Pre prints.org

Essay Not peer-reviewed version

Handling Bathymetry in Geoflood

Mark Mulwana "
Posted Date: 13 June 2024
doi: 10.20944/preprints202406.0903.v1

Keywords: 1. Bathymetry

2. Shallow Water Equations

3. Bilinear Integrals

4. Piece Wise bilinear Surface

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3629334

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 d0i:10.20944/preprints202406.0903.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Essay

Handling Bathymetry in GeoFlood

Mark Mulwana

African Institute for Mathematical Sciences (AIMS), Rwanda; mark.mulwana@aims.ac.rw

Abstract: The goal of the project was to understand how topography/bathymetry is imported and
used in GeoFlood with an aim towards improving efficiency and computational cost of bathymetry
handling in GeoFlood.GeoFlood is a software to simulate overland flooding basing on shallow
water equations.Numerical methods and programming were used for this study.The GeoFlood was
ran on a given data set (Malpasset data) and it was found out that indeed topography handling
during simulations has to be improved to minimise the computational time and also improve the
efficiency. Through this research, we also looked at the the shallow water equations, and the
numerical techniques used to solve the equations.
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1. Introduction

Typically, prior to conducting simulations, it is essential to first obtain or gather relevant data
pertaining to the problem of interest. For our case we are interested in areas affected with floods,
particularly overland flooding. Overland flooding refers to the situation where water levels rise and
inundate typically dry land. This can be caused by various factors, including a river overflowing its
banks, a storm surge from a hurricane, a significant amount of runoff from snow melt, or mechanical
failures of dams or levees, among others. The high-risk areas for overland flooding include locations
within floodplains, coastal regions, land near lakes, areas experiencing heavy seasonal rains, regions
prone to frequent freeze-thaw cycles, and low-lying areas, including those below sea level. Therefore,
the data in flood-affected areas is often referred to as either topography or bathymetry. Those two
terms are distinct, yet their meanings overlap significantly. Topography encompasses surface
features above sea level, such as mountains and buildings, while bathymetry pertains to features
below sea level, such as rivers and lakes. In our project or within the code, our primary focus is on
topography. Topography is usually collected from sources like Google map, Google earth and
several other dedicated platforms for data collection.

Overland flooding leads to loss of lives, property damage, and hampers the development of
affected areas.This research is dedicated to understanding and enhancing topography management
within GeoFlood simulations, aiming to improve our understanding and prediction of overland
flooding in complex environments.

Numerical simulation is a valuable tool for understanding and predicting overland flooding in
complex environments. However, due to the extensive spatial domains and extended time frames
overland flooding spans, it is essential to utilize suitable and manageable mathematical models to
address this challenge. Models based on shallow water equations are commonly employed for this
purpose, necessitating accurate representation of domain topography for precise modeling.

The computational costs associated with managing complex topography can be significant, espe-
cially for models employing parallel adaptive mesh refinement (AMR) techniques like GeoFlood
Kyanjo et al. (2024).To enhance computational efficiency and address computational cost chal- lenge,
GeoFlood proposes a separate adaptive mesh for topography, which is then distributed to multiple
processors using space-filling curve techniques, ensure that each processor points to a certain piece

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202406.0903.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 d0i:10.20944/preprints202406.0903.v1

of the data and every time refinement or regrid happens, the required processor is just
called.Additionally, new coupling features in P4est,the underlying mesh management library used
in GeoFlood Burstedde et al. (2011), enable fast searches of a distributed P4est mesh or direct
communication with the required processor.This approach effectively addresses the com- putational
burden associated with handling topography, ensuring efficient simulation of overland flooding
dynamics.

As discussed previously, to enhance efficiency and address computational cost during
simulations in GeoFlood, we further need to think about grid cells within the computational domain,
then compute their integrals.Since multiple topography files give us a digital description of the topog-
raphy, we have to choose the finest(high resolution) level topography and then compute the area
of "reconstructed” numerical “surface” over each grid cell.

The application to address the computational cost functions as the producer, with GeoFlood
acting as the consumer utilizing the application.Upon regridding or refining, GeoFlood temporarily
halts, triggering the application to generate integrals.Each processor computes these integrals and
makes them accessible.Consequently, when either refined or coarser integrals are necessary, they can
be swiftly referenced.Implementing this approach will markedly reduce simulation time.

The sections that will follow include, software packages used in GeoFlood during simulations,
Overland flooding model, discussing shallow water equations to be solved during simulations and
numerical techniques employed to solve them, methodology, to talk about how topography is
handled in GeoFlood, results and discussions and conclusion.

2. Overland Flooding Modeling

In this chapter we are going to briefly discuss the numerical techniques that GeoFlood employs
to solve the shallow water eqautions and the shallow water equations themselves.

2.1. Shallow Water Equations

Shallow water equations are a system of hyperbolic partial differential equations that govern the
flow beneath a pressure surface in a fluid.These equations are derived from the principles of
conservation of mass and momentum.These are nonlinear system of hyperbolic conservation laws
for depth and momentum(LeVeque et al., 2011).In one space dimension, these take the form:

oh  O(hu)
at o
d(hu) Io} g L oph
o —I—%(hu +§gh = —ghB,.

where

e  gisthegravitational constant,
e h(x;t)is the fluid depth,
e u(xt) is the vertically averaged horizontal fluid velocity.

