

Review

Not peer-reviewed version

Formation of Potentially Toxic Metabolites of Polycyclic Aromatic Compounds (PAHs) in Reactions Catalyzed by Human Metabolizing Enzymes

Slobodan Petar Rendic *

Posted Date: 9 December 2024

doi: 10.20944/preprints202412.0737.v1

Keywords: polycyclic aromatic hydrocarbons; PAHs; toxic metabolites; human enzymes

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Formation of Potentially Toxic Metabolites of Polycyclic Aromatic Compounds (PAHs) in Reactions Catalyzed by Human Metabolizing Enzymes

Slobodan Petar Rendic

Independent scientist; slobodanrendic@yahoo.com

Abstract: Data are presented on the formation of potentially toxic metabolites of polycyclic aromatic hydrocarbons (PAHs) and the effects of the structure of the compounds on the human metabolic enzymes that catalyze the reactions and the products formed. The tabular data lists the formation of potentially toxic/reactive products. The data obtained from in vitro experiments showed that the oxidative reactions predominate (67% of the potentially toxic reactions). Sulfating reactions participate in 14%, reductions with 12%, and acetylation reactions with 7%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 58% of the reactions, aldoketo reductases (AKR) 16%, sulfotransferases (SULT) 15%, N-acetyltransferases (NAT) 6%, cytochrome P450 reductase (NPR) 3%, and a group of minor participating enzymes to the extent of 3%. Within the P450 Superfamily, P450 Family 1 (P450 1A1, 1A2, 1B1) participates to the extent of 75%, P450 3A4 with 8%, P450 2W1 with 4%, and the group of minor participating enzymes with 13%. In the C- and N-atom(s)-containing PAHs (N-PAHs), the P450 enzymes dominated with 66%, followed by NAT (14%), SULT (11%), and the group of minor participating enzymes (9%). The P450 Family 1 dominated with 67%. In the C- atom-containing group of PAHs (C-PAHs), the P450 enzymes participated with 51%. AKR with 28%, SULT with 19%, and COX and EH enzymes with 2%. Of the P450 Family 1 enzymes, P450 1A1 dominated with 41% of the reactions. The data show the dominant participation of the P450 enzymes and the effect of the N-atom presence on the toxication reactions of PAHs and the metabolites formed. Selected examples of the PAHs that are activated or proposed to form toxic species are discussed.

Keywords: polycyclic aromatic hydrocarbons; PAHs; toxic metabolites; human enzymes

The polycyclic aromatic hydrocarbons (PAHs) in the human surrounding nature are produced by different human activities, e.g. incomplete combustion processes of organic materials such as coal, oil, gas, wood, garbage, food (e.g., grilled meat and charred food), and tobacco smoke. Approaches to studying the connection between the metabolism of different types of chemicals including PAHs, and the role of individual human metabolism enzymes in the processes have been extensively studied [1–8]. The data obtained allowed the presumption that chemical carcinogens are activated to toxic species in reactions catalyzed by multiple enzymes. These identified as the major ones are P450, SULT, AKR, and NAT enzymes. In addition, a relationship between structural characteristics and the chemical nature of the toxicant and toxication reaction was identified. For instance, epoxidation reactions involve olefins and aryl rings, nitro reductions involve nitro groups, N-hydroxylation reactions involve aryl amines and heterocyclic amines, O-sulfation involves hydroxyl arylamines and benzylic alcohols, while $C\alpha$ -hydroxylation is prominent for N-nitrosamines. Analysis of the type of toxication reactions of chemical carcinogens revealed the following reactions: C-hydroxylation, Nhydroxylation, O-acetylation, O-sulfation, nitroreduction, and other reductions. Most of the reactions are oxidations, accounting for 73%, of which the most prominent were C-hydroxylation and Nhydroxylation. It was shown that chemical carcinogens, as a group of compounds, are dominantly activated by cytochrome P450 enzymes of which P450 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4 accounted for 77% of the reactions [4]. Benzo[a]pyrene (B[a]P), as a representative toxic environmental carcinogen, has been extensively investigated and discussed over time (Table 2 and references therein). In summary, the data related to the metabolism and toxicity data of B[a]P revealed the major role of Family 1 P450s (P450 1A1, 1A2, 1B1) in the metabolism of the compound with minor participation of P450 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 [6].

The present report updates and analyses the published data on metabolic toxication of PAHs as a group of environmental pollutants with suspected/proven toxic properties (mutagenic, genotoxic, carcinogenic) by human metabolizing enzymes along with the well-studied P450 enzymes. The data on 60 human enzymes that catalyze oxidative, reductive, hydrolysis, and conjugation reactions of PAHs resulting in the formation of potentially toxic metabolites or intermediates are included in the analysis (Table 1).

Table 1. Abbreviations used in the text and tables.

Table 1. Abbreviations used in the text and tables.			
Enzyme	Enzyme Name		
AADAC	Arylacetamide deacetylase		
ADH	Alcohol dehydrogenase		
AKR	Aldo-keto reductase		
AKR1A1	Aldo-keto reductase 1A1		
AKR1B1	Aldo-keto reductase 1B1		
AKR1B10	Aldo-keto reductase 1B10		
AKR1C1	Aldo-keto reductase 1C1		
AKR1C2	Aldo-keto reductase 1C2		
AKR1C3	Aldo-keto reductase 1C3		
AKR1C4	Aldo-keto reductase 1C4		
AOX1	Aldehyde oxidase 1		
CES1A	Carboxylesterase 1A		
CES2	Carboxylesterase 2		
COX	Cyclooxygenase		
COX-1	Cyclooxygenase 1		
COX-2	Cyclooxygenase 2		
EH	Epoxide hydrolase		
FMO1	Flavin-containing monooxygenase 1		
FMO2	Flavin-containing monooxygenase 2		
FMO3	Flavin-containing monooxygenase 3		
Hb	Hemoglobin		
LPO	Lactoperoxidase		
MAO A	Monoamine oxidase A		
MPO	Myeloperoxidase		
NAT	N-acetyltransferase		
NAT1	N-acetyltransferase 1		
NAT2	N-acetyltransferase 2		
NAR	Nitrate reductase		
NQO	NAD(P)H quinone oxidoreductase		

NQO1	NAD(P)H quinone oxidoreductase 1
NPR, POR	NAD(P)H-P450 reductase
NR	Nitrate reductase
P450	Cytochrome P450
P450 1A1	Cytochrome P450 1A1
P450 1A2	Cytochrome P450 1A2
P450 1B1	Cytochrome P450 1B1
P450 2A6	Cytochrome P450 2A6
P450 2B6	Cytochrome P450 2B6
P450 2C10	Cytochrome P450 2C10
P450 2C18	Cytochrome P450 2C18
P450 2C19	Cytochrome P450 2C19
P450 2C8	Cytochrome P450 2C8
P450 2C9	Cytochrome P450 2C9
P450 2C9.1	Cytochrome P450 2C9.1
P450 2C9.2	Cytochrome P450 2C9.2
P450 2C9.3	Cytochrome P450 2C9.3
P450 2D6	Cytochrome P450 2D6
P450 2E1	Cytochrome P450 2E1
P450 2F1	Cytochrome P450 2F1
P450 2J2	Cytochrome P450 2J2
P450 3A4	Cytochrome P450 3A4
P450 3A5	Cytochrome P450 3A5
P450 3A7	Cytochrome P450 3A7
P450 4A11	Cytochrome P450 4A11
P450 4B1	Cytochrome P450 4B1
P450 2W1	Cytochrome P450 2W1
PGHS	Prostaglandin H synthase
РО	Peroxidase
SULT	Sulfotransferases
SULT1A1	Sulfotransferase 1A1
SULT1A2	Sulfotransferase 1A2
SULT1A3	Sulfotransferase 1A3
SULT1B1	Sulfotransferase 1B1
SULT1C1	Sulfotransferase 1C1
SULT1C2	Sulfotransferase 1C2
SULT1C3	Sulfotransferase 1C3
SULT1E1	Sulfotransferase 1E1
SULT2A1	Sulfotransferase 2A1
SULT2E1	Sulfotransferase 2E1

4

XOR	Xanthine oxidoreductase

The analysis results are summarized in 290 alphabetically organized and tabularly presented records (Table 2).

Table 2. Examples of participation of human drug-metabolizing enzymes in forming potentially toxic products of polycyclic aromatic hydrocarbons (PAHs) and metabolites.

Compound or Metabolite	Compound Category/Sour	Enzyme	Reactions Reactive	and /Toxic	References
	ce		Product(s) For	rmation	
	/Metabolite/T				
	oxic Effects				
	Metabolite of		O-Sulfation,	sulfo-	
(-)-1-	ethylpyrene,		conjugate,		
Hydroxyethylpyrene	research	SULT1A1	electrophilic		[14,15]
J J 13	chemical		nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
(-)-1-			conjugate,		
Hydroxyethylpyrene	As above	SULT1A2	electrophilic		[15]
J J J 1 J			nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
(-)-1-			conjugate,		
Hydroxyethylpyrene	As above	SULT1C1	electrophilic		[15]
<i>y</i> -			nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
(-)-1-			conjugate,		
Hydroxyethylpyrene	As above	SULT1C2	electrophilic		[15]
J J J 1 J			nitrenium	ion	
			formation		
	Metabolite of				
	B[g]C, fossil				
(-)-R,R and $(+)-S,S-$	fuels, and				
Benzo[g]chrysene-	organic	AKR1B1	Oxidation, o-q	uinone	[16]
11,12-diol	materials				
	combustion				
	product				
(-)-R,R- and $(+)-S,S-$		AMDADAG			54.63
Benzo[g]chrysene-	As above	AKR1B10	Oxidation, o-q	uinone	[16]

(+)- Benz[a]anthracene- 35,4S-diol	Metabolite of B[a]A, fossil fuels, and organic materials combustion	AKR1B1	Oxidation, o-quinone	[16]
	products tobacco, smoke constituent			
(+)- Benz[a]anthracene- 3S,4S-diol	As above	AKR1B10	Oxidation, o-quinone	[16]
(+)-Benzo[<i>a</i>]pyrene-7 <i>S</i> ,8 <i>S</i> -dihydrodiol	Metabolite of B[a]P	AKR1B1	Oxidation, o-quinone	[16]
(+)-Benzo[<i>a</i>]pyrene-7 <i>S</i> ,8 <i>S</i> -dihydrodiol	As above	AKR1B10	Oxidation, o-quinone	[16]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	AKR1C1	Oxidation, <i>o</i> -quinone, and reactive oxygen species (ROS)	[16–20]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	AKR1C3	Oxidation, <i>o</i> -quinone, and reactive oxygen species (ROS)	[16,17,19,20]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	AKR1C4	Oxidation, <i>o</i> -quinone, and reactive oxygen species (ROS)	[16,17,19,20]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	AKR1C2	Oxidation, <i>o</i> -quinone, and reactive oxygen species (ROS)	[16,17,19,20]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	MAO 2	Oxidation, peroxyl radicals	[21]
(±)- and (-)- Benzo[a]pyrene-7,8- dihydrodiol ((±)- and (-)-B[a]P-7,8-diol)	As above	COX-1	Oxidation, peroxyl radicals	[21]

(±)-, (-)-, and (+)- Benzo[<i>a</i>]pyrene-7,8- dihydrodiol ((±)-, (-)-, and (+)-B[a]P-7,8- diol)	As above	P450 1A1	trans-(anti)-7,8- Dihydroxy-9,10- epoxy-7,8,9,10- tetrahydro- formation, trans- diolepoxide, oxidation *	[1,3,22–25,27– 32,34,35,38,39,127]
(±)-, (-)-, and (+)- Benzo[<i>a</i>]pyrene-7,8- dihydrodiol ((±)-, (-)-, and (+)-B[a]P-7,8- diol)	As above	P450 1A2	trans-(anti)-7,8- Dihydroxy-9,10- epoxy-7,8,9,10- tetrahydro- formation, trans-diol epoxide, oxidation	[1,22–24,38,40–42]
(±)-, (-)-, and (+)-Benzo[<i>a</i>]pyrene-7,8-dihydrodiol ((±)-, (-)-, and (+)-B[<i>a</i>]P-7,8-diol)	As above	P450 1B1	trans-(anti)-7,8- Dihydroxy-9,10- epoxy-7,8,9,10- tetrahydro- formation, trans-diol epoxide (low Km, high activity, high efficiency), oxidation *	[1,24,25,27,31,36– 38,41,43–45]
(±)-, (+)- and (-)-1- Hydroxyethylpyrene	Metabolite of ethylpyrene, research chemicals	SULT2A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation	[14,15,46]
(±)-, (+)- and (-)-1- Hydroxyethylpyrene	As above	SULT1C3	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation	[46]
(±)-, (+)- and (-)-1- Hydroxyethylpyrene	As above	SULT1E1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation *	[14,15,46]

(±)-Benzo[a]pyrene- 7,8-dihydrodiol ((±)- B[a]P-7,8-diol)	Metabolite of B[a]P	AKR1A1	Oxidation, <i>o</i> -quinone formation, preferential for (-)-7 <i>R</i> ,8 <i>R</i> -oxidation *	[16,17,31,36,37,47,48]
(±)-Benzo[a]pyrene- 7,8-dihydrodiol ((±)- B[a]P-7,8-diol)	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation	[16]
(±)-Benzo[a]pyrene- 7,8-dihydrodiol ((±)- B[a]P-7,8-diol)	As above	P450 2W1	Oxidation, diolepoxide formation	[43]
1,10-Diazachrysene [1,10-DAC)	Chrysene derivative	P450 1A2	Oxidation, enamine epoxide formation	[11,12]
1,2-Dihydro-1,2- dihydroxy-6- nitrochrysene (trans)	Metabolite of 6- nitrochrysene, nitroarene	P450 3A4	Oxidation	[50]
1,6-Dinitropyrene (1,6-DNP)	Environmental pollutants, diesel engine combustion by-products, nitroarene, pyrene derivative	P450 3A4	Nitroreduction, aminopyrene, 4- hydroxylamine, formation	[13]
1,6-Dinitropyrene (1,6-DNP)	As above	P450 1B1 (co- expressed with NPR)	1-Aminopyrene formation, nitroreduction/O-acetylation, at low concentrations, electrophilic nitrenium ion formation	[9]
1,6-Dinitropyrene (1,6-DNP)	As above	NPR	Reduction to 1-Nitro- 6-nitrosopyrene, reactive oxygen species formation	[51]
1,8-Dinitropyrene (1,8-DNP)	As above	NPR	Reduction to 1-Nitro- 8-nitrosopyrene, reactive oxygen species formation	[51]

1,8-Dinitropyrene (1,8-DNP)	As above	NPR	1-Aminopyrene formation, nitroreduction/O-acetylation, at low concentrations, electrophilic nitrenium ion formation *	[9]
1,8-Dinitropyrene (1,8-DNP)	As above	P450 3A4	Epoxidation C4,5-, oxidation, minor reaction	[10,13,52]
1,8-Dinitropyrene (1,8-DNP)	As above	NAT1	O-Acetylation after nitroreduction, electrophilic nitrenium ion formation	[53]
1,8-Dinitropyrene (1,8-DNP)	As above	NAT2	O-Acetylation after nitroreduction, electrophilic nitrenium ion formation *	[53]
1,8-Dinitropyrene (1,8-DNP)	As above	P450 1A1 (co- expressed with NPR)	1-Aminopyrene formation, nitroreduction/O- acetylation, at low concentrations, electrophilic nitrenium ion formation *	[9]
10- Azabenzo[<i>a</i>]pyrene	Environmental pollutants, gasoline exhaust, and cooking emissions compounds, aza-aromatic	P450 1A2	Oxidation at pyridine moiety **	[54]
10- Azabenzo[<i>a</i>]pyrene	As above	P450 1A1	Oxidation, minor enzyme *	[54]

