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Abstract. This paper revisits the analytical theory of fractional vibrations with the highlights in five aspects. 

First, we address the cases of structures with frequency dependent mass or damping or stiffness in Sections 2-

4. Second, we introduce the theory based on the general second-order vibration motion equation with 

frequency dependent elements (mass, damping, stiffness) in Sections 5-7. Third, we present the analytical 

theory of seven specific classes of second-order vibration systems with frequency dependent mass or damping 

or stiffness in Sections 8 and 9. Fourth, we bring forward the analytical theory of seven classes of fractional 

vibration systems in Sections 10-12. Finally, as an application, we give the closed form expression of the forced 

response to multi-fractional Euler-Bernoulli beam in Section 13. The explanation of the nonlinearity of 

fractional vibrations is given in Section 14. 

Keywords. Frequency dependent mass or damping or stiffness; equivalent mass or damping or stiffness; 

fractional inertia or damping or restoration force; equivalent motion equation; multi-fractional Euler-Bernoulli 

beam 

 

1. Introduction 

Conventionally, vibration elements, say, mass m, damping c, and stiffness k, are commonly 

assumed to be constants. However, in vibration engineering, people pay attention to the phenomena 

of frequency dependent elements (mass or damping or stiffness), see e.g., Harris [1], Korotkin [2], 

Palley et al. [3], Kristiansen and Egeland [4], Zou et al. [5], Wu and Hsie [6], Qiao et al. [7], Jaberzadeh 

et al. [8], Xu et al. [9], Ghaemmaghami and Kwon [10], Hamdaoui et al. [11]. Since the analytical 

theory of fractional vibrations established by Li [12–14] adopts frequency dependent elements in the 

equivalent sense, we feel the usefulness of showing several realistic cases of frequency dependent 

mass, damping, and stiffness respectively in Sections 2-4, so as to purposely write a general form of 

a vibration system with frequency dependent mass, damping, and stiffness and discuss its vibration 

theory in Sections 5-9. The intention of writing Sections 5-9 is in two aspects. One is for the pavement 

of seven classes of fractional vibrators addressed in Sections 10-13. The other is to facilitate smoothing 

away possible hesitations why m and or c and or k may be frequency dependent. As an application, 

we discuss the closed form expression of the forced response to the multi-fractional Euler-Bernoulli 

beam in Section 13. The nonlinearity of fractional vibrations is discussed in Section 14, which is 

followed by conclusions. 

2. Cases of Frequency Dependent Mass 

2.1. Frequency Dependent Mass in Auxiliary Mass Damper System 

Consider a simple auxiliary mass damper indicated in Figure 1 (Harris [1]). The system consists 

of a mass ma, spring ka, and viscous damper ca.  
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Figure 1. Auxiliary mass damper. 

The motion equation of the auxiliary mass damper system is given by 
2

0

2

[ ( ) ( )]( )
( ) .rr

a r a a

d x t x tdx t
k x t c m

dt dt

+
− − =  (2.1) 

Let Xr and X0 be the phasors of xr(t) and x0(t), respectively. The phasor equation of the above is 

in the form 

( ) 2

0( ).a a r a rk i c X m X X − − = − +  (2.2) 

Therefore, 
2

2
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r

a a a

m
X

m k i c



 
=
− + +

 (2.3) 

Denote by F the phasor of the force exerting on the foundation. Then, 

( )2

02
.

a a a

a a a

m k i c
F X

m k i c

 

 

+
=
− + +

 (2.4) 

As the force acted by an equivalent mass meq is rigidly attached to the foundation, we have 

2

eq 0 ,F m X=  (2.5) 

where 

eq 2
.a a

a

a a a

k i c
m m

m k i c



 

+
=
− + +

 (2.6) 

Rewriting the above yields 

( )( )

( ) ( )

( ) ( )

( ) ( )

22 2 3

eq 2 22 22 2
.