A dragterm D(h, u)u can be added to the momentum equation and is often important in very
shallow water near the shoreline.

B(x) represents the bottom surface elevation relative to mean sea level.Negative values of B
correspond to submarine bathymetry,while positive values indicate topography.

Figure 2. 1: Figure shows variables of shallow water equations (LeVeque et al., 2011).
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The equation for the water surface elevation is expressed as follows

n(x, t) = h(x, t) + B(x, t),
In two dimensions, the shallow water equations are formulated as follows:
oh  Od(hu) I(hv)
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where

e u(x,y,t) and v(x,y,t) are the depth-averaged velocities in the two horizontal directions,
e B(xy,t)is the topography.

Once more, a drag term could potentially be incorporated into the momentum equations.

It is important to note that shallow water equations are part of the broader category of hyperbolic
systems

dqg 0O B

where

e g(x t) is the vector of unknowns,
e  f(g) is the vector of corresponding fluxes,
e (g, x) is a vector of source terms.

These vectors can be represented mathematically as

[h
g* _hu bl
[ hu
f(Q) = _hu2+%gh2]’

0
= _—ghBJ '

Let us introduce the notation u = hu for momentum and ¢ = hu? + 3 gh? or momentum flux.Then, the
momentum vector and momentum flux can be respectively rewritten as

=[]
f@ZM-

The Jacobian matrix J; then has the form
du
=% %= [h20 )
& o gh +u* 2u

Hyperbolicity requires that the Jacobian matrix be diagonalizable with real eigenvalues and
linearly independent eigenvectors.In the case of shallow water equations, the matrix J; has
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and corresponding
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2.2. Finite Volume Technique to Solve Hyperbolic PDEs:

These numerical methods are appropriate for solving nonlinear hyperbolic systems such as the
shallow water equations (LeVeque et al., 2011).In a one-dimensional finite volume method, the
numerical solution Qi approximates the average value of the solution within the ith grid cell

D re %/cl gla;ts)dz

where V; represents the volume of the grid cell, which is simply the region in one dimension,
V.= [xH%,a:-_%].

The wave propagation algorithm updates the numerical solution from @, to @ by solving

. Tl
Riemann problems at "¢ and e , the boundaries of , and using the resulting wave structure

of the Riemann problem to determine the numerical update.
For a homogeneous system of conservation laws, that is g: + f(g)x = 0, such methods are often
written in conservation form

At
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where ~ "7 isanumerical flux approximating the time average of the true flux across

the left edge of cell G; over the time interval. The expression of 4 is defined as

L 1 :TL+1
F 1= E/r I(Q('fi—%*i))

The process of creating a computational/mathematical representation of the area that will beaffected
by floods, mostly with highly variable and irregular topography is a bit complicated due to huge change

2.3. Riemann Solver
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in the flow of the floods over a distance and source terms resulting fromvariable topography.This issue
becomes more intricate due to the existence of a solution domain that changes as a result of moving from wet
to dry boundaries.To solve this issue, GeoFlood uses an approximate Riemann solver by (George, 2008) that
solves an augmented shallow water equation system that includes the momentum flux and topographic bed
in order to determinewaves in the Riemann solver.They are used to compute the numerical flux across a
discontinuityin the Riemann problem. Riemann solver provides an exact or approximate weak solution to the
hyperbolic PDE given initial data that is a piece wise constant with a single jump discontinuity.

2.4. Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a numerical method used for solving Partial Differential Equa-tions
(PDEs).The computational domain, which encompasses the region surrounding the floods,is discretized into
a uniform grid resolution based on the complexity of the solution.Initially, the computational domain is
divided into a coarse grid with Uniform spacing to provide a basicapproximation of the solution. Throughout
the simulations, the local error of the solution is con- tinuously monitored using various techniques, such as
comparing numerical solutions at different resolutions.

Refinement criteria by (George, 2006) are then applied based on the estimated error to identify regions of
the domain where the solution requires higher resolution, particularly in regions affectedby floods.These
criteria may include:

Water Depth Criteria:In this context, refinement is only allowed in regions where cells contain water,
achieved by flagging cells with water depths exceeding a certain threshold value.The refinement level is
then determined based on the water depth.

Bathymetry flag:This criterion is employed to enforce refinement in shallow regions where flow
dynamics change rapidly, such as near riverbanks or shorelines.

Velocity Criteria: This assume that the magnitude of the water velocity in both x and y directions is greater
than a certain threshold value.

Flood Source Flags:This criterion is employed to enforce refinement in regions containing the flood
source, such as a dam in the case of a dam break.It enables the code to refine the floodsource at a high
resolution to capture flood details along the floodplain.Moreover, it allows forthe specification of regions
to be refined to a desired resolution, determined by user-definedcoordinates as well as minimum and
maximum refinement levels.

Flow-grades flag:In this context, refinement is mandated to specified levels for depths or ve-locities
surpassing user-defined thresholds.This functionality enables the code to refine regions containing lakes, seas,
or rivers within the floodplain at varying intermediate levels comparedto the flowing material. Note that
refining involves increasing the resolution or level of detail inspecific regions of the computational grid
or mesh.

