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Abstract: Detection and quantification of disease-related biomarkers in wastewater samples,
denominated Wastewater Based Surveillance (WBS), has proven a valuable strategy for studying
the prevalence of infectious diseases within populations in a time and resource-efficient manner, as
wastewater samples are representative of all cases within the catchment area, whether they are
clinically reported or not. However, analysis and interpretation of WBS datasets for decision-
making during public health emergencies, such as the COVID-19 pandemic, remains an area of
opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment
plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022
was used to train simple clustering and regression-based risk assessment models to allow for
informed prevention and control measures in high-affluence facilities, even if working with low-
dimensionality datasets and a limited number of observations. When dividing weekly data points
based on whether the seven-day average daily new COVID-19 cases were above a certain threshold,
the resulting clustering model could differentiate between weeks with surges in clinical reports and
periods between them with an 83.3% accuracy rate. Moreover, the clustering model provided
satisfactory forecasts one week (79.2% accuracy) and two weeks (72.9%) into the future. However,
the prediction of the weekly average of new daily cases was limited (R?= 0.452, MAPE = 180.2%),
likely because of insufficient dimensionality in the database. Overall, while simple, WBS-supported
models can provide relevant insights for decision-makers during epidemiological outbreaks,
regression algorithms for prediction using low-dimensionality datasets can still be improved.

Keywords: SARS-CoV-2; Wastewater surveillance; Machine learning; Data-based decision making;
Epidemiology trends

1. Introduction

SARS-CoV-2, a novel coronavirus causing respiratory illnesses of varying severity in humans
(denominated as COVID-19), was first detected in December 2019 and spread rapidly across the
world, leading to the declaration of a worldwide emergency by the World Health Organization
(WHO) by March 2020 [1]. Despite widespread adoption of preventive measures, including social
distancing, reduction of in-person activities in schools and workplaces, cancelation of massive events,
mandatory usage of facemasks and extensive vaccination efforts, COVID-19 prevalence stayed
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stubbornly high throughout the world during 2020, 2021 and 2022, as the WHO would not declare
the end of the sanitary emergency until May 2023 [2]. Incidence of COVID-19 cases showed a highly
fluctuating behavior due to the continued emergence of new variants, driven by the high mutation
rate of the viral RNA genome and the process of adaptation to both human immune responses and
the deployment of vaccines and therapeutic agents [3]. While the definition of “wave” may vary
depending on different criteria or geographical regions, between six [4] and seven [5] waves were
registered between January 2020 and March 2023, with varying levels of intensity depending on the
degree of infectivity of the underlying variants of concern. A total of 775,615,722 cases were reported
worldwide by June 2024, although limited testing indicates that actual incidence must be higher [6].

As a part of epidemiological containment and prevention efforts undertaken by public health
authorities, there has been a growing interest in modelling the spread of the disease within
populations [7]. The main approaches have included mechanistic models, based on the infection
patterns seen in the population and the deployment of protective measures, including social
distancing and vaccination [8], and statistic models, based mostly on clinical reports and supporting
data, including social mobility dynamics, weather reports, pollution levels, and even social media
activity, among others [9]. Recent studies have taken advantage of machine-learning approaches to
integrate large datasets (sometimes encompassing more than one country) and develop advanced
regression models, as the capacity of linear models to reflect on infection patterns has proven limited
[10]. Neural network-based models, such as artificial neural networks (ANN), bidirectional long short
term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), autoregressive integrated
moving average (ARIMA), and multilayer perceptron (MLP), have been trained on clinical reports
published by public health authorities to predict future cases, reaching R2 coefficients of
determination (R2) between 0.62 and 1 and d mean absolute percentage error (MAPE) generally
below 10% [10].

While most studies have used reported clinical data, integrating parallel data to develop a fuller
image of public health status in a population might be useful to develop better epidemiological
models. In this regard, data arising from wastewater-based surveillance (WBS) might be a useful
resource, as it allows for time and resource-efficient study of a population by tracking and
quantifying specific biomarkers in wastewater samples, which are representative of the entire
population within the catchment area of the sampling point of interest [11]. Moreover, WBS data
shows potential for risk assessment models as they can represent cases regardless of the level of
individual clinical cases or the onset of symptoms [12]. Moreover, as studies have demonstrated that
COVID-19 has an incubation period of around 5 to 7 days [13], increases in the load of viral genetic
materials in wastewater samples may increase noticeably before the onset of epidemiological waves.
However, it is important to note that WBS data should not be analyzed in isolation and should be
integrated into epidemiological reports to obtain valuable information, as high biomarker variability,
the lack of a standardized normalization technique and interference due to high matrix complexity
are ongoing challenges for the interpretation of WBS data for public health assessment [14].