a a a a a a a a a a a

a a

a a a a a a

k i c k m i c k k m c im c
m m m

k m c k m c

     

   

+ − − − + −
= =

− + − +
 (2.7) 

In the polar system,  

eq eq eqArg ,m m m=  (2.8) 

where  

( ) ( ) ( )

( ) ( )

2 222 3

eq 2 22
= ,

a a a a a a

a

a a a

k k m c m c
m m

k m c

  

 

 − + +
 

− +
 (2.9) 

and 

( ) ( )

3

1

eq 22
Arg tan .a a

a a a a

im c
m

k k m c



 

− −
=

− +
 (2.10) 
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The above exhibits that both the modulus and argument of meq are the functions of . When  = 

0, meq reduces to the primary mass ma. In general, 0  |meq| < . When ca = 0, meq is real. Figure 2 

illustrates a curve of |meq|. 
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Figure 2. Illustration of |meq| for ma = 1, ca = 1, and ka = 1. 

2.2. Added Mass 

The frequency dependence of added mass is well known in the field of ship mechanics (Korotkin 

[2]). In general, a ship motion is with six degrees of freedom (Palley et al. [3]). We adopt the following 

symbols for discussions. 

• qn (n = 1, …, 6): generalized coordinates. 

• fn: generalized forces. 

• mjn: dry mass of the ship in direction j. 

• cjn: dry damping of the ship in direction j.  

• kjn: dry stiffness of the ship in direction j. 

• madd, jn: added mass of the ship in direction j. 

• hjn(t): impulse response function in direction j to an impulse in velocity in direction n. 

When qn(t) = qn cos(t), according to Kristiansen and Egeland [4], one has  

6 6 6

add, eq,

1 1 1

( ) ( ) ( ),jn jn n jn n jn n j

n n n

m m q c q k q f t 
= = =

  + + + =     (2.11) 

where fj(t) is a sinusoidal force at ,  

add,

0

1
( ) ( )sinjn jn jnm m h t tdt 





= −   (2.12) 

and 

eq,

0

( ) ( )cos .jn jn jnc c h t tdt 


= +   (2.13) 

Considering the equivalent mass meq, we have  

meq = mjn + madd, jn().  (2.14) 

Therefore, the equivalent mass meq of a ship in general is frequency dependent. Consequently, 

meq = meq(). 

There are other types of expressions with respect to frequency dependent mass, see e.g., Zou et 

al. [5], Wu and Hsieh [6], Qiao et al. [7], Jaberzadeh et al. [8], Xu et al. [9], Ghaemmaghami, and Kwon 

[10], Hamdaoui et al. [11], Li [12–14], Banerjee [15], White et al. [16], Dumont and Oliveira [17], Zhang 

et al. [18], Sun et al. [19].  
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3. Cases of Frequency Dependent Damping 

3.1. Rigidly Connected Coulomb Damper 

Have a look at Figure 3 that indicates a rigidly connected Coulomb damper. 

k

m
0 sin( )x x t = +

0 sinu u t=

TF fF

F

 

Figure 3. Rigidly connected Coulomb damper. 

The motion equation is given by  

0( ) sin .fmx k x u F F t + −  = +  (3.1) 

Since there is discontinuity in the damping force that occurs as the sign of the velocity changes 

at each half cycle, a step-by-step solution of the above is required (Harris [1], Den Hartog [20]). Let  

= x − u. Using the equivalence of energy dissipation for equating the energy dissipation per cycle for 

viscous-damped and Coulomb damped systems produces (Harris [1], Jacobsen [21])  

2

eq 0 04 .fc F  =  (3.2) 

In the above, the left side refers to the viscous-damped system and the right side to the Coulomb-

damped system. The symbol 0 is the amplitude of relative displacement across the damper.  