Mesh refinement is additionally conducted in regions where the solution necessitates higher res- olution
(such as flood areas), while coarsening occurs where the solution is relatively smooth or less complex.After
refining the mesh or grid, values from neighbouring grid cells are interpolated to compute the solution at the
refined grid points.The solution is then updated using numerical methods like finite volume method.

The adaptive refinement process is iterative, with the solution evolving over time.Adaptive Mesh
Refinement (AMR) improve the efficiency and accuracy of numerical simulations for hyperbolic PDEs by
concentrating computational resources on regions where they are most needed, such as regions affected by
floods.It is used for solving many other different PDEs, including parabolicand elliptic PDEs.

3. Software Packages Incorporated inGeoFlood

In this chapter we are briefly going to see some software libraries incorporated with in GeoFlood to perform
simulations on overland flooding.GeoFlood is a new open-source software package designed for solving shallow
water equations (SWE) on a quadtree hierarchy of mapped, logically Cartesian grids managed by the parallel
adaptive library ForestClaw (Calhoun and Burstedde,2017).As mentioned previously, GeoFlood utilizes
ForestClaw and p4est to address specific chal- lenges in modeling overland flooding, which will be discussed
further in this section.More about the installation and operation of GeoFlood is provided on the GeoFlood
Wiki (Kyanjo, 2023) Additionally, this section briefly introduces another software called GeoClaw that is also
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designed to solve hyperbolic systems of partial differential equations, it is used to benchmark GeoFlood to
evaluate its performance.

3.1. P4est

The p4est code serves as a robust parallel library tailored for adaptive hierarchical tree mesh par-allel
computation.It offers effective parallel algorithms to facilitate the creation, refinement, and distribution of tree-
based meshes.Through the p4est mesh management library, a quadtree or oc-tree mesh can be seamlessly
distributed across multiple processors utilizing the Message-Passing Interface (MPI).This approach establishes a
scalable and robust framework suitable for large-scalesimulations, ensuring resilience against faults.Moreover,
the design of p4est prioritizes compatibil-ity with diverse parallel computing architectures, enabling seamless
scaling to encompass millionsof processor cores.(Burstedde et al., 2011).

3.2. GeoClaw

GeoClaw software is a submodule of Clawpack (Mandli et al., 2016), an open-source softwarepackage
designed for solving general hyperbolic systems of partial differential equations (PDEs) using finite-volume
methods on logically Cartesian grids (George, 2006).GeoClaw integrates finite-volume wave propagation
algorithms from Clawpack, Riemann solvers specifically designed for shallow water equations, patch-based
Adaptive Mesh Refinement schemes tailored for free-surfaceflows over topography, and methods for ingesting
and interpolating general sets of topographyor bathymetry, which may be overlapping or nested.

3.3. ForestClaw

The ForestClaw library is built as a PDE layer on top of the p4est library, facilitating parallel tree mesh
management.It is a forest-of-quadtrees approach to block structured adaptive mesh refinement.ForestClaw
extensively utilizes the wave propagation algorithms in Clawpack to address various hyperbolic
problems.Therefore, the resulting ForestClaw library emerges as an adaptive, parallel, multi-block structured
finite volume code, enabling the parallelization of hyperbolic PDE solutions on mapped logically Cartesian
meshes (Calhoun and Burstedde, 2017).

Figure 3. 1: Figure shows three 8 X 8 computational grids, each with a layer of ghost cells, atthree adjacent
levels. (Calhoun and Burstedde, 2017).

From the figure above, three levels of refinement are shown, a ForestClaw domain consists ofa static
arrangement of one or more blocks where by each is subdivided into more quadrants.During refinement, a
quadrant will be partitioned in to four quadrants of the same size (level 1), further more the quadrants will be
partitioned into four other quadrants and so on until whenthe resolution needed is achieved.
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All the aforementioned software packages (P4est and Forest Claw) are integrated into GeoFlood with the
objective of solving shallow water equations and GeoClaw is used to benchmark to eval- uate the performance
of GeoFlood.This integration is motivated by their capability to accurately represent the behavior of water
across a broad spectrum of flow conditions.

4. Methodology

The GeoFlood code integrates with libraries such as ForestClaw and P4est, supported by essential
dependencies including Libtool, make, CMake, GCC 12, Git, MPICH-GCC 12 (version 12.0), zlib, and pkg-
config.Libtool simplifies the creation and utilization of shared libraries, facilitating portability and
maintainability (Matzigkeit et al., 1996).Make automates compilation, dependency management, and supports
incremental builds, crucial for managing dependencies and installing packages like ForestClaw. CMake
ensures code build and installation independence from userenvironments, vital for distributing the code
effectively (Marson and Jankowski, 2016).GCC 12is a compiler that compiles a source code into executable
programs or libraries, while MPICH-GCC12 supports parallel programming with MPLThe zlib library
enables data compression anddecompression, optimizing storage requirements and resource utilization.Pkg-
config is employed during compilation to ensure compatibility with the C compiler and library.

