
Essay Not peer-reviewed version

Handling Bathymetry in Geoflood

Mark Mulwana *

Posted Date: 13 June 2024

doi: 10.20944/preprints202406.0903.v1

Keywords: 1. Bathymetry

2. Shallow Water Equations

3. Bilinear Integrals

4. Piece Wise bilinear Surface

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3629334

Essay

Handling Bathymetry in GeoFlood

Mark Mulwana

African Institute for Mathematical Sciences (AIMS), Rwanda; mark.mulwana@aims.ac.rw

Abstract: The goal of the project was to understand how topography/bathymetry is imported and

used in GeoFlood with an aim towards improving efficiency and computational cost of bathymetry

handling in GeoFlood.GeoFlood is a software to simulate overland flooding basing on shallow

water equations.Numerical methods and programming were used for this study.The GeoFlood was

ran on a given data set (Malpasset data) and it was found out that indeed topography handling

during simulations has to be improved to minimise the computational time and also improve the

efficiency.Through this research, we also looked at the the shallow water equations, and the

numerical techniques used to solve the equations.

Keywords: bathymetry; shallow water equations; bilinear integrals; piece wise bilinear surface

AN ESSAY PRESENTED TO AIMS RWANDA IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE IN MATHEMATICAL SCIENCES

1. Introduction

Typically, prior to conducting simulations, it is essential to first obtain or gather relevant data

pertaining to the problem of interest. For our case we are interested in areas affected with floods,

particularly overland flooding. Overland flooding refers to the situation where water levels rise and

inundate typically dry land. This can be caused by various factors, including a river overflowing its

banks, a storm surge from a hurricane, a significant amount of runoff from snow melt, or mechanical

failures of dams or levees, among others. The high-risk areas for overland flooding include locations

within floodplains, coastal regions, land near lakes, areas experiencing heavy seasonal rains, regions

prone to frequent freeze-thaw cycles, and low-lying areas, including those below sea level. Therefore,

the data in flood-affected areas is often referred to as either topography or bathymetry. Those two

terms are distinct, yet their meanings overlap significantly. Topography encompasses surface

features above sea level, such as mountains and buildings, while bathymetry pertains to features

below sea level, such as rivers and lakes. In our project or within the code, our primary focus is on

topography. Topography is usually collected from sources like Google map, Google earth and

several other dedicated platforms for data collection.

Overland flooding leads to loss of lives, property damage, and hampers the development of

affected areas.This research is dedicated to understanding and enhancing topography management

within GeoFlood simulations, aiming to improve our understanding and prediction of overland

flooding in complex environments.

Numerical simulation is a valuable tool for understanding and predicting overland flooding in

complex environments. However, due to the extensive spatial domains and extended time frames

overland flooding spans, it is essential to utilize suitable and manageable mathematical models to

address this challenge. Models based on shallow water equations are commonly employed for this

purpose, necessitating accurate representation of domain topography for precise modeling.

The computational costs associated with managing complex topography can be significant, espe-

cially for models employing parallel adaptive mesh refinement (AMR) techniques like GeoFlood

Kyanjo et al. (2024).To enhance computational efficiency and address computational cost chal- lenge,

GeoFlood proposes a separate adaptive mesh for topography, which is then distributed to multiple

processors using space-filling curve techniques, ensure that each processor points to a certain piece

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202406.0903.v1
http://creativecommons.org/licenses/by/4.0/

 2

−

of the data and every time refinement or regrid happens, the required processor is just

called.Additionally, new coupling features in P4est,the underlying mesh management library used

in GeoFlood Burstedde et al. (2011), enable fast searches of a distributed P4est mesh or direct

communication with the required processor.This approach effectively addresses the com- putational

burden associated with handling topography, ensuring efficient simulation of overland flooding

dynamics.

As discussed previously, to enhance efficiency and address computational cost during

simulations in GeoFlood, we further need to think about grid cells within the computational domain,

then compute their integrals.Since multiple topography files give us a digital description of the topog-

raphy, we have to choose the finest(high resolution) level topography and then compute the area

of ”reconstructed” numerical ”surface” over each grid cell.

The application to address the computational cost functions as the producer, with GeoFlood

acting as the consumer utilizing the application.Upon regridding or refining, GeoFlood temporarily

halts, triggering the application to generate integrals.Each processor computes these integrals and

makes them accessible.Consequently, when either refined or coarser integrals are necessary, they can

be swiftly referenced.Implementing this approach will markedly reduce simulation time.

The sections that will follow include, software packages used in GeoFlood during simulations,

Overland flooding model, discussing shallow water equations to be solved during simulations and

numerical techniques employed to solve them, methodology, to talk about how topography is

handled in GeoFlood, results and discussions and conclusion.

2. Overland Flooding Modeling

In this chapter we are going to briefly discuss the numerical techniques that GeoFlood employs

to solve the shallow water eqautions and the shallow water equations themselves.

2.1. Shallow Water Equations

Shallow water equations are a system of hyperbolic partial differential equations that govern the

flow beneath a pressure surface in a fluid.These equations are derived from the principles of

conservation of mass and momentum.These are nonlinear system of hyperbolic conservation laws

for depth and momentum(LeVeque et al., 2011).In one space dimension, these take the form:

where

• g is the gravitational constant,

• h(x,t) is the fluid depth,

• u(x,t) is the vertically averaged horizontal fluid velocity.