From the above, one has the equivalent viscous damping coefficient for a Coulomb-damped 

system that has equivalent energy dissipation in the form 

eq

0

4
.

fF
c


=  (3.3) 

One thing worth noting is that ceq is frequency dependent. Hence,  

ceq = ceq(). (3.4) 

3.2. Rayleigh Damping 

The Rayleigh damping introduced by Rayleigh [22] is widely adopted in the field, see e.g., Harris 

[1], Palley et al. [3], Li [12–14], Jin and Xia [23], Trombetti and Silvestri [24,25], Mohammad et al. [26], 

Kim and Wiebe [27]. Rayleigh assumed his damping in the form 

cRaylegh = am + bk, (3.5) 

where a is proportional to  while b is inversely proportional to . Thus, we may write 

cRaylegh = cRaylegh(). (3.6) 

The above exhibits that the frequency dependence is a radical property of the damping Rayleigh 

assumed. 

3.3. Remarks 

Other types of frequency dependent dampers, refer to Kuo et al. [28], Stollwitzer et al. [29], Jith 

and Sarkar [30], Zhou et al. [31], Zarraga et al. [32], Xie et al. [33,34], Hu et al. [35], Rouleau et al. [36], 

Hamdaoui et al. [37], Deng et al. [38], Dai et al. [39], Adessina et al. [40], Chang et al. [41], Lin et al. 

[42], Dai et al. [43], Catania and Sorrentino [44,45], Zhang and Turner [46], Yoshida et al. [47], 
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Assimaki and Kausel [48], Pan et al. [49], Ghosh and Viswanath [50], Mcdaniel et al. [51], Zhang et al. 

[52], Wang et al. [53], Lundén and Dahlberg [54], Figueroa et al. [55], Lázaro [56], and Crandall [57], 

simply citing a few. 

4. Cases of Frequency Dependent Stiffness 

4.1. Frequency Dependent Stiffness in a Shaft Driven by a Periodic Force  

Consider a shaft driven by a periodic force as shown in Figure 4. The mass m is supported by 

two springs with the primary stiffness k. Under the excitation of a force in axis direction, there is a 

force produced by displacement in the form cos .
x

F t
l

  

cosF t

m

x

l

y

x
kk

 

Figure 4. A shaft excited by a periodic force. 

Thus, the motion equation is given by 

cos 0.
x

mx kx F t
l

 + − =  (4.1) 

Denote by keq the equivalent stiffness of the system. Then,  

eq 0,mx k x + =  (4.2) 

where 

eq

cos
.

F t
k k

l


= −  (4.3) 

The above designates that the equivalent stiffness keq is frequency dependent. Hence, keq = keq(). 

4.2. Frequency Dependent Stiffness in Simple Pendulum 

Let l be the length of a simple pendulum. Denote by m the mass of the simple pendulum. 

Suppose that the fulcrum position of the pendulum moves periodically as A0cosxl, see Figure 5. 
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Figure 5. Simple pendulum. 

The motion equation of the simple pendulum is given by 

( )2

0 cos sin 0.ml m g A t    + − =  (4.4) 

When  is small such that sin  , we have 

( )2

0 cos 0.ml m g A t    + − =  (4.5) 

Replacing  by x yields 

( )2

0 cos 0.
m

mx g A t x
l

  + − =  (4.6) 

Let keq be the equivalent stiffness. Then, 

( )2

eq 0 cos .
m

k g A t
l

 = −  (4.7) 

Therefore, the motion equation is expressed by 

eq 0.mx k x + =  (4.8) 

The above exhibits that the stiffness keq is frequency dependent. 

The topic of frequency dependent stiffness attracts the interests of researchers. The other 

references regarding frequency dependent stiffness refer to Li [12–14], Banerjee [15], White et al. [16], 

Dumont and de Oliveira [17], Zhang et al. [18], Sun et al. [19], Yoshida et al. [47], Wu et al. [58], Blom 

and Kari [59], Gao et al. [60], Song et al. [61], Liu et al. [62], Zhang et al. [63], Banerjee et al. [64,65], Lu 

et al. [66], Sung et al. [67], Mezghani et al. [68], Liu et al. [69], Kong et al. [70], Ege et al. [71], 

Mukhopadhyay et al. [72], Sainz-AjaIsidro et al. [73], Bozyigit [74], Varghese et al. [75], Failla et al. 