The topography data is collected from platforms like Google Maps and Google Earth, alongsidevarious
other sources.Topography is represented as digital elevation models (DEM) which can be categorized into
three main types:

Type 1: This is a topography file consisting of three columns, namely x, y and z, where x and y represent
positions of the physical features and z represents the elevation or depth.

Type 2: This is a topography file consisting of six headers, namely, number of columns(ncols), number of
rows(nrows), xl corner, yl corner, cell size (dx or dy) and region with no data.

Type 3: This topography includes all six headers from Type 2 and includes topography lines with
dimensions of mx by my, where mx indicates number of rows and my indicates number of columns.

The topography utilized in the Malpasset Dam benchmark that we will study was obtained froma bench
marking exercise conducted in 1999 under the support of the CADAM (Concerted Action on Dam-break
Modelling) project, a collaborative European research initiative.This bench markingeffort, documented by
(Frazao et al., 1999), involved a collection of 13541 points with irregular spacing and known coordinates, serving
as the basis for defining the numerical domain.The Dam break referred to in this case is Malpasset Dam Break
which will be talked about more in the next chapter.The topography for this incident is of 6 different forms,
namely; domain-grid, reservoir, grid-4, grid-3, grid-2 and dam approach.In the process of addressing the issue
of computational cost and improving efficiency, we need to efficiently handle topography in GeoFlood, a topic
we will delve into shortly as we progress through this chapter.

The following figures show plots of the different topography/bathymetry files:
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Domain Grid

Reservoir

v,

Dam Approach

Grid 2

Figure 4. 1: Figure shows different bathymetry files.

From the above, Domain grid represents the entire domain (spatial domain), Reservoir representsthe
location of the dam, Dam approach shows the area close to the dam and the other files (Grid 2, Grid 3 and Grid
4) show the path.
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Figure 4. 2: the first figure shows the six bathymetry files plotted on the same plot, the secondfigure shows
bathymetry files not yet discritized then the last figure shows files that are discretized.

GeoFlood reads the topography/bathymetry files as rectangles punched or fit in one file (Domain file) as
seen in figure (a) bellow.

When the files are combined into one, the rectangles will intersect and cells will overlap, as
demonstrated in figure (c) (Reservoir intersects with Dam approach and cells for Domain overlap cells for
Reservoir), posing a challenge during regridding.All of these concerns are addressed when handling
bathymetry/topography in GeoFlood, as we will soon discuss.Regridding/refinement involves the computation
of bilinear integrals.Bilinear integration involves dividing a given domain into different cells or portions,
determining the area of each independent portion (in our case, for a single cell with four corners), and then
integrating over the four corners to calculate the areaof the entire domain.It is crucial to compute these
bilinear integrals at the beginning and store them to prevent time-consuming recalculation during
regridding.The application to be developed aims to provide these bilinear integrals so that they can be readily
accessed whenever needed.

4.1. How Topography/Bathymetry Is Handled in GeoFlood

As its aimed at improving the efficiency of GeoFlood and addressing computational cost of GeoFlood
during simulations of overland flooding, there are different scenarios that happen with

in topography data and may lead to inaccurate results like the overlapping of topofiles with different
resolutions and yet our focus is more on those with highest resolution (finest topofiles) for accurate results, so
such scenarios have to be catered for.

To show how bathymetry is handled by putting in to consideration the above scenario, we shall consider
the following problem;

Problem: Let D be a union of overlapping rectangles R; (topofiles)

D = U;R.. (4.1.1)

The rectangles are ordered by resolution, so that the resolution of R;is higher than the resolution for R
and so on.Over each rectangle/topofile, define a function Ti(¢, n).Define a unique surface (grid cell/integration
region) T(¢ n), where
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T(&,n) = Ti(&m), (4.1.2)

where /is the smallest index for which (&, n) € Ry.
The problem is given a rectangular region C C R, compute the integral

A=/{;T[§.ﬂ) dédn. (4.1.3)

The above problem is to find the integral of the unique surface/grid cell over the overlapping
rectangles/topofiles, and to achieve this, we are going to solve it or show how it is handled using a case scenario
of a few topofiles with defined functions, we shall see what happens when thegrid cell is embedded with in
the finest topofile and when it intersects the other topofiles.

Below is mathematically how we get the intersection of two topofiles (rectangles)

Mathematically how the intersection is computed

Let topofile-1 (T:) be defined by the vertices (x1, y1), (x2, y1), (x2, y2), and (x1, y2).Similarly,let
topofile-2 (T2) be defined by the vertices (x3, y3), (x4, y3), (x4, y4), and (x3, y4).The inter- section region
between the above 2 topofiles / is given as:

I = [Xmin, Xmax] X [,Vmin, ymax];

where
e  xmin = max(x1, x3),
. Xmax = min(x2, x4),
e ymin = max(yl, y3),
L4 Ymax = m1n(y2, y4)

And area of the intersection region is given by

Area = (Xmax — Xmin) X (ymax - ymin)-

So in regards to the above problem, below is the solution to the case study of three topofiles, nowin this
case the union of overlapping rectangles R; contains Topofile-1 (red), Topofile-2 (green)and Topofile-3
(blue) arranged in a list from the finest to the coarsest.

