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Abstract: Detection and quantification of disease-related biomarkers in wastewater samples, 

denominated Wastewater Based Surveillance (WBS), has proven a valuable strategy for studying 

the prevalence of infectious diseases within populations in a time and resource-efficient manner, as 

wastewater samples are representative of all cases within the catchment area, whether they are 

clinically reported or not. However, analysis and interpretation of WBS datasets for decision-

making during public health emergencies, such as the COVID-19 pandemic, remains an area of 

opportunity. In this article, a database obtained from wastewater sampling at wastewater treatment 

plants (WWTPs) and university campuses in Monterrey and Mexico City between 2021 and 2022 

was used to train simple clustering and regression-based risk assessment models to allow for 

informed prevention and control measures in high-affluence facilities, even if working with low-

dimensionality datasets and a limited number of observations. When dividing weekly data points 

based on whether the seven-day average daily new COVID-19 cases were above a certain threshold, 

the resulting clustering model could differentiate between weeks with surges in clinical reports and 

periods between them with an 83.3% accuracy rate. Moreover, the clustering model provided 

satisfactory forecasts one week (79.2% accuracy) and two weeks (72.9%) into the future. However, 

the prediction of the weekly average of new daily cases was limited (R2 = 0.452, MAPE = 180.2%), 

likely because of insufficient dimensionality in the database. Overall, while simple, WBS-supported 

models can provide relevant insights for decision-makers during epidemiological outbreaks, 

regression algorithms for prediction using low-dimensionality datasets can still be improved. 

Keywords: SARS-CoV-2; Wastewater surveillance; Machine learning; Data-based decision making; 

Epidemiology trends 

 

1. Introduction 

SARS-CoV-2, a novel coronavirus causing respiratory illnesses of varying severity in humans 

(denominated as COVID-19), was first detected in December 2019 and spread rapidly across the 

world, leading to the declaration of a worldwide emergency by the World Health Organization 

(WHO) by March 2020 [1]. Despite widespread adoption of preventive measures, including social 

distancing, reduction of in-person activities in schools and workplaces, cancelation of massive events, 

mandatory usage of facemasks and extensive vaccination efforts, COVID-19 prevalence stayed 
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stubbornly high throughout the world during 2020, 2021 and 2022, as the WHO would not declare 

the end of the sanitary emergency until May 2023 [2]. Incidence of COVID-19 cases showed a highly 

fluctuating behavior due to the continued emergence of new variants, driven by the high mutation 

rate of the viral RNA genome and the process of adaptation to both human immune responses and 

the deployment of vaccines and therapeutic agents [3]. While the definition of “wave” may vary 

depending on different criteria or geographical regions, between six [4] and seven [5] waves were 

registered between January 2020 and March 2023, with varying levels of intensity depending on the 

degree of infectivity of the underlying variants of concern. A total of 775,615,722 cases were reported 

worldwide by June 2024, although limited testing indicates that actual incidence must be higher [6].  

As a part of epidemiological containment and prevention efforts undertaken by public health 

authorities, there has been a growing interest in modelling the spread of the disease within 

populations [7]. The main approaches have included mechanistic models, based on the infection 

patterns seen in the population and the deployment of protective measures, including social 

distancing and vaccination [8], and statistic models, based mostly on clinical reports and supporting 

data, including social mobility dynamics, weather reports, pollution levels, and even social media 

activity, among others [9]. Recent studies have taken advantage of machine-learning approaches to 

integrate large datasets (sometimes encompassing more than one country) and develop advanced 

regression models, as the capacity of linear models to reflect on infection patterns has proven limited 

[10]. Neural network-based models, such as artificial neural networks (ANN), bidirectional long short 

term memory (LSTM), adaptive neuro-fuzzy inference system (ANFIS), autoregressive integrated 

moving average (ARIMA), and multilayer perceptron (MLP), have been trained on clinical reports 

published by public health authorities to predict future cases, reaching R2 coefficients of 

determination (R2) between 0.62 and 1 and d mean absolute percentage error (MAPE) generally 

below 10% [10].  

