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Article 

Efficient Adverse Event Forecasting in Clinical Trials 

via Transformer-Augmented Survival Analysis 

Yachen Wang 

School of Public Health, Boston University, Boston, USA; yachenw@bu.edu 

Abstract: With the in-depth application of generative AI in clinical statistical processes, the TFL 

(Table-Figure-Listing) automation platform and macro system have significantly shortened the 

reporting cycle and improved data quality with unsupervised anomaly detection, laying a clean data 

foundation for adverse event risk modeling for time-event prediction. On the basis that AI-driven 

TFL automation and outlier cleaning have significantly improved data quality, we propose 

Segmented Relative Positional Encoding-Transformer Survival Network (SRPE-TSN): this method 

only introduces the key improvement of "segmented relative time embedding" on existing 

Transformer survival models such as SurvTRACE. The longitudinal event sequence of patients was 

divided into learnable time periods according to clinical milestones, and the relative position 

information was used to guide multi-head attention to focus on risk signals at different time scales, 

so as to take into account both right-censored processing and long-term dependency capture. SRPE-

TSN increased the 12-month adverse event time-dependent AUC from 0.71 to 0.80 on data from four 

phase III oncology and cardiovascular trials. 

CCS CONCEPTS: Applied computing ~ Life and medical sciences ~ Health care information systems 

Keywords: SRPE-TSN; survival analysis; transformer; relative position coding 

 

1. Introduction 

With the development of precision medicine and personalized treatment concepts, clinical trials 

are becoming increasingly important as a key part of new treatment methods to verify their safety 

and effectiveness. In the course of clinical trials, the occurrence of adverse events (AEs) may not only 

affect the judgment of drug efficacy, but also cause serious physical or psychological harm to subjects, 

thus causing major ethical controversies. In addition, the suddenness and unpredictability of adverse 

events also bring significant uncertainty to the design, conduct, and data analysis of trials [1]. 

Therefore, how to predict potential adverse events as early as possible and accurately in the trial 

process has become a key technical requirement to improve the quality of clinical trials, reduce trial 

costs, and optimize resource allocation. 

To model the occurrence time and probability of adverse events, survival analysis has been used 

for a long time in "time-to-event” problems. Classical survival models like Cox Proportional Hazards 

(CPH) model and Kaplan-Meier estimator have a strong statistical basis in theory, but in practice, 

model assumptions can be limitations. In particular, the CPH model assumes that the effects of 

covariates on the risk function are linear and follows a proportional risk assumption. However, while 

the Kaplan-Meier method is non-parameter, it is not sufficiently general to capture complex 

interactions or high-dimensional covariates, whose nonlinear and dynamic features are often not so 

easily captured by conventional approaches in modern clinical data [2]. 

The neural network-based survival models have gradually becoming an emerging trend along 

with the swift progress of artificial intelligence, particularly the deep learning in medicine. It 

overcomes the limitations of traditional statistical models and can process the high-dimensional and 

multi-modal data, and simulate the nonlinear risk path. Among dozens of deep models, the 

Transformer architecture has received significant attention due to its outstanding sequence modeling 

ability [3]. The Transformer architecture was first utilized in the text processing field, relying on the 
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multi-head self-attention mechanism helps modeling long-distance dependencies and contextual 

relationship effectively, and its lightweight and scalable architecture also possesses a great potential 

for modeling complicated clinical time series data. 

Many survival analysis models based on deep learning have been proposed for survival analysis, 

but still facing lots of challenges. On the one hand, there are some models do not explore the 

contextual correlation of the sequence structure and the clinical events in the patient follow-up data, 

which makes it is difficult for the model to dynamically characterize the disease evolution process 

[4]. However, in most real clinical trials, there are problems such as the large sample size, irregular 

data sampling time, and high proportion of missing value, which makes the model face double 

pressure in generalization and computational efficiency. 

Moreover, there is a lack of research on emphasizing the use of unified modeling framework 

capable of capture simultaneous early warning signals (e.g., abnormal signs) and long term-risk 

trends (e.g., potential chronic toxicity). Recently, multiple adverse event prediction tasks have been 

put forward in real-time to identify potential adverse events (death, readmission, etc.) in patients at 

a fast pace, where timely and accurate prediction of adverse events is the key focus, so it is 

particularly urgent to explore an advanced method for effectively modeling event correlations at 

different time intervals and simultaneously processing large-scale heterogeneous data [5]. 

2. Related Work 

Kimmelman et al. [6] reviewed five studies to assess medical experts’ predictive ability 

regarding clinical trials. Experts, however, have been found to perform poorly at predicting clinical 

trial outcomes, and the accuracy of individual predictions is rather poor. D'Ascenzo et al. [7] created 

and validated a machine learning model, PRAISE, able to predict the risk of all-cause mortality, 

recurrent myocardial infarction and major bleeding to 1 year after discharge of patients presenting 

with acute coronary syndrome (ACS). 