[76], Fan et al. [77], Roozen et al. [78], Mochida and Ilanko [79], just citing a few. 

5. General Vibration System with Frequency Dependent Elements 

5.1. Motion Equation of General Vibration System 

Based on the previous discussions, we write the motion equation with frequency dependent 

elements by 

eq eq eq( ) ( ) ( ) ( ),m x c x k x f t   + + =  (5.1) 

where f(t) is an excitation force. 
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Let X() and F() be the Fourier transform of x(t) and f(t), respectively. Then, the motion 

equation in the frequency domain is expressed by 

2

eq eq eq( ) ( ) ( ) ( ) ( ).m i c k X F       − + + =   (5.2) 

5.2. Vibration Parameters of General Vibration System 

Denote by eqn the equivalent natural angular frequency with damping free. It is given by 

eq

eqn

eq

( )
.

( )

k

m





=  (5.3) 

Since either meq or keq is a function of , eqn is a function of . Thus,  

eqn eqn ( ).  =  (5.4) 

Let eq() be the equivalent damping ratio in the form 

eq

eq

eq eq

1
( ) .

2

c

m k
  =  (5.5) 

Then, we rewrite (5.1) by 

2

eq eqn eqn

eq

( )
2 ( ) ( ) ( ) .

( )

f t
x x x

m
     


 + + =  (5.6) 

Denote by eqd() the equivalent damped natural angular frequency. Since |eq()| > 1 does not 

make sense in vibrations (Harris [1], Palley et al. [2], Li [13], Nakagawa and Ringo [80]), we restrict 

eq by |eq()|  1. Thus, 

2

eqd eqn eq( ) ( ) 1 ( ).     = −  (5.7) 

The equivalent frequency ratio is given by  

eq

eqn

.
( )




 
=  (5.8) 

5.3. Free Response of General Vibration System with Frequency Dependent Elements 

When considering the free response to a general vibration system with frequency dependent 

elements, we have 

eq eq eq

0 0

( ) ( ) ( ) ( ) ( ) ( ) 0,

(0) , (0) .

m x t c x t k x t

x x x v

   + + =


= =
 (5.9) 

The above equation can be rewritten by 

2

eq eqn eqn

0 0

2 ( ) ( ) ( ) 0,

(0) , (0) .

x x x

x x x v

       + + =


= =
 (5.10) 

Then, the free response is 
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eq eqn 0 eq eqn 0

0 eqd eqd

eqd

( ) cos sin ,    0.
t v x

x t e x t t t
   

 


−
 +

= +   
 

 (5.11) 

5.4. Impulse Response of General Vibration System with Frequency Dependent Elements 

When investigating the impulse response to a general vibration system with frequency 

dependent elements, we use the following equation 

2

eq eqn eqn

eq

( )
( ) 2 ( ) ( ) ( ) ( ) ( ) ,

( )

(0) 0, (0) 0.

t
h t h t h t

m

h h


     




 + + =


 = =

 (5.12) 

Thus, 

eq eqn

eqd

eq eqd

1
( ) sin ,     0.

t
h t e t t

m

 




−
=   (5.13) 

5.5. Step Response of General Vibration System with Frequency Dependent Elements 

Denote by g(t) the unit step response (step response for short) to a general vibration system with 

frequency dependent elements. Consider the following equation 

2

eq eqn eqn

eq

( )
( ) 2 ( ) ( ) ( ) ( ) ( ) ,

( )

(0) 0, (0) 0.

u t
g t g t g t

m

g g

     



 + + =


 = =

 (5.14) 

Then,  

( )
eq eqn

eqd
2

eq eq

1
( ) 1 cos ,     0,

( ) 1

t
e

g t t t
k

 

 
 

− 
 = − − 
 − 

 (5.15) 

where  

eq1

2

eq

tan .
1






−=
−

 (5.16) 

6. Frequency Transfer Function of General Vibration System with Frequency Dependent 

Elements 

Let H() be the Fourier transform of h(t). From (5.12), we have 

2 2

eqn eq eqn

eq

1
( ) 2 ( ) ( ) ( ) .

