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Article
Efficient Adverse Event Forecasting in Clinical Trials

via Transformer-Augmented Survival Analysis

Yachen Wang

School of Public Health, Boston University, Boston, USA; yachenw@bu.edu

Abstract: With the in-depth application of generative Al in clinical statistical processes, the TFL
(Table-Figure-Listing) automation platform and macro system have significantly shortened the
reporting cycle and improved data quality with unsupervised anomaly detection, laying a clean data
foundation for adverse event risk modeling for time-event prediction. On the basis that Al-driven
TFL automation and outlier cleaning have significantly improved data quality, we propose
Segmented Relative Positional Encoding-Transformer Survival Network (SRPE-TSN): this method
only introduces the key improvement of "segmented relative time embedding" on existing
Transformer survival models such as SurvTRACE. The longitudinal event sequence of patients was
divided into learnable time periods according to clinical milestones, and the relative position
information was used to guide multi-head attention to focus on risk signals at different time scales,
so as to take into account both right-censored processing and long-term dependency capture. SRPE-
TSN increased the 12-month adverse event time-dependent AUC from 0.71 to 0.80 on data from four
phase III oncology and cardiovascular trials.

CCS CONCEPTS: Applied computing ~ Life and medical sciences ~ Health care information systems

Keywords: SRPE-TSN; survival analysis; transformer; relative position coding

1. Introduction

With the development of precision medicine and personalized treatment concepts, clinical trials
are becoming increasingly important as a key part of new treatment methods to verify their safety
and effectiveness. In the course of clinical trials, the occurrence of adverse events (AEs) may not only
affect the judgment of drug efficacy, but also cause serious physical or psychological harm to subjects,
thus causing major ethical controversies. In addition, the suddenness and unpredictability of adverse
events also bring significant uncertainty to the design, conduct, and data analysis of trials [1].
Therefore, how to predict potential adverse events as early as possible and accurately in the trial
process has become a key technical requirement to improve the quality of clinical trials, reduce trial
costs, and optimize resource allocation.

To model the occurrence time and probability of adverse events, survival analysis has been used
for a long time in "time-to-event” problems. Classical survival models like Cox Proportional Hazards
(CPH) model and Kaplan-Meier estimator have a strong statistical basis in theory, but in practice,
model assumptions can be limitations. In particular, the CPH model assumes that the effects of
covariates on the risk function are linear and follows a proportional risk assumption. However, while
the Kaplan-Meier method is non-parameter, it is not sufficiently general to capture complex
interactions or high-dimensional covariates, whose nonlinear and dynamic features are often not so
easily captured by conventional approaches in modern clinical data [2].

The neural network-based survival models have gradually becoming an emerging trend along
with the swift progress of artificial intelligence, particularly the deep learning in medicine. It
overcomes the limitations of traditional statistical models and can process the high-dimensional and
multi-modal data, and simulate the nonlinear risk path. Among dozens of deep models, the
Transformer architecture has received significant attention due to its outstanding sequence modeling
ability [3]. The Transformer architecture was first utilized in the text processing field, relying on the
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multi-head self-attention mechanism helps modeling long-distance dependencies and contextual
relationship effectively, and its lightweight and scalable architecture also possesses a great potential
for modeling complicated clinical time series data.

Many survival analysis models based on deep learning have been proposed for survival analysis,
but still facing lots of challenges. On the one hand, there are some models do not explore the
contextual correlation of the sequence structure and the clinical events in the patient follow-up data,
which makes it is difficult for the model to dynamically characterize the disease evolution process
[4]. However, in most real clinical trials, there are problems such as the large sample size, irregular
data sampling time, and high proportion of missing value, which makes the model face double
pressure in generalization and computational efficiency.

Moreover, there is a lack of research on emphasizing the use of unified modeling framework
capable of capture simultaneous early warning signals (e.g., abnormal signs) and long term-risk
trends (e.g., potential chronic toxicity). Recently, multiple adverse event prediction tasks have been
put forward in real-time to identify potential adverse events (death, readmission, etc.) in patients at
a fast pace, where timely and accurate prediction of adverse events is the key focus, so it is
particularly urgent to explore an advanced method for effectively modeling event correlations at
different time intervals and simultaneously processing large-scale heterogeneous data [5].

