mm SiC chip,
0.10 mm SnAgCu solder, 0.38 mm AIN substrate, copper baseplate, 0.2 mm silicone grease TIM, and a

5.0 mm aluminum radiator. The optimization vector is defined as S=[L1,L2,A1,A2,N,H], where L1 and
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L2 are the thicknesses of the copper baseplate and radiator, Al and A2 are the dissipation and contact
areas, and NNN, HHH are the fin density and height, respectively. Constraints include a total vertical
thickness under 8 mm and a 10 mm x 10 mm interface size. A thermal resistance model identifies
dominant contributors to junction-to-ambient resistance. COMSOL simulations show that increasing
L1 from 0.8 mm to 1.4mm reduces solder-TIM interface temperature by 53K at 100 W, while
expanding A1l from 60 mm? to 120 mm? cuts lateral resistance by 22.5%. A fin density of 30 fins/cm? at
18 mm height improves convection without excessive pressure drop. After iterative optimization, the
optimal set—L1=1.4, L2=4.5, A1=120mm?, A2=180mm?, N=30, H=18mm —achieves a 17.8% reduction
in total thermal resistance and lowers peak junction temperature by 13.4°C compared to the
baseline. Figure 2 shows a schematic diagram of the packaging structure, heat dissipation interface,

and cooling system.

Airflow
T Heat Dissipatain
Package Interface

Substrate & Cooling

Figure 2. [llustration of Package Structure, Heat Dissipation Interface, and Cooling System

4.3. Optimization of Cooling System Parameters

The optimization of cooling system parameters should focus on the dual objectives of cooling
medium flow characteristics and heat exchange efficiency, with emphasis on the linkage control of key
variables such as flow rate, inlet temperature, channel structure and interfacial heat transfer coefficient.
By establishing the cooling system design parameter set C = {v, Tin, h, Dc}, the cooling flow rate v,
flow channel diameter Dc and heat transfer coefficient h are included in the coupled optimization

framework, and the empirical formula is used to construct the heat transfer evaluation index [10]:

h=Nl.|'/1/DC (7)

Where Nu is the Nussell number and A is the fluid thermal conductivity. Considering the influence
of thermal-fluid impedance on the structure volume and power consumption, the microchannel
structure and fluid guide plate are introduced in the optimized design to take into account the local

forced convection and system flow resistance control.

4.4. Multi-Parameter Co-Optimization Strategy

The multi-parameter co-optimization strategy is based on the idea of coupled modeling, in which
the heat dissipation structure parameter set S = {L1, A1, N} and the cooling system parameter set C =
{v, h, Tin} are jointly constructed into the thermal-fluid-structural multi-dimensional optimization
space. The unified expression of thermal response performance and structural constraints is realized

by constructing the joint objective function:

F(X) =W, T (X) +W, - Ry, (X) + W - 7(X) + P(X) (8)
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where X contains all the design variables. In order to enhance the ability of capturing the nonlinear
interactions among variables, NSGA-II, a multi-objective genetic algorithm based on Pareto front, is
used, and an adaptive search guide factor is introduced to dynamically balance the convergence of
junction temperature and flow resistance control. During the co-optimization process, all constraint

mapping functions are uniformly normalized to enhance the search stability and convergence speed.

5. Experimental Validation and Result Analysis

5.1. Experimental Platform Construction

To validate the co-optimization strategy, a modular experimental platform was developed,
integrating thermal load, multi-point sensing, and adaptive cooling control (Figure 3). It includes:
(I)Thermal Load Module: A SiC MOSFET (Cree C3M0065090D) on a custom board driven by a
programmable DC supply (Keysight N8957APV) generates heat fluxes from 50-150 W. (2)Sensing
System: A 16-channel K-type thermocouple array (Omega T]36-CAXL-116U-6) is embedded along the
heat path with 0.5 mm resolution, and data are acquired at 1 MHz via NI PXIe-6368. (3)Cooling System:
A microchannel cooler (Cooliance MD-01) with PWM-controlled pump and PID-regulated chiller
(Julabo FP89) maintains flow rates (0.3-1.5 m/s) and temperatures (20-35 °C). (4)Control & Acquisition:
LabVIEW 2023 manages real-time power, flow, and data logging. Infrared thermography (FLIR

T1030sc) complements thermocouple readings, revealing surface temperatures and lateral heat spread.

Test Setup Data Acquisition

and Control System
Power Supply Therm]tzcouples
p 1 :

Electrical
power

LabllIEW

Microchannel Control
structure signals

A Data Acquisition
— - —— and Control
Chiller | ovem |

Cooling System

Figure 3. Experimental platform composition and signal acquisition flowchart

5.2. Optimization Effect Analysis

(1) Steady-state performance: The co-optimized system was tested at power levels of 50 W, 100 W,
and 150 W with coolant flow rates from 0.3 to 1.5 m/s. At 100 W and v=1.0m/s, the junction temperature
Tj dropped to 108.7 °C, 10.5% lower than the baseline (121.4 °C). Thermal resistance Rth decreased by
21.7% (0.233 K/W vs. 0.298 K/W), as shown in Figure 4a,b. Infrared imaging revealed a more uniform
temperature field and an 18.3% reduction in hotspot intensity. (2) Dynamic response: In transient tests
(0—100 W in 10 ms), the thermal time constant t dropped from 3.82 s to 2.97 s at v=0.5 m/s (Table 2),
owing to improved lateral heat spreading and lower interfacial resistance from TIM optimization. (3)
Multi-scenario validation: Tests under ambient temperatures of 25 °C, 35 °C, and 45 °C, and using
water and 50% ethylene glycol as coolants, showed the optimized system maintained Tj<125 °C under
all conditions (Figure 4). The use of glycol introduced a thermal resistance penalty of <8%, confirming

design compatibility with industrial-grade coolants.
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TABLE 2. THERMAL PERFORMANCE COMPARISON UNDER MULTIPLE FLOW RATES
Flow Rate (m/s) State Tj,max (°C) Rth,eq (K/W) 90% (s)

0.5 Baseline 127.8 0.336 3.82
0.5 Optimized 116.3 0.282 2.97
1.0 Baseline 121.4 0.298 3.12
1.0 Optimized 108.7 0.233 2.26

E (a) Junction Temperature Reduction at 100W (b) Thermal Resistance vs. Flow Rate

'—_E; M Easeiime

I oprimize

Design Configuration v " “Flow Rate (m's)

Figure 4. (a) Junction temperature reduction at 100 W; (b) Thermal resistance vs. flow rate.

Before After
optimization optimization

B3

o” o - |

Figure 5. Infrared images showing reduced hotspot intensity in the optimized design (left: baseline;

right: optimized)

6. Conclusions

This study addresses thermal management challenges of SiC power semiconductor devices by
establishing a multilevel thermal network model and applying an improved genetic algorithm to
form a complete loop from modeling to experimental validation. Key innovations include: (1)
constructing a multi-dimensional optimization space integrating structure, material, and cooling
parameters; (2) employing a multi-objective fitness function with the NSGA-II algorithm to enhance
convergence quality; and (3) building a real-condition experimental platform for model validation.
However, the current strategy does not account for dynamic effects such as thermal fatigue and long-
term stability. Future work may incorporate multi-physics coupling and reinforcement learning to
improve adaptability under extreme thermal conditions, supporting broader applications in new
energy vehicles, power systems, and other high-power-density fields.
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