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Abstract: The goal of the project was to understand how topography/bathymetry is imported and 

used in GeoFlood with an aim towards improving efficiency and computational cost of bathymetry 

handling in GeoFlood.GeoFlood is a software to simulate overland flooding basing on shallow 

water equations.Numerical methods and programming were used for this study.The GeoFlood was 

ran on a given data set (Malpasset data) and it was found out that indeed topography handling 

during simulations has to be improved to minimise the computational time and also improve the 

efficiency.Through this research, we also looked at the the shallow water equations, and the 

numerical techniques used to solve the equations. 
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AN ESSAY PRESENTED TO AIMS RWANDA IN PARTIAL FULFILMENT OF THE 

REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE IN MATHEMATICAL SCIENCES 

1. Introduction 

Typically, prior to conducting simulations, it is essential to first obtain or gather relevant data 

pertaining to the problem of interest. For our case we are interested in areas affected with floods, 

particularly overland flooding. Overland flooding refers to the situation where water levels rise and 

inundate typically dry land. This can be caused by various factors, including a river overflowing its 

banks, a storm surge from a hurricane, a significant amount of runoff from snow melt, or mechanical 

failures of dams or levees, among others. The high-risk areas for overland flooding include locations 

within floodplains, coastal regions, land near lakes, areas experiencing heavy seasonal rains, regions 

prone to frequent freeze-thaw cycles, and low-lying areas, including those below sea level. Therefore, 

the data in flood-affected areas is often referred to as either topography or bathymetry. Those two 

terms are distinct, yet their meanings overlap significantly. Topography encompasses surface 

features above sea level, such as mountains and buildings, while bathymetry pertains to features 

below sea level, such as rivers and lakes. In our project or within the code, our primary focus is on 

topography. Topography is usually collected from sources like Google map,  Google earth and 

several other dedicated platforms for data collection. 

Overland flooding leads to loss of lives, property damage, and hampers the development of 

affected areas.This research is dedicated to understanding and enhancing topography management 

within GeoFlood simulations, aiming to improve our understanding and prediction of overland 

flooding in complex environments. 

Numerical simulation is a valuable tool for understanding and predicting overland flooding in 

complex environments. However, due to the extensive spatial domains and extended time frames 

overland flooding spans, it is essential to utilize suitable and manageable mathematical models to 

address this challenge. Models based on shallow water equations are commonly employed for this 

purpose, necessitating accurate representation of domain topography for precise modeling. 

The computational costs associated with managing complex topography can be significant, espe- 

cially for models employing parallel adaptive mesh refinement (AMR) techniques like GeoFlood 

Kyanjo et al. (2024).To enhance computational efficiency and address computational cost chal- lenge, 

GeoFlood proposes a separate adaptive mesh for topography, which is then distributed to multiple 

processors using space-filling curve techniques, ensure that each processor points to a certain piece 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2024                   doi:10.20944/preprints202406.0903.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202406.0903.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

− 

of the data and every time refinement or regrid happens, the required processor is just 

called.Additionally, new coupling features in P4est,the underlying mesh management library used 

in GeoFlood Burstedde et al. (2011), enable fast searches of a distributed P4est mesh or direct 

communication with the required processor.This approach effectively addresses the com- putational 

burden associated with handling topography, ensuring efficient simulation of overland flooding 

dynamics. 

As discussed previously, to enhance efficiency and address computational cost during 

simulations in GeoFlood, we further need to think about grid cells within the computational domain, 

then compute their integrals.Since multiple topography files give us a digital description of the topog- 

raphy, we have to choose the finest(high resolution) level topography and then compute the area 

of ”reconstructed” numerical ”surface” over each grid cell. 

The application to address the computational cost functions as the producer, with GeoFlood 

acting as the consumer utilizing the application.Upon regridding or refining, GeoFlood temporarily 

halts, triggering the application to generate integrals.Each processor computes these integrals and 

makes them accessible.Consequently, when either refined or coarser integrals are necessary, they can 

be swiftly referenced.Implementing this approach will markedly reduce simulation time. 

The sections that will follow include, software packages used in GeoFlood during simulations, 

Overland flooding model, discussing shallow water equations to be solved during simulations and 

numerical techniques employed to solve them, methodology, to talk about how topography is 

handled in GeoFlood, results and discussions and conclusion. 

2. Overland Flooding Modeling 

In this chapter we are going to briefly discuss the numerical techniques that GeoFlood employs 

to solve the shallow water eqautions and the shallow water equations themselves. 

2.1. Shallow Water Equations 

Shallow water equations are a system of hyperbolic partial differential equations that govern the 

flow beneath a pressure surface in a fluid.These equations are derived from the principles of 

conservation of mass and momentum.These are nonlinear system of hyperbolic conservation laws 

for depth and momentum(LeVeque et al., 2011).In one space dimension, these take the form: 

 

where 

• g is the gravitational constant, 

• h(x,t) is the fluid depth, 

• u(x,t) is the vertically averaged horizontal fluid velocity. 