( )
i H

m
        


 − + = 

 (6.1) 

Therefore, 

2 2

eq eqn eq eqn

2

eq eq eq eq

1
( )

( ) ( ) 2 ( ) ( )

1
.

( ) 1 2 ( )

H
m i

k i


        

    

=
 − + 

=
 − + 

 (6.2) 
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The amplitude |H()| is given by 

( ) ( )

eq

2 22

eq eq eq

1/
( ) .

1 2

k
H 

  

=

− +

 
(6.3) 

The phase is expressed by  

eq eq1

2

eq

2 ( )
( ) tan .

1

  
 



−= −
−

 (6.4) 

When computing () using digital computers,  

( ) ( )

2

eq1

2 22

eq eq eq

1
( ) cos .

1 2


 

  

−
−

=

− +

 (6.5) 

7. Logarithmic Decrement and Q Factor of General Vibration System with Frequency Dependent 

Elements 

Let ti and ti + 1 be two time points of the free response x(t), where x(ti) and x(ti + 1) are successive 

peak values at ti and ti + 1. Let eq be the logarithmic decrement of x(t). Then,  

eq

eq eq
2

1 eq

2 ( )( )
( ) ln .

( ) 1 ( )

i

i

x t

x t

 


 +

 =  = =
−

 (7.1) 

Let Qeq be the Q factor of a general vibration system with frequency dependent elements. Then,  

eq eq

eq

1
( ) .

2 ( )
Q Q 

 
= =  (7.2) 

8. Li's Vibration System with Frequency Dependent Elements 

8.1. Motion Equation of Li's Vibration System 

Recently, Li introduced a class of vibration systems with frequency dependent elements. Its 

motion equation is in the form 

2
2 2 6

2

1 1 1 6

6

( )
cos cos

2 2

( )
sin sin sin

2 2 2

cos ( ) ( ),   1 3,  0 2,  0 1,
2

d x t
m c

dt

dx t
m c k

dt

k x t f t

 

  



 
 

  
  


   

− −

− − −

 
− + 
 

 
+ + + 
 

+ =      

 (8.1) 

where f(t) is driven force and x6(t) is the response. For facilitating discussions, we call the above Li's 

vibration system with frequency dependent elements or Li's vibration system in short. 

8.2. Vibration Parameters of Li's Vibration System 

When writing (8.1) by 

2

6 6
eq6 eq6 eq6 62

( ) ( )
( ) ( ),   1 3,  0 2,  0 1,

d x t dx t
m c k x t f t

dt dt
  + + =        (8.2) 

we have the equivalent mass of (8.1) in the form 
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2 2

eq6 eq6 ( ) cos cos ,
2 2

m m m c  
  − − 

= = − + 
 

 (8.3) 

the equivalent damping expressed by 

1 1

eq6 eq6 ( ) sin sin ,
2 2

c c c k  
  − −= = +  (8.4) 

and the equivalent stiffness given by 

eq6 eq6 ( ) cos .
2

k k k  
 = =  (8.5) 

Let eq6 be the equivalent damping ratio for the system (8.1). Define it by 

eq6

eq6

eq6 eq6

.
2

c

m k
 =  (8.6) 

Then, 

1 1 1

eq6 eq6

2 2

sin sin sin
2 2 2( ) .