While most studies have used reported clinical data, integrating parallel data to develop a fuller 

image of public health status in a population might be useful to develop better epidemiological 

models. In this regard, data arising from wastewater-based surveillance (WBS) might be a useful 

resource, as it allows for time and resource-efficient study of a population by tracking and 

quantifying specific biomarkers in wastewater samples, which are representative of the entire 

population within the catchment area of the sampling point of interest [11]. Moreover, WBS data 

shows potential for risk assessment models as they can represent cases regardless of the level of 

individual clinical cases or the onset of symptoms [12]. Moreover, as studies have demonstrated that 

COVID-19 has an incubation period of around 5 to 7 days [13], increases in the load of viral genetic 

materials in wastewater samples may increase noticeably before the onset of epidemiological waves. 

However, it is important to note that WBS data should not be analyzed in isolation and should be 

integrated into epidemiological reports to obtain valuable information, as high biomarker variability, 

the lack of a standardized normalization technique and interference due to high matrix complexity 

are ongoing challenges for the interpretation of WBS data for public health assessment [14].  

Following this line, this work reports on the integration of WBS data obtained at key sampling 

points in the Monterrey Metropolitan Area (MMA, 5,341,171 inhabitants) and Mexico City (CDMX, 

21,804,515 inhabitants) between January 2021 and June 2022 into simple, statistic prediction models 

based on machine-learning algorithms. Two main approaches were followed: clustering of weekly 

datapoints as above or below a threshold indicative of a COVID-19 outbreak, and regression models 

offering an estimate of the seven-day average new reported daily COVID-19 cases adjusted for 

population size. 
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2. Materials and Methods 

2.1 Data Aquisition 

Data on SARS-CoV-2 viral load in wastewater samples (presented as viral genome copies per 

liter of wastewater) originating from the MMA and CDMX was compiled from the dataset previously 

obtained from the WBS platform operated by our laboratory between January 2021 and March 2022 

[15]. Briefly, 1 liter grab samples were obtained weekly from designated sampling sites encompassing 

both facilities of the largest private higher education institution in Mexico and wastewater treatment 

plants (WWTPs), transported to the central laboratory and concentrated using a polyethylene glycol 

and NaCl-based method [16]. RNA was extracted using the DNA/RNA Magnetic Bead Kit (IDEXX, 

Westbrook, Maine) adapted for automation using a KingFisher™ Flex instrument (Thermo Fisher, 

Waltham, Massachusetts), and SARS-CoV-2 viral load was determined through the SARS-CoV-2 RT-

qPCR Test kit for wastewater samples (IDEXX) on a QuantStudio 5 instrument (Applied Biosystems, 

Waltham, Massachusetts). Sampling sites within the two university campuses (one in the MMA and 

one in CDMX) were clustered together, and the data captured each week includes the maximum viral 

load obtained across all sampling sites, the percentage of sampled buildings (calculated as the ratio 

between the number of samples obtained each week and the total amount of sampling sites within 

the campus) and the percentage of buildings were viral load was detected (calculated as the ratio 

between samples that tested positive for SARS-CoV-2 genetic materials). In samplings at WWTPs, 

only the total viral load detected was registered.  

Daily new reported COVID-19 cases for the state of Nuevo León (where the MMA is located) 

and the CDMX were obtained from the dashboard published by the National Council of Humanities, 

Sciences and Technologies (CONAHCYT) with data provided by the General Direction of 

Epidemiology, a part of the Mexican Department of Health (available at https://datos.covid-

19.conacyt.mx/). To make both time series comparable, a seven-day average of daily new cases was 

calculated for each week. Finally, data on urban mobility for both the state of Nuevo León and the 

CDMX was obtained from the COVID-19 Community Mobility Reports published by Google in 2021 

and 2022 for the Mexican state of Nuevo León (available at 

https://www.google.com/covid19/mobility/). The average of the six reported parameters was used as 

an overall indicator of mobility, and a seven-day average was calculated for each week. The complete 

database used for this study is reported in Table S1. 