A drag term D(h, u)u can be added to the momentum equation and is often important in very 

shallow water near the shoreline. 

B(x) represents the bottom surface elevation relative to mean sea level.Negative values of B 

correspond to submarine bathymetry,while positive values indicate topography. 

 

Figure 2. 1: Figure shows variables of shallow water equations (LeVeque et al., 2011). 
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The equation for the water surface elevation is expressed as follows 

η(x, t) = h(x, t) + B(x, t), 
In two dimensions, the shallow water equations are formulated as follows: 

 

where 

• u(x,y,t) and v(x,y,t) are the depth-averaged velocities in the two horizontal directions, 

• B(x,y,t) is the topography. 

Once more, a drag term could potentially be incorporated into the momentum equations. 

It is important to note that shallow water equations are part of the broader category of hyperbolic 

systems 

 

where 

• q(x, t) is the vector of unknowns, 

• f (q) is the vector of corresponding fluxes, 

• ψ(q, x) is a vector of source terms. 

These vectors can be represented mathematically as 

 

Let us introduce the notation µ = hu for momentum and ϕ = hu2 + 1 gh2 or momentum flux. Then, the 

momentum vector and momentum flux can be respectively rewritten as 

 
The Jacobian matrix Jf then has the form 

 
Hyperbolicity requires that the Jacobian matrix be diagonalizable with real eigenvalues and 

linearly independent eigenvectors.In the case of shallow water equations, the matrix Jf has 
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and corresponding 

 

2.2. Finite Volume Technique to Solve Hyperbolic PDEs: 

These numerical methods are appropriate for solving nonlinear hyperbolic systems such as the 

shallow water equations (LeVeque et al., 2011).In a one-dimensional finite volume method, the 

numerical solution Qi approximates the average value of the solution within the ith grid cell 

 
where Vi represents the volume of the grid cell, which is simply the region in one dimension, 

 

The wave propagation algorithm updates the numerical solution from  to  by solving 

Riemann problems at  and , the boundaries of Ci, and using the resulting wave structure 

of the Riemann problem to determine the numerical update. 

For a homogeneous system of conservation laws, that is qt + f (q)x = 0, such methods are often 

written in conservation form 

, 

where  is a numerical flux approximating the time average of the true flux across 

the left edge of cell Ci over the time interval. The expression of  is defined as 

 

2.3. Riemann Solver 

The process of creating a computational/mathematical representation of the area that will be affected 

by floods, mostly with highly variable and irregular topography is a bit complicated due to huge change 
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in the flow of the floods over a distance and source terms resulting from variable topography.This issue 

becomes more intricate due to the existence of a solution domain that changes as a result of moving from wet 

to dry boundaries.To solve this issue, GeoFlood uses an approximate Riemann solver by (George, 2008) that 

solves an augmented shallow water equation system that includes the momentum flux and topographic bed 

in order to determine waves in the Riemann solver.They are used to compute the numerical flux across a 

discontinuity in the Riemann problem. Riemann solver provides an exact or approximate weak solution to the 

hyperbolic PDE given initial data that is a piece wise constant with a single jump discontinuity. 

2.4. Adaptive Mesh Refinement 

Adaptive mesh refinement (AMR) is a numerical method used for solving Partial Differential Equa- tions 

(PDEs).The computational domain, which encompasses the region surrounding the floods, is discretized into 

a uniform grid resolution based on the complexity of the solution.Initially, the computational domain is 

divided into a coarse grid with Uniform spacing to provide a basic approximation of the solution.Throughout 

the simulations, the local error of the solution is con- tinuously monitored using various techniques, such as 

comparing numerical solutions at different resolutions. 

Refinement criteria by (George, 2006) are then applied based on the estimated error to identify regions of 

the domain where the solution requires higher resolution, particularly in regions affected by floods.These 

criteria may include: 

Water Depth Criteria:In this context, refinement is only allowed in regions where cells contain water, 

achieved by flagging cells with water depths exceeding a certain threshold value.The refinement level is 

then determined based on the water depth. 

Bathymetry flag:This criterion is employed to enforce refinement in shallow regions where flow 

dynamics change rapidly, such as near riverbanks or shorelines. 

Velocity Criteria:This assume that the magnitude of the water velocity in both x and y directions is greater 

than a certain threshold value. 

Flood Source Flags:This criterion is employed to enforce refinement in regions containing the flood 

source, such as a dam in the case of a dam break.It enables the code to refine the flood source at a high 

resolution to capture flood details along the floodplain.Moreover, it allows for the specification of regions 

to be refined to a desired resolution, determined by user-defined coordinates as well as minimum and 

maximum refinement levels. 