A drag term D(h, u)u can be added to the momentum equation and is often important in very

shallow water near the shoreline.

B(x) represents the bottom surface elevation relative to mean sea level.Negative values of B

correspond to submarine bathymetry,while positive values indicate topography.

Figure 2. 1: Figure shows variables of shallow water equations (LeVeque et al., 2011).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 3

2

The equation for the water surface elevation is expressed as follows

η(x, t) = h(x, t) + B(x, t),
In two dimensions, the shallow water equations are formulated as follows:

where

• u(x,y,t) and v(x,y,t) are the depth-averaged velocities in the two horizontal directions,

• B(x,y,t) is the topography.

Once more, a drag term could potentially be incorporated into the momentum equations.

It is important to note that shallow water equations are part of the broader category of hyperbolic

systems

where

• q(x, t) is the vector of unknowns,

• f (q) is the vector of corresponding fluxes,

• ψ(q, x) is a vector of source terms.

These vectors can be represented mathematically as

Let us introduce the notation µ = hu for momentum and ϕ = hu2 + 1 gh2 or momentum flux. Then, the

momentum vector and momentum flux can be respectively rewritten as

The Jacobian matrix Jf then has the form

Hyperbolicity requires that the Jacobian matrix be diagonalizable with real eigenvalues and

linearly independent eigenvectors.In the case of shallow water equations, the matrix Jf has

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 4

and corresponding

2.2. Finite Volume Technique to Solve Hyperbolic PDEs:

These numerical methods are appropriate for solving nonlinear hyperbolic systems such as the

shallow water equations (LeVeque et al., 2011).In a one-dimensional finite volume method, the

numerical solution Qi approximates the average value of the solution within the ith grid cell

where Vi represents the volume of the grid cell, which is simply the region in one dimension,

The wave propagation algorithm updates the numerical solution from to by solving

Riemann problems at and , the boundaries of Ci, and using the resulting wave structure

of the Riemann problem to determine the numerical update.

For a homogeneous system of conservation laws, that is qt + f (q)x = 0, such methods are often

written in conservation form

,

where is a numerical flux approximating the time average of the true flux across

the left edge of cell Ci over the time interval. The expression of is defined as

2.3. Riemann Solver

The process of creating a computational/mathematical representation of the area that will be affected

by floods, mostly with highly variable and irregular topography is a bit complicated due to huge change

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 5

in the flow of the floods over a distance and source terms resulting from variable topography.This issue

becomes more intricate due to the existence of a solution domain that changes as a result of moving from wet

to dry boundaries.To solve this issue, GeoFlood uses an approximate Riemann solver by (George, 2008) that

solves an augmented shallow water equation system that includes the momentum flux and topographic bed

in order to determine waves in the Riemann solver.They are used to compute the numerical flux across a

discontinuity in the Riemann problem. Riemann solver provides an exact or approximate weak solution to the

hyperbolic PDE given initial data that is a piece wise constant with a single jump discontinuity.

2.4. Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a numerical method used for solving Partial Differential Equa- tions

(PDEs).The computational domain, which encompasses the region surrounding the floods, is discretized into

a uniform grid resolution based on the complexity of the solution.Initially, the computational domain is

divided into a coarse grid with Uniform spacing to provide a basic approximation of the solution.Throughout

the simulations, the local error of the solution is con- tinuously monitored using various techniques, such as

comparing numerical solutions at different resolutions.

Refinement criteria by (George, 2006) are then applied based on the estimated error to identify regions of

the domain where the solution requires higher resolution, particularly in regions affected by floods.These

criteria may include:

Water Depth Criteria:In this context, refinement is only allowed in regions where cells contain water,

achieved by flagging cells with water depths exceeding a certain threshold value.The refinement level is

then determined based on the water depth.

Bathymetry flag:This criterion is employed to enforce refinement in shallow regions where flow

dynamics change rapidly, such as near riverbanks or shorelines.

Velocity Criteria:This assume that the magnitude of the water velocity in both x and y directions is greater

than a certain threshold value.

Flood Source Flags:This criterion is employed to enforce refinement in regions containing the flood

source, such as a dam in the case of a dam break.It enables the code to refine the flood source at a high

resolution to capture flood details along the floodplain.Moreover, it allows for the specification of regions

to be refined to a desired resolution, determined by user-defined coordinates as well as minimum and

maximum refinement levels.

Flow-grades flag:In this context, refinement is mandated to specified levels for depths or ve- locities

surpassing user-defined thresholds.This functionality enables the code to refine regions containing lakes, seas,

or rivers within the floodplain at varying intermediate levels compared to the flowing material.Note that

refining involves increasing the resolution or level of detail in specific regions of the computational grid

or mesh.

Mesh refinement is additionally conducted in regions where the solution necessitates higher res- olution

(such as flood areas), while coarsening occurs where the solution is relatively smooth or less complex.After

refining the mesh or grid, values from neighbouring grid cells are interpolated to compute the solution at the

refined grid points.The solution is then updated using numerical methods like finite volume method.