2.2 PCA and Heatmap 

To observe the behavior of the obtained parameters across the study period, data normalization 

for PCA plots and heatmaps were conducted in ClustVis [17]. To ensure data robustness and 

comparability, weeks when the percentage of sampled buildings within either campus fell below 20% 

and no data from the WWTP was reported were filtered out of the database. To control the effect of 

the different population sizes, the seven-day average of daily new reported cases was inputted as the 

number of cases per 100,000 inhabitants. Data received no further transformation. For each 

parameter, data was scaled using unit variance scaling and PCA was conducted using the Singular 

Value Decomposition (SVD) method. Each data point was annotated by the city it represented (either 

MMA or CDMX), and whether it originates from a surge in clinical reports or not. Separated PCA 

plots were made classifying data points based on both criteria, and ellipses were drawn using a 95% 

level of confidence. For the heatmap, both rows and columns were clustered using the Ward 

algorithm through their degree of correlation. 

2.3 Cluster-Based Predictive Models 

For the development of cluster-based predictive models, the seven-day average of new daily 

cases was plotted across the study period for both cities and a threshold was set for each city, to 

divide the weekly data points into two groups: those above the threshold (indicating a new outbreak) 

and those below the threshold (indicating the basal condition during the pandemic). For the MMA, 
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the threshold was set at 200 daily cases, while for CDMX it was set at 1000 daily cases, which is 

consistent with the different population sizes. For each week, it was evaluated whether the seven-

day average of new daily cases was above the threshold in the current week, and one and two weeks 

into the future, in accordance with the estimated incubation period reported by the WHO (of up to 

14 days) [13] to test if an increase in the viral loads detected in wastewater samples could be detected 

before a surge in reported cases. For each parameter, data was scaled using unit variance scaling and 

did not receive any transformation.  

The resulting datasets for both cities were combined into one and divided randomly into a 

training set and a testing set. Clustering algorithms were developed using the fitcauto function in 

Matlab R2024a, running a Bayesian optimizer for 100 iterations for optimization with the default 

option to fold the training data five times for cross-validation. During training, whether clinical cases 

were above or below the set threshold in the same week as wastewater sampling was conducted. 

Only the training subset was fed into the learning function. Given the characteristics of the data being 

studied (small dataset with low dimensionality), the optimization process was centered around linear 

learners. Clustering model performance was evaluated by calculating its accuracy rate, sensitivity, 

specificity, and Youden’s index on both training and testing subsets. If performance metrics were 

found to be too different for both models, a sign of possible overfitting, training was repeated. After 

obtaining a suitable model, it was used to make forecasts one and two weeks into the future, which 

were evaluated using the same metrics mentioned above. 

2.4 Regression-based Predictive Models 

For the development of regression-based predictive model, only the maximum viral load from 

each university campus, the viral load from the selected WWTP from each city and the weekly 

average change in mobility was considered, while daily cases were set as the output of the model. 

Viral load data was transformed using the decimal logarithm of the viral load from each location plus 

one (to avoid indefinite numbers). The seven-day average daily cases were expressed as a ratio per 

100,000 inhabitants to control for different population sizes across the two cities. The transformed 

values for each parameter were then scaled using unit variance scaling.  

The resulting datasets for both cities were combined into one and divided randomly into a 

training set and a testing set. Regression models were obtained using the “fitrauto” function in 

Matlab R2024a, running a Bayesian optimizer for 100 iterations for optimization with the default 

option to fold the training data five times for cross-validation. Only the training subset was fed into 

the learning function. Learner algorithms were selected automatically by the training function to 

better suit the characteristics of the data (small dataset, low dimensionality, linear behavior). Model 

performance was evaluated using Root Mean Square Error (RMSE), R² coefficient, and Mean 

Absolute Percentage Error (MAPE) on both training and testing subsets. If performance metrics were 

found to be too different for both models, a sign of possible overfitting, training was repeated. 