Flow-grades flag:In this context, refinement is mandated to specified levels for depths or ve- locities 

surpassing user-defined thresholds.This functionality enables the code to refine regions containing lakes, seas, 

or rivers within the floodplain at varying intermediate levels compared to the flowing material.Note that 

refining involves increasing the resolution or level of detail in specific regions of the computational grid 

or mesh. 

Mesh refinement is additionally conducted in regions where the solution necessitates higher res- olution 

(such as flood areas), while coarsening occurs where the solution is relatively smooth or less complex.After 

refining the mesh or grid, values from neighbouring grid cells are interpolated to compute the solution at the 

refined grid points.The solution is then updated using numerical methods like finite volume method. 

The adaptive refinement process is iterative, with the solution evolving over time.Adaptive Mesh 

Refinement (AMR) improve the efficiency and accuracy of numerical simulations for hyperbolic PDEs by 

concentrating computational resources on regions where they are most needed, such as regions affected by 

floods.It is used for solving many other different PDEs, including parabolic and elliptic PDEs. 

3. Software Packages Incorporated in GeoFlood 

In this chapter we are briefly going to see some software libraries incorporated with in GeoFlood to perform 

simulations on overland flooding.GeoFlood is a new open-source software package designed for solving shallow 

water equations (SWE) on a quadtree hierarchy of mapped, logically Cartesian grids managed by the parallel 

adaptive library ForestClaw (Calhoun and Burstedde, 2017).As mentioned previously, GeoFlood utilizes 

ForestClaw and p4est to address specific chal- lenges in modeling overland flooding, which will be discussed 

further in this section.More about the installation and operation of GeoFlood is provided on the GeoFlood 

Wiki (Kyanjo, 2023) Additionally, this section briefly introduces another software called GeoClaw that is also 
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designed to solve hyperbolic systems of partial differential equations, it is used to benchmark GeoFlood to 

evaluate its performance. 

3.1. P4est 

The p4est code serves as a robust parallel library tailored for adaptive hierarchical tree mesh par- allel 

computation.It offers effective parallel algorithms to facilitate the creation, refinement, and distribution of tree-

based meshes.Through the p4est mesh management library, a quadtree or oc- tree mesh can be seamlessly 

distributed across multiple processors utilizing the Message-Passing Interface (MPI).This approach establishes a 

scalable and robust framework suitable for large-scale simulations, ensuring resilience against faults.Moreover, 

the design of p4est prioritizes compatibil- ity with diverse parallel computing architectures, enabling seamless 

scaling to encompass millions of processor cores.(Burstedde et al., 2011). 

3.2. GeoClaw 

GeoClaw software is a submodule of Clawpack (Mandli et al., 2016), an open-source software package 

designed for solving general hyperbolic systems of partial differential equations (PDEs) using finite-volume 

methods on logically Cartesian grids (George, 2006).GeoClaw integrates finite- volume wave propagation 

algorithms from Clawpack, Riemann solvers specifically designed for shallow water equations, patch-based 

Adaptive Mesh Refinement schemes tailored for free-surface flows over topography, and methods for ingesting 

and interpolating general sets of topography or bathymetry, which may be overlapping or nested. 

3.3. ForestClaw 

The ForestClaw library is built as a PDE layer on top of the p4est library, facilitating parallel tree mesh 

management.It is a forest-of-quadtrees approach to block structured adaptive mesh refinement.ForestClaw 

extensively utilizes the wave propagation algorithms in Clawpack to address various hyperbolic 

problems.Therefore, the resulting ForestClaw library emerges as an adaptive, parallel, multi-block structured 

finite volume code, enabling the parallelization of hyperbolic PDE solutions on mapped logically Cartesian 

meshes (Calhoun and Burstedde, 2017). 

 

Figure 3. 1: Figure shows three 8 × 8 computational grids, each with a layer of ghost cells, at three adjacent 

levels. (Calhoun and Burstedde, 2017). 

From the figure above, three levels of refinement are shown, a ForestClaw domain consists of a static 

arrangement of one or more blocks where by each is subdivided into more quadrants. During refinement, a 

quadrant will be partitioned in to four quadrants of the same size (level 1), further more the quadrants will be 

partitioned into four other quadrants and so on until when the resolution needed is achieved. 
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All the aforementioned software packages (P4est and Forest Claw) are integrated into GeoFlood with the 

objective of solving shallow water equations and GeoClaw is used to benchmark to eval- uate the performance 

of GeoFlood.This integration is motivated by their capability to accurately represent the behavior of water 

across a broad spectrum of flow conditions. 