10-Hydroxy-7,8,9,10- tetrahydrobenzo[<i>a</i>]p yrene	Metabolite of B[a]P	SULT1E1	O-Sulfation, sulfo- conjugate, electrophilic nitrenium ion formation	[55]
12- Methylbenz[<i>a</i>]anthra cene-3,4-diol	Metabolite of 12- methylbenz[a] anthracene	AKR1A1	Oxidation, <i>o</i> -quinone formation	[48]
1-Acetylpyrene	Industrial chemicals, carbonyl-pyrene	SULT2E1 (in the presence of NADPH-fortified human liver cytosol)	O-Sulfation, sulfo- conjugate, electrophilic nitrenium ion formation * (after reduction)	[56]
1-Aminopyrene	Metabolite of 1-nitropyrene, industrial chemicals, arylamine	P450 1A1	Oxidation, N- hydroxylation, and nitrenium ion formation via O- acetylation, electrophilic nitrenium ion formation	[10]
1-Aminopyrene	As above	P450 1A2	Oxidation, N- hydroxylation, and nitrenium ion formation via O- acetylation, electrophilic nitrenium ion formation *	[10,57–59]
1-Aminopyrene	As above	P450 1B1	Oxidation, N- hydroxylation, and nitrenium ion formation via O- acetylation, electrophilic nitrenium ion formation *	[10]
1-Aminopyrene	As above	P450 3A4	Oxidation, N-hydroxylation	[10]

-1	0	
- 1	ı	
_	·	

			O-Sulfation,	sulfo-	
	Fluorescent		conjugate,		
1-Formylpyrene	dye, carbonyl-	SULT2A1	electrophilic nitrenium	:	[56]
	pyrene			ion	
			formation	(after	
			reduction)	16	
			O-Sulfation,	sulfo-	
			conjugate,		
1-Hydroxy-3-	3.6 . 1 . 11		electrophilic		
methylcholanthrene	Metabolite of	SULT2A1	nitrenium	ion	[56]
(1-OH-MC)	3-MC		formation,		
			electrophilic		
			nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
1-	Metabolite of		conjugate,		
Hydroxymethylpyre	1-MP	SULT1A1	electrophilic		[14,15,46,60,63]
ne (1-HMP)	1 1111		nitrenium	ion	
			formation *		
			O-Sulfation,	sulfo-	
1-			conjugate,		
Hydroxymethylpyre	As above	SULT1A2	electrophilic		[15,56,63]
ne (1-HMP)			nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
1-			conjugate,		
Hydroxymethylpyre	As above	SULT1A3	electrophilic		[14,15,60]
ne (1-HMP)			nitrenium	ion	
			formation		
			O-Sulfation,	sulfo-	
1-			conjugate,		
Hydroxymethylpyre	As above	SULT2E1	electrophilic		[56]
ne (1-HMP)			nitrenium	ion	
			formation *		
			O-Sulfation,	sulfo-	
1-			conjugate,		
Hydroxymethylpyre	As above	SULT1C2	electrophilic		[56]
ne (1-HMP)			nitrenium	ion	
•			formation		

1- Hydroxymethylpyre ne (1-HMP)	As above	SULT2A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation, electrophilic nitrenium ion formation *	[56]
1-Methylpyrene (1-MP)	Wood, diesel oil, and gasoline fuels incomplete combustion products, pyrene derivatives.	SULT2A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation * (after hydroxylation)	[14,15,60]
1-Nitro-6- nitrosopyrene	Metabolite of 1,6- dinitropyrene, nitroarene, pyrene derivative	POR	Nitroreduction, reactive oxygen species formation	[51]
1-Nitro-8- nitrosopyrene	Metabolite of 1,8- dinitropyrene, nitroarene	POR	Nitroreduction, reactive oxygen species formation	[51]
1-Nitropyrene (1-NP)	Environmental pollutants, diesel engine combustion by-products, nitroarene, pyrene derivative	P450 1B1 (co- expressed with NPR)	1-Aminopyrene formation, nitroreduction, and O-acetylation, at low concentrations, electrophilic nitrenium ion formation, epoxidation at high concentrations*	[10]
1-Nitropyrene (1-NP)	As above	P450 1A1	Oxidation, ring oxidation *	[10,13,64]
1-Nitropyrene (1-NP)	As above	P450 1B1 (co- expressed with NPR)	Oxidation, nitroreduction,	[10,64]

			epoxidation, ring oxidation *,**	
1-Nitropyrene (1-NP)	As above	P450 3A4	Oxidation, epoxidation, ring oxidation*	[10]
2,3-Dihydroxy-2,3-dihydrofluoranthene	Metabolite of fluoranthene	P450 1B1	Oxidation	[3]
2- Acetylaminofluorene (2-AAF)	Metabolite of aminofluorene, arylamine	P450 1A2	N-Hydroxylation, oxidation *	[24,40,52,65,67–69]
2- Acetylaminofluorene (2-AAF)	As above	NAT1	O-Acetylation after N-hydroxylation, electrophilic nitrenium ion formation, electrophilic nitrenium ion formation*	[69]
2- Acetylaminofluorene (2-AAF)	As above	P450 1A1	N-Hydroxylation, oxidation	[1,24,67]
2-Aminoanthracene (2AA)	Research chemicals, arylamine	P450 1A1	N-Hydroxylation, oxidation *	[1,3,24,70]
2-Aminoanthracene (2AA)	As above	P450 1A2	N-Hydroxylation, oxidation (high activity) *,**	[10,24,40,57–59,65,70–72]
2-Aminoanthracene (2AA)	As above	P450 1B1	N-Hydroxylation, oxidation (high activity) *	[1,24,43,70]
2-Aminoanthracene (2AA)	As above	P450 2E1	N-Hydroxylation, oxidation	[70]
2-Aminoanthracene (2AA)	As above	P450 2W1	Oxidation	[43]
2- Aminodipyrido[1,2- a:3,2'-d]-imidazole (Glu-P-2)	Cooked meat and fish compounds, a component of	P450 1A2	Oxidation	[40,52,65]

10	

	tobacco smoke, heterocyclic amine			
2-Aminofluorene (2-AF)	Research chemicals, fluorene derivative, arylamine	P450 1A1	N-Hydroxylation, oxidation	[1,24,25,70]
2-Aminofluorene (2-AF)	As above	P450 1B1	N-Hydroxylation, oxidation *	[1,24,25,43,70]
2-Aminofluorene (2-AF)	As above	P450 2E1	N-Hydroxylation, oxidation *	[70]
2-Aminofluorene (2-AF)	As above	P450 2W1	Oxidation, diolepoxide formation	[43]
2-Aminofluorene (2-AF)	As above	P450 3A4	Oxidation, ring oxidation	[70,73]
2-Aminofluorene (2-AF)	As above	P450 3A7	Oxidation, ring oxidation	[73]
2-Aminofluorene (2-AF)	As above	P450 4B1	N-Hydroxylation, oxidation	[74,75]
2-Aminofluorene (2- AF)	As above	NAT1	O-Acetylation after N-hydroxylation, electrophilic nitrenium ion formation	[76,77]
2-Hydroxy-3- methylcholanthrene 2-OH-MC)	Metabolite of 3-MC	SULT2A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation	[56]
2- Hydroxymethylpyre ne, 2- pyrenemethanol	Metabolite of methylpyrene, research chemical	SULT2A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation	[55]
2-Naphthylamine (β- NA)	Industrial chemicals, used in the production of azo dyes,	P450 1A2	N-Hydroxylation, oxidation	[40,52,65,69,70,82]

-1	
- 1	/1
1	7

	tobacco smoke compounds,			
2-Naphthylamine (β-NA)	As above	NAT1	O-Acetylation after N-Hydroxylation, electrophilic nitrenium ion formation	[69]
2-Nitroanisole	Environmental pollutants, industrial chemicals, nitroarene	XOR	Nitroreduction to hydroxylamine	[83]
2-Nitrobenzanthrone (2-NBA)	Ambient air pollutants, nitroarene	NAT2	O-Acetylation (after nitroreduction to hydroxylamine), electrophilic nitrenium ion formation	[84]
2-Nitrobenzanthrone (2-NBA)	As above	SULT1A1	O-Sulfation, sulfoconjugate (after nitroreduction to hydroxylamine), electrophilic nitrenium ion formation	[84]
2-Nitrofluoranthene (2-NF)	As above	P450 1B1 (co- expressed with NPR)	1-Aminopyrene formation, nitroreduction/O-acetylation, at low concentrations	[9]
2-Nitrofluorene (2-NF)	As above	NAT1	O-Acetylation after nitroreduction, electrophilic nitrenium ion formation	[77]
2-Nitronaphthalene	Industrial chemicals, nitroarene	P450 1A1	Oxidation	[78]
2-Nitropyrene (2-NP)	Environmental pollutants,	P450 1A1	Oxidation, ring oxidations	[24,64]

	diesel engine combustion by-products, nitroarene		Oxidation, ring	
2-Nitropyrene (2-NP)	As above	P450 1B1	Oxidation, ring oxidations *	[1,24,64]
3,6- Dinitrobenzo[e]pyre ne (DNBeP)	Environmental pollutants, surface soil, and airborne particle contaminants, nitroarene	P450 1A1, NPR, OAT2	Nitroreduction and O-acetylation by NAT enzymes, electrophilic nitrenium ion formation	[79]
3,6- Dinitrobenzo[e]pyre ne (DNBeP)	As above	P450 1A2, NPR, OAT2	Nitroreduction and O-acetylation by NAT enzymes, electrophilic nitrenium ion formation	[79]
3,6- Dinitrobenzo[<i>e</i>]pyre ne (DNB <i>e</i> P)	As above	P450 3A4, NPR, OAT2	Nitroreduction and O-acetylation by NAT enzymes, electrophilic nitrenium ion formation	[79]
3,6- Dinitrobenzo[e]pyre ne (DNBeP)	As above	POR	Nitroreduction and O-acetylation by NAT enzymes, electrophilic nitrenium ion formation	[79,80]
3,9- Dinitrofluoranthene	Environmental pollutants, combustion fossil fuels (e.g., diesel engine) products, and research chemicals, fluoranthene	SULT1A1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation, electrophilic nitrenium ion formation * (after nitroreduction to hydroxylamine)	[81]

	derivative,						
	nitroarene						
	Metabolite of		N-Hydroxylation				
3-	3-		after deacetylation				
Acetylaminobenzant	nitrobenzanthr	P450 1A2	concentration-	[85,87]			
hrone (3-Ac-ABA)	one (3-NBA),		dependent),				
	arylamine		oxidation				
			O-Acetylation after				
			deacetylation and N-				
2			hydroxylation, at	after deacetylation concentration— [85,87] dependent), oxidation O-Acetylation after deacetylation and N-hydroxylation, at higher concentrations, electrophilic nitrenium ion formation * O-Acetylation after deacetylation and N-hydroxylation, at higher concentrations, electrophilic nitrenium ion formation * O-Acetylation after deacetylation and N-hydroxylation, at higher concentrations, electrophilic nitrenium ion formation * O-Sulfation, sulfoconjugate, after deacetylation and N-hydroxylation, at higher [85] concentrations, electrophilic nitrenium ion formation * O-Sulfation, sulfoconjugate, after deacetylation, sulfoconjugate, after deacetylation, sulfoconjugate, after deacetylation, at higher concentrations, at higher concentrations [56,88]			
3-	A I	NIATT1	higher	oncentration- lependent), oxidation O-Acetylation after leacetylation and N- nydroxylation, at nigher oncentrations, electrophilic nitrenium ion ormation * O-Acetylation after leacetylation and N- nydroxylation, at nigher leacetylation after leacetylation and N- nydroxylation, at nigher oncentrations, electrophilic nitrenium ion ormation * O-Sulfation, sulfo- onjugate, after leacetylation and N- nydroxylation, at nigher leacetylation and N- nydroxylation, sulfo- leacetylation and N- nydroxylation, at nigher leacetylation and N- nydroxylation, sulfo- leacetylation and N- nydroxylation, at nigher leacetylation and N- nydroxylation, sulfo- leacetylation and N-			
Acetylaminobenzant	As above	NAT1	concentrations,	[85]			
hrone (3-Ac-ABA)			electrophilic				
			nitrenium ion				
			formation *				
			O-Acetylation after				
			deacetylation and N-				
2			hydroxylation, at				
3-) I A TTO	higher	1051			
Acetylaminobenzant	As above	NAT2	concentrations,	[85]			
hrone (3-Ac-ABA)			electrophilic				
			•				
			formation *				
			O-Sulfation, sulfo-				
			conjugate, after				
			deacetylation and N-				
3-			hydroxylation, at				
Acetylaminobenzant	As above	SULT1A1	higher	[85]			
hrone (3-Ac-ABA)			concentrations,				
			electrophilic				
			nitrenium ion				
			formation *				
			O-Sulfation, sulfo-				
2			conjugate, after				
3-	A 1	CLU TI A C	deacetylation and N-	[E (00]			
Acetylaminobenzant	As above	SULT1A2	hydroxylation, at	[36,88]			
hrone (3-Ac-ABA)			higher concentrations				
			*				
3-	Metabolite of		NITE-1 1				
Aminobenzanthrone	3-	P450 1A1	N-Hydroxylation,	[87–89]			
(3-ABA)	nitrobenzanthr		oxidation **				
· · · · · · · · · · · · · · · · · · ·							

	one (3-NBA)			
	found in diesel			
	fuel exhaust,			
	benzanthrone			
	derivative,			
	arylamine			
3-			N-Hydroxylation,	
Aminobenzanthrone	As above	P450 1A2	oxidation,	[87,88]
(3-ABA)			concentration-	
2			dependent **	
3-	A 1	D450 1D1	N-Hydroxylation,	1001
Aminobenzanthrone	As above	P450 1B1	oxidation	[89]
(3-ABA)				
3-	A1	D450.2 A 6	N-Hydroxylation,	1001
Aminobenzanthrone	As above	P450 2A6	oxidation	[89]
(3-ABA) 3-				_
	As above	P450 2B6	N-Hydroxylation,	1001
Aminobenzanthrone	As above	P430 2D6	oxidation	[89]
(3-ABA) 3-				
Aminobenzanthrone	As above	LPO	<i>N</i> -Oxidation	[87,88]
(3-ABA)	As above	LIO	IV-Oxidation	[07,00]
3-				
Aminobenzanthrone	As above	MPO	N-Oxidation	[87,88]
(3-ABA)	115 450 VC	1411 &	TV Oxidation	[07,00]
(6 11211)			O-Acetylation after	
			<i>N</i> -hydroxylation, at	
3-			higher	
Aminobenzanthrone	As above	NAT1	concentrations,	[85]
(3-ABA)			electrophilic	
,			nitrenium ion	
			formation *	
			O-Acetylation after	
			N-hydroxylation, at	
3-			higher	
Aminobenzanthrone	As above	NAT2	concentrations,	[85]
(3-ABA)			electrophilic	
			nitrenium ion	
			formation	