2 cos cos cos
2 2 2

m c k

m c k

  

  

  
  

  
  

  

− − −

− −

+ +

= =
 

− + 
 

 (8.7) 

Denote by eqn6 the equivalent natural angular frequency with damping free with respect to the 

system (8.1). Define it by 

eq6

eqn6

eq6

( )
.

( )

k

m





=  (8.8) 

Then, 

eqn6
2 2

cos
2 .

cos cos
2 2

k

m c



 





 

 − −

=
 

− + 
 

 (8.9) 

Let eqd6 be the equivalent damped natural angular frequency for the system (8.1). In vibrations, 

small damping |eq6|  1 is assumed in what follows. Define eqd6 by 

2

eqd6 eqn6 eq6 eq61 ,     1.   = −   (8.10) 

Then, 

eqd6
2 2

2

1 1 1

2 2

cos
2

cos cos
2 2

sin sin sin
2 2 21 .

2 cos cos cos
2 2 2

k

m c

m c k

m c k



 

  

  





 

 

  
  

  
  

− −

− − −

− −

=
 

− + 
 

 
 + +
 −
  

− +   
  

 (8.11) 

Denote the equivalent frequency ratio for the system (8.1) by eq6 and define it by 
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eq6

eqn6

.





=  (8.12) 

Then, 

2 2

eq6

cos 2 cos
2 2

,

cos
2

n

 



 
  

 




− − 
− + 
 =  (8.13) 

where n





=

and .n

k

m
 =   

8.3. Free Response of Li's Vibration System 

Consider  

2

6 6
eq6 eq6 eq6 62

6 60 6 60

( ) ( )
( ) 0,

(0) , (0) .

d x t dx t
m c k x t

dt dt

x x x v


+ + =


 = =

 (8.14) 

Then, the free response x6(t) is expressed by 

eq6 eqn6 60 eq6 eqn6 60

6 60 eqd6 eqd6

eqd6

( ) cos sin ,    0.
t v x

x t e x t t t
   

 


−  +
= +   

 
 (8.15) 

8.4. Impulse Response of Li's Vibration System 

Let h6(t) be the impulse response of the system (8.1). Then, 

eq6 eqn6

6 eqd6

eq6 eqd6

1
( ) sin ,     0.

t
h t e t t

m

 




−
=   (8.16) 

8.5. Step Response of Li's Vibration System 

Denote by g6(t) the unit step response of the system (8.1). Then, 

( )
eq6 eqn6

6 eqd6 6
2

eq6 eq6

1
( ) 1 cos ,     0,

1

t
e

g t t t
k

 

 


− 
 = − − 
 −
 

 (8.17) 

where  

eq61

6
2

eq6

tan .
1






−=
−

 (8.18) 

8.6. Frequency Transfer Function of Li's Vibration System 

Let H6() be the frequency transfer function of the system (8.1). Then, 
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( )6 2

eq6 eq6 eq6 eq6

2 2 2

1 1 2 1

1
( )

1 2

1
.

cos cos 2 cos
2 2 2

sin 2 sin sin
2 2 2

n

n n

H
k i

k

i

  

  


  

  
    

  
     

− −

− − −

=
− +

=
  

+ +  
  

  
+ + +  

  

 (8.19) 

8.7. Logarithmic Decrement and Q Factor of Li's Vibration System 

Let ti and ti + 1 be two time points of the fractional free response x6(t), where x6(ti) and x6(ti + 1) are 

its successive peak values at ti and ti + 1. Let eq6 be the equivalent logarithmic decrement of x6(t). Then,  

1 1 1

2 2

6
eq6

2
6 1 1 1 1

2 2

sin sin sin
2 2 2

cos cos cos
2 2 2( )

ln .
( )

sin sin sin
2 2 2

1

4 cos cos cos
2 2 2

i

i

m c k

m c k
x t

x t
m c k

m c k

  

  

  

  

  
  


  

  

  
  