The adaptive refinement process is iterative, with the solution evolving over time.Adaptive Mesh

Refinement (AMR) improve the efficiency and accuracy of numerical simulations for hyperbolic PDEs by

concentrating computational resources on regions where they are most needed, such as regions affected by

floods.It is used for solving many other different PDEs, including parabolic and elliptic PDEs.

3. Software Packages Incorporated in GeoFlood

In this chapter we are briefly going to see some software libraries incorporated with in GeoFlood to perform

simulations on overland flooding.GeoFlood is a new open-source software package designed for solving shallow

water equations (SWE) on a quadtree hierarchy of mapped, logically Cartesian grids managed by the parallel

adaptive library ForestClaw (Calhoun and Burstedde, 2017).As mentioned previously, GeoFlood utilizes

ForestClaw and p4est to address specific chal- lenges in modeling overland flooding, which will be discussed

further in this section.More about the installation and operation of GeoFlood is provided on the GeoFlood

Wiki (Kyanjo, 2023) Additionally, this section briefly introduces another software called GeoClaw that is also

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 6

designed to solve hyperbolic systems of partial differential equations, it is used to benchmark GeoFlood to

evaluate its performance.

3.1. P4est

The p4est code serves as a robust parallel library tailored for adaptive hierarchical tree mesh par- allel

computation.It offers effective parallel algorithms to facilitate the creation, refinement, and distribution of tree-

based meshes.Through the p4est mesh management library, a quadtree or oc- tree mesh can be seamlessly

distributed across multiple processors utilizing the Message-Passing Interface (MPI).This approach establishes a

scalable and robust framework suitable for large-scale simulations, ensuring resilience against faults.Moreover,

the design of p4est prioritizes compatibil- ity with diverse parallel computing architectures, enabling seamless

scaling to encompass millions of processor cores.(Burstedde et al., 2011).

3.2. GeoClaw

GeoClaw software is a submodule of Clawpack (Mandli et al., 2016), an open-source software package

designed for solving general hyperbolic systems of partial differential equations (PDEs) using finite-volume

methods on logically Cartesian grids (George, 2006).GeoClaw integrates finite- volume wave propagation

algorithms from Clawpack, Riemann solvers specifically designed for shallow water equations, patch-based

Adaptive Mesh Refinement schemes tailored for free-surface flows over topography, and methods for ingesting

and interpolating general sets of topography or bathymetry, which may be overlapping or nested.

3.3. ForestClaw

The ForestClaw library is built as a PDE layer on top of the p4est library, facilitating parallel tree mesh

management.It is a forest-of-quadtrees approach to block structured adaptive mesh refinement.ForestClaw

extensively utilizes the wave propagation algorithms in Clawpack to address various hyperbolic

problems.Therefore, the resulting ForestClaw library emerges as an adaptive, parallel, multi-block structured

finite volume code, enabling the parallelization of hyperbolic PDE solutions on mapped logically Cartesian

meshes (Calhoun and Burstedde, 2017).

Figure 3. 1: Figure shows three 8 × 8 computational grids, each with a layer of ghost cells, at three adjacent

levels. (Calhoun and Burstedde, 2017).

From the figure above, three levels of refinement are shown, a ForestClaw domain consists of a static

arrangement of one or more blocks where by each is subdivided into more quadrants. During refinement, a

quadrant will be partitioned in to four quadrants of the same size (level 1), further more the quadrants will be

partitioned into four other quadrants and so on until when the resolution needed is achieved.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 7

All the aforementioned software packages (P4est and Forest Claw) are integrated into GeoFlood with the

objective of solving shallow water equations and GeoClaw is used to benchmark to eval- uate the performance

of GeoFlood.This integration is motivated by their capability to accurately represent the behavior of water

across a broad spectrum of flow conditions.

4. Methodology

The GeoFlood code integrates with libraries such as ForestClaw and P4est, supported by essential

dependencies including Libtool, make, CMake, GCC 12, Git, MPICH-GCC 12 (version 12.0), zlib, and pkg-

config.Libtool simplifies the creation and utilization of shared libraries, facilitating portability and

maintainability (Matzigkeit et al., 1996).Make automates compilation, dependency management, and supports

incremental builds, crucial for managing dependencies and installing packages like ForestClaw. CMake

ensures code build and installation independence from user environments, vital for distributing the code

effectively (Marson and Jankowski, 2016).GCC 12 is a compiler that compiles a source code into executable

programs or libraries, while MPICH- GCC12 supports parallel programming with MPI.The zlib library

enables data compression and decompression, optimizing storage requirements and resource utilization.Pkg-

config is employed during compilation to ensure compatibility with the C compiler and library.

The topography data is collected from platforms like Google Maps and Google Earth, alongside various

other sources.Topography is represented as digital elevation models (DEM) which can be categorized into

three main types:

Type 1: This is a topography file consisting of three columns, namely x, y and z, where x and y represent

positions of the physical features and z represents the elevation or depth.

Type 2: This is a topography file consisting of six headers, namely, number of columns(ncols), number of

rows(nrows), xl corner, yl corner, cell size (dx or dy) and region with no data.