Following this line, this work reports on the integration of WBS data obtained at key sampling
points in the Monterrey Metropolitan Area (MMA, 5,341,171 inhabitants) and Mexico City (CDMX,
21,804,515 inhabitants) between January 2021 and June 2022 into simple, statistic prediction models
based on machine-learning algorithms. Two main approaches were followed: clustering of weekly
datapoints as above or below a threshold indicative of a COVID-19 outbreak, and regression models
offering an estimate of the seven-day average new reported daily COVID-19 cases adjusted for
population size.
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2. Materials and Methods

2.1 Data Aquisition

Data on SARS-CoV-2 viral load in wastewater samples (presented as viral genome copies per
liter of wastewater) originating from the MMA and CDMX was compiled from the dataset previously
obtained from the WBS platform operated by our laboratory between January 2021 and March 2022
[15]. Briefly, 1 liter grab samples were obtained weekly from designated sampling sites encompassing
both facilities of the largest private higher education institution in Mexico and wastewater treatment
plants (WWTPs), transported to the central laboratory and concentrated using a polyethylene glycol
and NaCl-based method [16]. RNA was extracted using the DNA/RNA Magnetic Bead Kit (IDEXX,
Westbrook, Maine) adapted for automation using a KingFisher™ Flex instrument (Thermo Fisher,
Waltham, Massachusetts), and SARS-CoV-2 viral load was determined through the SARS-CoV-2 RT-
qPCR Test kit for wastewater samples (IDEXX) on a QuantStudio 5 instrument (Applied Biosystems,
Waltham, Massachusetts). Sampling sites within the two university campuses (one in the MMA and
one in CDMX) were clustered together, and the data captured each week includes the maximum viral
load obtained across all sampling sites, the percentage of sampled buildings (calculated as the ratio
between the number of samples obtained each week and the total amount of sampling sites within
the campus) and the percentage of buildings were viral load was detected (calculated as the ratio
between samples that tested positive for SARS-CoV-2 genetic materials). In samplings at WWTPs,
only the total viral load detected was registered.

Daily new reported COVID-19 cases for the state of Nuevo Ledn (where the MMA is located)
and the CDMX were obtained from the dashboard published by the National Council of Humanities,
Sciences and Technologies (CONAHCYT) with data provided by the General Direction of
Epidemiology, a part of the Mexican Department of Health (available at https://datos.covid-
19.conacyt.mx/). To make both time series comparable, a seven-day average of daily new cases was
calculated for each week. Finally, data on urban mobility for both the state of Nuevo Le6n and the
CDMX was obtained from the COVID-19 Community Mobility Reports published by Google in 2021
and 2022 for the Mexican state of Nuevo Ledn (available at
https://www.google.com/covid19/mobility/). The average of the six reported parameters was used as
an overall indicator of mobility, and a seven-day average was calculated for each week. The complete
database used for this study is reported in Table S1.

2.2 PCA and Heatmap

To observe the behavior of the obtained parameters across the study period, data normalization
for PCA plots and heatmaps were conducted in ClustVis [17]. To ensure data robustness and
comparability, weeks when the percentage of sampled buildings within either campus fell below 20%
and no data from the WWTP was reported were filtered out of the database. To control the effect of
the different population sizes, the seven-day average of daily new reported cases was inputted as the
number of cases per 100,000 inhabitants. Data received no further transformation. For each
parameter, data was scaled using unit variance scaling and PCA was conducted using the Singular
Value Decomposition (SVD) method. Each data point was annotated by the city it represented (either
MMA or CDMX), and whether it originates from a surge in clinical reports or not. Separated PCA
plots were made classifying data points based on both criteria, and ellipses were drawn using a 95%
level of confidence. For the heatmap, both rows and columns were clustered using the Ward
algorithm through their degree of correlation.

2.3 Cluster-Based Predictive Models

For the development of cluster-based predictive models, the seven-day average of new daily
cases was plotted across the study period for both cities and a threshold was set for each city, to
divide the weekly data points into two groups: those above the threshold (indicating a new outbreak)
and those below the threshold (indicating the basal condition during the pandemic). For the MMA,
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the threshold was set at 200 daily cases, while for CDMX it was set at 1000 daily cases, which is
consistent with the different population sizes. For each week, it was evaluated whether the seven-
day average of new daily cases was above the threshold in the current week, and one and two weeks
into the future, in accordance with the estimated incubation period reported by the WHO (of up to
14 days) [13] to test if an increase in the viral loads detected in wastewater samples could be detected
before a surge in reported cases. For each parameter, data was scaled using unit variance scaling and
did not receive any transformation.