Example 1:When the grid cell is embedded with in the finest topofile.
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Figure 4. 3: Figure shows grid cell embedded in to the finest topofile.

From the above plot, we have 3 rectangular topofiles with the following dimensions:.

Topofile-1(red) = [2, 2] X [7,7],
Topofile-2(green) = [5, 5] X [9, 9],

Topofile-3(blue) = [0, 0] X [10, 10].

Let us assume the following:

the grid cell be the black dotted rectangle with dimensions,[4,4] to [6,6],
Topofile-1 be the finest topofile,

Topofile-2 be the medium (fine and coarse),

Topofile-3 be the coarsest topofile.

Recall that we are interested in accurate solution, so we are always interested in the topofilewith the
highest reolution (finest topofile) so the grid cell whose integral we are interested inalways come from the
finest topofile, so from the figure above, it clearly show that the grid cellis embedded with in the finest topofile
but still this can be seen mathematically as shown bellow.

First step:We compute the area of the grid cell:

Arﬂaﬂ‘ = [-'rmm.r - I:m’ﬂ] bt {ynm.r - ym.in.}
Area, = (6 —4) x (6 —4) = 4.

Second step:We find the intersection region between the finest topofile and the grid cell, then compute
its area.The intersection region is [4, 6, 4, 6] and the area of the intersection region is

Area = {;-'I:?rm:r: — -'I:min} b [I,I’mu:r: — y:m'ﬂ]
Area = (6 —4) x (6 —4) = 4.
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Third step:Check if the Area of the grid cell is the same as that of the intersection, now for this example its
the same, meaning the grid cell is embedded with in the finest topofile and since we are interested in the finest
one, we just compute the area of the grid cell or the integral of thegrid cell using the function of the finest

topofile.
fi £
I=f f Tidzedy,
4 J4

where f; is a function assigned to topofile-1 (finest topofile), similarly other topofiles are assignedfunctions
like T, for topofile-2 and T3 for topofile-3.
If given T = 3, then we have

i i
I = / [ Tidredy = 12
4 4

Lets now see another example where the grid cell is not entirely embedded with in the finesttopofile,
but rather intersects with other topofiles.
Example 2:

1
10 1  —
| —

9

B T T T e e e e e e e e e e e e e e [ 1

s

2 e —————

Figure 4. 4: Figure shows grid cell embedded in to the finest topofile.

The above graph shows rectangles/topofiles with the following dimensions:

topofile-1(T1) = [1, 7, 3, 8],

topofile-2(T2 = [5, 9, 2, 9],

topofile-3(T3) = [0, 10, 10],
Grid cell = [0.5, 8.5, 2, 6].

Similarly the above topofiles are also arranged from the finest to the coarsest topofile,and associ- ated with
functions, fi, f> and f3 respectively.So to calculate the integral of the grid cell in suchscenario, we shall have
to compute the independent integrals for each intersection of the grid celland the different topofiles, which
is shown below.

The intersection region of topofile-1 and the grid cell is[1, 7, 3, 6].

The integral (/1) of the region is
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7 6
[, = f f Tsdydzx.
1 3

The intersection regions of topofile-2 and grid cell are [7, 8.5, 2, 6] and [5, 7, 2, 3].
The integral for these regions /, is computed from

o i T 3
T 2 5 J2

The intersection regions of topofile-3 and grid cell [0.5, 1, 3, 6] and [0.5, 5, 2, 3]
The integral (/3) for these regions is:

1 6 5 03
153 = / / Tadydr + / / Tadydx
0.5 /3 0.5 J2

So to get the total integral (/) of the grid cell, we shall have to sum all the independent integralscomputed
above, that is;

I=h+DL+1

7 b 8.5 6 7 3 1 6 5 3
I = [ [ Thydydr + / ] Todydx + f f Todydx + ] / Thdydx + ] / Tsdydx.
1 J3 7 2 5 J2 0.5 43 0.5 42

If given the values of the functions, say T: = 3, T, = 2 and T; = 1, then the integral is

I=1[3(6-3)(7T—1)]+[2(6 —2)(8.5—7) +2(3—2)(7T—5)] + [(6 — 3)(1 — 0.5) + (3 — 2)(5 — 0.5)]
I=544+16+6=76

However we may have cases where the integral may not be computed easily or its time consuming, that is in
cases when the topofiles are many or in cases when they are of large dimensions, forexample the figure below.
In such cases a subroutine was written to to compute these integrals and it can be referred to by the Pseudo
code written down.

Example 3:

The figure above shows six topofiles and the grid cell (red), in the above figure it may take you time to
compute the integral of the grid cell manually or even you may be in position to do so butend up getting a
wrong answer, so in such cases, and due to the fact that in real life problemswe deal with huge sums of data,
a subroutine following the Pseudo code below was written.
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Figure 4. 5: Figure shows grid cell overlapping more than three topofiles.
Algorithm to compute integral of a grid cell

4.1.1. Functions Assigned to Each Topofile and Topofiles Initialized

e  Define topography functions assigned to each topofile for example Ty, T;, T3) and so on.

e Define the dimensions of the grid cell, say a list with [Xmin, Xmax Ymin, Ymex]

e  Define a list of topofiles and their respective dimensions. (for the dimensions, you mayneed only the
lower left coordinates and the upper right coordinates for each topofile).