2. Related Work

Kimmelman et al. [6] reviewed five studies to assess medical experts’ predictive ability
regarding clinical trials. Experts, however, have been found to perform poorly at predicting clinical
trial outcomes, and the accuracy of individual predictions is rather poor. D'Ascenzo et al. [7] created
and validated a machine learning model, PRAISE, able to predict the risk of all-cause mortality,
recurrent myocardial infarction and major bleeding to 1 year after discharge of patients presenting
with acute coronary syndrome (ACS).

Qaiser et al. [8] proposed a weakly supervised survival convolutional neural network (WSS-
CNN) with a visual attention mechanism, to predict cancer patient overall survival from
hematoxylin-eosin (H&E)-stained full-slice images. The method does not ask for region level
annotation and only relies on patient level survival data for training, making the data preparation
much simpler.

Li et al. [9] examined the background incidence of adverse events of special interest (AESIs) after
COVID-19 vaccination. This study was based on multi-database data from 8 countries, in which the
occurrence of AESI was analysed according to age and sex. Mattsson-Carlgren et al. [10] used plasma
p-tau217 biomarkers to gracefully explore cognitive decline prediction in preclinical patients with
AD. Significantly predictive of cognitive decline in the cohorts investigated, plasma P-tau217 was
consistent across cohorts.

Chi et al. [11] summarized recent developments in COVID-19 vaccines, with an emphasis on
how SARS-CoV-2 variants affect vaccine efficacy, and the performance of various booster regimens.
The study also examined the association between adverse reactions and immune protection after
vaccination, providing a scientific basis for the optimization of future vaccines and coping strategies
for new variant strains.

Plana et al. [12] the propose "independent drug action" model for combination therapy. The
model predicts that combination therapy may not be effective solely because of synergies between
drugs but rather because of a "risk hedging" approach in which each individual drug acts
independently on separate subpopulations of tumor cells towards the tumor, resulting in an
enhanced effect of the treatment overall. Cai et al. [13] evaluated the risk of adverse events associated
with statins in primary prevention of CVD. A meta-analysis of randomised controlled trials found a
slight association between statins and minor adverse events, but these risks were not at the expense
of their benefit in preventing major cardiovascular events.


https://doi.org/10.20944/preprints202504.2001.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2025 d0i:10.20944/preprints202504.2001.v1

3of 8

3. Methodologies

3.1. Relative Position Encoding and Multi-Head Self-Attention Mechanism

For each patient's clinical event, we first mapped the event time t;; into a predefined clinical
stage. Assuming that the time range of the clinical trial is [0, T};,4,], all clinical event times will be
mapped into different phase intervals, as shown in Equation (1):

s() =k & pp_1 <t<py, k=12,..,K, 1)

where p;, is the time boundary of the k-th phase, and the entire timeline is divided into K phases.
The core purpose of this segmentation approach is to map different phases of the time series to
different clinical senses, such as baseline phase, treatment phase, follow-up phase, etc.

Traditional time series models, such as standard Transformers, often rely only on the coding of
absolute time positions, which is obviously not sufficient to express the complexity of phased changes
in clinical data. Therefore, by segmenting the timeline, we are able to assign a specific stage to each
clinical event, helping the model to better understand the temporal context in which the event
occurred.

In order to solve the problem of long-range dependence between different phases, we introduce
relative position coding, and calculate the relative time difference of each pair of time steps, so that
the model can adjust the attention weight according to the relative position of the events, this method
is formulated as Equation (2):

rer = (s(4) = s, [B(g; - 0)]) € 22, @

where 7j.; represents the relative offset between event t; and event ¢;, and the first
component, s(t;) —s(t,)) is a stage difference, indicating whether two events occur in the same
clinical stage; The second component | ,B(tj - tl)| is the time difference in the same phase, and £ is
the discretization step size, which is used to control the resolution of the time interval.