Type 3: This topography includes all six headers from Type 2 and includes topography lines with

dimensions of mx by my, where mx indicates number of rows and my indicates number of columns.

The topography utilized in the Malpasset Dam benchmark that we will study was obtained from a bench

marking exercise conducted in 1999 under the support of the CADAM (Concerted Action on Dam-break

Modelling) project, a collaborative European research initiative.This bench marking effort, documented by

(Frazao et al., 1999), involved a collection of 13541 points with irregular spacing and known coordinates, serving

as the basis for defining the numerical domain.The Dam break referred to in this case is Malpasset Dam Break

which will be talked about more in the next chapter.The topography for this incident is of 6 different forms,

namely; domain-grid, reservoir, grid-4, grid-3, grid-2 and dam approach.In the process of addressing the issue

of computational cost and improving efficiency, we need to efficiently handle topography in GeoFlood, a topic

we will delve into shortly as we progress through this chapter.

The following figures show plots of the different topography/bathymetry files:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 8

Figure 4. 1: Figure shows different bathymetry files.

From the above, Domain grid represents the entire domain (spatial domain), Reservoir represents the

location of the dam, Dam approach shows the area close to the dam and the other files (Grid 2, Grid 3 and Grid

4) show the path.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 9

Figure 4. 2: the first figure shows the six bathymetry files plotted on the same plot, the second figure shows

bathymetry files not yet discritized then the last figure shows files that are discretized.

GeoFlood reads the topography/bathymetry files as rectangles punched or fit in one file (Domain file) as

seen in figure (a) bellow.

When the files are combined into one, the rectangles will intersect and cells will overlap, as

demonstrated in figure (c) (Reservoir intersects with Dam approach and cells for Domain overlap cells for

Reservoir), posing a challenge during regridding.All of these concerns are addressed when handling

bathymetry/topography in GeoFlood, as we will soon discuss.Regridding/refinement involves the computation

of bilinear integrals.Bilinear integration involves dividing a given domain into different cells or portions,

determining the area of each independent portion (in our case, for a single cell with four corners), and then

integrating over the four corners to calculate the area of the entire domain.It is crucial to compute these

bilinear integrals at the beginning and store them to prevent time-consuming recalculation during

regridding.The application to be developed aims to provide these bilinear integrals so that they can be readily

accessed whenever needed.

4.1. How Topography/Bathymetry Is Handled in GeoFlood

As its aimed at improving the efficiency of GeoFlood and addressing computational cost of GeoFlood

during simulations of overland flooding, there are different scenarios that happen with

in topography data and may lead to inaccurate results like the overlapping of topofiles with different

resolutions and yet our focus is more on those with highest resolution (finest topofiles) for accurate results, so

such scenarios have to be catered for.

To show how bathymetry is handled by putting in to consideration the above scenario, we shall consider

the following problem;

Problem: Let D be a union of overlapping rectangles Ri (topofiles)

The rectangles are ordered by resolution, so that the resolution of Ri is higher than the resolution for Ri+1

and so on.Over each rectangle/topofile, define a function Ti(ξ, η).Define a unique surface (grid cell/integration

region) T (ξ, η), where

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 10

∫

where I is the smallest index for which (ξ, η) ∈ RI .

The problem is given a rectangular region C ⊂ R, compute the integral

The above problem is to find the integral of the unique surface/grid cell over the overlapping

rectangles/topofiles, and to achieve this, we are going to solve it or show how it is handled using a case scenario

of a few topofiles with defined functions, we shall see what happens when the grid cell is embedded with in

the finest topofile and when it intersects the other topofiles.

Below is mathematically how we get the intersection of two topofiles (rectangles)

Mathematically how the intersection is computed

Let topofile-1 (T1) be defined by the vertices (x1, y1), (x2, y1), (x2, y2), and (x1, y2).Similarly, let

topofile-2 (T2) be defined by the vertices (x3, y3), (x4, y3), (x4, y4), and (x3, y4).The inter- section region

between the above 2 topofiles I is given as:

I = [xmin, xmax] × [ymin, ymax],

where

• xmin = max(x1, x3),

• xmax = min(x2, x4),

• ymin = max(y1, y3),

• ymax = min(y2, y4).

And area of the intersection region is given by

Area = (xmax − xmin) × (ymax − ymin).

So in regards to the above problem, below is the solution to the case study of three topofiles, now in this

case the union of overlapping rectangles Ri contains Topofile-1 (red), Topofile-2 (green) and Topofile-3

(blue) arranged in a list from the finest to the coarsest.

Example 1:When the grid cell is embedded with in the finest topofile.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 11

Figure 4. 3: Figure shows grid cell embedded in to the finest topofile.

From the above plot, we have 3 rectangular topofiles with the following dimensions:.

Topofile-1(red) = [2, 2] × [7, 7],

Topofile-2(green) = [5, 5] × [9, 9],

Topofile-3(blue) = [0, 0] × [10, 10].

Let us assume the following:

• the grid cell be the black dotted rectangle with dimensions,[4,4] to [6,6],

• Topofile-1 be the finest topofile,

• Topofile-2 be the medium (fine and coarse),

• Topofile-3 be the coarsest topofile.