4.1.2. Define a Function to Check for the Intersection of Two Topofiles

e  Function: intersection(r_l, r_2):
- It will take in two rectangles
- It will compute the intersection.
- Checkif there exists the intersection, if so it then computes the area of the intersection.
- It will return the dimensions of the intersection region and the area if it exists, if itdoes not, it
will return area as 0.

4.1.3. Define Function to Recursively Compute the Integral of the Grid Cell

This function helps to compute the integral incase the grid cell is not embedded with in the topofile with
highestresolution but when its overlapping with so many other topofiles of different resolution.

e  Function: compute_integral(grid_cell, m):
- Itwill take in the grid cell and index of the current topofile as arguments.
- Setthe number of topofiles.
* Base case:

o It will check if the topofile is the coarsest (the last one in the list).

e  If topofile is the coarsest, it will compute the area of the intersection betweenthat topofile
and the grid cell using the above intersection function, and also returns that area and the
dimensions of the intersection region in case it exists.

e  Iftheareais zero, that is no intersection, it returns zero (0).
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% Recursive case:

e If the topofile is not the last one in the list (coarsest), it will make a recursive call to
compute the integral (First integral) for the next topography file in the list.

e It will again calculate the area of the intersection between the grid cell andthe current
topography file.

o  If the area is positive, that is,there is an intersection.

e It will define the intersection region as the intersecting sub-region of the grid cell.

e It will again make a recursive call to compute a second integral, over thisintersecting
region to be subtracted from the First integral to cater for over- laps.

e It will compute the Third integral as the area of intersection multiplied bythe function
value of the current topofile, to be added to the First integralto correct overlaps.

e  Then finally it will return an integral as First integral-Second integral+Thirdintegral.

4.1.4. Define the Main Function/Routine Which Will Then Call the First Two Functions to Compute
the Integral

e  Function grid_cell int(grid_cell):

- It will first calculate the Area of the grid cell using its dimensions.
- Itwill theniterate through the topofiles.

* For each topofile, it will check if there exists an intersection between each andthe topofile by
calling the intersection function above.

* If the area of the intersection between the topofile and the grid cell exists and its equal to that of
the grid cell, it will the compute the integral as

| = Area X function assigned to that topofile

* If its found that the area of the intersection is less than that of the grid cell, it will compute the
integral recursively by calling the recursive function. This is because for this case there will be
overlaps, so they have to be handled well to avoid double counting which may lead to over
estimation or under estimation of the integral.

* This is the function the returns the integral of the grid cell.

Note: Note that the above algorithm can still change. The functions can be defined in any waythat is
easiest, provided the overlaps are handled efficiently and accurately, and computational time is also taken
into consideration.

4.2. How the Above Is Done in Real Case (Piecewise bilinearSurface)

A computational domain is created from a union of rectangular topofiles.Data in the topofiles isa
collection of points on a Cartesian grid.The lower left and upper right corners of the topofile,along with the
number of points and the cell size is specified in the file.For example, one of thetopofiles in the Malpasset Dam
problem has 20m resolution (e.g. cell size) and 953155 x 1832200 points.

The challenge is to define the function T{¢ n) for a particular topofile

Ti(&, *’” = ‘tnm(‘a n) [421}

where (£ n) is in topofile cell ty,.
Define a bilinear function of the form

tmn(§, n) = a&§ +bn +cén +d
where a,b,c and d constants for the rectangular region representing a mesh cell [&;, &, n1, n2] in the topofile.These
bilinear functions are computed and combined to form the overall surface.Theyare combined in such a way
to allow continuity at the boundaries of each.
The value of the bathymetry over a computational mesh cell G; is defined as the average valueof this
piecewise bilinear surface over the computational cell and is given by
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1
B(ri,y;) = 7——=— [ T(& n)dédn
S Area(Cyj) i
The mesh cell C; is now the grid cell referred to in the previous examples.
Lets look at the integral of the bilinear function of a rectangular surface mathematically.

2 £a
I = / / (a& + by + c€n + d)dédn
n

£1

"1 1.
I= / (§a§2 + & + Ecng"’ + r:!’cf)

m

£2
dn
£1

I (| 9 3 b 1 ) ) ) p i
_ f Sa(€ — &) + bn(& — &) + 3en(€d — &) + d(&a — &) ) dn

n

2 1 1
I=(&—-6) (ﬁﬂiiz +&)+m+ 5(:?;{{,2 + &)+ d) dn
m

1 1 1 e
I=(&-6&) [Efl{cfg +&)n+ 55}!}2 + ;lf:-rpz(gg + &)+ ri’-r;}
m

1 1 a1
I=(&-&) [Ea{csz + &) (e = m) + 5b(ny — ) + Je(n; — ) (& + &) +d(m — m)]
1 1 1
I = (&= &) —m) {53{52 + &)+ ib{% + Th)zc('f}z +m)+ &)+ d} s

where
Area(of the rectangular surface) = (& — &)(n2 — n).