				_
3- Aminobenzanthrone (3-ABA)	As above	PGHS	N-Oxidation	[87,88]
3- Aminobenzanthrone (3-ABA)	As above	SULT1A1	O-Sulfation, sulfo- conjugate, after N- hydroxylation, at higher concentrations	[85]
3- Aminobenzanthrone (3-ABA)	As above	SULT1A2	O-Sulfation, sulfoconjugate, after N-hydroxylation, at higher concentrations, electrophilic nitrenium ion formation *	[85]
3- Methylcholanthrene (3-MC)	Environmental pollutants, incomplete burning organic compounds products coal tar, heavy-end petroleum compounds, cigarette smoke compounds, and research chemical	P450 1A1	Oxidation, micronucleus frequency increased in CHL-A1 cells	[90]
3- Methylcholanthrene- 11,12-diol (3-MC- 11,12-diol)	Metabolite of 3-MC	P450 1A1	Oxidation	[1]
3-Nitrobenzanthrone (3-NBA)	Environmental pollutants, found in diesel fuel exhaust, urban air	P450 1A1	Nitroreduction to hydroxylamine	[86,87]

	pollutants, nitroarene			
3-Nitrobenzanthrone (3-NBA)	As above	P450 1A2	Nitroreduction to hydroxylamine	[85–87]
3-Nitrobenzanthrone (3-NBA)	As above	P450 2B6	Nitroreduction to hydroxylamine *	[86]
3-Nitrobenzanthrone (3-NBA)	As above	P450 2D6	Nitroreduction to hydroxylamine *	[86]
3-Nitrobenzanthrone (3-NBA)	As above	POR	Nitroreduction to hydroxylamine	[86]
3-Nitrobenzanthrone (3-NBA)	As above	XOR	Nitroreduction to hydroxylamine	[85]
3-Nitrobenzanthrone (3-NBA)	As above	NAT1	O-Acetylation after nitro-reduction to hydroxylamine, at higher concentrations, electrophilic nitrenium ion formation *	[85,87,91]
3-Nitrobenzanthrone (3-NBA)	As above	NAT2	O-Acetylation after nitro-reduction to hydroxylamine, at higher concentrations, electrophilic nitrenium ion formation *	[84,85,87,91]
3-Nitrobenzanthrone (3-NBA)	As above	NQO	Nitroreduction to hydroxylamine *, **	[86,87]
3-Nitrobenzanthrone (3-NBA)	As above	SULT1A1	O-Sulfation, sulfoconjugate, after nitroreduction to hydroxylamine, electrophilic nitrenium ion formation*	[81,84,85,87,91]
3-Nitrobenzanthrone (3-NBA)	As above	SULT1A2	O-Sulfation, sulfo- conjugate, after nitroreduction to	[85,87]

	1	٦
4	1	J

			hydroxylamine, electrophilic nitrenium ion formation	
3-Nitrofluoranthene (3-NF)	Constituent of particulate matter in diesel-engine exhaust, urban air pollutants, nitroarene	P450 1B1 (co- expressed with NPR)	1-Aminopyrene formation, nitroreduction/O-acetylation, at low concentrations, electrophilic nitrenium ion formation	[9]
4,10-Diazachrysene (4,10-DAC)	Chrysene derivative	P450 1A2	Oxidation, enamine epoxide formation	[11,12]
4,10-Diazachrysene (4,10-DAC)	Chrysenederiv ative	P450 2A6	Oxidation, enamine epoxide formation	[11,13]
4- Hydroxycyclopenta[<i>def</i>]chrysene	Metabolite of cyclopenta[def] chrysene, automobile exhaust, and cigarette smoke compound	SULT1B1	O-Sulfation, sulfoconjugate, electrophilic nitrenium ion formation *	[14,15]
4- Hydroxycyclopenta[<i>def</i>]chrysene	As above	SULT1E1	O-Sulfation, sulfo- conjugate, electrophilic nitrenium ion formation	[14,15,56]
4-Nitropyrene (4-NP)	As above	P450 3A4	Nitroreduction, aminopyrene, hydroxylamine, formation **	[13]
4-Nitropyrene (4-NP)	As above	P450 3A4	Oxidation, ring oxidations *	[13]
5,6- Dimethylchrysene- 1,2-diol	Metabolite of 5,6- dimethylchrys ene	P450 1A1	Oxidation, diolepoxide formation	[1,25,33,38]

5,6- Dimethylchrysene- 1,2-diol	As above	P450 1A2	Oxidation, diolepoxide formation	[1,33,38]
5,6- Dimethylchrysene- 1,2-diol	As above	P450 1B1	Oxidation, diolepoxide formation	[1,3,24,25,33,38,43]
5-Methylchrysene	Environmental pollutants, vehicle emissions, and tobacco smoke compound	P450 1A1	1,2-Dihydrodiol formation (medium Km, high activity, high efficiency), oxidation *	[1,33,49,66,92]
5-Methylchrysene	As above	P450 1A2	1,2-Dihydrodiol formation, oxidation	[1,33,92]
5-Methylchrysene	As above	P450 1B1	Oxidation, ring oxidation	[43]
5-Methylchrysene	As above	P450 3A4	Oxidation, ring oxidations	[92]
5-Methylchrysene	As above	P450 2C10	1,2-Dihydrodiol formation, oxidation	[92]
5-Methylchrysene- 1,2-diol	Metabolite of 5- methylchrysen e	AKR1A1	Oxidation, o-quinone formation (medium Km, high activity, high efficiency)	[38,47,48]
5-Methylchrysene- 1,2-diol	As above	P450 1A1	Oxidation, <i>o</i> -quinone formation	[1,24,25,33,38,66]
5-Methylchrysene- 1,2-diol	As above	P450 1A2	Oxidation, <i>o</i> -quinone formation	[1,24,33,38]
5-Methylchrysene- 1,2-diol	As above	P450 1B1	Oxidation (medium Km, high activity, high efficiency, oquinone formation *	[1,3,24,25,33,38,41,43,66]
5-Methylchrysene- 1,2-diol	As above	P450 2W1	Oxidation, <i>o</i> -quinone formation	[43]
5-Methylchrysene- 7,8-diol	As above	AKR1C1	Oxidation, o-quinone formation	[18,19]

As above	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]
As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
As above	AKR1C4	Oxidation, <i>o</i> -quinone formation**	[19]
Environmental pollutants, industrial and research chemicals, acenaphthene derivative, nitroarene	SULT1A1	O-Sulfation, sulfo- conjugation, electrophilic nitrenium ion formation * (after nitroreduction)	[81]
Metabolite of 6- nitrochrysene, arylamine	P450 1A1	Oxidation (high activity) *	[1,3,24]
As above	P450 1A2	Oxidation	[3,24,57–59,93,94]
As above	P450 1B1	Oxidation *	[1,24]
As above	P450 2A6	Oxidation	[95]
As above	P450 2B6	Oxidation	[93,96]
As above	P450 3A4	Oxidation, ring oxidation **	[52,73,89,93,94]
As above	NAT2	O-Acetylation after N-hydroxylation, electrophilic nitrenium ion formation	[53]
As above	P450 3A7	Oxidation, ring oxidation	[73]
As above	P450 1A1	Diol epoxide formation, oxidation	[24,93,94]
As above	P450 1A2	Diol epoxide formation, oxidation	[24,93,94]
	As above Environmental pollutants, industrial and research chemicals, acenaphthene derivative, nitroarene Metabolite of 6-nitrochrysene, arylamine As above As above As above As above As above As above	As above AKR1C3 As above AKR1C4 Environmental pollutants, industrial and research chemicals, acenaphthene derivative, nitroarene Metabolite of 6-nitrochrysene, arylamine As above P450 1A1 As above P450 1B1 As above P450 2A6 As above P450 3A4 As above P450 3A4 As above P450 3A7 As above P450 1A1	As above AKR1C2 formation As above AKR1C3 Oxidation, o-quinone formation As above AKR1C4 Oxidation, o-quinone formation** Environmental pollutants, industrial and research chemicals, acenaphthene derivative, nitroarene Metabolite of 6- of 6- or arylamine As above P450 1A1 Oxidation (high activity) * As above P450 1B1 Oxidation As above P450 2A6 Oxidation As above P450 3A4 Oxidation, ring oxidation ** O-Acetylation after N-hydroxylation, electrophilic nitrenium ion formation Oxidation, ring oxidation Oxidation, ring oxidation Oxidation, ring oxidation Diol epoxide formation, oxidation As above P450 1A1 Diol epoxide

6-Aminochrysene- 1,2-diol	As above	P450 1B1	Diol epoxide formation, oxidation *	[24,93,94]
6-Aminochrysene- 1,2-diol	As above	P450 3A4	Diol epoxide formation, oxidation	[93,94]
6- Hydroxymethylanth racene	Metabolite of methylanthrac ene, research chemicals, benzylic alcohol	SULT1C3	O-Sulfation, sulfoconjugate formation, electrophilic nitrenium ion formation *	[46]
6- Hydroxymethylbenz o[<i>a</i>]pyrene	Metabolite of methylbenzo[a]pyrene, research chemicals, PAH derivative	SULT1B1	O-Sulfation, sulfo- conjugate formation, electrophilic nitrenium ion formation *	[15]
6- Hydroxymethylbenz o[<i>a</i>]pyrene	As above	SULT1C3	O-Sulfation, sulfo- conjugate formation, electrophilic nitrenium ion formation *	[46]
6- Hydroxymethylbenz o[<i>a</i>]pyrene	As above	SULT2A1	O-Sulfation, sulfoconjugate formation, electrophilic nitrenium ion formation *	[14,15]
6-Methylchrysene	Environmental pollutants, tobacco smoke constituent	P450 1A1	1,2-Dihydrodiol formation, oxidation **	[92]
6-Methylchrysene	As above	P450 1A2	1,2-Dihydrodiol formation, oxidation	[92]
6-Methylchrysene	As above	P450 2C10	1,2-Dihydrodiol formation, oxidation	[92]
6-Methylchrysene	As above	P450 1A2	6- Methylhydroxylation , oxidation	[92]

7	1
_	4

6-Methylchrysene	As above	P450 3A4	6- Methylhydroxylation , oxidation	[92]
6-Nitrochrysene	Environmental pollutants, research chemicals, nitroarene	P450 1A2	Oxidation, trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene formation *	[1,50]
6-Nitrochrysene	As above	P450 1A1	Oxidation, trans-1,2-dihydro-1,2-dihydroxy-6-nitrochrysene formation *	[1,50]
6-Nitrochrysene	As above	P450 3A4	Nitroreduction, 6- amino chrysene formation *	[1,50]
7,12- Dimethylbenz[a]anth racene (7,12-DMBA)	Product of incomplete combustion product of gasoline and coal	P450 1A1	Oxidation (low Km, high activity and efficiency)*	[1,25,33,97,98]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 1A2	Oxidation	[1,33,98]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 1B1	Oxidation (low Km, high activity, and efficiency)	[1,25,33,43,98]
7,12- Dimethylbenz[a]anth racene (7,12-DMBA)	As above	P450 2C9	Oxidation	[1,33,97]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 2D6	Oxidation	[97]
7,12- Dimethylbenz[a]anth racene (7,12-DMBA)	Metabolite of 7,12-DMBA	AKR1A1	Oxidation, <i>o</i> -quinone formation	[47,48]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]

7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	AKR1B10	Oxidation, <i>o</i> -quinone formation	[16]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	AKR1C1	Oxidation, <i>o</i> -quinone formation, minor enzyme	[18,19]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation **	[19]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 1A1	3,4-Dihydrodiol-1,2- epoxide formation (medium Km, high activity, high efficiency), oxidation*, also, micronucleus frequency increased in CHL-A1 cells	[1,3,25,33,38,90]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 1A2	Oxidation	[1,33,38]
7,12- Dimethylbenz[<i>a</i>]anth racene (7,12-DMBA)	As above	P450 1B1	3,4-Dihydrodiol-1,2- epoxide formation (medium Km, high activity, high efficiency), oxidation *	[1,3,24,25,33,38]
7-Hydroxy-12- methylbenz[a]anthra cene	Metabolite of DMBA	SULT2A1	O-Sulfation, sulfoconjugate formation, electrophilic nitrenium ion formation *	[55]
7-Hydroxy-7,8,9,10- tetrahydrobenzo[<i>a</i>]p yrene	Metabolite of B[a]P	SULT1A1	O-Sulfation, sulfoconjugate formation, electrophilic nitrenium ion formation*	[55. 56]

7-Hydroxy-7,8,9,10- tetrahydrobenzo[<i>a</i>]p yrene	As above	SULT1E1	O-Sulfation, sulfo- conjugate, electrophilic nitrenium ion formation *	[56]
7- Methylbenz[a]anthra cene-3,4-diol	Metabolite of 7- methylbenz[a] anthracene	AKR1A1	Oxidation, <i>o</i> -quinone formation, preferential for (-)-3 <i>S</i> ,4 <i>S</i> -oxidation	[47,48]
7- Methylbenz[a]anthra cene-3,4-diol	As above	AKR1C1	Oxidation, <i>o</i> -quinone formation, minor enzyme	[19]
7- Methylbenz[<i>a</i>]anthra cene-3,4-diol	As above	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]
7- Methylbenz[a]anthra cene-3,4-diol	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
7- Methylbenz[<i>a</i>]anthra cene-3,4-diol	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation	[19]
7- Methylbenz[c]acridi ne (7MBAC)	Research chemicals, aza- aromatic	P450 1A2	3,4-Dihydrodiol formation, oxidation	[100]
7- Methylbenz[c]acridi ne (7MBAC)	As above	P450 1A1	K-region oxide formation, oxidation	[100]
7- Methylbenz[c]acridi ne (7MBAC)	As above	P450 1A2	K-region oxide formation, oxidation	[100]
7- Methylbenz[c]acridi ne (7MBAC)	As above	P450 3A4	K-region oxide formation, oxidation	[100]
9- Hydroxybenzo[<i>a</i>]pyr ene	Metabolite of B[a]P	P450 1A1	Oxidation	[1]
9- Hydroxybenzo[<i>a</i>]pyr ene	As above	P450 1B1	Oxidation	[1]
9-Hydroxymethyl- 10-methylanthracene	Industrial and research	SULT2A1	O-Sulfation, sulfo- conjugate,	[56]

2	7
_	/

	ah amia-la		alaatuambil: -	
	chemicals,		electrophilic	
	used in the		nitrenium ion	
	synthesis of		formation	
	fluorescent			
	dyes and			
	pigments			
			O-Sulfation, sulfo-	
9-	Research		conjugate,	
Hydroxymethylanth	chemical	SULT2A1	electrophilic	[56]
racene	Chemicai		nitrenium ion	
			formation	
	Incomplete			
	combustion			
	products of			
	organic matter,			
	found in			
Benz[a]anthracene	gasoline and	P450 1A1	Oxidation	[1,33]
	diesel fuel			
	exhaust,			
	tobacco smoke			
	compound			
	compound		Oxidation,	
Benz[a]anthracene-	Metabolite of		micronucleus	
	benz[a]anthrac	P450 1A1		[1,38,90,101]
1,2-diol	ene		frequency increased	
D [1 d			in CHL-A1 cells	
Benz[a]anthracene-	As above	AKR1A1	Oxidation, <i>o</i> -quinone	[47,48]
3,4-diol			formation	
Benz[a]anthracene-	As above	AKR1C1	Oxidation, <i>o</i> -quinone	[19]
3,4-diol			formation	
Benz[a]anthracene-	As above	AKR1C2	Oxidation, o-quinone	[19]
3,4-diol			formation	r - 1
Benz[a]anthracene-	As above	AKR1C3	Oxidation, o-quinone	[19]
3,4-diol	113 above	71111110	formation	[17]
Benz[a]anthracene-	A a above	A V D 1 C 4	Oxidation, o-quinone	[10]
3,4-diol	As above	AKR1C4	formation	[19]
Benz[a]anthracene-		D450444	0.11.0	[4 22]
3,4-diol	As above	P450 1A1	Oxidation	[1,33]
Benz[a]anthracene-				
3,4-diol	As above	P450 1A2	Oxidation	[1,33]
-,=				