Recall that we are interested in accurate solution, so we are always interested in the topofile with the

highest reolution (finest topofile) so the grid cell whose integral we are interested in always come from the

finest topofile, so from the figure above, it clearly show that the grid cell is embedded with in the finest topofile

but still this can be seen mathematically as shown bellow.

First step:We compute the area of the grid cell:

Second step:We find the intersection region between the finest topofile and the grid cell, then compute

its area.The intersection region is [4, 6, 4, 6] and the area of the intersection region is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 12

Third step:Check if the Area of the grid cell is the same as that of the intersection, now for this example its

the same, meaning the grid cell is embedded with in the finest topofile and since we are interested in the finest

one, we just compute the area of the grid cell or the integral of the grid cell using the function of the finest

topofile.

where f1 is a function assigned to topofile-1 (finest topofile), similarly other topofiles are assigned functions

like T2 for topofile-2 and T3 for topofile-3.

If given T1 = 3, then we have

Lets now see another example where the grid cell is not entirely embedded with in the finest topofile,

but rather intersects with other topofiles.

Example 2:

Figure 4. 4: Figure shows grid cell embedded in to the finest topofile.

The above graph shows rectangles/topofiles with the following dimensions:

topofile-1(T1) = [1, 7, 3, 8],

topofile-2(T2 = [5, 9, 2, 9],

topofile-3(T3) = [0, 10, 10],

Grid cell = [0.5, 8.5, 2, 6].
Similarly the above topofiles are also arranged from the finest to the coarsest topofile,and associ- ated with

functions, f1, f2 and f3 respectively.So to calculate the integral of the grid cell in such scenario, we shall have

to compute the independent integrals for each intersection of the grid cell and the different topofiles, which

is shown below.

The intersection region of topofile-1 and the grid cell is[1, 7, 3, 6].

The integral (I1) of the region is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 13

The intersection regions of topofile-2 and grid cell are [7, 8.5, 2, 6] and [5, 7, 2, 3].

The integral for these regions I2 is computed from

The intersection regions of topofile-3 and grid cell [0.5, 1, 3, 6] and [0.5, 5, 2, 3]

The integral (I3) for these regions is:

So to get the total integral (I) of the grid cell, we shall have to sum all the independent integrals computed

above, that is;

If given the values of the functions, say T1 = 3, T2 = 2 and T3 = 1, then the integral is

However we may have cases where the integral may not be computed easily or its time consuming, that is in

cases when the topofiles are many or in cases when they are of large dimensions, for example the figure below.

In such cases a subroutine was written to to compute these integrals and it can be referred to by the Pseudo

code written down.

Example 3:

The figure above shows six topofiles and the grid cell (red), in the above figure it may take you time to

compute the integral of the grid cell manually or even you may be in position to do so but end up getting a

wrong answer, so in such cases, and due to the fact that in real life problems we deal with huge sums of data,

a subroutine following the Pseudo code below was written.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 14

Figure 4. 5: Figure shows grid cell overlapping more than three topofiles.

Algorithm to compute integral of a grid cell

4.1.1. Functions Assigned to Each Topofile and Topofiles Initialized

• Define topography functions assigned to each topofile for example T1, T2, T3) and so on.

• Define the dimensions of the grid cell, say a list with [xmin, xmax, ymin, ymax]

• Define a list of topofiles and their respective dimensions. (for the dimensions, you may need only the

lower left coordinates and the upper right coordinates for each topofile).

4.1.2. Define a Function to Check for the Intersection of Two Topofiles

• Function: intersection(r_1, r_2):

- It will take in two rectangles

- It will compute the intersection.

- Check if there exists the intersection, if so it then computes the area of the intersection.

- It will return the dimensions of the intersection region and the area if it exists, if it does not, it

will return area as 0.

4.1.3. Define Function to Recursively Compute the Integral of the Grid Cell

This function helps to compute the integral incase the grid cell is not embedded with in the topofile with

highest resolution but when its overlapping with so many other topofiles of different resolution.

• Function: compute_integral(grid_cell, m):

- It will take in the grid cell and index of the current topofile as arguments.

- Set the number of topofiles.

∗ Base case:

• It will check if the topofile is the coarsest (the last one in the list).

• If topofile is the coarsest, it will compute the area of the intersection between that topofile

and the grid cell using the above intersection function, and also returns that area and the

dimensions of the intersection region in case it exists.

• If the area is zero, that is no intersection, it returns zero (0).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 15

∗ Recursive case:

• If the topofile is not the last one in the list (coarsest), it will make a recursive call to

compute the integral (First integral) for the next topography file in the list.

• It will again calculate the area of the intersection between the grid cell and the current

topography file.

• If the area is positive, that is,there is an intersection.

• It will define the intersection region as the intersecting sub-region of the grid cell.

• It will again make a recursive call to compute a second integral, over this intersecting

region to be subtracted from the First integral to cater for over- laps.

• It will compute the Third integral as the area of intersection multiplied by the function

value of the current topofile, to be added to the First integral to correct overlaps.

• Then finally it will return an integral as First integral-Second integral+Third integral.