4. Methodology 

The GeoFlood code integrates with libraries such as ForestClaw and P4est, supported by essential 

dependencies including Libtool, make, CMake, GCC 12, Git, MPICH-GCC 12 (version 12.0), zlib, and pkg-

config.Libtool simplifies the creation and utilization of shared libraries, facilitating portability and 

maintainability (Matzigkeit et al., 1996).Make automates compilation, dependency management, and supports 

incremental builds, crucial for managing dependencies and installing packages like ForestClaw. CMake 

ensures code build and installation independence from user environments, vital for distributing the code 

effectively (Marson and Jankowski, 2016).GCC 12 is a compiler that compiles a source code into executable 

programs or libraries, while MPICH- GCC12 supports parallel programming with MPI.The zlib library 

enables data compression and decompression, optimizing storage requirements and resource utilization.Pkg-

config is employed during compilation to ensure compatibility with the C compiler and library. 

The topography data is collected from platforms like Google Maps and Google Earth, alongside various 

other sources.Topography is represented as digital elevation models (DEM) which can be categorized into 

three main types: 

Type 1: This is a topography file consisting of three columns, namely x, y and z, where x and y represent 

positions of the physical features and z represents the elevation or depth. 

Type 2: This is a topography file consisting of six headers, namely, number of columns(ncols), number of 

rows(nrows), xl corner, yl corner, cell size (dx or dy) and region with no data. 

Type 3: This topography includes all six headers from Type 2 and includes topography lines with 

dimensions of mx by my, where mx indicates number of rows and my indicates number of columns. 

The topography utilized in the Malpasset Dam benchmark that we will study was obtained from a bench 

marking exercise conducted in 1999 under the support of the CADAM (Concerted Action on Dam-break 

Modelling) project, a collaborative European research initiative.This bench marking effort, documented by 

(Frazao et al., 1999), involved a collection of 13541 points with irregular spacing and known coordinates, serving 

as the basis for defining the numerical domain.The Dam break referred to in this case is Malpasset Dam Break 

which will be talked about more in the next chapter.The topography for this incident is of 6 different forms, 

namely; domain-grid, reservoir, grid-4, grid-3, grid-2 and dam approach.In the process of addressing the issue 

of computational cost and improving efficiency, we need to efficiently handle topography in GeoFlood, a topic 

we will delve into shortly as we progress through this chapter. 

The following figures show plots of the different topography/bathymetry files: 
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Figure 4. 1: Figure shows different bathymetry files. 

From the above, Domain grid represents the entire domain (spatial domain), Reservoir represents the 

location of the dam, Dam approach shows the area close to the dam and the other files (Grid 2, Grid 3 and Grid 

4) show the path. 
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Figure 4. 2: the first figure shows the six bathymetry files plotted on the same plot, the second figure shows 

bathymetry files not yet discritized then the last figure shows files that are discretized. 

GeoFlood reads the topography/bathymetry files as rectangles punched or fit in one file (Domain file) as 

seen in figure (a) bellow. 

When the files are combined into one, the rectangles will intersect and cells will overlap, as 

demonstrated in figure (c) (Reservoir intersects with Dam approach and cells for Domain overlap cells for 

Reservoir), posing a challenge during regridding.All of these concerns are addressed when handling 

bathymetry/topography in GeoFlood, as we will soon discuss.Regridding/refinement involves the computation 

of bilinear integrals.Bilinear integration involves dividing a given domain into different cells or portions, 

determining the area of each independent portion (in our case, for a single cell with four corners), and then 

integrating over the four corners to calculate the area of the entire domain.It is crucial to compute these 

bilinear integrals at the beginning and store them to prevent time-consuming recalculation during 

regridding.The application to be developed aims to provide these bilinear integrals so that they can be readily 

accessed whenever needed. 

4.1. How Topography/Bathymetry Is Handled in GeoFlood 

As its aimed at improving the efficiency of GeoFlood and addressing computational cost of GeoFlood 

during simulations of overland flooding, there are different scenarios that happen with 

in topography data and may lead to inaccurate results like the overlapping of topofiles with different 

resolutions and yet our focus is more on those with highest resolution (finest topofiles) for accurate results, so 

such scenarios have to be catered for. 

To show how bathymetry is handled by putting in to consideration the above scenario, we shall consider 

the following problem; 

Problem: Let D be a union of overlapping rectangles Ri (topofiles) 

 
The rectangles are ordered by resolution, so that the resolution of Ri is higher than the resolution for Ri+1 

and so on.Over each rectangle/topofile, define a function Ti(ξ, η).Define a unique surface (grid cell/integration 

region) T (ξ, η), where 
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∫ 

 
where I is the smallest index for which (ξ, η) ∈ RI . 

The problem is given a rectangular region C ⊂ R, compute the integral 

 
The above problem is to find the integral of the unique surface/grid cell over the overlapping 

rectangles/topofiles, and to achieve this, we are going to solve it or show how it is handled using a case scenario 

of a few topofiles with defined functions, we shall see what happens when the grid cell is embedded with in 

the finest topofile and when it intersects the other topofiles. 