\sim	í	٠
7	?	٩

Benz[<i>a</i>]anthracene-5,6-diol	As above	P450 1A1	Oxidation	[1,38]
Benzo[a]perylene	Incomplete combustion products present in automobile exhaust, tobacco smoke, grilled meat, edible oil compound	P450 1A1	Oxidation	[102]
Benzo[a]pyrene (B[a]P)	Incomplete combustion product of organic matter, coal tar, tobacco smoke, and many foods (e.g., grilled meat) compound	P450 1A1	trans-7,8-Dihydroxy- 9,10-epoxy-7,8,9,10- tetrahydro- formation (low activity, medium activity, or high activity, high efficiency), 1,6-,3,6- ,6,12-dione (quinone formation, low activity), oxidation *	[1,24,27,28,30– 33,52,67,103,105–108]
Benzo[a]pyrene (B[a]P)	As above	P450 1B1	trans-7,8-Dihydroxy- 9,10-epoxy-7,8,9,10- tetrahydro- formation (medium Km, high activity, high efficiency), 1,6- ,3,6-Dione (quinone formation, low activity), oxidation **	[1,24– 27,33,38,43,44,70,102,104, 109,129]
Benzo[<i>a</i>]pyrene-7,8- oxide (B[<i>a</i>]P-7,8- oxide)	Metabolite of B[a]P	Epoxide hydrolase, EH	Hydrolysis to B[<i>a</i>]P-7,8-diol, participation in B[<i>a</i>]P toxicity	[1,27]
Benzo[b]fluoroanthe ne-9,10-diol (B[b]F-11,12-diol)	Metabolite of B[<i>b</i>]F	P450 1A1	Oxidation *	[1,3,24,25,33,38]

Benzo[b]fluoroanthe ne-9,10-diol (B[b]F-11,12-diol)	As above	P450 1A2	Oxidation	[1,24,33,38]
Benzo[b]fluoroanthe ne-9,10-diol (B[b]F- 11,12-diol)	As above	P450 1B1	Oxidation	[1,24,25,33,38]
Benzo[c]phenanthre ne (B[c]P)	Wood and fossil fuel exhaust compound	P450 1A1	Dihydrodiol 3,4-, 1,2- epoxide formation, oxidation **	[106]
Benzo[c]phenanthre ne (B[c]P)	As above	P450 1B1	Dihydrodiol 3,4-, 1,2- epoxide formation, oxidation **	[1,25,33,110–112]
Benzo[c]phenanthre ne (B[c]P)	As above	P450 2C9	Oxidation	[33]
Benzo[c]phenanthre ne-3,4-dio (B[c]P-3,4-diol)	Metabolite of B[c]P	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]
Benzo[c]phenanthre ne-3,4-dio (B[c]P-3,4-diol)	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation	[19]
Benzo[c]phenanthre ne-3,4-dio (B[c]P-3,4-diol)	As above	P450 1A2	Oxidation	[1]
Benzo[c]phenanthre ne-3,4-dio (B[c]P-3,4-diol)	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
Benzo[g]chrysene- 11,12-diol (B[g]C- 11,12-diol)	Metabolite of B[g]C, fossil fuels and organic materials incomplete combustion product	P450 1A1	Oxidation	[1,25,33,38]
Benzo[g]chrysene- 11,12-diol (B[g]C- 11,12-diol)	As above	AKR1C1	Oxidation, <i>o</i> -quinone formation	[18,19]
Benzo[<i>g</i>]chrysene- 11,12-diol (B[<i>g</i>]C- 11,12-diol)	As above	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]

2	1	١
o	ι	J

Benzo[g]chrysene- 11,12-diol (B[g]C- 11,12-diol)	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
Benzo[<i>g</i>]chrysene- 11,12-diol (B[<i>g</i>]C- 11,12-diol)	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation **	[19]
Benzo[<i>g</i>]chrysene- 11,12-diol (B[<i>g</i>]C- 11,12-diol)	As above	P450 1A2	Oxidation	[1,33,38]
Benzo[g]chrysene- 11,12-diol (B[g]C- 11,12-diol)	As above	P450 1B1	Oxidation *	[1,3,24,25,33,38]
Chrysene-1,2-diol	As above	AKR1C2	Oxidation, <i>o</i> -quinone formation	[19]
Chrysene-1,2-diol	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
Chrysene-1,2-diol	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation	[19]
Chrysene-1,2-diol	As above	P450 1A1	Oxidation *	[1,25,33]
Chrysene-1,2-diol	As above	P450 1A2	Oxidation	[1,33,38]
Chrysene-1,2-diol	As above	P450 1B1	Oxidation, diolepoxide formation *	[1,3,24,25,33,38,43]
Chrysene-1,2-diol	As above	P450 2W1	Oxidation, diolepoxide formation	[43]
Cyclopenta[<i>c,d</i>]pyre ne	As above	P450 1B1	Oxidation	[113]
Cyclopenta[c,d]pyre ne	Incomplete combustion product of organic matter, gasoline engine exhaust compound	P450 1A1	Oxidation	[106]

	1	-
$\sigma_{\mathbf{I}}$	١,	

Dibenz[a,h]acridine	Incomplete combustion product of organic substances, primarily found in gasoline exhaust, petroleum refinery incinerator emissions, coal combustion emissions, cigarette smoke, and coal tar pitch	P450 1A1	10,11-Diol formation, oxidation * 10,11-Diol formation,	[114]
Dibenz[a,h]acridine	As above	P450 1B1	oxidation	[114]
Dibenz[<i>a,h</i>]anthracen e	Incomplete combustion product of organic substances found in air, soil, or sediment, and on pyrolysis of tobacco	P450 1A1	Oxidation	[1]
Dibenz[<i>a,h</i>]anthracen e	As above	P450 1A2	1,2-Dihydrodiol formation, oxidation **	[115]
Dibenz[<i>a,h</i>]anthracen e	As above	P450 1A2	trans-3,4-Dihydrodiol formation, oxidation	[115]
Dibenz[<i>a,h</i>]anthracen e	As above	P450 2B6	trans-3,4-Dihydrodiol formation, oxidation	[115]
Dibenz[<i>a,h</i>]anthracen	As above	P450 2C9	trans-3,4-Dihydrodiol formation, oxidation **	[115]

_	_
′2	")
U	_

Dibenz[<i>a,j</i>]acridine (DBJAC)	Automobile exhaust, coal burning, incinerator waste streams, cigarette smoke compound, heteroarene	P450 3A4	3,4-Dihydrodiol formation, oxidation *	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A1	K-region oxide formation, oxidation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A2	K-region oxide formation, oxidation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A1	K-region dihydrodiol formation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A1	3,4-Dihydrodiol formation, oxidation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A2	3,4-Dihydrodiol formation, oxidation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 3A5	3,4-Dihydrodiol formation, oxidation	[100]
Dibenz[<i>a,j</i>]acridine (DBJAC)	As above	P450 1A2	K-region dihydrodiol formation, oxidation	[100]
Dibenzo[<i>a,e</i>]fluorant hene	Research chemical	P450 1A1	Oxidation, mutagenicity	[102]
Dibenzo[<i>a,e</i>]pyrene (DB[<i>a,e</i>]P)	Tobacco smoke compound	P450 1A1	Oxidation, mutagenicity	[102]
Dibenzo[<i>a,f</i>]fluorant hene	Incomplete combustion of organic materials, such as fossil fuels, wood, and tobacco smoke compound	P450 1A1	Oxidation, mutagenicity	[102]

2	2
J	U

Dibenzo[a , h]pyrene (DB[a , h]P)	Tobacco smoke compound	P450 1A1	Oxidation, mutagenicity	[102]
Dibenzo[<i>a,k</i>]fluorant hene	Incomplete burning of coal, oil, gas, wood, garbage, and other organic substances compound	P450 1A1	Oxidation, mutagenicity	[102]
Dibenzo[a , l]pyrene (DB[a , l]P)	Combustion of wood and coal, gasoline and diesel exhaust, and tobacco smoke compound	P450 1A1	(-)-syn- and (-)-anti- 11,12-Dihydrodiol- 13,14-epoxide formation (medium Km, high activity, high efficiency, oxidation *	[1,28,33,102,116–123]
Dibenzo[<i>a,l</i>]pyrene (DB[<i>a,l</i>]P)	As above	P450 1A2	(-)- <i>anti</i> -11,12- Dihydrodiol-13,14- epoxide formation, oxidation	[33,119,120]
Dibenzo[<i>a,l</i>]pyrene (DB[<i>a,l</i>]P)	As above	P450 1B1	(-)-anti-11,12- Dihydrodiol-13,14- epoxide formation (medium Km, high activity, high efficiency), oxidation	[1,28,33,43,44,116– 123,128]

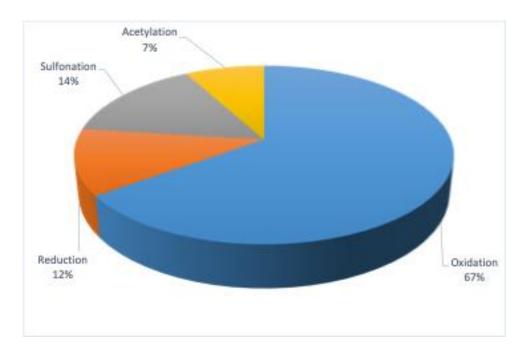
2	1
J	4

Dibenzo[<i>a,l</i>]pyrene- 11,12-diol (DB[<i>a,l</i>] - 11,12-diol)	Metabolite of DB[a,l]P	P450 1A1	11,12-Dihydrodiol- 13,14-epoxide formation (medium Km, high activity, high efficiency, oxidation *	[1,25,28,33,38,41,104,116– 118,123]
Dibenzo[<i>a</i> , <i>l</i>]pyrene- 11,12-diol (DB[<i>a</i> , <i>l</i>] - 11,12-diol)	As above	P450 1A2	Oxidation	[31,38,104]
Dibenzo[<i>a,l</i>]pyrene- 11,12-diol (DB[<i>a,l</i>] - 11,12-diol)	As above	P450 1B1	11,12-Dihydrodiol- 13,14-epoxide formation (medium Km, high activity, high efficiency), oxidation *	_
Dibenzo[<i>a</i> , <i>l</i>]pyrene- 11,12-diol (DB[<i>a</i> , <i>l</i>] - 11,12-diol)	As above	P450 2W1	Oxidation, diolepoxide formation	[43]
Dibenzo[<i>b,k</i>]fluorant hene	Environmental pollutants, diesel fuel particulate compound	P450 1A1	Oxidation, mutagenicity	[102]
Fluoranthene-2,3-diol	Metabolite of fluoranthene	P450 1A1	Oxidation, diolepoxide formation	[1,38]
Naphthalene	As above	P450 2F1	Oxidation	[124]
Naphthalene 1,2-diol	Metabolite of naphthalene	AKR1C1	Oxidation, <i>o</i> -quinone formation **	[18,19]
Naphthalene 1,2-diol	As above	AKR1C2	Oxidation, <i>o</i> -quinone formation **	[19]
Naphthalene 1,2-diol	As above	AKR1C3	Oxidation, <i>o</i> -quinone formation	[19]
Naphthalene 1,2-diol	As above	AKR1C4	Oxidation, <i>o</i> -quinone formation	[19]
Naphtho[1,2- k]fluoranthene	Environmental pollutants, incomplete combustion of	P450 1A1	Oxidation, mutagenicity	[102]

	organic matter			
	compound			
Naphtho[2,3- a]pyrene	Air pollutants, applied in biological and electronic fields, incomplete combustion processes, and tobacco smoke	P450 1A1	Oxidation, mutagenicity	[102]
Naphtho[2,3- e]pyrene	As above	P450 1A1	Oxidation, mutagenicity	[102]
N-Hydroxy-2- acetylaminofluorene	Metabolite of 2- acetylaminoflu orene, hydroxamic acid, heterocyclic amine	SULT1A1	O-Sulfation, sulfoconjugate formation, electrophilic nitrenium ion formation	[14,15]
N-Hydroxy-2- acetylaminofluorene	As above	SULT1A2	O-Sulfation, sulfo- conjugate formation, electrophilic nitrenium ion formation *	[14,15,63]
N-Hydroxy-2- aminofluorene	Metabolite of 2- aminofluorene, hydroxamic acid, heterocyclic amine	NAT1	O-Acetylation, electrophilic nitrenium ion formation	[130]
N-Hydroxy-2- aminofluorene	As above	NAT2	O-Acetylation, electrophilic nitrenium ion formation	[130]
N-Hydroxy-2- aminofluorene	As above	SULT1A1	O-Sulfation, sulfo- conjugate, electrophilic	[14,125]

50

			nitrenium ion	
			formation	
			O-Sulfation, sulfo-	
N-Hydroxy-2- aminofluorene		SULT1A2	•	[81]
			conjugate formation,	
	As above SU		electrophilic	
			nitrenium ion	
			formation *	
Phenanthrene	Environmental	P450 1A1	Oxidation to 1,2-	
	contaminants,		(major reaction), 9,10-	[126]
	industrial D45		and 3,4-dihydrodiols	
	chemicals,		(minor reactions) and	
	tobacco smoke		phenols, at high	
	compound		concentration	
Phenanthrene			Oxidation to 1,2-	[126]
	A a alagana D45	P450 1A2	(major reaction), 3,4-,	
	As above P45		9,10-dihydrodiols	
			and phenols	


^{*} Potent toxification, ** Major enzyme.

Included are reactions and products that are not toxic but as substrates in additional reactions products or intermediates formed exert toxicity (e.g., products of hydroxylation reactions catalyzed by P450 enzymes and products of hydrolysis reactions).

Abbreviations for the enzyme names used in the text and Tables are explained in Table 1. The data presented in Table 2 are used for calculations presented in Figures. The enzymes, described as minor participating enzymes, participate in the toxication reactions with less than 5% of the data each.

2. Metabolic Toxication of PAHs

Depending on the structural properties of the compounds and the enzymes involved, the PAHs participate predominantly as substrates in oxidations (participating at 67% of the reactions) involving C and N atoms (Figure 1).

Figure 1. The participation of metabolic reactions in the toxication of PAHs and metabolites catalyzed by human metabolizing enzymes (calculated on 290 records).