Since time periods in clinical trials tend to have different risk patterns, the same time difference
may have different clinical significance at different stages. By introducing relative position encoding,
we are able to adapt the model to these stage differences, improving the model's ability to capture
cross-stage dependencies.

For each pair of j and [ events, we use an embedding layer to convert the relative time
difference 7., into a vector representation e;_;, which is used to guide subsequent attention
calculations, as shown in Equation (3):

ejc; = W,OneHot(rj;) € R%, 3)

where W, is the learned weight matrix, and OneH ot(rﬂ_,) is the encoding of the relative offset 7;_;.

By using this relative position encoding, we can make the model focus on the relative timing structure
between different phases. Compared with traditional absolute position encoding, this method can
better capture the long-range dependencies between different phases across time periods.

In the Transformer model, the self-attention mechanism is used to calculate the dependencies
between different time steps. By mapping the features of each event to the query, key, and value
spaces, and calculating the attention weights between them, we can get the relative importance of
each event to the others. Specifically, attention weights are calculated using the following Equation

(4):

h h)T h h)T
(Z.(h) = exp q]( )kl( ) + qf( )W"E ) ej‘_l/ (4:)
jet Ja )|

is the standard query-key product that is used to calculate the similarity

between event j and event [. The second top q}(-h)wr(h)Tej(_l is a relative positional encoding term

The first top q](.h)kl(h)T
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that adjusts the attention weights through the influence of relative time distances, allowing the model
to perceive the temporal dependence across stages.

This approach can significantly improve the ability of the Transformer to capture long-range
dependencies across stages, especially in clinical data, where the dependencies at different stages are
much more complex than traditional time series data.

3.2. Maximum Likelihood Loss and Regularization

Following the multi-head attention mechanism, we aggregated the representation of all time
steps for each patient into a fixed-length subject-level representation. We use a weighted pooling
mechanism where the weights for each time step are calculated by the following Equations (5) and

6):
_exp (vToj)
B Yiexp(v'o)’

u =ZA}~ Oj, (6)
J

where o; is the output of the j-th time step, v is the learned query vector, and 4; is the pooled weight.

©)

J

This pooling mechanism allows the model to assign different weights based on the importance of
each time step, thereby enhancing the model's focus on key time points, especially those that are
clinically important before and after adverse events.

The SRPE-TSN model predicts the risk of event occurrence at each discrete time window t,. The
risk is calculated by the following Equations (7) and (8):

h, = a(w,u + by), ()
Sp = l_[(l —h), (8)
r<f

where o is the Sigmoid function, and w, and b, are the learned weights and biases. h, is the
discrete risk prediction of the £-th time window, indicating the probability of adverse events
occurring in patients within that time window; S, is the survival function of this time window,
which indicates the probability that the patient is still alive before this time window. Following Figure
1 shows the general framework of proposed SRPE-TSN model.
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Figure 1. Proposed SRPE-TSN Model Framework Illustration.
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In this way, the model is able to directly predict the probability of adverse events in patients in
different time periods and generate corresponding survival curves, which is particularly important
for the analysis of clinical data.

To train this model, we use maximum likelihood estimation to optimize the model parameters.
The negative log-likelihood loss function is given by Equation (9):

N

L= 12
N

i=1

6 Z Yieloghi, + Z(l —Y;e)log(1—hyo)[+v I W, 113, )
7 7

where §; is an indication of whether an adverse event occurred, y is the regularization coefficient,
and || W, lI% is the regularization term of the SRPE weight.

The first term is the maximum likelihood estimation, which is used to maximize the probability
of an event occurring. The second term is regularization, which is used to suppress overfitting,
especially the over-learning of relative position encoding, which can result from the SRPE module.

By combining maximum likelihood and regularization, we are able to ensure that the model not
only accurately captures the probability of adverse events in the clinical trial data, but also avoids
overfitting.

4. Experiments

4.1. Experimental Setup

To summarize, this study utilised the Optimum Patient Care Research Database (OPCRD), a
large-scale real-world electronic health record database from the UK that is commonly used in studies
around chronic disease and patient outcomes95. Patients were followed up for an average of 11.7
years, and the dataset contains long-term health information of more than 24 million patients,
including various types of clinical data, including demographics, diagnosis, prescriptions, laboratory
results, symptoms, etc. The strengths of OPCRD include long-term follow-up data, integrity and
representativeness of the data, and that all data are de-identified and can ethically be used for chronic
disease and drug safety studies.