The resulting datasets for both cities were combined into one and divided randomly into a
training set and a testing set. Clustering algorithms were developed using the fitcauto function in
Matlab R2024a, running a Bayesian optimizer for 100 iterations for optimization with the default
option to fold the training data five times for cross-validation. During training, whether clinical cases
were above or below the set threshold in the same week as wastewater sampling was conducted.
Only the training subset was fed into the learning function. Given the characteristics of the data being
studied (small dataset with low dimensionality), the optimization process was centered around linear
learners. Clustering model performance was evaluated by calculating its accuracy rate, sensitivity,
specificity, and Youden’s index on both training and testing subsets. If performance metrics were
found to be too different for both models, a sign of possible overfitting, training was repeated. After
obtaining a suitable model, it was used to make forecasts one and two weeks into the future, which
were evaluated using the same metrics mentioned above.

2.4 Regression-based Predictive Models

For the development of regression-based predictive model, only the maximum viral load from
each university campus, the viral load from the selected WWTP from each city and the weekly
average change in mobility was considered, while daily cases were set as the output of the model.
Viral load data was transformed using the decimal logarithm of the viral load from each location plus
one (to avoid indefinite numbers). The seven-day average daily cases were expressed as a ratio per
100,000 inhabitants to control for different population sizes across the two cities. The transformed
values for each parameter were then scaled using unit variance scaling.

The resulting datasets for both cities were combined into one and divided randomly into a
training set and a testing set. Regression models were obtained using the “fitrauto” function in
Matlab R2024a, running a Bayesian optimizer for 100 iterations for optimization with the default
option to fold the training data five times for cross-validation. Only the training subset was fed into
the learning function. Learner algorithms were selected automatically by the training function to
better suit the characteristics of the data (small dataset, low dimensionality, linear behavior). Model
performance was evaluated using Root Mean Square Error (RMSE), R? coefficient, and Mean
Absolute Percentage Error (MAPE) on both training and testing subsets. If performance metrics were
found to be too different for both models, a sign of possible overfitting, training was repeated.

3. Results

3.1. PCA and Heatmap

After filtration, the resulting database included 48 data points, 29 from the MMA and 19 from
CDMX. The main limiting factor in the MMA was the large number of sampling sites encompassed
within the studied university campus, which limited our ability to reliably sample them all across the
entire study period. In CDMX, while the studied university campus was significantly smaller, our
capacity to take samples from urban wastewater reduced the amount of available data. 19 of the 48
data points originated during reported surges in clinical reports, while the remaining 29 come from
periods between surges.

PCA plots for the data classified by city of origin and the reported epidemiological situation in
the corresponding time frame are presented in Figure 1A and 1B, respectively. As expected, no clear
separation between the two cities is observed when plotting PC1 (accounting for 40.2% of variance)
against PC2 (accounting for 26.1% of variance), indicating that transmission dynamics are likely
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similar after controlling for population size. In fact, the average change in mobility presented in the
COVID-19 Community Mobility Reports published by Google during the study period, reported as
percentage change from a pre-pandemic baseline, show similar behaviors in both cities (Figure 1C).
This is to be expected, since the interconnectedness of population centers due to economic
globalization has been noted as a driver in the rapid spread of SARS-CoV-2 [18]. Overall, similar
patterns of surges and reductions in clinical cases, and comparable containment measures can be seen
in both cities. As a result, datapoints can be reliably combined for modeling after controlling for the
different population sizes. This is consistent with reports by [19], where surges in COVID-19 cases at
regional and country levels across 2020 and 2021 were found to appear at similar times and have
similar durations.
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Figure 1. Principal component analysis for the database used in the study, classified by city (A) and
by the presence or absence of surges in COVID-19 clinical reports (B). Changes in urban mobility
during the study period, expressed as a percentual change from the pre-pandemic baseline (C).