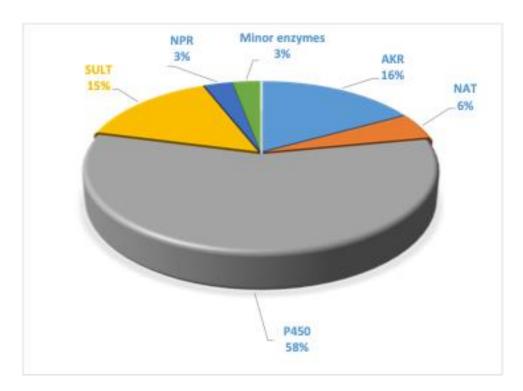

Table 2 includes suggested or proposed toxic species such as electrophilic nitrenium ion formation following O-sulfation or O-acetylation reactions. The oxidation reactions involve the formation of dihydrodiols, epoxides, and dihydrodiol epoxides (all catalyzed by P450 enzymes), and quinones (catalyzed by AKR and P450 enzymes), with a minor contribution of COX enzymes. Reactions of N-oxidations are catalyzed by P450, LPO, MPO, and PGHS enzymes. In some examples, e.g., the formation of quinones, the reaction is selective to the substrate configuration. For instance, oxidation of 7-methylbenz[a]anthracene-3,4-diol is preferential for (-)-3S,4S-, and that of (+)benzo[a]pyrene-7,8-dihydrodiol is preferential for (-)-7R,8R-oxidation (Table 2). The significance of the formation of o-quinones and other reactive oxygen species for the metabolism and toxicity of different chemicals (e.g., carcinogens and drugs) has been discussed previously [6,8]. Reductive reactions participate at 12% in the toxication of the PAHs with prevailing nitro-reductions to amino groups. Of other reactions, O-sulfations participated at 14%, and O-acetylations at 7% (Figure 1). The data also show that depending on the toxicant structure, acetylation, and sulfation reactions in some examples occur after previous reduction by NPR enzyme followed by oxidation. Examples are the Oacetylation (catalyzed by NAT enzymes) and O-sulfation (catalyzed by SULT enzymes) of 2nitrofluorene, 2- and 3-nitrobenzanthrone (3-NBA), and other nitro-PAHs. The 3-nitrobenzanthrone is, for instance, toxified by reduction of the nitro to the amino group and consequent N-oxidation, or by N-sulfation and N-acetylation which resulted in the formation of the DNA adducts. It was suggested that P450, PO, NAT, and SULT enzymes may play an important role in the metabolism of 3-NABA and its metabolites to reactive species forming DNA adducts, participating in the genotoxicity of the compounds (Figure 2, Table 2 and references therein).

Figure 2. Toxication reactions of 3-nitrobenzanthrone (3-NBA) by human metabolizing enzymes enzymes.

1-Nitropyrene, as well as dinitropyrene derivatives, were suggested to be activated by the catalytic activity of P450 1B1 and 1A2 enzymes by nitroreduction to aminopyrene and subsequent *N*-hydroxylation, which after acetylation would yield a nitrenium ion forming DNA adducts (Table 2 and references therein). Thus, human P450 enzymes were suggested to have activities for both ring oxidations and reductions of nitropyrenes followed by *O*-acetylation/*O*-sulfation and binding to DNA [9,10] (Table 2). Additional examples of toxication by conjugation reactions are reactions of hydroxylated metabolites of methyl- and ethylpyrene, which exert toxic activity after sulfation by SULT enzymes' catalytic activity (Table 2 and references therein).

3. Enzymes

The calculated participation of human metabolizing enzymes in the toxication of the PAHs and their metabolites (Table 2) shows the dominant involvement of P450 enzymes (58%), followed by AKR (16%), SULT (15%), NPR (3%), NAT (6%) and a group of minor participating enzymes composed of LPO, MPO, PGHS, NQO1, XOR, and COX, which participate to the extent of 3% (Fig. 3, Table 2).

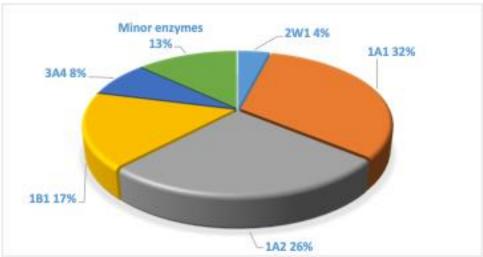


Figure 3. The participation of human metabolizing enzymes in the toxication of PAHs and metabolites (data calculated on 98 compounds).

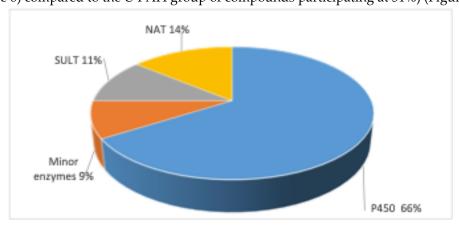
For comparison, considering the toxication of drugs, the dominant role of P450 enzymes was also recorded, but to an extent at 72%. The differences between the toxication of drugs and PAHs are also recorded in the composition of a group of minor participating enzymes which is in the case of drug toxication composed of AADAC, ADH, CAT, CES, COX, NPR, LPO, HB + H_2O_2) [8].

4. P450 Enzymes

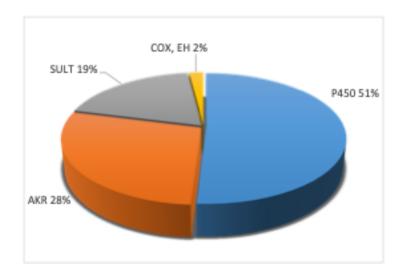
The analysis showed the dominant role of P450 Family 1 (P450 1A1, 1A2, and 1B1) in the toxication of PAHs participating collectively at 75% of the reactions with domination of P450 1A1 enzyme (at 32%). The contribution of other P450 enzymes was 3A4 (8%) and 2W1 (4%). The group of minor participating enzymes which is composed of P450s 2B6, 2C9, 2C10, 2D6, 2E1, 2F1, 3A5, 3A7, and 4B1, participated altogether at 13% (Figure 4).

Figure 4. The participation of human P450 enzymes in the toxication of PAHs and metabolites (data calculated on 98 compounds).

In the previous analysis on the toxication of general carcinogenic chemicals the dominant role of P450 enzymes was also shown to participate in 66% of the reactions, as well as the dominant participation of cytochrome P450 Family 1 (P450 1A1, 1A2, and 1B1) participating with 58%. P450 3A4 enzyme participated in the toxication of general carcinogens with 10% [4] comparably to the present analysis with participation at 8% (Figure 4). These results show the dominant role of P450 enzymes in the toxication of both PAHs and general carcinogens for the compounds taken into analysis.

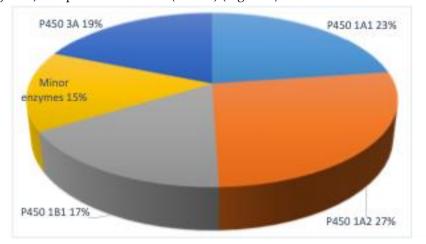

5. Effect of the Structure of PAHs on the Toxication Reactions

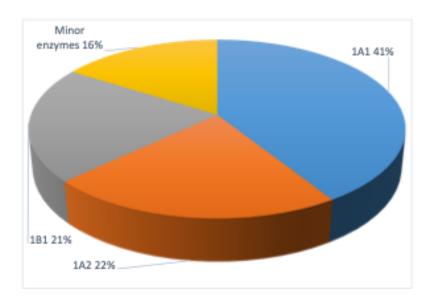
To analyze the effects of the structure composition of the PAHs analyzed (Table 2) on the toxification reactions, participating enzymes, and metabolites formed, the data were divided into those that relate to the compounds with *C*-atoms (*C*-PAHs, 64 compounds), and to those with *C*- and *N*-atoms (*N*-PAHs, 34 compounds) in the structure. An example of the *C*-PAH compound toxication presented is the role of P450, AKR, COX, SULT, and EH enzymes in the metabolic toxication of benzo[*a*]pyrene (Figure 5).


Figure 5. Toxication reactions of benzo[a]pyrene (B[a]P) by human metabolizing enzymes.

The reactions include oxidative reactions e.g., hydroxylation, epoxidation, hydrolysis to dihydrodiols, o-quinone formation, and sulfoconjugation. The properties of benzo[a]pyrene as a substrate and its metabolites in the reactions catalyzed by human P450 enzymes, the factors influencing the reactions, and the kinetic data have been reported before implying that the metabolic pathway of B[a]P and its metabolites, is very complex and has been the subject of extensive research by different research teams over time [6], Table 2 and references therein.

The studies published on the mutagenicity of PAHs showed dependence on the presence and position of the N-atom in the structure of the compound. For example, P450 1A2 contributed to the mutagenicity of 10-azaBaP more than the recombinant human P450 1A1 enzyme. It was suggested that the presence of the nitrogen atom in the structure led to P450 1A2 as the major enzyme and not P450 1A1. The P450 1A1 is the major enzyme for oxidation/toxication of B[a]P possessing C- atoms and no N-atoms in the structure [6,11] (Table 2 and references therein). Furthermore, the change of the position of the N- atom in the structure of the 1,4- and 1,10-diazachrysene resulted in the change in the enzymes responsible for their mutagenicity, e.g., 1,10-diazachrysene was toxified solely by P450 1A2, while 1,4-diazachrysene by 1A2 and 2A6 enzymes [11,12] (Table 2). In addition, studies on the metabolism of 1-, 2-, and 4-nitropyrene derivatives by human cytochrome P450 enzymes catalyzing oxidative and reductive pathways showed dependence upon the position of the nitro group [13]. The present analysis shows clear distinctions between C-PAH and N-PAH groups of compounds in both the extent of toxication and in the enzymes that catalyze the reactions. The present results show that the N-PAH group of compounds participated in the toxication reactions at 66% (Figure 6) compared to the C-PAH group of compounds participating at 51%) (Figure 7).


Figure 6. The participation of human metabolizing enzymes in the toxication of *N*-PAHs and metabolites (data calculated on 34 compounds).


Figure 7. The participation of human metabolizing enzymes in the toxication of *C*-PAHs and metabolites (data calculated on 64 compounds).

It is also shown that the AKR enzymes participated in the activation of *C*-PAHs (at 28%) (Figure 7) and did not participate in the activation of *N*-PAHs (Figure 6). In addition, NAT enzymes participated in the activation of *N*-PAHs (at 14%) (Figure 6), but did not participate in the activation of *C*-PAHs (Figure 7). The differences in the structure of the two groups of compounds have also

been noticed in the toxication reactions catalyzed by P450 enzymes and the participation of minor participating enzymes. The P450 1A1 enzyme participated at a lower extent in the toxication *N*-PAHs (at 23%) (Figure 8) compared to *C*-PAHs (at 41%) (Figure 9).

Figure 8. The participation of human P450 enzymes in the toxication of *N*-PAHs and metabolites (data calculated on 34 compounds).

Figure 9. The participation of human P450 enzymes in the toxication of *C*-PAHs and metabolites (data calculated on 64 compounds).

Minor differences are noticed regarding the P4501A2 participation which was at 27% in the group of NPAHs (Figure 8) vs. 22% in the group of C-PAHs (Figure 9). The P450 3A4 enzyme is considered a minor participating enzyme in the toxication of the C-PAH group of compounds, which participated in the toxication of the N-PAH group at 19% (Figure 8). In the C-PAH group minor participating enzymes comprise 7 enzymes (P450s 2B6, 2C9, 2C19, 2D6, 2F1, 2W1, and 3A4) participating at 16% (Fig 9). In the N-PAH group of compounds the group of minor participating enzymes participated in the toxication reactions with 15% and comprised four enzymes (P450s 2A6, 2B6, 2D6, and 2W1 (Figure 8).

6. Concluding Remarks

Previous analyses of published data on the participation of human metabolizing enzymes in the toxication of drugs showed preferential participation of P450 enzymes with minor involvement of AOX, SULT, FMO, and MPO enzymes [8]. Data analysis on the toxication of carcinogenic chemicals also showed P450 enzymes as the most prominent participating enzymes examined and the

contribution of SULT, NAT, FMO, AKR, and COX enzymes [4]. The predominant contribution of P450 enzymes in catalyzing toxication reactions of chemicals of diverse structures is suggested to be the result of extensive research and the development of affordable methods to be used in research with this group of enzymes [8].

The present paper analyzes data on the toxication of PAHs, constituents of environmental pollutants, by human metabolizing enzymes. Analysed are the effects of the structural characteristics such as the presence of the nitrogen atom in the structure on the participating enzymes and products formed. The results show that oxidation reactions prevail over reductions, sulfation, and acetylation. Of the enzymes, toxications by P450s are revealed as the major enzymes. Within the group of P450 enzymes, the major participation goes to P450 Family 1 (P450s 1A1, 1A2, and 1B1), and of these P450 1A1 participated to the major extent. The analysis of the effect of the chemical structure on the toxications of *C*-PAHs (the compounds that contain *C*-atoms and no *N*-atoms in the structure, vs. *N*-PAH (compounds containing both *C*- and *N*-atoms in the structure) revealed differences between these two groups of compounds in both the extent and the enzymes that catalyze the reactions.

Contributions: The Jan Dragašević contribution to the manuscript preparation and data presentation is acknowledged.

Funding: No funding declared.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable. **Data Availability Statement:** Not applicable.

Conflict of interest: The author declares no conflict of interest.

References

- Shimada, T.; Oda, Y.; Gillam, E.M.; Guengerich, F.P.; Inoue, K. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Other Procarcinogens by Cytochromes P450 1A1 and P450 1B1 Allelic Variants and Other Human Cytochromes P450 in Salmonella Typhimurium NM2009. *Drug Metab Dispos* 2001, 29, 1176– 1182, PMID: 11502724
- 2. Shimada, T.; Murayama, N.; Yamazaki, H.; Tanaka, K.; Takenaka, S.; Komori, M.; Kim, D.; Guengerich, F.P. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6. *Chem Res Toxicol* **2013**, *26*, 529–537, doi:10.1021/tx300 4906
- 3. Guengerich, F.P.; Shimada, T. Activation of Procarcinogens by Human Cytochrome P450 Enzymes. *Mutat Res* **1998**, 400, 201–213, doi:10.1016/s0027-5107(98)00037-2
- 4. Rendic, S.; Guengerich, F.P. Contributions of Human Enzymes in Carcinogen Metabolism. *Chem Res Toxicol* **2012**, 25, 1316–1383, doi:10.1021/tx300 132k
- 5. Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. *Chem Res Toxicol* **2015**, *28*, 38–42, doi: 10.1021/tx500444e
- 6. Rendic, S.; Guengerich, F.P. Development and Uses of Offline and Web-Searchable Metabolism Databases The Case of Benzo[a]pyrene. *Curr Drug Metab* **2018**, *19*, 3–46, doi:10.2174/13892 00219 66617 12071 23939
- 7. Rendic, S.; Guengerich, F.P. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: An update. *Arch Toxicol* **2021**, *95*, 95–472, doi.org/10.1007/s00204-020-02971-4
- 8. Rendic, S.; Guengerich, F.P. Formation of Potentially Toxic Metabolites of Drugs in Reactions Catalyzed by Human Drug-Metabolizing Enzymes. *Arch Tox*icol **2024**, *98*, 1581–1628, <u>doi: 10.1007/s00204-024-03710-9</u>
- 9. Yamazaki, H.; Hatanaka, N.; Kizu, R.; Hayakawa, K.; Shimada, N.; Guengerich, F.P.; Nakajima, M.; Yokoi, T. Bioactivation of Diesel Exhaust Particle Extracts and Their Major Nitrated Polycyclic Aromatic Hydrocarbon Components, 1-Nitropyrene and Dinitropyrenes, by Human Cytochromes P450 1A1, 1A2, and 1B1. *Mutat Res* 2000, 472, 129–138, doi:10.1016/s1383-5718(00)00138-8.
- 10. Hatanaka, N.; Yamazaki, H.; Oda, Y.; Guengerich, F.P.; Nakajima, M.; Yokoi, T. Metabolic Activation of Carcinogenic 1-Nitropyrene by Human Cytochrome P450 1B1 in Salmonella Typhimurium Strain