Below is mathematically how we get the intersection of two topofiles (rectangles) 

Mathematically how the intersection is computed 

Let topofile-1 (T1) be defined by the vertices (x1, y1), (x2, y1), (x2, y2), and (x1, y2).Similarly, let 

topofile-2 (T2) be defined by the vertices (x3, y3), (x4, y3), (x4, y4), and (x3, y4).The inter- section region 

between the above 2 topofiles I is given as: 

I = [xmin, xmax] × [ymin, ymax], 

where 

• xmin = max(x1, x3), 

• xmax = min(x2, x4), 

• ymin = max(y1, y3), 

• ymax = min(y2, y4). 

And area of the intersection region is given by 

Area = (xmax − xmin) × (ymax − ymin). 

So in regards to the above problem, below is the solution to the case study of three topofiles, now in this 

case the union of overlapping rectangles Ri contains Topofile-1 (red), Topofile-2 (green) and Topofile-3 

(blue) arranged in a list from the finest to the coarsest. 

Example 1:When the grid cell is embedded with in the finest topofile. 
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Figure 4. 3: Figure shows grid cell embedded in to the finest topofile.  

From the above plot, we have 3 rectangular topofiles with the following dimensions:. 

Topofile-1(red) = [2, 2] × [7, 7], 

Topofile-2(green) = [5, 5] × [9, 9], 

Topofile-3(blue) = [0, 0] × [10, 10]. 

Let us assume the following: 

• the grid cell be the black dotted rectangle with dimensions,[4,4] to [6,6], 

• Topofile-1 be the finest topofile, 

• Topofile-2 be the medium (fine and coarse), 

• Topofile-3 be the coarsest topofile. 

Recall that we are interested in accurate solution, so we are always interested in the topofile with the 

highest reolution (finest topofile) so the grid cell whose integral we are interested in always come from the 

finest topofile, so from the figure above, it clearly show that the grid cell is embedded with in the finest topofile 

but still this can be seen mathematically as shown bellow. 

First step:We compute the area of the grid cell: 

 
Second step:We find the intersection region between the finest topofile and the grid cell, then compute 

its area.The intersection region is [4, 6, 4, 6] and the area of the intersection region is 
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Third step:Check if the Area of the grid cell is the same as that of the intersection, now for this example its 

the same, meaning the grid cell is embedded with in the finest topofile and since we are interested in the finest 

one, we just compute the area of the grid cell or the integral of the grid cell using the function of the finest 

topofile. 

 

where f1 is a function assigned to topofile-1 (finest topofile), similarly other topofiles are assigned functions 

like T2 for topofile-2 and T3 for topofile-3. 

If given T1 = 3, then we have 

 

Lets now see another example where the grid cell is not entirely embedded with in the finest topofile, 

but rather intersects with other topofiles. 

Example 2: 

 

Figure 4. 4: Figure shows grid cell embedded in to the finest topofile. 

The above graph shows rectangles/topofiles with the following dimensions: 

topofile-1(T1) = [1, 7, 3, 8], 

topofile-2(T2 = [5, 9, 2, 9], 

topofile-3(T3) = [0, 10, 10], 

Grid cell = [0.5, 8.5, 2, 6]. 
Similarly the above topofiles are also arranged from the finest to the coarsest topofile,and associ- ated with 

functions, f1, f2 and f3 respectively.So to calculate the integral of the grid cell in such scenario, we shall have 

to compute the independent integrals for each intersection of the grid cell and the different topofiles, which 

is shown below. 

The intersection region of topofile-1 and the grid cell is[1, 7, 3, 6]. 

The integral (I1) of the region is 
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The intersection regions of topofile-2 and grid cell are [7, 8.5, 2, 6] and [5, 7, 2, 3]. 

The integral for these regions I2 is computed from 

 

The intersection regions of topofile-3 and grid cell [0.5, 1, 3, 6] and [0.5, 5, 2, 3] 

The integral (I3) for these regions is: 

 
So to get the total integral (I) of the grid cell, we shall have to sum all the independent integrals computed 

above, that is; 

 
If given the values of the functions, say T1 = 3, T2 = 2 and T3 = 1, then the integral is 

 

However we may have cases where the integral may not be computed easily or its time consuming, that is in 

cases when the topofiles are many or in cases when they are of large dimensions, for example the figure below. 

In such cases a subroutine was written to to compute these integrals and it can be referred to by the Pseudo 

code written down. 

Example 3: 

The figure above shows six topofiles and the grid cell (red), in the above figure it may take you time to 

compute the integral of the grid cell manually or even you may be in position to do so but end up getting a 

wrong answer, so in such cases, and due to the fact that in real life problems we deal with huge sums of data, 

a subroutine following the Pseudo code below was written. 
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Figure 4. 5: Figure shows grid cell overlapping more than three topofiles. 