Meanwhile, classifying data points by whether a surge in clinical cases was reported in the
corresponding week yields some degree of separation in the PCA plot, although no clear clusters
could be fully defined. The ellipses are drawn around the area of 95% confidence for each group
overlap. However, data points corresponding to periods between surges (in red) show low dispersion
along the PC1 (accounting for 40.2% of variance) and PC4 (10% of variance) axis, while the data points
corresponding to surges (in blue) in clinical cases were noticeably more dispersed, most of them
falling outside the cluster of data points corresponding to periods between surges. This indicates that
differential patterns in the parameters of interest exist, although some degree of confusion in the
model is to be expected.

The obtained heatmap is presented in Figure 2. Observations, presented in the columns, were
clustered into three groups: one where data points taken during surges in clinical cases were
overrepresented (14/19 data points), shown in the left; one where weeks in between surges are
overrepresented (18/19 data points), shown in the right; and a middle group, composed of ten data
points, that remained ambiguous. This degree of confusion during clustering is consistent with the
overlap observed in the PCA plot presented in Figure 1B.
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Figure 2. Heatmap presenting correlations between the parameters integrated into the database. For
both rows and columns, clustering was conducted using the Ward algorithm based on correlation
distances.

When it comes to the parameters, presented in the rows, the number of new cases by 100,000
inhabitants showed correlation to both the viral load found in samples from the WWTPs, the
maximum viral load found on any sample from the university campus studied in each city and the
rate of sampling sites where viral load was detected on each campus, all of them increasing during
surges in clinical case reports. Meanwhile, average urban mobility and the percentage of tested
buildings on each campus showed the inverse behavior, being placed on a separate cluster.

Interestingly, data points in the middle cluster showed higher rates of positive buildings while
sampling coverage remained close to the average on each campus, but no significant surge in clinical
reports is observed. Data in this middle cluster comes from May and June 2022, after urban mobility
for both cities went back to pre-pandemic levels and are likely an anticipation of the surge in cases
that lead to the fifth wave of COVID-19 cases in Mexico, which took place during the summer of 2022
[20]. This is consistent with our previous report, where we demonstrated that Omicron variants
circulated in wastewater from university campuses across Mexico between January and March 2022
[21]. This observation supports the potential of decentralized, building by building WBS platforms
in high affluence areas, such as university campuses, as the rate of positive samples taken each week
can provide relevant information for decision-making when overall populational dynamics are
accounted for. Similar observations were reported by Wolken et al. [22], from data using a similar
WBS platform across preK-12 schools in Houston operated between December 2020 and May 2022.

3.2 Cluster-based risk asessment model

For training and testing of cluster-based risk assessment models, 30/48 and 18/48 of the total
observations in the dataset, combining data from both the MMA and CDMX were used, respectively.
After optimization, the resulting cluster-based risk assessment model was built using a linear
classification discriminant. Model performance metrics are presented in Table 1. In short, the model
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had an accuracy of 0.833 for both training and test subsets, indicating a clustering capacity close to
that of the heatmap presented in the previous subsection.

The confusion charts presented in Figure 3A,B indicate that the model generalizes well, using
general trends in WBS data to separate data points linked increased clinical reports were observed
and those linked to periods between surges instead of amplifying unrelated background variances.
However, the observed Youden’s index decreased slightly, from 0.63 in the training subset to 0.58 in
the test subset. After the optimized model proved satisfactory, it was used to provide forecasts one
and two weeks into the future using the same dataset to investigate whether the trends observed
during clustering could be used for risk-. As seen in Table 1, predictions one week into the future
showed an accuracy rate of 0.79 and a Youden of 0.53. Predictions two weeks into the future had a
more modest outcome, with metrics of 0.73 and 0.43, respectively. As seen in the confusion charts
presented in Figure 3C,D, the model had a certain tendency to yield false negative predictions (7/48
for one-week predictions and 10/48 for two-week predictions).
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Figure 3. Confusion charts obtained by the clustering-based model, predicting surges in clinical
reports (denoted here as 1) and spaces in between surges (denoted as 0), for the training partition of
the current-week data (A), the testing partition (B), and forecasts one and two weeks into the future

(C and D, respectively).

Table 1. Performance metrics for the obtained linear discriminant classification model for detection
and forecasting of surges in COVID-19 cases using WBS data. F1 and F2 denote forecasts one and two
weeks into the future, respectively.