4.1.4. Define the Main Function/Routine Which Will Then Call the First Two Functions to Compute

the Integral

• Function grid_cell_int(grid_cell):

- It will first calculate the Area of the grid cell using its dimensions.

- It will then iterate through the topofiles.

∗ For each topofile, it will check if there exists an intersection between each and the topofile by

calling the intersection function above.

∗ If the area of the intersection between the topofile and the grid cell exists and its equal to that of

the grid cell, it will the compute the integral as

I = Area × function assigned to that topofile

∗ If its found that the area of the intersection is less than that of the grid cell, it will compute the

integral recursively by calling the recursive function. This is because for this case there will be

overlaps, so they have to be handled well to avoid double counting which may lead to over

estimation or under estimation of the integral.

∗ This is the function the returns the integral of the grid cell.

Note: Note that the above algorithm can still change. The functions can be defined in any way that is

easiest, provided the overlaps are handled efficiently and accurately, and computational time is also taken

into consideration.

4.2. How the Above Is Done in Real Case (Piecewise bilinear Surface)

A computational domain is created from a union of rectangular topofiles.Data in the topofiles is a

collection of points on a Cartesian grid.The lower left and upper right corners of the topofile, along with the

number of points and the cell size is specified in the file.For example, one of the topofiles in the Malpasset Dam

problem has 20m resolution (e.g. cell size) and 953155 × 1832200 points.

The challenge is to define the function Ti(ξ, η) for a particular topofile

where (ξ, η) is in topofile cell tm,n.

Define a bilinear function of the form

tmn(ξ, η) = aξ + bη + cξη + d
where a,b,c and d constants for the rectangular region representing a mesh cell [ξ1, ξ2, η1, η2] in the topofile.These

bilinear functions are computed and combined to form the overall surface.They are combined in such a way

to allow continuity at the boundaries of each.

The value of the bathymetry over a computational mesh cell Cij is defined as the average value of this

piecewise bilinear surface over the computational cell and is given by

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 16

The mesh cell Cij is now the grid cell referred to in the previous examples.

Lets look at the integral of the bilinear function of a rectangular surface mathematically.

where

Area(of the rectangular surface) = (ξ2 − ξ1)(η2 − η1).

Diagram showing an integral intersection with bilinear cells:

Figure 4. 6: Figure shows an integral intersecting bilinear cells.

Figure 4.6 shows a piecewise bilinear surface in 2D with dimensions [0,2,0,2], bilinear cells (the black

rectangles) with dimensions [0,1,1,2], [1,2,1,2], [0,1,0,1] and [1,2,0,1], with an integration region (red) with

dimensions [(0.5, 0.5), (1.5, 0.5), (1.5, 1.3), (0.5, 1.3)] that intersects the multiple bilinear cells.

5. Results and Discussions

5.1. Results

The Malpasset Dam, located about 12 km upstream from Frejus, France, was a slender arch dam built in a

narrow gorge above the Reyran River valley to create a reservoir holding 55106 cubic meters of

water.Unexpectedly, on December 2nd, 1959 at 21:14 hours, the dam catastrophically failed, generating a sudden

acoustic shock wave felt in Frejus, indicating an almost instantaneous collapse.Standing at a height of 66.5 meters

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 17

with a crest span of 223 meters, the dam’s arch was the only remaining structure after the failure, accompanied

by significant erosion of the nearby rock bank.Investigations suggest that the arch dislodged from its base,

triggering a rapid and sequential collapse (Valiani et al., 2002)

The incident resulted in 433 fatalities and significant infrastructure damages, including the oblit- eration of

a 1.km section of free way and an adjoining bridge, and extensive flooding of Frejus.The downstream

displacement of massive blocks indicated the power of the flood.The flood waves rose to approximately 20m

above the original riverbed.For comprehensive understanding of the incident, you can refer to (Boudou et

al., 2017).

Before doing modifications with in the code, we ran the Malpasset data on different number of

processors and below was the out come.Different processors were evaluated in terms of time taken when refining

these data files and the wall time, advance time, Regrid time and Regrid-build times were recorded.This study

aimed to assess the efficiency of various processors to identify opportunities for improving computational

cost.Processors 1, 2, 4, and 8 were tested, and below are the achieved results.

Based on the results presented in the Table 1, the wall time for 8 processors was lower com- pared to that

for 1, 2, and 4 processors. Similarly,the advance time was also lower compared to the other three cases.However,

the Regrid time was higher than the other three cases, while the Regrid-build time was lower.For the case of 4

processors,the Regrid-build time was slightly higher than that for 2 processors.These results highlight that

significant time is consumed during refine- ments, particularly evident in the Regrid time, despite the overall

small wall time.It suggests that increasing the number of processors leads to a reduction in wall time, but further

enhancements are necessary during refinements to optimize computational costs.

Table 1. Timing results for different processors.

No. of processors Wall time(s) Advance time(s) Regrid time(s) Regrid-build time(s)

1 10729.7 9563.86 20.5029 1.01052

2 6313.88 4919.63 14.8174 0.541249

4 3381.63 2517.43 12.0432 0.25904

8 2205.49 1561.47 13.4691 0.173513

Figure 5. 1: Efficiency (On Wall time) against Number of Processors.