Algorithm to compute integral of a grid cell 

4.1.1. Functions Assigned to Each Topofile and Topofiles Initialized 

• Define topography functions assigned to each topofile for example T1, T2, T3) and so on. 

• Define the dimensions of the grid cell, say a list with [xmin, xmax, ymin, ymax] 

• Define a list of topofiles and their respective dimensions. (for the dimensions, you may need only the 

lower left coordinates and the upper right coordinates for each topofile). 

4.1.2. Define a Function to Check for the Intersection of Two Topofiles 

• Function: intersection(r_1, r_2): 

- It will take in two rectangles 

- It will compute the intersection. 

- Check if there exists the intersection, if so it then computes the area of the intersection. 

- It will return the dimensions of the intersection region and the area if it exists, if it does not, it 

will return area as 0. 

4.1.3. Define Function to Recursively Compute the Integral of the Grid Cell 

This function helps to compute the integral incase the grid cell is not embedded with in the topofile with 

highest resolution but when its overlapping with so many other topofiles of different resolution. 

• Function: compute_integral(grid_cell, m): 

- It will take in the grid cell and index of the current topofile as arguments. 

- Set the number of topofiles. 

∗ Base case: 

• It will check if the topofile is the coarsest (the last one in the list). 

• If topofile is the coarsest, it will compute the area of the intersection between that topofile 

and the grid cell using the above intersection function, and also returns that area and the 

dimensions of the intersection region in case it exists. 

• If the area is zero, that is no intersection, it returns zero (0). 
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∗ Recursive case: 

• If the topofile is not the last one in the list (coarsest), it will make a recursive call to 

compute the integral (First integral) for the next topography file in the list. 

• It will again calculate the area of the intersection between the grid cell and the current 

topography file. 

• If the area is positive, that is,there is an intersection. 

• It will define the intersection region as the intersecting sub-region of the grid cell. 

• It will again make a recursive call to compute a second integral, over this intersecting 

region to be subtracted from the First integral to cater for over- laps. 

• It will compute the Third integral as the area of intersection multiplied by the function 

value of the current topofile, to be added to the First integral to correct overlaps. 

• Then finally it will return an integral as First integral-Second integral+Third integral. 

4.1.4. Define the Main Function/Routine Which Will Then Call the First Two Functions to Compute 

the Integral 

• Function grid_cell_int(grid_cell): 

- It will first calculate the Area of the grid cell using its dimensions. 

- It will then iterate through the topofiles. 

∗ For each topofile, it will check if there exists an intersection between each and the topofile by 

calling the intersection function above. 

∗ If the area of the intersection between the topofile and the grid cell exists and its equal to that of 

the grid cell, it will the compute the integral as 

I = Area × function assigned to that topofile 

∗ If its found that the area of the intersection is less than that of the grid cell, it will compute the 

integral recursively by calling the recursive function. This is because for this case there will be 

overlaps, so they have to be handled well to avoid double counting which may lead to over 

estimation or under estimation of the integral. 

∗ This is the function the returns the integral of the grid cell. 

Note: Note that the above algorithm can still change. The functions can be defined in any way that is 

easiest, provided the overlaps are handled efficiently and accurately, and computational time is also taken 

into consideration. 

4.2. How the Above Is Done in Real Case (Piecewise bilinear Surface) 

A computational domain is created from a union of rectangular topofiles.Data in the topofiles is a 

collection of points on a Cartesian grid.The lower left and upper right corners of the topofile, along with the 

number of points and the cell size is specified in the file.For example, one of the topofiles in the Malpasset Dam 

problem has 20m resolution (e.g. cell size) and 953155 × 1832200 points. 

The challenge is to define the function Ti(ξ, η) for a particular topofile 

 

where (ξ, η) is in topofile cell tm,n. 

Define a bilinear function of the form 

tmn(ξ, η) = aξ + bη + cξη + d 
where a,b,c and d constants for the rectangular region representing a mesh cell [ξ1, ξ2, η1, η2] in the topofile.These 

bilinear functions are computed and combined to form the overall surface.They are combined in such a way 

to allow continuity at the boundaries of each. 

The value of the bathymetry over a computational mesh cell Cij is defined as the average value of this 

piecewise bilinear surface over the computational cell and is given by 
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The mesh cell Cij is now the grid cell referred to in the previous examples. 

Lets look at the integral of the bilinear function of a rectangular surface mathematically. 

 
where 

Area(of the rectangular surface) = (ξ2 − ξ1)(η2 − η1). 

Diagram showing an integral intersection with bilinear cells: 

 

Figure 4. 6: Figure shows an integral intersecting bilinear cells. 