  
  

− − −

− −

+ − − −

− −

+ +

 
− + 
 

 = =

 
+ + 

 −
  
− +  
  

 (8.20) 

Denote by Qeq6 the equivalent Q factor of the system (8.1). Then,  

2 2

eq6
1 1 1

cos cos cos
2 2 2

.

sin sin sin
2 2 2

m c k

Q

m c k

  

  

  
  

  
  

− −

− − −

 
− + 
 

=

+ +

 (8.21) 

8.8. Equivalent Fractional System of Li's Vibration System 

Theorem 1. An equivalent fractional system of Li's vibration system is expressed by 

6 6 6( ) ( ) ( )
( ).

d x t d x t d x t
m c k f t

dt dt dt

  

  
+ + =  (8.22) 

Proof. Let F be the operator of Fourier transform. Let 

2
2 2 6

6 2

1 1 1 6
6

( )
( ) cos cos

2 2

( )
sin sin sin cos ( ).

2 2 2 2

d x t
A t m c

dt

dx t
m c k k x t

dt

 

   

 
 

   
   

− −

− − −

 
= − + 

 

 
+ + + + 
 

 (8.23) 

Let 

6 6 6
6

( ) ( ) ( )
( ) .

d x t d x t d x t
B t m c k

dt dt dt

  

  
= + +  (8.24) 

Because F[A6(t)] = F[B6(t)], we have  

A6(t) = B6(t)  (8.25) 

in the sense of F[A6(t) − B6(t)] = 0. The proof is finished. 
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9. Seven Classes of Li's Vibration Systems with Frequency Dependent Elements and Their 

Fractional Equivalences 

The system (8.1) contains other six classes of vibration systems with frequency dependent 

elements. Meanwhile, the system (8.22) includes six other classes of fractional vibration systems. We 

address them in this subsection. 

9.1. Li's Vibration System of Class I and its Fractional Equivalence 

When c = 0 and  = 0 in (8.1), we have the motion equation in the form 

2
2 11 1

1 12

( ) ( )
cos sin ( ) ( ),     1 3.

2 2

d x t dx t
m m kx t A t

dt dt

  
  − −− + +    (9.1) 

The above is called the class I Li's vibration system with frequency dependent elements. Letting 

c = 0 and  = 0 in (8.22) produces the motion equation 

1
1 1

( )
( ) ( ),     1 3.

d x t
m kx t B t

dt




+    (9.2) 

We call the above the class I fractional vibration system. That is the fractional equivalence of the 

class I Li's vibration system. In face, F[A1(t) − B1(t)] = 0. 

9.2. Li's Vibration System of Class II and its Fractional Equivalence 

Let  = 2 and  = 0 in (8.1). Then, (8.1) reduces to 

2
2 12 2

2 22

( ) ( )
cos sin ( ) ( ),   0 2.

2 2

d x t dx t
m c c kx t A t

dt dt

  
  − −   

− + +     
   

 (9.3) 

We call the above the class II Li's vibration system with frequency dependent elements. If  = 2 

and  = 0 in (8.22), (8.22) becomes  

2

2 2
2 22

( ) ( )
( ) ( ),

d x t d x t
m c kx t B t

dt dt




+ +  (9.4) 

which we call the class II fractional vibrator. That is the fractional equivalence of the class II Li's 

vibration system. Obviously, F[A2(t) − B2(t)] = 0. 

9.3. Li's Vibration System of Class III and its Fractional Equivalence 

Let  = 0 in (8.1). Then, (8.1) turns to be 

2
2 2 3

2

1 1 3
3 3

( )
cos cos

2 2

( )
sin sin ( ) ( ),   1 3,  0 2.