Figure 5.1 shows efficiency against number of processors used to run on the Malpasset data and it is found

out that really the efficiency on 8 processors is not very bad (60%) but still it needs to be improved to raise the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 18

percentage, this is because the more the number of processors, the tasks are distributed equally to the processors

which means time taken to do the regridding will be shortened.

Note that the aforementioned results were obtained under the following conditions: the final time was

set to 600.0 units, the number of equations (shallow water equations) solved was 3, the topography domain

spanned [953236.0, 959554.0] × [1832407.25,1848572.75],the number of refinement levels was 4, ranging from

level 1 to level 4, and the grid dimensions were [16,16].

At present, every time regridding or refining occurs, processors must recalculate integrals, which, as

observed in the above results, is time-consuming.This implies that the more levels of refinement there are, the

longer the time taken.However, in many cases, we require finer refinements, which necessitate more

integrals.Therefore, we must address this issue.

Bellow are some of the pictures showing the incident of the Malpasset dam break.

(a)) t=00s (b) t=05s (c) t=10s

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 19

(d) t=15s (e) t=20s (f) t=25s

Figure 5. 2: Figures show Malpasset dam break incident at different time intervals.

(a) t=30s (b) t=35s (c) t=40s

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 20

(d) t=45s (e) t=50s (f) t=55s

Figure 5. 3: Figures show Malpasset dam break incident at different time intervals.

The above sequence of figures, show the incident of the Malpasset dam break at different time

intervals.They were illustrated using google earth imagery.

5.2. Discussions

From the figures above, at time t=0s, the event shows a full reservoir with the dam intact. But as time

went on, that is to say at 5s, 10s, 15s etc, the dam failed, which led to flood waters over topping the A8

highway. Between time t=15s, and t=25s, the flood waters proceeded through the valley, reaching Frejus.At

time t=55s, the flood waters had reached the sea, hence the progression of the incident.

The Figures 5.2 and 5.3, they as well show refinements performed, adaptive mesh refinement applied

in the simulation at time intervals of t=0, 5, 10 up to 55 seconds.At the initial time t=0s, the reservoir area was

refined up to level 3.As time moved on, the broader region affected by the floods was refined at varying levels

from l=1 to l=3, while the other parts not affected by floods were coarsely refined, that is to say were

subjected to low resolution.

5.3. Initial Conditions and Boundary Conditions for Malpas- Set Dam Breakdown

Here the sea level and the initial reservoir level are assumed to be constant are set at 0 and 100m above sea

level respectively.Although the outlet gate near the bottom of the dam was open during the incident, we

neglected pre incident stream flow in the channel, that is to say the bottom of the dam was considered to be

dry.Since the actual pre incident stream flow discharge is unknown, it was assumed to be negligible. Similarly

since the value of the inlet discharge upstream of the reservoir is unknown, an imposed discharged constant

of zero was used.The sea level was maintained constant (equal to zero).Note, we assume a short period dam

failure.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 21

×

5.4. Simulation Results for the Malpasset Dam Break before the Modifications Were Made

In the simulations before modifications in the code were made, we used a manning coefficient of

0.03333.The simulation runs were done on a 2.3 GHz i7 processor with 16 GB RAM.The simulations were

performed on the computational grid or domain of dimensions 32 80 meters, with refinement levels from l=1

to l=3.The initial time step of 1 second, relying on a Courant- Friedrichs-Lewynumber (CFL) of 0.75.Note

that CFL is a dimensionless number that ensures stability and accuracy during simulations, it is usually

related to the ration of time step size to grid spacing.The adaptive mesh refinement criterias (flags) were

designed basing on various conditions such as water depth, bathymetry, velocity, topographical features and

the origin of the flood.This model accurately represented the flood’s domain and intricate details in the areas

surrounding the flood plain during the dam failure as shown in figures 5.2 and 5.3.

The model led to the generation of simulations with high resolution mesh adaptations in the areas around

the dam and flood plain as shown in the figures above.But still modifications are required to improve

efficiency and reduce on the time taken during simulations.

5.5. GeoFlood Compared to Other Models to Simulate Max- Imum Water Elevations

Figure 5. 4: Police-surveyed points.

Figure 5. 5: Gauge points.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 22

To confirm that GeoFlood is the best fit to simulate overland flooding, it was compared with other

models like GeoClaw, physical model data, static fitted mesh and Telemac2D to simulate the maximum

height of the water.

From the Figures 5.4 and 5.5, the comparison drawn between GeoFlood simulated results at the 17 field-

surveyed and 9 gauge locations against the field and experimental data (Frazao et al., 1999), with numerical

results from GeoClaw, physical model data, static fitted mesh and Telemac2D.

GeoFlood’s parallel grid management supported by Forest Claw allows the model to effectively monitor

the flood’s extent and dynamically adjust the wet-dry boundaries during the refinement process. Field-surveyed

locations tend to have a higher margin of error compared to gauge points. We attribute this to the fact that they

are located near the margins of the flow. Given that all the models in comparison are based on shallow water

equations,the prediction capability of different codes is most clearly differentiated by their ability to track the

flood extents at the field-surveyed locations(Kyanjo et al., 2024). And it is evident that GeoFlood simulates

well the maximum of water elevations.