Diagram showing an integral intersection with bilinear cells:
Piecewise Bilinear Surface with Integration Region

2 4

=11

T T T
] 1 2
X

Figure 4. 6: Figure shows an integral intersecting bilinear cells.

Figure 4.6 shows a piecewise bilinear surface in 2D with dimensions [0,2,0,2], bilinear cells (theblack
rectangles) with dimensions [0,1,1,2], [1,2,1,2], [0,1,0,1] and [1,2,0,1], with an integration region (red) with
dimensions [(0.5, 0.5), (1.5, 0.5), (1.5, 1.3), (0.5, 1.3)] that intersects themultiple bilinear cells.

5. Results and Discussions

5.1. Results

The Malpasset Dam, located about 12 km upstream from Frejus, France, was a slender arch dam builtina
narrow gorge above the Reyran River valley to create a reservoir holding 55106 cubic meters of
water.Unexpectedly, on December 2nd, 1959 at 21:14 hours, the dam catastrophically failed, generating a sudden
acoustic shock wave felt in Frejus, indicating an almost instantaneouscollapse.Standing at a height of 66.5 meters
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with a crest span of 223 meters, the dam’s arch was the only remaining structure after the failure, accompanied
by significant erosion of the nearby rock bank.Investigations suggest that the arch dislodged from its base,
triggering a rapid andsequential collapse (Valiani et al., 2002)

The incident resulted in 433 fatalities and significant infrastructure damages, including the oblit- eration of
a Lkm section of free way and an adjoining bridge, and extensive flooding of Frejus.The downstream
displacement of massive blocks indicated the power of the flood.The flood wavesrose to approximately 20m
above the original riverbed.For comprehensive understanding of the incident, you can refer to (Boudou et
al., 2017).

Before doing modifications with in the code, we ran the Malpasset data on different number of
processors and below was the out come.Different processors were evaluated in terms of time taken when refining
these data files and the wall time, advance time, Regrid time and Regrid-buildtimes were recorded.This study
aimed to assess the efficiency of various processors to identify opportunities for improving computational
cost.Processors 1, 2, 4, and 8 were tested, and below are the achieved results.

Based on the results presented in the Table 1, the wall time for 8 processors was lower com-pared to that
for 1,2, and 4 processors. Similarly,the advance time was also lower compared to the other three cases.However,
the Regrid time was higher than the other three cases, while the Regrid-build time was lower.For the case of 4
processors,the Regrid-build time was slightly higherthan that for 2 processors.These results highlight that
significant time is consumed during refine- ments, particularly evident in the Regrid time, despite the overall
small wall time It suggests that increasing the number of processors leads to a reduction in wall time, but further
enhancements are necessary during refinements to optimize computational costs.

Table 1. Timing results for different processors.

No. of processors Wall time(s) Advance time(s) Regrid time(s) Regrid-build time(s)

1 10729.7 9563.86 20.5029 1.01052
2 6313.88 4919.63 14.8174 0.541249
4 3381.63 2517.43 12.0432 0.25904
8 2205.49 1561.47 13.4691 0.173513

100 || —=— Efficiency .

90 .

Efficiency
o0
=

=]
=

GO

1 2 4 8
Number of Processors

Figure 5. 1: Efficiency (On Wall time) against Number of Processors.

Figure 5.1 shows efficiency against number of processors used to run on the Malpasset data andit is found
out that really the efficiency on 8 processors is not very bad (60%) but still it needsto be improved to raise the
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percentage, this is because the more the number of processors, the tasks are distributed equally to the processors
which means time taken to do the regridding will be shortened.

Note that the aforementioned results were obtained under the following conditions: the finaltime was
set to 600.0 units, the number of equations (shallow water equations) solved was 3,the topography domain
spanned [953236.0, 959554.0] X [1832407.25,1848572.75],the number of refinement levels was 4, ranging from
level 1 to level 4, and the grid dimensions were [16,16].

At present, every time regridding or refining occurs, processors must recalculate integrals, which, as
observed in the above results, is time-consuming.This implies that the more levels of refinementthere are, the
longer the time taken.However, in many cases, we require finer refinements, which necessitate more
integrals.Therefore, we must address this issue.

Bellow are some of the pictures showing the incident of the Malpasset dam break.

(a) ) t=00s (b) t=05s (c) t=10s
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Figure 5. 2: Figures show Malpasset dam break incident at different time intervals.
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(a) t=30s (b) t=35s (c) t=40s
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(d) t=45s (e) t=50s (f) t=55s

Figure 5. 3: Figures show Malpasset dam break incident at different time intervals.

The above sequence of figures, show the incident of the Malpasset dam break at different time
intervals.They were illustrated using google earth imagery.

5.2. Discussions

From the figures above, at time t=0s, the event shows a full reservoir with the dam intact. Butas time
went on, that is to say at 5s, 10s, 15s etc, the dam failed, which led to flood waters over topping the A8
highway. Between time t=15s, and t=25s, the flood waters proceeded through the valley, reaching Frejus.At
time t=55s, the flood waters had reached the sea, hence the progression of the incident.