43

- Expressing an O-Acetyltransferase in SOS/Umu Assay. *Mutat Res* **2001**, 497, 223–233, doi:10.1016/s1383-5718(01)00254-6.
- 11. Yamada, K.; Suzuki, T.; Kohara, A.; Kato, T.A.; Hayashi, M.; Mizutani, T.; Saeki, K. (2005). Nitrogen-substitution effect on in vivo mutagenicity of chrysene. *Mutat Res* **2005**, *586*, 1–17, doi.org/10.1016/j.mrgentox.2005.05.012
- 12. Yamada, K.; Hakura, A.; Kato, T.-A.; Mizutani, T.; Saeki, K.-I. Nitrogen-Substitution Effects on the Mutagenicity and Cytochrome P450 Isoform-Selectivity of Chrysene Analogs. *Mutat Res* **2005**, *586*, 87–95, doi:10.1016/j.mrgentox.2005.06.006.
- 13. Chae, Y.H.; Thomas, T.; Guengerich, F.P.; Fu, P.P.; El-Bayoumy, K. Comparative Metabolism of 1-, 2-, and 4-Nitropyrene by Human Hepatic and Pulmonary Microsomes. *Cancer Res* **1999**, *59*, 1473–1480.
- 14. Glatt, H.; Engelke, C.E.; Pabel, U.; Teubner, W.; Jones, A.L.; Coughtrie, M.W.; Andrae, U.; Falany, C.N.; Meinl, W. Sulfotransferases: Genetics and Role in Toxicology. *Toxicol Lett* **2000**, *112–113*, 341–348, doi:10.1016/s0378-4274(99)00214-3.
- 15. Glatt, H.; Boeing, H.; Engelke, C.E.; Ma, L.; Kuhlow, A.; Pabel, U.; Pomplun, D.; Teubner, W.; Meinl, W. Human Cytosolic Sulphotransferases: Genetics, Characteristics, Toxicological Aspects. *Mutat Res* **2001**, *482*, 27–40, doi:10.1016/s0027-5107(01)00207-x.
- 16. Quinn, A.M.; Harvey, R.G.; Penning, T.M. Oxidation of PAH Trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10. *Chem Res Toxicol* **2008**, *21*, 2207–2215, doi:10.1021/tx8002005.
- 17. Burczynski, M.E.; Lin, H.K.; Penning, T.M. Isoform-Specific Induction of a Human Aldo-Keto Reductase by Polycyclic Aromatic Hydrocarbons (PAHs), Electrophiles, and Oxidative Stress: Implications for the Alternative Pathway of PAH Activation Catalyzed by Human Dihydrodiol Dehydrogenase. *Cancer Res* 1999, 59, 607–614.
- 18. Burczynski, M.E.; Sridhar, G.R.; Palackal, N.T.; Penning, T.M. The Reactive Oxygen Species--and Michael Acceptor-Inducible Human Aldo-Keto Reductase AKR1C1 Reduces the Alpha, Beta-Unsaturated Aldehyde 4-Hydroxy-2-Nonenal to 1,4-Dihydroxy-2-Nonena. *J Biol Chem* **2001**, 276, 2890–2897, doi:10.1074/jbc.M006655200.
- 19. Palackal, N.T.; Lee, S.H.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Activation of Polycyclic Aromatic Hydrocarbon Trans-Dihydrodiol Proximate Carcinogens by Human Aldo-Keto Reductase (AKR1C) Enzymes and Their Functional Overexpression in Human Lung Carcinoma (A549) Cells. *J Biol Chem* 2002, 277, 24799–24808, doi:10.1074/jbc.M112424200.
- 20. Penning, T.M. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons. *Chem Res Toxicol* **2014**, 27, 1901–1917, doi:10.1021/tx500298n.
- 21. Wiese, F.W.; Thompson, P.A.; Kadlubar, F.F. Carcinogen Substrate Specificity of Human COX-1 and COX-2. *Carcinogenesis* **2001**, 22, 5–10, doi:10.1093/carcin/22.1.5.
- 22. Shimada, T.; Martin, M.V.; Pruess-Schwartz, D.; Marnett, L.J.; Guengerich, F.P. Roles of Individual Human Cytochrome P-450 Enzymes in the Bioactivation of Benzo(a)pyrene, 7,8-Dihydroxy-7,8-Dihydrobenzo(a)Pyrene, and Other Dihydrodiol Derivatives of Polycyclic Aromatic Hydrocarbons. *Cancer Res* **1989**, *49*, 6304–6312, PMID: 2509067.
- 23. Shimada, T.; Gillam, E.M.; Sandhu, P.; Guo, Z.; Tukey, R.H.; Guengerich, F.P. Activation of Procarcinogens by Human Cytochrome P450 Enzymes Expressed in Escherichia Coli. Simplified Bacterial Systems for Genotoxicity Assays. *Carcinogenesis* **1994**, *15*, 2523–2529, doi:10.1093/carcin/15.11.2523.
- 24. Shimada, T.; Hayes, C.L.; Yamazaki, H.; Amin, S.; Hecht, S.S.; Guengerich, F.P.; Sutter, T.R. Activation of Chemically Diverse Procarcinogens by Human Cytochrome P-450 1B1. *Cancer Res* **1996**, *56*, 2979–2984, PMID: 8674051.
- 25. Shimada, T.; Watanabe, J.; Kawajiri, K.; Sutter, T.R.; Guengerich, F.P.; Gillam, E.M.; Inoue, K. Catalytic Properties of Polymorphic Human Cytochrome P450 1B1 Variants. *Carcinogenesis* **1999**, *20*, 1607–1613, doi:10.1093/carcin/20.8.1607.
- 26. Shimada, T.; Watanabe, J.; Inoue, K.; Guengerich, F.P.; Gillam, E.M. Specificity of 17beta-Oestradiol and Benzo[*a*]Pyrene Oxidation by Polymorphic Human Cytochrome P4501B1 Variants Substituted at Residues 48, 119 and 432. *Xenobiotica* **2001**, *31*, 163–176, doi:10.1080/00498250110043490.
- 27. Gelhaus, S.L.; Harvey, R.G.; Penning, T.M.; Blair, I.A. Regulation of Benzo[*a*]Pyrene-Mediated DNA- and Glutathione-Adduct Formation by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Human Lung Cells. *Chem Res Toxicol* **2011**, 24, 89–98, doi:10.1021/tx100297z.

- 28. Kushman, M.E.; Kabler, S.L.; Ahmad, S.; Doehmer, J.; Morrow, C.S.; Townsend, A.J. Cytotoxicity and Mutagenicity of Dibenzo[a,l]Pyrene and (+/-)-Dibenzo[a,l]Pyrene-11,12-Dihydrodiol in V79MZ Cells Co-Expressing Either hCYP1A1 or hCYP1B1 Together with Human Glutathione-S-Transferase A1. *Mutat Res* **2007**, 624, 80–87, doi:10.1016/j.mrfmmm.2007.04.004.
- 29. Kushman, M.E.; Kabler, S.L.; Ahmad, S.; Doehmer, J.; Morrow, C.S.; Townsend, A.J. Protective Efficacy of hGSTM1-1 against B[a]P and (+)- or (-)-B[a]P-7,8-Dihydrodiol Cytotoxicity, Mutagenicity, and Macromolecular Adducts in V79 Cells Coexpressing hCYP1A1. *Toxicol Sci* **2007**, *99*, 51–57, doi:10.1093/toxsci/kfm133.
- 30. Kushman, M.E.; Kabler, S.L.; Fleming, M.H.; Ravoori, S.; Gupta, R.C.; Doehmer, J.; Morrow, C.S.; Townsend, A.J. Expression of Human Glutathione S-Transferase P1 Confers Resistance to Benzo[*a*]Pyrene or Benzo[*a*]Pyrene-7,8-Dihydrodiol Mutagenesis, Macromolecular Alkylation and Formation of Stable N2-Gua-BPDE Adducts in Stably Transfected V79MZ Cells Co-Expressing hCYP1A1. *Carcinogenesis* **2007**, *28*, 207–214, doi:10.1093/carcin/bgl125.
- 31. Ruan, Q.; Gelhaus, S.L.; Penning, T.M.; Harvey, R.G.; Blair, I.A. Aldo-Keto Reductase- and Cytochrome P450-Dependent Formation of Benzo[a]Pyrene-Derived DNA Adducts in Human Bronchoalveolar Cells. *Chem Res Toxicol* **2007**, *20*, 424–431, doi:10.1021/tx060180b.
- 32. Schwarz, D.; Kisselev, P.; Cascorbi, I.; Schunck, W.H.; Roots, I. Differential Metabolism of Benzo[*a*]Pyrene and Benzo[*a*]Pyrene-7,8-Dihydrodiol by Human CYP1A1 Variants. *Carcinogenesis* **2001**, 22, 453–459, doi:10.1093/carcin/22.3.453.
- 33. Schwarz, D.; Kisselev, P.; Honeck, H.; Cascorbi, I.; Schunck, W.H.; Roots, I. Co-Expression of Human Cytochrome P4501A1 (CYP1A1) Variants and Human NADPH-Cytochrome P450 Reductase in the Baculovirus/Insect Cell System. *Xenobiotica* 2001, 31, 345–356, doi:10.1080/00498250110055947.
- 34. Shimada, T.; Fujii-Kuriyama, Y. Metabolic Activation of Polycyclic Aromatic Hydrocarbons to Carcinogens by Cytochromes P450 1A1 and 1B1. *Cancer Sci* **2004**, *95*, 1–6, doi:10.1111/j.1349-7006.2004.tb03162.x.
- 35. Shou, M.; Korzekwa, K.R.; Crespi, C.L.; Gonzalez, F.J.; Gelboin, H.V. The Role of 12 cDNA-Expressed Human, Rodent, and Rabbit Cytochromes P450 in the Metabolism of Benzo[*a*]Pyrene and Benzo[*a*]Pyrene Trans-7,8-Dihydrodiol. *Mol Carcinog* **1994**, *10*, 159–168, doi:10.1002/mc.2940100307.
- 36. Doehmer, J.; Holtkamp, D.; Soballa, V.; Raab, G.; Schmalix, W.; Seidel, A.; Greim, H.; Jacob, J. Cytochrome P450 Mediated Reactions Studied in Genetically Engineered V79 Chinese Hamster Cells. *Pharmacogenetics* **1995**, *5 Spec No*, S91-96, doi:10.1097/00008571-199512001-00008.
- 37. Jiang, H.; Shen, Y.-M.; Quinn, A.M.; Penning, T.M. Competing Roles of Cytochrome P450 1A1/1B1 and Aldo-Keto Reductase 1A1 in the Metabolic Activation of (+/-)-7,8-Dihydroxy-7,8-Dihydro-Benzo[*a*]Pyrene in Human Bronchoalveolar Cell Extracts. *Chem Res Toxicol* **2005**, *18*, 365–374, doi:10.1021/tx0497245.
- 38. Jiang, H.; Vudathala, D.K.; Blair, I.A.; Penning, T.M. Competing Roles of Aldo-Keto Reductase 1A1 and Cytochrome P4501B1 in Benzo[a]Pyrene-7,8-Diol Activation in Human Bronchoalveolar H358 Cells: Role of AKRs in P4501B1 Induction. *Chem Res Toxicol* **2006**, *19*, 68–78, doi:10.1021/tx0502488.
- 39. Shimada, T. Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. *Drug Metab Pharmacokinet* **2006**, 21, 257–276, doi:10.2133/dmpk.21.257.
- 40. Schmalix, W.A.; Mäser, H.; Kiefer, F.; Reen, R.; Wiebel, F.J.; Gonzalez, F.; Seidel, A.; Glatt, H.; Greim, H.; Doehmer, J. Stable Expression of Human Cytochrome P450 1A1 cDNA in V79 Chinese Hamster Cells and Metabolic Activation of Benzo[*a*]Pyrene. *Eur J Pharmacol* **1993**, 248, 251–261, doi:10.1016/0926-6917(93)90052-r.
- 41. Aoyama, T.; Gonzalez, F.J.; Gelboin, H.V. Human cDNA-Expressed Cytochrome P450 IA2: Mutagen Activation and Substrate Specificity. *Mol Carcinog* **1989**, *2*, 192–198, doi:10.1002/mc.2940020405.
- 42. Shimada, T.; Guengerich, F.P. Inhibition of Human Cytochrome P450 1A1-, 1A2-, and 1B1-Mediated Activation of Procarcinogens to Genotoxic Metabolites by Polycyclic Aromatic Hydrocarbons. *Chem Res Toxicol* **2006**, *19*, 288–294, doi:10.1021/tx050291v.
- 43. Gautier, J.C.; Lecoeur, S.; Cosme, J.; Perret, A.; Urban, P.; Beaune, P.; Pompon, D. Contribution of Human Cytochrome P450 to Benzo[a]Pyrene and Benzo[a]Pyrene-7,8-Dihydrodiol Metabolism, as Predicted from Heterologous Expression in Yeast. *Pharmacogenetics* **1996**, *6*, 489–499, doi:10.1097/00008571-199612000-00002.
- 44. Wu, Z.-L.; Sohl, C.D.; Shimada, T.; Guengerich, F.P. Recombinant Enzymes Overexpressed in Bacteria Show Broad Catalytic Specificity of Human Cytochrome P450 2W1 and Limited Activity of Human Cytochrome P450 2S1. *Mol Pharmacol* 2006, 69, 2007–2014, doi:10.1124/mol.106.023648.