Training Test F1 F2
Accuracy 0.833 0.833 0.792 0.729
Specificity 0.941 0.917 0.897 0.885

Sensitivity 0.692 0.667 0.632 0.545
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Youden 0.633 0.583 0.528 0.430

The difference is likely since SARS-CoV-2 incubation period has been found to be between 5 to
7 days, shorter than initially expected [13], reducing the window of time in which increased viral
loads could be found in wastewater samples before surges. Still, this supports the potential of WBS
platforms can provide valuable information on epidemiological trends, which can be used for
decision-making by public health authorities [23]. Moreover, sampling approaches such as this one,
combining data from WWTPs and decentralized sampling points located at high affluency sites (in
this case, at college campuses), can be used for more focalized preventive and containment measures,
allowing for continued operation in such sites while keeping them from becoming transmission
hotspots [24]. In any case, it's important to remark that WBS data cannot be used or isolation nor is it
a substitute to individualized clinical testing; rather, as discussed by Islam et al. [14], these
approaches should be conducted collaboratively to obtain more robust datasets.

3.3 Regression-based Predictive Models

For training and testing of regression-based predictive models, 30/47 and 18/47 of the total
observations in the dataset, combining data from both the MMA and CDMX were used, respectively.
One data point, corresponding to data from the MMA during week 56 (January 2023) had to be
eliminated since it represents unusually high clinical reports caused by Christmas-related increases
in urban mobility. Moreover, insufficient sampling was conducted in the weeks prior and after this
point due to the winter break at the institution and restricted laboratory activities in January and
early February 2023 due to the fourth wave of contagions in Mexico [25], leaving the datapoint from
week 56 as an outlier that hindered the effectivity of regression learners during training. After
optimization, the resulting model was a linear regression using a least squares-based learner. Model
performance metrics are presented in Table 2, while a plot of the predicted response against the actual
weekly average of daily new COVID-19 cases is presented in Figure 4.

Table 2. Performance metrics of the linear regression model obtained to predict the weekly average
of daily new COVID-19 cases using WBS data.

RMSE R"2 MAPE
Training 5.223 0.452 180.246
Test 5.118 0.464 195.781

Predicted vs actual daily new COVID-19 cases
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Figure 4. Number of new daily COVID-19 cases predicted by the regresion-based model compared
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with the actual clinical reports.
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In short, the model showed a consistent performance on both the training and test subsets, with
R2 of 0.452 and 0.464, respectively, indicating that variations in viral loads in wastewater samples
from both university campuses and WWTPs in the MMA and CDMX, urban mobility rates and the
rate of positive samples within each of the university campuses could account for roughly half of the
variance seen in epidemiological results. However, quantitative error remains significant: RMSE for
the training subset was 5.223 and 5.118 for the test subset, when the average true responses were
6.405 and 5.1712, respectively. This is consistent with the MAPE observed in both subsets, which was
close to 200%.

In the same line, Figure 4 shows that in data points where the actual responses were below 5
cases per 100,000 inhabitants, the model tended to overestimate cases based on viral loads in
wastewater samples, while it underestimated when the actual responses were above 5 cases per
100,000 inhabitants. A possible explanation for this indicates two main shortcomings in the dataset.
The first is its size, as observations where campus coverage was below 20% and no corresponding
sampling at the city’s selected WWTP was reported were filtered out of the database before training.
Second, surges in COVID-19 case reports were followed by restrictions in campus occupancy rates
and reduced urban mobility. While urban mobility could be accounted for, no direct data on campus
occupancy or clinical testing within the institution was available to the team. Integrating such
parameters into the model may increase the variance in the responses explained by the model. While
some of these shortcomings could be addressed using non-linear regression learners, overfitting
remains a concern in such models, especially when using datasets published by public health
authorities, which tend to be incomplete [26].

The models reported here show significantly lower predictive performance when compared to
those reviewed by Ghafouri-Fard et al. [10], which offer forecasts based on previous clinical reports,
weather data and even internet search history with R2 values between 0.65 and 1 and MAPE values
below 10%. However, the use of data from WBS platforms for predictive models has proven
significantly more difficult. In a study by Lai et al. [27] investigating the potential of time series
machine learning to make forecasts of COVID-19 cases using both epidemiological reports WBS data
from the states of Pennsylvania and Wyoming, the lowest MAPE values observed were still around
39%, with some WBS-based models still being outperformed by “naive” models, which did not take
WBS data into account for training. A similar approach by Ai et al. [28] recommends the use of long
short-term memory to obtain highly generalizable models that could account for a higher degree of
variance in the response (R2 of up to 0.81 in the test set), while also highlighting the importance of
avoiding overfitting when using such learner algorithms. This is because detection and quantification
of viral loads in wastewater samples shows a high level of variability due to unsteady wastewater
flow in the sampling sites and degradation of genetic materials because of external factors, such as
pH, temperature, enzymatic activity, and light exposure [29]. Taking these factors into account
during feature engineering has proven relevant by the two studies mentioned previously, although
data allowing for such fine-tuned predictive models was unavailable for the present study.