6. Conclusion and Future Work

6.1. Conclusion

During this research I was able to install GeoFlood and configurations were made, GeoFlood was ran

on a Malpasset data (for the dam failure) using different number of processors but it was found out that the

efficiency needs to be improved and also the computation cost needs to be addressed.These issues are supposed

to be addressed by finding an approach that efficiently handles bathymetry data.I also understood how

bathymetry is handled with in GeoFlood during simulations.

6.2. Future Work

The main goal to address the above issues is to integrate adaptive mesh refinement (AMR) topography

techniques into GeoFlood topography routines, leveraging the p4est (parallel mesh management library)

routines to optimize topography handling(Burstedde et al., 2011).Then use new coupling techniques

available in GeoFlood through p4est to provide topography on a distributed quad tree mesh.This technique is

expected to be more efficient for real-world problems with complex and large domains.Then validate new

developments against already existing test cases (Malpasset dam failure) and compare the results.So all the above

was not able to be reached due to time hence calls for future work to be done so that the new features of P4est are

coupled with in GeoFlood in order to enhance the efficiency and also reduce the computational cost during

simulations.

Acknowledgments: I would like to express my appreciation to all those who have contributed to the completion

of this research, both emotionally and academically. First and foremost, let me take this opportunity to thank

my supervisor Prof. Donna Calhoun and co-supervisor Mr. Kyanjo Brian for giving me this opportunity to work

with them on this interesting project, I thank all of them for the time and assistance I needed throughout the two

months of my essay phase. I would like to as well thank all the tutors, but a big thanks to Dr. Roger

Ranomenjanahary for always guiding me during this period. I thank AIMS administration and IT department

for the resources (like internet, computer) they have provided to me so that my research is carried on smoothly

and also for the opportunity to improve my research skills. Finally, my heartfelt thanks go to my friends, Jackila

Elliot Bitakwate, Joel Muwanguzi, Derrick Chilenga and Daphine Miriam Namugosa for the extra support they

have provided through the discussions to see that we grasp the concepts well.I also thank my family but my

wife in particular Zahara Lutalo Namusoke for their encouragement words and prayers so that I complete this

journey with success.

References

Martin Boudou, Annabelle Moatty, and Michel Lang. 1 - analysis of major flood events: Collapse of the malpasset dam,

december 1959. In Freddy Vinet, editor, Floods, pages 3–19. Elsevier, 2017. ISBN 978-1-78548-268-7. doi:

https://doi.org/10.1016/B978-1-78548-268-7.50001-8.

URL https://www.sciencedirect.com/science/article/pii/B9781785482687500018.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

 23

Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement

on forests of octrees. SIAM Journal on Scientific Computing, 33(3): 1103–1133, 2011.

Donna Calhoun and Carsten Burstedde. Forestclaw: A parallel algorithm for patch-based adaptive mesh refinement on a

forest of quadtrees. arXiv preprint arXiv:1703.03116, 2017.

Clawpack Development Team. Clawpack software, 2024. URL http://www.clawpack.org. Version 5.10.0.

Sandra Soares Frazao, Francisco Alcrudo, and Nicole Goutal. Dam-break test cases summary 4th cadam meeting. 1999.

URL https://api.semanticscholar.org/CorpusID:109693772.

David L George. Finite volume methods and adaptive refinement for tsunami propagation and inundation. University of

Washington, 2006.

David L George. Augmented riemann solvers for the shallow water equations over variable topog- raphy with steady states

and inundation. Journal of Computational Physics, 227(6):3089–3113, 2008.

B. Kyanjo. GeoFlood wiki. https://github.com/KYANJO/GeoFlood/wiki, 2023.

Brian Kyanjo, Donna Calhoun, and David L George. Geoflood: Computational model for overland flooding. arXiv preprint

arXiv:2403.15435, 2024.

Randall J LeVeque, David L George, and Marsha J Berger. Tsunami modelling with adaptively refined finite volume

methods. Acta Numerica, 20:211–289, 2011.

Kyle T Mandli, Aron J Ahmadia, Marsha Berger, Donna Calhoun, David L George, Yiannis Hadjimichael, David I

Ketcheson, Grady I Lemoine, and Randall J LeVeque. Clawpack: building an open source ecosystem for solving

hyperbolic pdes. PeerJ Computer Science, 2:e68, 2016. doi: 10.7717/peerj-cs.68.

Ryan L Marson and Eric Jankowski. Build management with cmake. In Introduction to scientific and technical computing,

pages 119–132. CRC Press, 2016.

Gordon Matzigkeit, Alexandre Oliva, Thomas Tanner, and Gary V Vaughan. Gnu libtool, 1996. Alessandro Valiani,

Valerio Caleffi, and Andrea Zanni. Case study: Malpasset dam-break simu-

lation using a two-dimensional finite volume method. Journal of Hydraulic Engineering, 128: 460–472, 05 2002. doi:

10.1061/(ASCE)0733-9429(2002)128:5(460).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 doi:10.20944/preprints202406.0903.v1

https://doi.org/10.20944/preprints202406.0903.v1