The Figures 5.2 and 5.3, they as well show refinements performed, adaptive mesh refinementapplied
in the simulation at time intervals of t=0, 5, 10 up to 55 seconds.At the initial time t=0s, the reservoir area was
refined up to level 3.As time moved on, the broader region affected by thefloods was refined at varying levels
from I=1 to 1=3, while the other parts not affected by floods were coarsely refined, that is to say were
subjected to low resolution.

5.3. Initial Conditions and Boundary Conditions for Malpas-Set Dam Breakdown

Here the sea level and the initial reservoir level are assumed to be constant are set at 0 and 100mabove sea
level respectively.Although the outlet gate near the bottom of the dam was open duringthe incident, we
neglected pre incident stream flow in the channel, that is to say the bottom ofthe dam was considered to be
dry.Since the actual pre incident stream flow discharge is unknown,it was assumed to be negligible. Similarly
since the value of the inlet discharge upstream of the reservoir is unknown, an imposed discharged constant
of zero was used.The sea level wasmaintained constant (equal to zero).Note, we assume a short period dam
failure.
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5.4. Simulation Results for the Malpasset Dam Break beforethe Modifications Were Made

In the simulations before modifications in the code were made, we used a manning coefficientof
0.03333.The simulation runs were done on a 2.3 GHz i7 processor with 16 GB RAM.The simulations were
performed on the computational grid or domain of dimensions 32 80 meters, with refinement levels from I=1
to 1=3.The initial time step of 1 second, relying on a Courant-Friedrichs-Lewynumber (CFL) of 0.75.Note
that CFL is a dimensionless number that ensures stability and accuracy during simulations, it is usually
related to the ration of time step sizeto grid spacing.The adaptive mesh refinement criterias (flags) were
designed basing on various conditions such as water depth, bathymetry, velocity, topographical features and
the origin of the flood.This model accurately represented the flood’s domain and intricate details in the areas
surrounding the flood plain during the dam failure as shown in figures 5.2 and 5.3.

The model led to the generation of simulations with high resolution mesh adaptations in the areasaround
the dam and flood plain as shown in the figures above.But still modifications are required to improve
efficiency and reduce on the time taken during simulations.

5.5. GeoFlood Compared to Other Models to Simulate Max-Imum Water Elevations

—&— GeoFlood
—— GeoClaw

-+ Physical Model data

ra —+— TELEMACZD (Hervouet and Petitiean)
80 /et —+— Static fitted mesh (Valiani et al)

80

Maximum Water Level (m)

$1 %2 §3 84 S5 56 ST S& 59 S10 S11 $12 513 514 $15 $16 $17
Police surveyed points

Figure 5. 4: Police-surveyed points.

907 —o— GeoFlood

—e— GeoClaw

-=+- Physical Model data

—=— TELEMAG2D (Hervouet and Petitjean)
—=— Static fitted mesh (Valiani et al.)

70+

Maximum Water Level {m)

Ps  PT P8 Pa Pl0 PM P2 Pi3  Pi4
Gauge Number

Figure 5. 5: Gauge points.
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To confirm that GeoFlood is the best fit to simulate overland flooding, it was compared with other
models like GeoClaw, physical model data, static fitted mesh and Telemac2D to simulatethe maximum
height of the water.

From the Figures 5.4 and 5.5, the comparison drawn between GeoFlood simulated results at the 17field-
surveyed and 9 gauge locations against the field and experimental data (Frazao et al.,, 1999),with numerical
results from GeoClaw, physical model data, static fitted mesh and Telemac2D.

GeoFlood's parallel grid management supported by Forest Claw allows the model to effectivelymonitor
the flood’s extent and dynamically adjust the wet-dry boundaries during the refinement process. Field-surveyed
locations tend to have a higher margin of error compared to gauge points.We attribute this to the fact that they
are located near the margins of the flow. Given that all the models in comparison are based on shallow water
equations,the prediction capability of different codes is most clearly differentiated by their ability to track the
flood extents at the field-surveyed locations(Kyanjo et al., 2024). And it is evident that GeoFlood simulates
well the maximum ofwater elevations.

6. Conclusion and Future Work

6.1. Conclusion

During this research I was able to install GeoFlood and configurations were made, GeoFlood was ran
on a Malpasset data (for the dam failure) using different number of processors but itwas found out that the
efficiency needs to be improved and also the computation cost needs tobe addressed.These issues are supposed
to be addressed by finding an approach that efficiently handles bathymetry data.l also understood how
bathymetry is handled with in GeoFlood during simulations.

6.2. Future Work

The main goal to address the above issues is to integrate adaptive mesh refinement (AMR) topography
techniques into GeoFlood topography routines, leveraging the p4est (parallel mesh management library)
routines to optimize topography handling(Burstedde et al., 2011).Thenuse new coupling techniques
available in GeoFlood through p4est to provide topography on adistributed quad tree mesh.This technique is
expected to be more efficient for real-world problemswith complex and large domains.Then validate new
developments against already existing test cases (Malpasset dam failure) and compare the results.So all the above
was not able to be reacheddue to time hence calls for future work to be done so that the new features of P4est are
coupled with in GeoFlood in order to enhance the efficiency and also reduce the computational cost during
simulations.
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