- 45. Guengerich, F.P.; Chun, Y.-J.; Kim, D.; Gillam, E.M.J.; Shimada, T. Cytochrome P450 1B1: A Target for Inhibition in Anticarcinogenesis Strategies. *Mutat Res* **2003**, *523*–*524*, 173–182, doi:10.1016/s0027-5107(02)00333-0.
- Mammen, J.S.; Pittman, G.S.; Li, Y.; Abou-Zahr, F.; Bejjani, B.A.; Bell, D.A.; Strickland, P.T.; Sutter, T.R. Single Amino Acid Mutations, but Not Common Polymorphisms, Decrease the Activity of CYP1B1 against (-)Benzo[a]Pyrene-7R-Trans-7,8-Dihydrodiol. *Carcinogenesis* 2003, 24, 1247–1255, doi:10.1093/carcin/bgg088.
- 47. Meinl, W.; Donath, C.; Schneider, H.; Sommer, Y.; Glatt, H. SULT1C3, an Orphan Sequence of the Human Genome, Encodes an Enzyme Activating Various Promutagens. *Food Chem Toxicol* **2008**, *46*, 1249–1256, doi:10.1016/j.fct.2007.08.040.
- 48. Palackal, N.T.; Burczynski, M.E.; Harvey, R.G.; Penning, T.M. Metabolic Activation of Polycyclic Aromatic Hydrocarbon Trans-Dihydrodiols by Ubiquitously Expressed Aldehyde Reductase (AKR1A1). *Chem Biol Interact* **2001**, *130–132*, 815–824, doi:10.1016/s0009-2797(00)00237-4.
- 49. Palackal, N.T.; Burczynski, M.E.; Harvey, R.G.; Penning, T.M. The Ubiquitous Aldehyde Reductase (AKR1A1) Oxidizes Proximate Carcinogen Trans-Dihydrodiols to o-Quinones: Potential Role in Polycyclic Aromatic Hydrocarbon Activation. *Biochemistry* **2001**, *40*, 10901–10910, doi:10.1021/bi010872t.
- 50. Cheung, Y. L.; Gray, T. J.; Ioannides, C. Mutagenicity of chrysene, its methyl and benzo derivatives, and their interactions with cytochromes P-450 and the Ah-receptor; relevance to their carcinogenic potency. *Toxicology* **1993**, *81*, 69–86, doi: 10.1016/0300-483x(93)90157-n.
- 51. Chae, Y.H.; Yun, C.H.; Guengerich, F.P.; Kadlubar, F.F.; el-Bayoumy, K. Roles of Human Hepatic and Pulmonary Cytochrome P450 Enzymes in the Metabolism of the Environmental Carcinogen 6-Nitrochrysene. *Cancer Res* **1993**, *53*, 2028–2034, PMID: 8481905.
- 52. Murata, M.; Ohnishi, S.; Seike, K.; Fukuhara, K.; Miyata, N.; Kawanishi, S. Oxidative DNA Damage Induced by Carcinogenic Dinitropyrenes in the Presence of P450 Reductase. *Chem Res Toxicol* **2004**, *17*, 1750–1756, doi:10.1021/tx0497550.
- 53. Guengerich, F.P.; Shimada, T.; Raney, K.D.; Yun, C.H.; Meyer, D.J.; Ketterer, B.; Harris, T.M.; Groopman, J.D.; Kadlubar, F.F. Elucidation of Catalytic Specificities of Human Cytochrome P450 and Glutathione S-Transferase Enzymes and Relevance to Molecular Epidemiology. *Environ Health Perspect* **1992**, *98*, 75–80, doi:10.1289/ehp.929875.
- 54. Yamada, K.; Suzuki, T.; Hakura, A.; Mizutani, T.; Saeki, K. Metabolic Activation of 10-Aza-Substituted Benzo[a]Pyrene by Cytochrome P450 1A2 in Human Liver Microsomes. *Mutat Res* **2004**, *557*, 159–165, doi:10.1016/j.mrgentox.2003.10.007.
- 55. Glatt, H. Sulfotransferases in the Bioactivation of Xenobiotics. *Chem Biol Interact* **2000**, 129, 141–170, doi:10.1016/s0009-2797(00)00202-7.
- 56. Duarte, M.P.; Palma, B.B.; Gilep, A.A.; Laires, A.; Oliveira, J.S.; Usanov, S.A.; Rueff, J.; Kranendonk, M. The Stimulatory Role of Human Cytochrome B5 in the Bioactivation Activities of Human CyP1A2, 2A6 and 2E1: A New Cell Expression System to Study Cytochrome P450 Mediated Biotransformation. *Mutagenesis* 2005, 20, 93–100, doi:10.1093/mutage/gei012.
- 57. Duarte, M.P.; Palma, B.B.; Laires, A.; Oliveira, J.S.; Rueff, J.; Kranendonk, M. Escherichia Coli BTC, a Human Cytochrome P450 Competent Tester Strain with a High Sensitivity towards Alkylating Agents: Involvement of Alkyltransferases in the Repair of DNA Damage Induced by Aromatic Amines. *Mutagenesis* 2005, 20, 199–208, doi:10.1093/mutage/gei028.
- 58. Duarte, M.P.; Palma, B.B.; Gilep, A.A.; Laires, A.; Oliveira, J.S.; Usanov, S.A.; Rueff, J.; Kranendonk, M. The Stimulatory Role of Human Cytochrome B5 in the Bioactivation Activities of Human CyP1A2, 2A6 and 2E1: A New Cell Expression System to Study Cytochrome P450-Mediated Biotransformation (a Corrigendum Report on Duarte *et al.* (2005) *Mutagenesis* 20, 93-100). *Mutagenesis* 2007, 22, 75–81, doi:10.1093/mutage/gel054.
- 59. H. Sulfation and Sulfotransferases 4: Bioactivation of Mutagens via Sulfation. *FASEB J* **1997**, *11*, 314–321, doi:10.1096/fasebj.11.5.9141497.
- 60. Kreis, P.; Brandner, S.; Coughtrie, M.W.; Pabel, U.; Meinl, W.; Glatt, H.; Andrae, U. Human Phenol Sulfotransferases hP-PST and hM-PST Activate Propane 2-Nitronate to a Genotoxicant. *Carcinogenesis* **2000**, 21, 295–299, doi:10.1093/carcin/21.2.295.

- 61. Glatt, H.; Meinl, W. Use of Genetically Manipulated Salmonella Typhimurium Strains to Evaluate the Role of Sulfotransferases and Acetyltransferases in Nitrofen Mutagenicity. *Carcinogenesis* **2004**, *25*, 779–786, doi:10.1093/carcin/bgh070.
- 62. Meinl, W.; Meerman, J.H.N.; Glatt, H. Differential Activation of Promutagens by Alloenzymes of Human Sulfotransferase 1A2 Expressed in Salmonella Typhimurium. *Pharmacogenetics* **2002**, *12*, 677–689, doi:10.1097/00008571-200212000-00002.
- 63. Sun, Y.-W.; Guengerich, F.P.; Sharma, A.K.; Boyiri, T.; Amin, S.; el-Bayoumy, K. Human Cytochromes P450 1A1 and 1B1 Catalyze Ring Oxidation but Not Nitroreduction of Environmental Pollutant Mononitropyrene Isomers in Primary Cultures of Human Breast Cells and Cultured MCF-10A and MCF-7 Cell Lines. *Chem Res Toxicol* **2004**, *17*, 1077–1085, doi:10.1021/tx049889d.
- 64. Shimada, T.; Iwasaki, M.; Martin, M.V.; Guengerich, F.P. Human Liver Microsomal Cytochrome P-450 Enzymes Involved in the Bioactivation of Procarcinogens Detected by Umu Gene Response in Salmonella Typhimurium TA 1535/pSK1002. *Cancer Res* 1989, 49, 3218–3228, PMEDID 2655891.
- 65. Ahmad, S.; Kabler, S.L.; Rudd, L.; Amin, S.; Doehmer, J.; Morrow, C.S.; Townsend, A.J. Cytotoxicity and Mutagenicity of 5-Methylchrysene and Its 1,2-Dihydrodiol in V79MZ Cells Modified to Express Human CYP1A1 or CYP1B1, in the Presence or Absence of Human GSTP1 Coexpression. *Toxicol Lett* 2008, 183, 99–104, doi:10.1016/j.toxlet.2008.10.008.
- 66. Yamazaki, Y.; Fujita, K.-I.; Nakayama, K.; Suzuki, A.; Nakamura, K.; Yamazaki, H.; Kamataki, T. Establishment of Ten Strains of Genetically Engineered Salmonella Typhimurium TA1538 Each Co-Expressing a Form of Human Cytochrome P450 with NADPH-Cytochrome P450 Reductase Sensitive to Various Promutagens. *Mutat Res* 2004, 562, 151–162, doi:10.1016/j.mrgentox.2004.06.003.
- 67. Yueh, M.F.; Nguyen, N.; Famourzadeh, M.; Strassburg, C.P.; Oda, Y.; Guengerich, F.P.; Tukey, R.H. The Contribution of UDP-Glucuronosyltransferase 1A9 on CYP1A2-Mediated Genotoxicity by Aromatic and Heterocyclic Amines. *Carcinogenesis* **2001**, 22, 943–950, doi:10.1093/carcin/22.6.943.
- 68. Oda, Y. Analysis of the Involvement of Human N-Acetyltransferase 1 in the Genotoxic Activation of Bladder Carcinogenic Arylamines Using a SOS/Umu Assay System. *Mutat Res* **2004**, 554, 399–406, doi:10.1016/j.mrfmmm.2004.06.033.
- 69. Oda, Y.; Aryal, P.; Terashita, T.; Gillam, E.M.; Guengerich, F.P.; Shimada, T. Metabolic Activation of Heterocyclic Amines and Other Procarcinogens in Salmonella Typhimurium Umu Tester Strains Expressing Human Cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and Human NADPH-P450 Reductase and Bacterial O-Acetyltransferase. *Mutat Res* 2001, 492, 81–90, doi:10.1016/s1383-5718(01)00154-1.
- 70. Kranendonk, M.; Fisher, C.W.; Roda, R.; Carreira, F.; Theisen, P.; Laires, A.; Rueff, J.; Vermeulen, N.P.; Estabrook, R.W. Escherichia Coli MTC, a NADPH Cytochrome P450 Reductase Competent Mutagenicity Tester Strain for the Expression of Human Cytochrome P450: Comparison of Three Types of Expression Systems. *Mutat Res* **1999**, *439*, 287–300, doi:10.1016/s1383-5718(98)00193-4.
- 71. Josephy, P.D.; Evans, D.H.; Parikh, A.; Guengerich, F.P. Metabolic Activation of Aromatic Amine Mutagens by Simultaneous Expression of Human Cytochrome P450 1A2, NADPH-Cytochrome P450 Reductase, and N-Acetyltransferase in Escherichia Coli. *Chem Res Toxicol* 1998, 11, 70–74, doi:10.1021/tx970171q.
- 72. Gillam, E.M.; Wunsch, R.M.; Ueng, Y.F.; Shimada, T.; Reilly, P.E.; Kamataki, T.; Guengerich, F.P. Expression of Cytochrome P450 3A7 in Escherichia Coli: Effects of 5' Modification and Catalytic Characterization of Recombinant Enzyme Expressed in Bicistronic Format with NADPH-Cytochrome P450 Reductase. *Arch Biochem Biophys* 1997, 346, 81–90, doi:10.1006/abbi.1997.0286.
- 73. Imaoka, S.; Hayashi, K.; Hiroi, T.; Yabusaki, Y.; Kamataki, T.; Funae, Y. A Transgenic Mouse Expressing Human CYP4B1 in the Liver. *Biochem Biophys Res Commun* **2001**, 284, 757–762, doi:10.1006/bbrc.2001.5055.
- 74. Imaoka, S.; Yoneda, Y.; Sugimoto, T.; Hiroi, T.; Yamamoto, K.; Nakatani, T.; Funae, Y. CYP4B1 Is a Possible Risk Factor for Bladder Cancer in Humans. *Biochem Biophys Res Commun* **2000**, 277, 776–780, doi:10.1006/bbrc.2000.3740.
- 75. Grant, D.M.; Josephy, P.D.; Lord, H.L.; Morrison, L.D. Salmonella Typhimurium Strains Expressing Human Arylamine N-Acetyltransferases: Metabolism and Mutagenic Activation of Aromatic Amines. *Cancer Res* **1992**, *52*, 3961–3964, PMID: 1617672.
- 76. Oda, Y.; Yamazaki, H.; Shimada, T. Role of Human N-Acetyltransferases, NAT1 or NAT2, in Genotoxicity of Nitroarenes and Aromatic Amines in Salmonella Typhimurium NM6001 and NM6002. *Carcinogenesis* 1999, 20, 1079–1083, doi:10.1093/carcin/20.6.1079.

- 77. Sasaki, J.C.; Arey, J.; Eastmond, D.A.; Parks, K.K.; Phousongphouang, P.T.; Grosovsky, A.J. Evidence for Oxidative Metabolism in the Genotoxicity of the Atmospheric Reaction Product 2-Nitronaphthalene in Human Lymphoblastoid Cell Lines. *Mutat Res* **1999**, 445, 113–125, doi:10.1016/s1383-5718(99)00118-7.
- 78. Oda, Y.; Hirayama, T.; Watanabe, T. Genotoxic Activation of the Environmental Pollutant 3,6-Dinitrobenzo[e]Pyrene in Salmonella Typhimurium Umu Strains Expressing Human Cytochrome P450 and N-Acetyltransferase. *Toxicol Lett* **2009**, *188*, 258–262, doi:10.1016/j.toxlet.2009.04.010.
- 79. Kawanishi, M.; Watanabe, T.; Hagio, S.; Ogo, S.; Shimohara, C.; Jouchi, R.; Takayama, S.; Hasei, T.; Hirayama, T.; Oda, Y.; et al. Genotoxicity of 3,6-Dinitrobenzo[e]Pyrene, a Novel Mutagen in Ambient Air and Surface Soil, in Mammalian Cells in Vitro and in Vivo. *Mutagenesis* **2009**, 24, 279–284, doi:10.1093/mutage/gep007.
- 80. Oda, Y.; Zhang, Y.; Buchinger, S.; Reifferscheid, G.; Yang, M. Roles of Human Sulfotransferases in Genotoxicity of Carcinogens Using Genetically Engineered Umu Test Strains. *Environ Mol Mutagen* **2012**, 53, 152–164, doi:10.1002/em.20696.
- 81. Butler, M.A.; Iwasaki, M.; Guengerich, F.P.; Kadlubar, F.F. Human Cytochrome P-450PA (P-450IA2), the Phenacetin O-Deethylase, Is Primarily Responsible for the Hepatic 3-Demethylation of Caffeine and N-Oxidation of Carcinogenic Arylamines. *Proc Natl Acad Sci U S A* **1989**, *86*, 7696–7700, doi:10.1073/pnas.86.20.7696.
- 82. Stiborová, M.; Naiman, K.; Martínková, M.; Martínek, V.; Svobodová, M.; Schmeiser, H.H.; Frei, E. Genotoxic Mechanisms for the Carcinogenicity of the Environmental Pollutants and Carcinogens O-Anisidine and 2-Nitroanisole Follow from Adducts Generated by Their Metabolite N-(2-Methoxyphenyl)-Hydroxylamine with Deoxyguanosine in DNA. *Interdiscip Toxicol* 2009, 2, 24–27, doi:10.2478/v10102-009-0004-4.
- 83. Arlt, V.M.; Glatt, H.; Gamboa da Costa, G.; Reynisson, J.; Takamura-Enya, T.; Phillips, D.H. Mutagenicity and DNA Adduct Formation by the Urban Air Pollutant 2-Nitrobenzanthrone. *Toxicol Sci* **2007**, *98*, 445–457, doi:10.1093/toxsci/kfm103.
- 84. Arlt, V.M.; Glatt, H.; Muckel, E.; Pabel, U.; Sorg, B.L.; Seidel, A.; Frank, H.; Schmeiser, H.H.; Phillips, D.H. Activation of 3-Nitrobenzanthrone and Its Metabolites by Human Acetyltransferases, Sulfotransferases and Cytochrome P450 Expressed in Chinese Hamster V79 Cells. *Int J Cancer* 2003, 105, 583–592, doi:10.1002/ijc.11143.
- 85. Arlt, V.M.; Stiborova, M.; Hewer, A.; Schmeiser, H.H.; Phillips, D.H. Human Enzymes Involved in the Metabolic Activation of the Environmental Contaminant 3-Nitrobenzanthrone: Evidence for Reductive Activation by Human NADPH:Cytochrome P450 Reductase. *Cancer Res* **2003**, *63*, 2752–2761, PMID: 12782579.
- 86. Stiborová, M.; Arlt, V.M.; Henderson, C.J.; Wolf, C.R.; Frei, E.; Schmeiser, H.H.; Phillips, D.H. Molecular Mechanism of Genotoxicity of the Environmental Pollutant 3-Nitrobenzanthrone. *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub* **2005**, *149*, 191–197, doi:10.5507/bp.2005.025.
- 87. Arlt, V.M.; Henderson, C.J.; Wolf, C.R.; Schmeiser, H.H.; Phillips, D.H.; Stiborova, M. Bioactivation of 3-Aminobenzanthrone, a Human Metabolite of the Environmental Pollutant 3-Nitrobenzanthrone: Evidence for DNA Adduct Formation Mediated by Cytochrome P450 Enzymes and Peroxidases. *Cancer Lett* **2006**, 234, 220–231, doi:10.1016/j.canlet.2005.03.035.
- 88. Arlt, V.M.; Hewer, A.; Sorg, B.L.; Schmeiser, H.H.; Phillips, D.H.; Stiborova, M. 3-Aminobenzanthrone, a Human Metabolite of the Environmental Pollutant 3-hatanakaRat Liver Microsomes: Evidence for Activation by Cytochrome P450 1A1 and P450 1A2. *Chem Res Toxicol* **2004**, *17*, 1092–1101, doi:10.1021/tx049912v.
- 89. Wu, J.; Dong, H.; Cai, Z.; Yu, Y. Stable Expression of Human Cytochrome CYP2B6 and CYP1A1 in Chinese Hamster CHL Cells: Their Use in Micronucleus Assays. *Chin Med Sci J* 1997, 12, 148–155, PMID: 11360624.
- 90. Arlt, V.M.; Glatt, H.; Muckel, E.; Pabel, U.; Sorg, B.L.; Schmeiser, H.H.; Phillips, D.H. Metabolic Activation of the Environmental Contaminant 3-Nitrobenzanthrone by Human Acetyltransferases and Sulfotransferase. *Carcinogenesis* **2002**, *23*, 1937–1945, doi:10.1093/carcin/23.11.1937.
- 91. Koehl, W.; Amin, S.; Staretz, M.E.; Ueng, Y.F.; Yamazaki, H.; Tateishi, T.; Guengerich, F.P.; Hecht, S.S. Metabolism of 5-Methylchrysene and 6-Methylchrysene by Human Hepatic and Pulmonary Cytochrome P450 Enzymes. *Cancer Res* **1996**, *56*, 316–324, PMID: 8542586.