Figure 4.6 shows a piecewise bilinear surface in 2D with dimensions [0,2,0,2], bilinear cells (the black 

rectangles) with dimensions [0,1,1,2], [1,2,1,2], [0,1,0,1] and [1,2,0,1], with an integration region (red) with 

dimensions [(0.5, 0.5), (1.5, 0.5), (1.5, 1.3), (0.5, 1.3)] that intersects the multiple bilinear cells. 

5. Results and Discussions 

5.1. Results 

The Malpasset Dam, located about 12 km upstream from Frejus, France, was a slender arch dam built in a 

narrow gorge above the Reyran River valley to create a reservoir holding 55106 cubic meters of 

water.Unexpectedly, on December 2nd, 1959 at 21:14 hours, the dam catastrophically failed, generating a sudden 

acoustic shock wave felt in Frejus, indicating an almost instantaneous collapse.Standing at a height of 66.5 meters 
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with a crest span of 223 meters, the dam’s arch was the only remaining structure after the failure, accompanied 

by significant erosion of the nearby rock bank.Investigations suggest that the arch dislodged from its base, 

triggering a rapid and sequential collapse (Valiani et al., 2002) 

The incident resulted in 433 fatalities and significant infrastructure damages, including the oblit- eration of 

a 1.km section of free way and an adjoining bridge, and extensive flooding of Frejus.The downstream 

displacement of massive blocks indicated the power of the flood.The flood waves rose to approximately 20m 

above the original riverbed.For comprehensive understanding of the incident, you can refer to (Boudou et 

al., 2017). 

Before doing modifications with in the code, we ran the Malpasset data on different number of 

processors and below was the out come.Different processors were evaluated in terms of time taken when refining 

these data files and the wall time, advance time, Regrid time and Regrid-build times were recorded.This study 

aimed to assess the efficiency of various processors to identify opportunities for improving computational 

cost.Processors 1, 2, 4, and 8 were tested, and below are the achieved results. 

Based on the results presented in the Table 1, the wall time for 8 processors was lower com- pared to that 

for 1, 2, and 4 processors. Similarly,the advance time was also lower compared to the other three cases.However, 

the Regrid time was higher than the other three cases, while the Regrid-build time was lower.For the case of 4 

processors,the Regrid-build time was slightly higher than that for 2 processors.These results highlight that 

significant time is consumed during refine- ments, particularly evident in the Regrid time, despite the overall 

small wall time.It suggests that increasing the number of processors leads to a reduction in wall time, but further 

enhancements are necessary during refinements to optimize computational costs. 

Table 1. Timing results for different processors. 

No. of processors Wall time(s) Advance time(s) Regrid time(s) Regrid-build time(s) 

1 10729.7 9563.86 20.5029 1.01052 

2 6313.88 4919.63 14.8174 0.541249 

4 3381.63 2517.43 12.0432 0.25904 

8 2205.49 1561.47 13.4691 0.173513 

 

Figure 5. 1: Efficiency (On Wall time) against Number of Processors. 

Figure 5.1 shows efficiency against number of processors used to run on the Malpasset data and it is found 

out that really the efficiency on 8 processors is not very bad (60%) but still it needs to be improved to raise the 
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percentage, this is because the more the number of processors, the tasks are distributed equally to the processors 

which means time taken to do the regridding will be shortened. 

Note that the aforementioned results were obtained under the following conditions: the final time was 

set to 600.0 units, the number of equations (shallow water equations) solved was 3, the topography domain 

spanned [953236.0, 959554.0] × [1832407.25,1848572.75],the number of refinement levels was 4, ranging from 

level 1 to level 4, and the grid dimensions were [16,16]. 

At present, every time regridding or refining occurs, processors must recalculate integrals, which, as 

observed in the above results, is time-consuming.This implies that the more levels of refinement there are, the 

longer the time taken.However, in many cases, we require finer refinements, which necessitate more 

integrals.Therefore, we must address this issue. 

Bellow are some of the pictures showing the incident of the Malpasset dam break. 

   
(a) ) t=00s (b) t=05s (c) t=10s 
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(d) t=15s (e) t=20s (f) t=25s 

Figure 5. 2: Figures show Malpasset dam break incident at different time intervals. 

 

 

 

(a) t=30s (b) t=35s (c) t=40s 
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(d) t=45s (e) t=50s (f) t=55s 

Figure 5. 3: Figures show Malpasset dam break incident at different time intervals. 

The above sequence of figures, show the incident of the Malpasset dam break at different time 

intervals.They were illustrated using google earth imagery. 

5.2. Discussions 

From the figures above, at time t=0s, the event shows a full reservoir with the dam intact. But as time 

went on, that is to say at 5s, 10s, 15s etc, the dam failed, which led to flood waters over topping the A8 

highway. Between time t=15s, and t=25s, the flood waters proceeded through the valley, reaching Frejus.At 

time t=55s, the flood waters had reached the sea, hence the progression of the incident. 