Qaiser et al. [8] proposed a weakly supervised survival convolutional neural network (WSS-

CNN) with a visual attention mechanism, to predict cancer patient overall survival from 

hematoxylin-eosin (H&E)-stained full-slice images. The method does not ask for region level 

annotation and only relies on patient level survival data for training, making the data preparation 

much simpler. 

Li et al. [9] examined the background incidence of adverse events of special interest (AESIs) after 

COVID-19 vaccination. This study was based on multi-database data from 8 countries, in which the 

occurrence of AESI was analysed according to age and sex. Mattsson-Carlgren et al. [10] used plasma 

p-tau217 biomarkers to gracefully explore cognitive decline prediction in preclinical patients with 

AD. Significantly predictive of cognitive decline in the cohorts investigated, plasma P-tau217 was 

consistent across cohorts. 

Chi et al. [11] summarized recent developments in COVID-19 vaccines, with an emphasis on 

how SARS-CoV-2 variants affect vaccine efficacy, and the performance of various booster regimens. 

The study also examined the association between adverse reactions and immune protection after 

vaccination, providing a scientific basis for the optimization of future vaccines and coping strategies 

for new variant strains. 

Plana et al. [12] the propose "independent drug action" model for combination therapy. The 

model predicts that combination therapy may not be effective solely because of synergies between 

drugs but rather because of a "risk hedging" approach in which each individual drug acts 

independently on separate subpopulations of tumor cells towards the tumor, resulting in an 

enhanced effect of the treatment overall. Cai et al. [13] evaluated the risk of adverse events associated 

with statins in primary prevention of CVD. A meta-analysis of randomised controlled trials found a 

slight association between statins and minor adverse events, but these risks were not at the expense 

of their benefit in preventing major cardiovascular events. 
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3. Methodologies 

3.1. Relative Position Encoding and Multi-Head Self-Attention Mechanism 

For each patient's clinical event, we first mapped the event time 𝑡𝑖,𝑗 into a predefined clinical 

stage. Assuming that the time range of the clinical trial is [0, 𝑇𝑚𝑎𝑥], all clinical event times will be 

mapped into different phase intervals, as shown in Equation (1): 

𝑠(𝑡) = 𝑘  ⟺  𝜇𝑘−1 < 𝑡 ≤ 𝜇𝑘 , 𝑘 = 1,2, … , 𝐾,  (1) 

where 𝜇𝑘 is the time boundary of the 𝑘-th phase, and the entire timeline is divided into 𝐾 phases. 

The core purpose of this segmentation approach is to map different phases of the time series to 

different clinical senses, such as baseline phase, treatment phase, follow-up phase, etc. 

Traditional time series models, such as standard Transformers, often rely only on the coding of 

absolute time positions, which is obviously not sufficient to express the complexity of phased changes 

in clinical data. Therefore, by segmenting the timeline, we are able to assign a specific stage to each 

clinical event, helping the model to better understand the temporal context in which the event 

occurred. 

In order to solve the problem of long-range dependence between different phases, we introduce 

relative position coding, and calculate the relative time difference of each pair of time steps, so that 

the model can adjust the attention weight according to the relative position of the events, this method 

is formulated as Equation (2): 

𝑟𝑗←𝑙 = (𝑠(𝑡𝑗) − 𝑠(𝑡𝑙), |𝛽(𝑡𝑗 − 𝑡𝑙)|) ∈ ℤ2,  (2) 

where 𝑟𝑗←𝑙  represents the relative offset between event 𝑡𝑗  and event 𝑡𝑙 , and the first 

component, 𝑠(𝑡𝑗) − 𝑠(𝑡𝑙)  is a stage difference, indicating whether two events occur in the same 

clinical stage; The second component |𝛽(𝑡𝑗 − 𝑡𝑙)| is the time difference in the same phase, and 𝛽 is 

the discretization step size, which is used to control the resolution of the time interval. 

Since time periods in clinical trials tend to have different risk patterns, the same time difference 

may have different clinical significance at different stages. By introducing relative position encoding, 

we are able to adapt the model to these stage differences, improving the model's ability to capture 

cross-stage dependencies. 

For each pair of 𝑗  and 𝑙  events, we use an embedding layer to convert the relative time 

difference 𝑟𝑗←𝑙  into a vector representation 𝑒𝑗←𝑙 , which is used to guide subsequent attention 

calculations, as shown in Equation (3): 

𝑒𝑗←𝑙 = 𝑊𝑟𝑂𝑛𝑒𝐻𝑜𝑡(𝑟𝑗←𝑙) ∈ ℝ𝑑ℎ ,  (3) 

where 𝑊𝑟 is the learned weight matrix, and 𝑂𝑛𝑒𝐻𝑜𝑡(𝑟𝑗←𝑙) is the encoding of the relative offset 𝑟𝑗←𝑙 . 