- 92. Yamazaki, H.; Mimura, M.; Oda, Y.; Inui, Y.; Shiraga, T.; Iwasaki, K.; Guengerich, F.P.; Shimada, T. Roles of Different Forms of Cytochrome P450 in the Activation of the Promutagen 6-Aminochrysene to Genotoxic Metabolites in Human Liver Microsomes. *Carcinogenesis* 1993, 14, 1271–1278, doi:10.1093/carcin/14.7.1271.
- 93. Yamazaki, H.; Mimura, M.; Oda, Y.; Gonzalez, F.J.; el-Bayoumy, K.; Chae, Y.H.; Guengerich, F.P.; Shimada, T. Activation of Trans-1,2-Dihydro-1,2-Dihydroxy-6-Aminochrysene to Genotoxic Metabolites by Rat and Human Cytochromes P450. *Carcinogenesis* **1994**, *15*, 465–470, doi:10.1093/carcin/15.3.465.
- 94. Yun, C.H.; Shimada, T.; Guengerich, F.P. Purification and Characterization of Human Liver Microsomal Cytochrome P-450 2A6. *Mol Pharmacol* **1991**, 40, 679–685, PMID: 1944238
- 95. Mimura, M.; Baba, T.; Yamazaki, H.; Ohmori, S.; Inui, Y.; Gonzalez, F.J.; Guengerich, F.P.; Shimada, T. Characterization of Cytochrome P-450 2B6 in Human Liver Microsomes. *Drug Metab Dispos* **1993**, *21*, 1048–1056. PMID: 7905383
- 96. Hashizume, T.; Yoshitomi, S.; Asahi, S.; Uematsu, R.; Matsumura, S.; Chatani, F.; Oda, H. Advantages of Human Hepatocyte-Derived Transformants Expressing a Series of Human Cytochrome P450 Isoforms for Genotoxicity Examination. *Toxicol Sci* **2010**, *116*, 488–497, doi:10.1093/toxsci/kfq154.
- 97. Buters, J.; Quintanilla-Martinez, L.; Schober, W.; Soballa, V.J.; Hintermair, J.; Wolff, T.; Gonzalez, F.J.; Greim, H. CYP1B1 Determines Susceptibility to Low Doses of 7,12-Dimethylbenz[a]Anthracene-Induced Ovarian Cancers in Mice: Correlation of CYP1B1-Mediated DNA Adducts with Carcinogenicity. *Carcinogenesis* 2003, 24, 327–334, doi:10.1093/carcin/24.2.327.
- 98. Roberts-Thomson, S.J.; McManus, M.E.; Tukey, R.H.; Gonzalez, F.J.; Holder, G.M. Metabolism of Polycyclic Aza-Aromatic Carcinogens Catalyzed by Four Expressed Human Cytochromes P450. *Cancer Res* **1995**, *55*, 1052–1059, PMID: 7866988.
- 99. Yoshitomi, S.; Ikemoto, K.; Takahashi, J.; Miki, H.; Namba, M.; Asahi, S. Establishment of the Transformants Expressing Human Cytochrome P450 Subtypes in HepG2, and Their Applications on Drug Metabolism and Toxicology. *Toxicol In Vitro* **2001**, *15*, 245–256, doi:10.1016/s0887-2333(01)00011-x.
- 100. Durant, J.L.; Lafleur, A.L.; Busby, W.F.; Donhoffner, L.L.; Penman, B.W.; Crespi, C.L. Mutagenicity of C24H14 PAH in Human Cells Expressing CYP1A1. *Mutat Res* **1999**, 446, 1–14, doi:10.1016/s1383-5718(99)00135-7.
- 101. Kim, J.H.; Stansbury, K.H.; Walker, N.J.; Trush, M.A.; Strickland, P.T.; Sutter, T.R. Metabolism of Benzo[a]Pyrene and Benzo[a]Pyrene-7,8-Diol by Human Cytochrome P450 1B1. *Carcinogenesis* **1998**, *19*, 1847–1853, doi:10.1093/carcin/19.10.1847.
- 102. Shimada, T.; Wunsch, R.M.; Hanna, I.H.; Sutter, T.R.; Guengerich, F.P.; Gillam, E.M. Recombinant Human Cytochrome P450 1B1 Expression in Escherichia Coli. *Arch Biochem Biophys* 1998, 357, 111–120, doi:10.1006/abbi.1998.0808.
- 103. Guo, Z.; Gillam, E.M.; Ohmori, S.; Tukey, R.H.; Guengerich, F.P. Expression of Modified Human Cytochrome P450 1A1 in Escherichia Coli: Effects of 5' Substitution, Stabilization, Purification, Spectral Characterization, and Catalytic Properties. *Arch Biochem Biophys* **1994**, 312, 436–446, doi:10.1006/abbi.1994.1330.
- 104. Penman, B.W.; Chen, L.; Gelboin, H.V.; Gonzalez, F.J.; Crespi, C.L. Development of a Human Lymphoblastoid Cell Line Constitutively Expressing Human CYP1A1 cDNA: Substrate Specificity with Model Substrates and Promutagens. *Carcinogenesis* 1994, 15, 1931–1937, doi:10.1093/carcin/15.9.1931.
- 105. Sengstag, C.; Eugster, H.P.; Würgler, F.E. High Promutagen Activating Capacity of Yeast Microsomes Containing Human Cytochrome P-450 1A and Human NADPH-Cytochrome P-450 Reductase. *Carcinogenesis* **1994**, *15*, 837–843, doi:10.1093/carcin/15.5.837.
- 106. Hashizume, T.; Yoshitomi, S.; Asahi, S.; Matsumura, S.; Chatani, F.; Oda, H. In Vitro Micronucleus Test in HepG2 Transformants Expressing a Series of Human Cytochrome P450 Isoforms with Chemicals Requiring Metabolic Activation. *Mutat Res* **2009**, *677*, 1–7, doi:10.1016/j.mrgentox.2009.03.009.
- 107. Aklillu, E.; Øvrebø, S.; Botnen, I.V.; Otter, C.; Ingelman-Sundberg, M. Characterization of Common CYP1B1 Variants with Different Capacity for Benzo[a]Pyrene-7,8-Dihydrodiol Epoxide Formation from Benzo[a]Pyrene. *Cancer Res* **2005**, *65*, 5105–5111, doi:10.1158/0008-5472.CAN-05-0113.
- 108. Baum, M.; Amin, S.; Guengerich, F.P.; Hecht, S.S.; Köhl, W.; Eisenbrand, G. Metabolic Activation of Benzo[c]Phenanthrene by Cytochrome P450 Enzymes in Human Liver and Lung. *Chem Res Toxicol* **2001**, 14, 686–693, doi:10.1021/tx000240s.
- 109. Einolf, H.J.; Story, W.T.; Marcus, C.B.; Larsen, M.C.; Jefcoate, C.R.; Greenlee, W.F.; Yagi, H.; Jerina, D.M.; Amin, S.; Park, S.S.; et al. Role of Cytochrome P450 Enzyme Induction in the Metabolic Activation of

- Benzo[c]Phenanthrene in Human Cell Lines and Mouse Epidermis. *Chem Res Toxicol* **1997**, *10*, 609–617, doi:10.1021/tx960174n.
- 110. Seidel, A.; Soballa, V.J.; Raab, G.; Frank, H.; Greim, H.; Grimmer, G.; Jacob, J.; Doehmer, J. Regio- and Stereoselectivity in the Metabolism of Benzo[c]Phenanthrene Mediated by Genetically Engineered V79 Chinese Hamster Cells Expressing Rat and Human Cytochromes P450. *Environ Toxicol Pharmacol* 1998, 5, 179–196, doi:10.1016/s1382-6689(97)10073-4.
- 111. Crespi, C.L.; Penman, B.W.; Steimel, D.T.; Smith, T.; Yang, C.S.; Sutter, T.R. Development of a Human Lymphoblastoid Cell Line Constitutively Expressing Human CYP1B1 cDNA: Substrate Specificity with Model Substrates and Promutagens. *Mutagenesis* **1997**, *12*, 83–89, doi:10.1093/mutage/12.2.83.
- 112. Yuan, Z.-X.; Kumar, S.; Sikka, H.C. Comparative Metabolism of the Aza Polynuclear Aromatic Hydrocarbon Dibenz[*a,h*]Acridine by Recombinant Human and Rat Cytochrome P450s. *Chem Res Toxicol* **2004**, *17*, 672–678, doi:10.1021/tx049979i.
- 113. Shou, M.; Krausz, K.W.; Gonzalez, F.J.; Gelboin, H.V. Metabolic Activation of the Potent Carcinogen Dibenzo[a,h]anthracene by cDNA-Expressed Human Cytochromes P450. *Arch Biochem Biophys* **1996**, 328, 201–207, doi:10.1006/abbi.1996.0161.
- 114. Luch, A.; Coffing, S.L.; Tang, Y.M.; Schneider, A.; Soballa, V.; Greim, H.; Jefcoate, C.R.; Seidel, A.; Greenlee, W.F.; Baird, W.M.; et al. Stable Expression of Human Cytochrome P450 1B1 in V79 Chinese Hamster Cells and Metabolically Catalyzed DNA Adduct Formation of Dibenzo[*a*,*l*]Pyrene. *Chem Res Toxicol* 1998, 11, 686–695, doi:10.1021/tx970236p.
- 115. Luch, A.; Kishiyama, S.; Seidel, A.; Doehmer, J.; Greim, H.; Baird, W.M. The K-Region Trans-8,9-Diol Does Not Significantly Contribute as an Intermediate in the Metabolic Activation of Dibenzo[a,l]Pyrene to DNA-Binding Metabolites by Human Cytochrome P450 1A1 or 1B1. *Cancer Res* 1999, 59, 4603–4609, PMID: 10493514.
- 116. Luch, A.; Schober, W.; Soballa, V.J.; Raab, G.; Greim, H.; Jacob, J.; Doehmer, J.; Seidel, A. Metabolic Activation of Dibenzo[a,l]Pyrene by Human Cytochrome P450 1A1 and P450 1B1 Expressed in V79 Chinese Hamster Cells. *Chem Res Toxicol* **1999**, *12*, 353–364, doi:10.1021/tx980240g.
- 117. Melendez-Colon, V.J.; Luch, A.; Seidel, A.; Baird, W.M. Comparison of Cytochrome P450- and Peroxidase-Dependent Metabolic Activation of the Potent Carcinogen Dibenzo[a,l]Pyrene in Human Cell Lines: Formation of Stable DNA Adducts and Absence of a Detectable Increase in Apurinic Sites. *Cancer Res* 1999, 59, 1412–1416.
- 118. Melendez-Colon, V.J.; Luch, A.; Seidel, A.; Baird, W.M. Formation of Stable DNA Adducts and Apurinic Sites upon Metabolic Activation of Bay and Fjord Region Polycyclic Aromatic Hydrocarbons in Human Cell Cultures. *Chem Res Toxicol* **2000**, *13*, 10–17, doi:10.1021/tx9802724.
- 119. King, L.C.; Adams, L.; Allison, J.; Kohan, M.J.; Nelson, G.; Desai, D.; Amin, S.; Ross, J.A. A Quantitative Comparison of Dibenzo[a,l]Pyrene-DNA Adduct Formation by Recombinant Human Cytochrome P450 Microsomes. *Mol Carcinog* 1999, 26, 74–82, PMID: 10506751.
- 120. Shou, M.; Krausz, K.W.; Gonzalez, F.J.; Gelboin, H.V. Metabolic Activation of the Potent Carcinogen Dibenzo[a,l]Pyrene by Human Recombinant Cytochromes P450, Lung and Liver Microsomes. *Carcinogenesis* **1996**, *17*, 2429–2433, doi:10.1093/carcin/17.11.2429.
- 121. Schober, W.; Luch, A.; Soballa, V.J.; Raab, G.; Stegeman, J.J.; Doehmer, J.; Jacob, J.; Seidel, A. On the Species-Specific Biotransformation of Dibenzo[a,l]Pyrene. *Chem Biol Interact* **2006**, 161, 37–48, doi:10.1016/j.cbi.2006.02.007.
- 122. Lanza, D.L.; Code, E.; Crespi, C.L.; Gonzalez, F.J.; Yost, G.S. Specific Dehydrogenation of 3-Methylindole and Epoxidation of Naphthalene by Recombinant Human CYP2F1 Expressed in Lymphoblastoid Cells. *Drug Metab Dispos* **1999**, *27*, 798–803, PMID: 10383923.
- 123. Chou, H.C.; Lang, N.P.; Kadlubar, F.F. Metabolic Activation of N-Hydroxy Arylamines and N-Hydroxy Heterocyclic Amines by Human Sulfotransferase(s). *Cancer Res* **1995**, *55*, 525–529, PMID: 7834621.
- 124. Schober, W.; Pusch, G.; Oeder, S.; Reindl, H.; Behrendt, H.; Buters, J.T.M. Metabolic Activation of Phenanthrene by Human and Mouse Cytochromes P450 and Pharmacokinetics in CYP1A2 Knockout Mice. *Chem Biol Interact* **2010**, *183*, 57–66, doi:10.1016/j.cbi.2009.09.008.
- 125. Kisselev, P.; Schwarz, D.; Platt, K.-L.; Schunck, W.-H.; Roots, I. Epoxidation of Benzo[a]Pyrene-7,8-Dihydrodiol by Human CYP1A1 in Reconstituted Membranes. Effects of Charge and Nonbilayer Phase Propensity of the Membrane. *Eur J Biochem* 2002, 269, 1799–1805, doi:10.1046/j.1432-1033.2002.02848.x.

Toxicol 2007, 21, 101-109, doi:10.1002/jbt.20168.

51

- 126. Mahadevan, B.; Luch, A.; Atkin, J.; Haynes, M.; Nguyen, T.; Baird, W.M. Inhibition of Human Cytochrome P450 1b1 Further Clarifies Its Role in the Activation of Dibenzo[a,l]Pyrene in Cells in Culture. *J Biochem Mol*
- 127. Shimada, T.; Gillam, E.M.; Oda, Y.; Tsumura, F.; Sutter, T.R.; Guengerich, F.P.; Inoue, K. Metabolism of Benzo[a]Pyrene to Trans-7,8-Dihydroxy-7, 8-Dihydrobenzo[a]Pyrene by Recombinant Human Cytochrome P450 1B1 and Purified Liver Epoxide Hydrolase. *Chem Res Toxicol* 1999, 12, 623–629, doi:10.1021/tx990028s.
- 128. Hein, D.W.; Doll, M.A.; Rustan, T.D.; Gray, K.; Feng, Y.; Ferguson, R.J.; Grant, D.M. Metabolic Activation and Deactivation of Arylamine Carcinogens by Recombinant Human NAT1 and Polymorphic NAT2 Acetyltransferases. *Carcinogenesis* 1993, 14, 1633–1638, doi:10.1093/carcin/14.8.1633

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.