3. Results 

3.1. PCA and Heatmap 

After filtration, the resulting database included 48 data points, 29 from the MMA and 19 from 

CDMX. The main limiting factor in the MMA was the large number of sampling sites encompassed 

within the studied university campus, which limited our ability to reliably sample them all across the 

entire study period. In CDMX, while the studied university campus was significantly smaller, our 

capacity to take samples from urban wastewater reduced the amount of available data. 19 of the 48 

data points originated during reported surges in clinical reports, while the remaining 29 come from 

periods between surges.  

PCA plots for the data classified by city of origin and the reported epidemiological situation in 

the corresponding time frame are presented in Figure 1A and 1B, respectively. As expected, no clear 

separation between the two cities is observed when plotting PC1 (accounting for 40.2% of variance) 

against PC2 (accounting for 26.1% of variance), indicating that transmission dynamics are likely 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2024 doi:10.20944/preprints202410.1297.v1

https://doi.org/10.20944/preprints202410.1297.v1


 5 

 

similar after controlling for population size. In fact, the average change in mobility presented in the 

COVID-19 Community Mobility Reports published by Google during the study period, reported as 

percentage change from a pre-pandemic baseline, show similar behaviors in both cities (Figure 1C). 

This is to be expected, since the interconnectedness of population centers due to economic 

globalization has been noted as a driver in the rapid spread of SARS-CoV-2 [18]. Overall, similar 

patterns of surges and reductions in clinical cases, and comparable containment measures can be seen 

in both cities. As a result, datapoints can be reliably combined for modeling after controlling for the 

different population sizes. This is consistent with reports by [19], where surges in COVID-19 cases at 

regional and country levels across 2020 and 2021 were found to appear at similar times and have 

similar durations. 

Figure 1. Principal component analysis for the database used in the study, classified by city (A) and 

by the presence or absence of surges in COVID-19 clinical reports (B). Changes in urban mobility 

during the study period, expressed as a percentual change from the pre-pandemic baseline (C). 

Meanwhile, classifying data points by whether a surge in clinical cases was reported in the 

corresponding week yields some degree of separation in the PCA plot, although no clear clusters 

could be fully defined. The ellipses are drawn around the area of 95% confidence for each group 

overlap. However, data points corresponding to periods between surges (in red) show low dispersion 

along the PC1 (accounting for 40.2% of variance) and PC4 (10% of variance) axis, while the data points 

corresponding to surges (in blue) in clinical cases were noticeably more dispersed, most of them 

falling outside the cluster of data points corresponding to periods between surges. This indicates that 

differential patterns in the parameters of interest exist, although some degree of confusion in the 

model is to be expected.  

The obtained heatmap is presented in Figure 2. Observations, presented in the columns, were 

clustered into three groups: one where data points taken during surges in clinical cases were 

overrepresented (14/19 data points), shown in the left; one where weeks in between surges are 

overrepresented (18/19 data points), shown in the right; and a middle group, composed of ten data 

points, that remained ambiguous. This degree of confusion during clustering is consistent with the 

overlap observed in the PCA plot presented in Figure 1B.   
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Figure 2. Heatmap presenting correlations between the parameters integrated into the database. For 

both rows and columns, clustering was conducted using the Ward algorithm based on correlation 

distances. 

When it comes to the parameters, presented in the rows, the number of new cases by 100,000 

inhabitants showed correlation to both the viral load found in samples from the WWTPs, the 

maximum viral load found on any sample from the university campus studied in each city and the 

rate of sampling sites where viral load was detected on each campus, all of them increasing during 

surges in clinical case reports. Meanwhile, average urban mobility and the percentage of tested 

buildings on each campus showed the inverse behavior, being placed on a separate cluster.   