4. Discussion

This work presents an evaluation of simple machine-learning models using linear learners for
risk assessment using WBS data from both university campuses and WWTPs in CDMX and MMA,
the two largest cities in Mexico. Such models were sufficient to observe correlations between viral
loads in wastewater samples and offer forecasts that could be used for risk management and
contention in high facilities, like educative centers or workspaces, although their capacity for long-
term forecasting may be limited when compared to more sophisticated models, like long short-term
memory regressions. The ability to use finer models, however, was limited by the size and the
dimensionality of the dataset, as proven by the higher performance of models that took
environmental factors that could drive genetic material degradation into account, such as wastewater
flow at the sampling sites, pH and temperature, among others [27,28]. Integrating viral load data
from a wider arrange of sampling sites located across the country with relevant epidemiological
factors at play (mobility within cities, vaccination rates, test positivity rates) could be used to provide


https://doi.org/10.20944/preprints202410.1297.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2024 d0i:10.20944/preprints202410.1297.v1

10

models that can better represent trends across the country. In any case, adequate measures should be
taken to prevent model overfitting, especially if non-linear models are used [26].

In any case, drawing correlations between the quantification of disease-related biomarkers and
the prevalence of the disease of interest within a population remains an area of opportunity for
developments in WBS. McMahan et al. [30] integrated wastewater measurements into a susceptible-
exposed-infectious-recovered (SEIR) model which led to an estimation of the rate of COVID-19 cases
underreporting of roughly 11 unreported cases for each reported case, which closely matched
previous estimates by public health officials for the area at the time of study (15 unreported cases for
each reported case). Melvin et al. [31] proposed a novel normalization and standardization process,
the Melvin Index, to control the impact of site variability during sampling in qPCR-based SARS-CoV-
2 genetic material quantification. Using this method, surges in clinical reports could be predicted over
up to 15-17 days using data from several sampling sites across the state of Minnesota, USA. Hewitt
et al. [32] related the frequency of SARS-CoV-2 viral detection at a managed isolation and quarantine
facility to the one seen at a WWTP during a window of time at which incidence was reportedly low.
By relating both measures, they estimated the possibility of detecting SARS-CoV-2 genetic materials
in wastewater from WWTPs, representative of the overall population, at 87% when prevalence in the
population was at 0.01%.

Recently, Mohring et al. [33] reported on an approach for a finer estimate of COVID-19 cases
from WBS data where a cohort was regularly followed during the study period using self-
administered antigen tests. They reported the need to use both a scaling factor and a delay window
to relate SARS-CoV-2 viral loads in wastewater samples with COVID-19 prevalence. Interestingly,
the delay window they found, around 5 days, closely matches the incubation period of the virus (Zaki
and Mohamed, 2021).

Development of statistical models integrating WBS data for risk assessment will likely be useful
during the first stages of future pathogen outbreaks as a first tool for decision-making if the modeled
pathogen proves to have similar transmission routes to the novel pathogen of concern. For instance,
knowledge obtained from modelling the COVID-19 pandemic could be useful in case of an outbreak
of a highly transmissible, airborne, viral disease, such as a possible increase in zoonotic transmission
of Influenza A H5N1, as it has been reported recently (Dye & Barclay, 2024).

5. Conclusions

In this paper, a database resulting from the detection and quantification of SARS-CoV-2 viral
loads in wastewater samples originating from university campuses and WWTPs in the MMA and
CDMX were used to train both clustering and regression models built using linear learner algorithms
to study trends in the evolution of daily new COVID-19 during the pandemic. While linear
classification discriminant analysis could distinguish between wastewater data obtained during
clinical report surges and periods between surges at 83.3% accuracy, and the trends observed by the
model could be used for forecasting, the performance of regression-based models remained limited
due to low dimensionality in the data, as relevant environmental measurements for determination of
sample integrity, such as pH, temperature or wastewater flow at the sampling sites were not
available. While the approach explored here can be used for simple risk assessment for the
deployment of adequate prevention and containment strategies within high-affluence facilities, such
as universities or workspaces, especially in the early stages of a possible epidemiological outbreak,
further work toward integration of more robust datasets into more complex models, capable of long-
term forecasting that could be used for future pathogens similar to COVID-19 is still needed.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1. Complete database used in the study.
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