In this study, four commonly used comparison methods were selected for evaluation: Cox
proportional hazards model (CPH), a classical survival analysis method that can process time-to-
event data but fails to capture nonlinear relationships; Random Forest (RF), as an ensemble learning
method, can handle high-dimensional data and nonlinear relationships, but its black-box nature
limits interpretability. Deep neural networks (DNNs), which excel at capturing complex nonlinear
relationships and are suitable for large-scale datasets, but require large computational resources and
face the risk of overfitting; The Gradient Booster (GBM) has a strong advantage in dealing with
missing values and outliers by gradually optimizing the weak learner to improve the prediction
results, but the model complexity is high and lacks the explanatory nature of traditional statistical
models.

4.2. Experimental Analysis

The accuracy is the most intuitive way to store a performance metric for a classifier, the number
of correctly predicted samples over the total number of samples. Accuracy was measured based on
the total correct predictions of the model for adverse events in this study. The results seen in Figure
2 indicate that the models achieve increasingly higher accuracies and converge as the training period
increases. The best-performing model in the entire pipeline was the SRPE-TSN model, which
achieved an accuracy rate close to 1.0, and had a significant improvement over other models,
indicating its superiority in capturing complex data patterns. While the DNN and GBM models'
accuracy scores have also increased, their performance is not as consistent as SRPE-TSN and vary in
several training iterations. The RF model was as smooth as the others but less performance than
SRPE-TSN and DNN, and the accuracy of the CPH model was gradually increased but was still low,
indicating that it also had limitations in terms of handling complex relationships.
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Figure 2. Accuracy Comparison across Models with Varying Training Epochs.

C-Index is a well-known account of the prediction ability of a model in survival analysis for
distinguishing the event order. It ranges from 0-1, with higher values meaning that the risk ranking
predicted by the model fits better to the real data. Figure 3 shows that during the increase of the
training period, the C-Index of the SRPE-TSN model is the highest and gradually tends to have a
stable trend, indicating that the order of prediction of the model is better than that of other methods.
Other models, however, showed a gradual upward trend after that, including DNN, GBM, and RF,
but none of their C-Index's could ultimately achieve the level of the SRPE-TSN. Worse yet, the
constant very low C-Index of the CPH model, even after thousands of iterations, illustrates the
inefficiencies of the linear regression with respect to the complexity of the processed data.
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Figure 3. C-Index Comparison across Models with Varying Training Epochs.

Inference time refers to the time it takes for a model to make predictions given input data. For
clinical applications, the length of inference time directly affects the actual usability of the model and
the real-time nature of clinical decision-making. With the increase of model size, the inference time
increases significantly, especially for DNN and SRPE-TSN models. However, the inference time of
CPH and RF models increased slowly with the increase of model size and remained at a low level.
As can be seen in Figure 4, larger-scale deep learning models (such as DNN and SRPE-TSN) require
more computational resources during inference, while traditional models (such as CPH and RF) are
more efficient in terms of inference time.
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Figure 4. Inference Time Comparison across Models with Varying Model Size.

5. Conclusion

In conclusion, we present a piecewise relative position coding-transfomer survival network,
which solves the event-dependent issue of different time stages of patients in clinical trials by
ardently introducing piecewise relative time embedding. As the output of the SRPE module, the
SRPE-TSN model is not only capable of well extracting long-term associations through the multi-
head attention mechanism across different stages, but also improves the generation performance of
our survival curve and event prediction accuracy through the addition of key time points. SRPE-TSN
yielded excellent performance on many phase III clinical trial data sets, with improvements in AUC
from 0.71 to 0.80 in concentration. The application of SRPE-TSN can be more extensive in subsequent
research, such as multimodal data fusion (such as the combined prediction of imaging data, genetic
data, etc.), so as to realize more accurate personalized treatment prediction.
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