Interestingly, data points in the middle cluster showed higher rates of positive buildings while 

sampling coverage remained close to the average on each campus, but no significant surge in clinical 

reports is observed. Data in this middle cluster comes from May and June 2022, after urban mobility 

for both cities went back to pre-pandemic levels and are likely an anticipation of the surge in cases 

that lead to the fifth wave of COVID-19 cases in Mexico, which took place during the summer of 2022 

[20]. This is consistent with our previous report, where we demonstrated that Omicron variants 

circulated in wastewater from university campuses across Mexico between January and March 2022 

[21]. This observation supports the potential of decentralized, building by building WBS platforms 

in high affluence areas, such as university campuses, as the rate of positive samples taken each week 

can provide relevant information for decision-making when overall populational dynamics are 

accounted for. Similar observations were reported by Wolken et al. [22], from data using a similar 

WBS platform across preK-12 schools in Houston operated between December 2020 and May 2022.   

3.2  Cluster-based risk asessment model 

For training and testing of cluster-based risk assessment models, 30/48 and 18/48 of the total 

observations in the dataset, combining data from both the MMA and CDMX were used, respectively. 

After optimization, the resulting cluster-based risk assessment model was built using a linear 

classification discriminant. Model performance metrics are presented in Table 1. In short, the model 
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had an accuracy of 0.833 for both training and test subsets, indicating a clustering capacity close to 

that of the heatmap presented in the previous subsection. 

The confusion charts presented in Figure 3A,B indicate that the model generalizes well, using 

general trends in WBS data to separate data points linked increased clinical reports were observed 

and those linked to periods between surges instead of amplifying unrelated background variances. 

However, the observed Youden’s index decreased slightly, from 0.63 in the training subset to 0.58 in 

the test subset. After the optimized model proved satisfactory, it was used to provide forecasts one 

and two weeks into the future using the same dataset to investigate whether the trends observed 

during clustering could be used for risk-. As seen in Table 1, predictions one week into the future 

showed an accuracy rate of 0.79 and a Youden of 0.53. Predictions two weeks into the future had a 

more modest outcome, with metrics of 0.73 and 0.43, respectively. As seen in the confusion charts 

presented in Figure 3C,D, the model had a certain tendency to yield false negative predictions (7/48 

for one-week predictions and 10/48 for two-week predictions).   

Figure 3. Confusion charts obtained by the clustering-based model, predicting surges in clinical 

reports (denoted here as 1) and spaces in between surges (denoted as 0), for the training partition of 

the current-week data (A), the testing partition (B), and forecasts one and two weeks into the future 

(C and D, respectively). 

Table 1. Performance metrics for the obtained linear discriminant classification model for detection 

and forecasting of surges in COVID-19 cases using WBS data. F1 and F2 denote forecasts one and two 

weeks into the future, respectively.   

 Training Test F1 F2 

Accuracy 0.833 0.833 0.792 0.729 

Specificity 0.941 0.917 0.897 0.885 

Sensitivity 0.692 0.667 0.632 0.545 
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Youden 0.633 0.583 0.528 0.430 

The difference is likely since SARS-CoV-2 incubation period has been found to be between 5 to 

7 days, shorter than initially expected [13], reducing the window of time in which increased viral 

loads could be found in wastewater samples before surges. Still, this supports the potential of WBS 

platforms can provide valuable information on epidemiological trends, which can be used for 

decision-making by public health authorities [23]. Moreover, sampling approaches such as this one, 

combining data from WWTPs and decentralized sampling points located at high affluency sites (in 

this case, at college campuses), can be used for more focalized preventive and containment measures, 

allowing for continued operation in such sites while keeping them from becoming transmission 

hotspots [24]. In any case, it’s important to remark that WBS data cannot be used or isolation nor is it 

a substitute to individualized clinical testing; rather, as discussed by Islam et al. [14], these 

approaches should be conducted collaboratively to obtain more robust datasets.   

3.3 Regression-based Predictive Models 

For training and testing of regression-based predictive models, 30/47 and 18/47 of the total 

observations in the dataset, combining data from both the MMA and CDMX were used, respectively. 