By using this relative position encoding, we can make the model focus on the relative timing structure 

between different phases. Compared with traditional absolute position encoding, this method can 

better capture the long-range dependencies between different phases across time periods. 

In the Transformer model, the self-attention mechanism is used to calculate the dependencies 

between different time steps. By mapping the features of each event to the query, key, and value 

spaces, and calculating the attention weights between them, we can get the relative importance of 

each event to the others. Specifically, attention weights are calculated using the following Equation 

(4): 

𝛼𝑗←𝑙
(ℎ)

= exp [(
𝑞𝑗

(ℎ)
𝑘𝑙

(ℎ)⊺
+ 𝑞𝑗

(ℎ)
𝑤𝑟

(ℎ)⊺
𝑒𝑗←𝑙

√𝑑𝑘

⁄ )] ,  (4) 

The first top 𝑞𝑗
(ℎ)

𝑘𝑙
(ℎ)⊺ is the standard query-key product that is used to calculate the similarity 

between event 𝑗 and event 𝑙. The second top 𝑞𝑗
(ℎ)

𝑤𝑟
(ℎ)⊺𝑒𝑗←𝑙 is a relative positional encoding term 
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that adjusts the attention weights through the influence of relative time distances, allowing the model 

to perceive the temporal dependence across stages. 

This approach can significantly improve the ability of the Transformer to capture long-range 

dependencies across stages, especially in clinical data, where the dependencies at different stages are 

much more complex than traditional time series data. 

3.2. Maximum Likelihood Loss and Regularization 

Following the multi-head attention mechanism, we aggregated the representation of all time 

steps for each patient into a fixed-length subject-level representation. We use a weighted pooling 

mechanism where the weights for each time step are calculated by the following Equations (5) and 

(6): 

𝜆𝑗 =
exp(𝑣⊺𝑜𝑗)

∑ exp(𝑣⊺𝑜𝑙)𝑙

,  (5) 

𝑢 = ∑ 𝜆𝑗

𝑗

𝑜𝑗 ,  (6) 

where 𝑜𝑗 is the output of the 𝑗-th time step, 𝑣 is the learned query vector, and 𝜆𝑗  is the pooled weight. 

This pooling mechanism allows the model to assign different weights based on the importance of 

each time step, thereby enhancing the model's focus on key time points, especially those that are 

clinically important before and after adverse events. 

The SRPE-TSN model predicts the risk of event occurrence at each discrete time window 𝜏ℓ. The 

risk is calculated by the following Equations (7) and (8): 

ℎℓ = 𝜎(𝑤ℓ
⊺𝑢 + 𝑏ℓ),  (7) 

𝑆ℓ = ∏(1 − ℎ𝑟)

𝑟≤ℓ

,  (8) 

where 𝜎  is the Sigmoid function, and 𝑤ℓ  and 𝑏ℓ  are the learned weights and biases. ℎℓ  is the 

discrete risk prediction of the ℓ -th time window, indicating the probability of adverse events 

occurring in patients within that time window; 𝑆ℓ  is the survival function of this time window, 

which indicates the probability that the patient is still alive before this time window. Following Figure 

1 shows the general framework of proposed SRPE-TSN model. 

 

Figure 1. Proposed SRPE-TSN Model Framework Illustration. 
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In this way, the model is able to directly predict the probability of adverse events in patients in 

different time periods and generate corresponding survival curves, which is particularly important 

for the analysis of clinical data. 

To train this model, we use maximum likelihood estimation to optimize the model parameters. 

The negative log-likelihood loss function is given by Equation (9): 

ℒ = −
1

𝑁
∑ [𝛿𝑖 ∑ 𝑦𝑖,ℓ𝑙𝑜𝑔ℎ𝑖,ℓ

ℓ

+ ∑(1 − 𝑌𝑖,ℓ) log(1 − ℎ𝑖,ℓ)

ℓ

]

𝑁

𝑖=1

+ 𝛾 ∥ 𝑊𝑟 ∥𝐹
2 ,  (9) 

where 𝛿𝑖 is an indication of whether an adverse event occurred, 𝛾 is the regularization coefficient, 

and ∥ 𝑊𝑟 ∥𝐹
2  is the regularization term of the SRPE weight. 

The first term is the maximum likelihood estimation, which is used to maximize the probability 

of an event occurring. The second term is regularization, which is used to suppress overfitting, 

especially the over-learning of relative position encoding, which can result from the SRPE module. 