The Figures 5.2 and 5.3, they as well show refinements performed, adaptive mesh refinement applied 

in the simulation at time intervals of t=0, 5, 10 up to 55 seconds.At the initial time t=0s, the reservoir area was 

refined up to level 3.As time moved on, the broader region affected by the floods was refined at varying levels 

from l=1 to l=3, while the other parts not affected by floods were coarsely refined, that is to say were 

subjected to low resolution. 

5.3. Initial Conditions and Boundary Conditions for Malpas- Set Dam Breakdown 

Here the sea level and the initial reservoir level are assumed to be constant are set at 0 and 100m above sea 

level respectively.Although the outlet gate near the bottom of the dam was open during the incident, we 

neglected pre incident stream flow in the channel, that is to say the bottom of the dam was considered to be 

dry.Since the actual pre incident stream flow discharge is unknown, it was assumed to be negligible. Similarly 

since the value of the inlet discharge upstream of the reservoir is unknown, an imposed discharged constant 

of zero was used.The sea level was maintained constant (equal to zero).Note, we assume a short period dam 

failure. 
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× 

5.4. Simulation Results for the Malpasset Dam Break before the Modifications Were Made 

In the simulations before modifications in the code were made, we used a manning coefficient of 

0.03333.The simulation runs were done on a 2.3 GHz i7 processor with 16 GB RAM.The simulations were 

performed on the computational grid or domain of dimensions 32 80 meters, with refinement levels from l=1 

to l=3.The initial time step of 1 second, relying on a Courant- Friedrichs-Lewynumber (CFL) of 0.75.Note 

that CFL is a dimensionless number that ensures stability and accuracy during simulations, it is usually 

related to the ration of time step size to grid spacing.The adaptive mesh refinement criterias (flags) were 

designed basing on various conditions such as water depth, bathymetry, velocity, topographical features and 

the origin of the flood.This model accurately represented the flood’s domain and intricate details in the areas 

surrounding the flood plain during the dam failure as shown in figures 5.2 and 5.3. 

The model led to the generation of simulations with high resolution mesh adaptations in the areas around 

the dam and flood plain as shown in the figures above.But still modifications are required to improve 

efficiency and reduce on the time taken during simulations. 

5.5. GeoFlood Compared to Other Models to Simulate Max- Imum Water Elevations 

 

Figure 5. 4: Police-surveyed points. 

 

Figure 5. 5: Gauge points. 
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To confirm that GeoFlood is the best fit to simulate overland flooding, it was compared with other 

models like GeoClaw, physical model data, static fitted mesh and Telemac2D to simulate the maximum 

height of the water. 

From the Figures 5.4 and 5.5, the comparison drawn between GeoFlood simulated results at the 17 field-

surveyed and 9 gauge locations against the field and experimental data (Frazao et al., 1999), with numerical 

results from GeoClaw, physical model data, static fitted mesh and Telemac2D. 

GeoFlood’s parallel grid management supported by Forest Claw allows the model to effectively monitor 

the flood’s extent and dynamically adjust the wet-dry boundaries during the refinement process. Field-surveyed 

locations tend to have a higher margin of error compared to gauge points. We attribute this to the fact that they 

are located near the margins of the flow. Given that all the models in comparison are based on shallow water 

equations,the prediction capability of different codes is most clearly differentiated by their ability to track the 

flood extents at the field-surveyed locations(Kyanjo et al., 2024). And it is evident that GeoFlood simulates 

well the maximum of water elevations. 

6. Conclusion and Future Work 

6.1. Conclusion 

During this research I was able to install GeoFlood and configurations were made, GeoFlood was ran 

on a Malpasset data (for the dam failure) using different number of processors but it was found out that the 

efficiency needs to be improved and also the computation cost needs to be addressed.These issues are supposed 

to be addressed by finding an approach that efficiently handles bathymetry data.I also understood how 

bathymetry is handled with in GeoFlood during simulations. 

6.2. Future Work 

The main goal to address the above issues is to integrate adaptive mesh refinement (AMR) topography 

techniques into GeoFlood topography routines, leveraging the p4est (parallel mesh management library) 

routines to optimize topography handling(Burstedde et al., 2011).Then use new coupling techniques 

available in GeoFlood through p4est to provide topography on a distributed quad tree mesh.This technique is 

expected to be more efficient for real-world problems with complex and large domains.Then validate new 

developments against already existing test cases (Malpasset dam failure) and compare the results.So all the above 

was not able to be reached due to time hence calls for future work to be done so that the new features of P4est are 

coupled with in GeoFlood in order to enhance the efficiency and also reduce the computational cost during 

simulations. 
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