One data point, corresponding to data from the MMA during week 56 (January 2023) had to be 

eliminated since it represents unusually high clinical reports caused by Christmas-related increases 

in urban mobility. Moreover, insufficient sampling was conducted in the weeks prior and after this 

point due to the winter break at the institution and restricted laboratory activities in January and 

early February 2023 due to the fourth wave of contagions in Mexico [25], leaving the datapoint from 

week 56 as an outlier that hindered the effectivity of regression learners during training. After 

optimization, the resulting model was a linear regression using a least squares-based learner. Model 

performance metrics are presented in Table 2, while a plot of the predicted response against the actual 

weekly average of daily new COVID-19 cases is presented in Figure 4.    

Table 2. Performance metrics of the linear regression model obtained to predict the weekly average 

of daily new COVID-19 cases using WBS data.   

 RMSE R^2 MAPE 

Training 5.223 0.452 180.246 

Test 5.118 0.464 195.781 

 

 
Figure 4. Number of new daily COVID-19 cases predicted by the regresion-based model compared 

with the actual clinical reports.  
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In short, the model showed a consistent performance on both the training and test subsets, with 

R2 of 0.452 and 0.464, respectively, indicating that variations in viral loads in wastewater samples 

from both university campuses and WWTPs in the MMA and CDMX, urban mobility rates and the 

rate of positive samples within each of the university campuses could account for roughly half of the 

variance seen in epidemiological results. However, quantitative error remains significant: RMSE for 

the training subset was 5.223 and 5.118 for the test subset, when the average true responses were 

6.405 and 5.1712, respectively. This is consistent with the MAPE observed in both subsets, which was 

close to 200%.   

In the same line, Figure 4 shows that in data points where the actual responses were below 5 

cases per 100,000 inhabitants, the model tended to overestimate cases based on viral loads in 

wastewater samples, while it underestimated when the actual responses were above 5 cases per 

100,000 inhabitants. A possible explanation for this indicates two main shortcomings in the dataset. 

The first is its size, as observations where campus coverage was below 20% and no corresponding 

sampling at the city’s selected WWTP was reported were filtered out of the database before training. 

Second, surges in COVID-19 case reports were followed by restrictions in campus occupancy rates 

and reduced urban mobility. While urban mobility could be accounted for, no direct data on campus 

occupancy or clinical testing within the institution was available to the team. Integrating such 

parameters into the model may increase the variance in the responses explained by the model. While 

some of these shortcomings could be addressed using non-linear regression learners, overfitting 

remains a concern in such models, especially when using datasets published by public health 

authorities, which tend to be incomplete [26].   

The models reported here show significantly lower predictive performance when compared to 

those reviewed by Ghafouri-Fard et al. [10], which offer forecasts based on previous clinical reports, 

weather data and even internet search history with R2 values between 0.65 and 1 and MAPE values 

below 10%. However, the use of data from WBS platforms for predictive models has proven 

significantly more difficult. In a study by Lai et al. [27] investigating the potential of time series 

machine learning to make forecasts of COVID-19 cases using both epidemiological reports WBS data 

from the states of Pennsylvania and Wyoming, the lowest MAPE values observed were still around 

39%, with some WBS-based models still being outperformed by “naïve” models, which did not take 

WBS data into account for training. A similar approach by Ai et al. [28] recommends the use of long 

short-term memory to obtain highly generalizable models that could account for a higher degree of 

variance in the response (R2 of up to 0.81 in the test set), while also highlighting the importance of 

avoiding overfitting when using such learner algorithms. This is because detection and quantification 

of viral loads in wastewater samples shows a high level of variability due to unsteady wastewater 

flow in the sampling sites and degradation of genetic materials because of external factors, such as 

pH, temperature, enzymatic activity, and light exposure [29]. Taking these factors into account 

during feature engineering has proven relevant by the two studies mentioned previously, although 

data allowing for such fine-tuned predictive models was unavailable for the present study.    