By combining maximum likelihood and regularization, we are able to ensure that the model not 

only accurately captures the probability of adverse events in the clinical trial data, but also avoids 

overfitting. 

4. Experiments 

4.1. Experimental Setup 

To summarize, this study utilised the Optimum Patient Care Research Database (OPCRD), a 

large-scale real-world electronic health record database from the UK that is commonly used in studies 

around chronic disease and patient outcomes95. Patients were followed up for an average of 11.7 

years, and the dataset contains long-term health information of more than 24 million patients, 

including various types of clinical data, including demographics, diagnosis, prescriptions, laboratory 

results, symptoms, etc. The strengths of OPCRD include long-term follow-up data, integrity and 

representativeness of the data, and that all data are de-identified and can ethically be used for chronic 

disease and drug safety studies. 

In this study, four commonly used comparison methods were selected for evaluation: Cox 

proportional hazards model (CPH), a classical survival analysis method that can process time-to-

event data but fails to capture nonlinear relationships; Random Forest (RF), as an ensemble learning 

method, can handle high-dimensional data and nonlinear relationships, but its black-box nature 

limits interpretability. Deep neural networks (DNNs), which excel at capturing complex nonlinear 

relationships and are suitable for large-scale datasets, but require large computational resources and 

face the risk of overfitting; The Gradient Booster (GBM) has a strong advantage in dealing with 

missing values and outliers by gradually optimizing the weak learner to improve the prediction 

results, but the model complexity is high and lacks the explanatory nature of traditional statistical 

models. 

4.2. Experimental Analysis 

The accuracy is the most intuitive way to store a performance metric for a classifier, the number 

of correctly predicted samples over the total number of samples. Accuracy was measured based on 

the total correct predictions of the model for adverse events in this study. The results seen in Figure 

2 indicate that the models achieve increasingly higher accuracies and converge as the training period 

increases. The best-performing model in the entire pipeline was the SRPE-TSN model, which 

achieved an accuracy rate close to 1.0, and had a significant improvement over other models, 

indicating its superiority in capturing complex data patterns. While the DNN and GBM models' 

accuracy scores have also increased, their performance is not as consistent as SRPE-TSN and vary in 

several training iterations. The RF model was as smooth as the others but less performance than 

SRPE-TSN and DNN, and the accuracy of the CPH model was gradually increased but was still low, 

indicating that it also had limitations in terms of handling complex relationships. 
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Figure 2. Accuracy Comparison across Models with Varying Training Epochs. 

C-Index is a well-known account of the prediction ability of a model in survival analysis for 

distinguishing the event order. It ranges from 0-1, with higher values meaning that the risk ranking 

predicted by the model fits better to the real data. Figure 3 shows that during the increase of the 

training period, the C-Index of the SRPE-TSN model is the highest and gradually tends to have a 

stable trend, indicating that the order of prediction of the model is better than that of other methods. 

Other models, however, showed a gradual upward trend after that, including DNN, GBM, and RF, 

but none of their C-Index's could ultimately achieve the level of the SRPE-TSN. Worse yet, the 

constant very low C-Index of the CPH model, even after thousands of iterations, illustrates the 

inefficiencies of the linear regression with respect to the complexity of the processed data. 

 

Figure 3. C-Index Comparison across Models with Varying Training Epochs. 

Inference time refers to the time it takes for a model to make predictions given input data. For 

clinical applications, the length of inference time directly affects the actual usability of the model and 

the real-time nature of clinical decision-making. With the increase of model size, the inference time 

increases significantly, especially for DNN and SRPE-TSN models. However, the inference time of 

CPH and RF models increased slowly with the increase of model size and remained at a low level. 

As can be seen in Figure 4, larger-scale deep learning models (such as DNN and SRPE-TSN) require 

more computational resources during inference, while traditional models (such as CPH and RF) are 

more efficient in terms of inference time. 
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Figure 4. Inference Time Comparison across Models with Varying Model Size. 

5. Conclusion 

In conclusion, we present a piecewise relative position coding-transfomer survival network, 

which solves the event-dependent issue of different time stages of patients in clinical trials by 

ardently introducing piecewise relative time embedding. As the output of the SRPE module, the 

SRPE-TSN model is not only capable of well extracting long-term associations through the multi-

head attention mechanism across different stages, but also improves the generation performance of 

our survival curve and event prediction accuracy through the addition of key time points. SRPE-TSN 

yielded excellent performance on many phase III clinical trial data sets, with improvements in AUC 

from 0.71 to 0.80 in concentration. The application of SRPE-TSN can be more extensive in subsequent 

research, such as multimodal data fusion (such as the combined prediction of imaging data, genetic 

data, etc.), so as to realize more accurate personalized treatment prediction. 
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