4. Discussion 

This work presents an evaluation of simple machine-learning models using linear learners for 

risk assessment using WBS data from both university campuses and WWTPs in CDMX and MMA, 

the two largest cities in Mexico. Such models were sufficient to observe correlations between viral 

loads in wastewater samples and offer forecasts that could be used for risk management and 

contention in high facilities, like educative centers or workspaces, although their capacity for long-

term forecasting may be limited when compared to more sophisticated models, like long short-term 

memory regressions. The ability to use finer models, however, was limited by the size and the 

dimensionality of the dataset, as proven by the higher performance of models that took 

environmental factors that could drive genetic material degradation into account, such as wastewater 

flow at the sampling sites, pH and temperature, among others [27,28]. Integrating viral load data 

from a wider arrange of sampling sites located across the country with relevant epidemiological 

factors at play (mobility within cities, vaccination rates, test positivity rates) could be used to provide 
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models that can better represent trends across the country. In any case, adequate measures should be 

taken to prevent model overfitting, especially if non-linear models are used [26].  

In any case, drawing correlations between the quantification of disease-related biomarkers and 

the prevalence of the disease of interest within a population remains an area of opportunity for 

developments in WBS. McMahan et al. [30] integrated wastewater measurements into a susceptible-

exposed-infectious-recovered (SEIR) model which led to an estimation of the rate of COVID-19 cases 

underreporting of roughly 11 unreported cases for each reported case, which closely matched 

previous estimates by public health officials for the area at the time of study (15 unreported cases for 

each reported case). Melvin et al. [31] proposed a novel normalization and standardization process, 

the Melvin Index, to control the impact of site variability during sampling in qPCR-based SARS-CoV-

2 genetic material quantification. Using this method, surges in clinical reports could be predicted over 

up to 15-17 days using data from several sampling sites across the state of Minnesota, USA. Hewitt 

et al. [32] related the frequency of SARS-CoV-2 viral detection at a managed isolation and quarantine 

facility to the one seen at a WWTP during a window of time at which incidence was reportedly low. 

By relating both measures, they estimated the possibility of detecting SARS-CoV-2 genetic materials 

in wastewater from WWTPs, representative of the overall population, at 87% when prevalence in the 

population was at 0.01%.   

Recently, Mohring et al. [33] reported on an approach for a finer estimate of COVID-19 cases 

from WBS data where a cohort was regularly followed during the study period using self-

administered antigen tests. They reported the need to use both a scaling factor and a delay window 

to relate SARS-CoV-2 viral loads in wastewater samples with COVID-19 prevalence. Interestingly, 

the delay window they found, around 5 days, closely matches the incubation period of the virus (Zaki 

and Mohamed, 2021).   

Development of statistical models integrating WBS data for risk assessment will likely be useful 

during the first stages of future pathogen outbreaks as a first tool for decision-making if the modeled 

pathogen proves to have similar transmission routes to the novel pathogen of concern. For instance, 

knowledge obtained from modelling the COVID-19 pandemic could be useful in case of an outbreak 

of a highly transmissible, airborne, viral disease, such as a possible increase in zoonotic transmission 

of Influenza A H5N1, as it has been reported recently (Dye & Barclay, 2024). 

5. Conclusions 

In this paper, a database resulting from the detection and quantification of SARS-CoV-2 viral 

loads in wastewater samples originating from university campuses and WWTPs in the MMA and 

CDMX were used to train both clustering and regression models built using linear learner algorithms 

to study trends in the evolution of daily new COVID-19 during the pandemic. While linear 

classification discriminant analysis could distinguish between wastewater data obtained during 

clinical report surges and periods between surges at 83.3% accuracy, and the trends observed by the 

model could be used for forecasting, the performance of regression-based models remained limited 

due to low dimensionality in the data, as relevant environmental measurements for determination of 

sample integrity, such as pH, temperature or wastewater flow at the sampling sites were not 

available. While the approach explored here can be used for simple risk assessment for the 

deployment of adequate prevention and containment strategies within high-affluence facilities, such 

as universities or workspaces, especially in the early stages of a possible epidemiological outbreak, 

further work toward integration of more robust datasets into more complex models, capable of long-

term forecasting that could be used for future pathogens similar to COVID-19 is still needed.   

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org, Table S1. Complete database used in the study. 
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