2 2

d x t
m c

dt

dx t
m c kx t A t

dt

 

 

 
 

 
   

− −

− −

 
− + 
 

 
+ + +     
 

 (9.5) 

The above is called the class III Li's vibration system. Letting  = 0 in (8.22) yields the class III 

fractional vibrator in the form 

3 3
3

( ) ( )
( ) ( ).

d x t d x t
m c kx t B t

dt dt

 

 
+ +  (9.6) 

That is the fractional equivalence of the class III Li's vibration system. Clearly, F[A3(t) − B3(t)] = 

0. 
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9.4. Li's Vibration System of Class IV and its Fractional Equivalence 

By letting c = 0 in (8.1), we have the class IV Li's vibration system in the form 

2
2 1 14 4

2

4 4

( ) ( )
cos sin sin

2 2 2

cos ( ) ( ),     1 3,0 1.
2

d x t dx t
m m k

dt dt

k x t A t

  



  
  


  

− − − 
− + + 

 

+    

 (9.7) 

Similarly, letting c = 0 in (8.22) results in the class IV fractional vibrator given by 

4 4
4

( ) ( )
( ),     1 3,  0 1.

d x t d x t
m k B t

dt dt

 

 
 +      (9.8) 

The above is the fractional equivalence of the class IV Li's vibration system. It is easily seen that 

F[A4(t) − B4(t)] = 0. 

9.5. Li's Vibration System of Class V and its Fractional Equivalence 

When  = 2 and c = 0 in (8.1), we have the class V Li's vibration system in the form 

2
15 5

5 52

( ) ( )
sin cos ( ) ( ),     0 1.

2 2

d x t dx t
m k k x t A t

dt dt

  
  −+ +    (9.9) 

Letting  = 2 and c = 0 in (8.22) produces the class V fractional vibrator given by 

2

5 5
52

( ) ( )
( ),     0 1.

d x t d x t
m k B t

dt dt




+    (9.10) 

The above is the fractional equivalence of the class V Li's vibration system. As a matter of fact, 

F[A5(t) − B5(t)] = 0. 

9.6. Li's Vibration System of Class VI and its Fractional Equivalence 

The expression (8.1) stands for the class VI Li' vibration system. Its fractional equivalence, that 

is, (8.22), designates the class VI fractional vibrator. 

9.7. Li's Vibration System of Class VII and its Fractional Equivalence 

If  = 2 in (8.1), we have the class VII Li's vibration system expressed by 

2
2 1 17 7

2

7 7

( ) ( )
cos sin sin

2 2 2

cos ( ) ( ),   0 2,  0 1.
2

d x t dx t
m c c k

dt dt

k x t A t

  



  
  


  

− − −   
− + +   

   

+    

 (9.11) 

When  = 2 in (8.22), we have the class VII fractional vibrator in the form 

2

7 7 7
72

( ) ( ) ( )
( ),     0 2,  0 1.

d x t d x t d x t
m c k B t

dt dt dt

 

 
 + +      (9.12) 

The above is the fractional equivalence of the class VII Li's vibration system. Obviously, F[A7(t) 

− B7(t)] = 0. 

10. Vibration Parameters of Seven Classes of Fractional Vibrators 

Consider 
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2

eq eq eq2

( ) ( ) ( )
( ) ,

j j j

j j j j

d x t dx t dx t
A t m c k

dt dt dt
= + +  (10.1) 

where meqj is the equivalent mass of the jth class fractional vibrator (j = 1, ..., 7). Let ceqj be the 

equivalent damping of the jth class fractional vibrator. Then, from Section 9, we list meqj and ceqj in 

Table 1. 

Table 1. Equivalent mass and damping of seven classes of fractional vibrators. 

Fractional 

vibrations 
Equivalent mass Equivalent damping 

Class I 
2

eq1 cos
2

m m  
 −= −  

1

eq1 sin
2

c m  
 −=  

Class II 
2

eq2 1 2 cos
2

nm m  
  − 

= − 
 

 1

eq2 sin
2

c c  
 −=  

Class III 
2 2

eq3 cos 2 cos
2 2

nm   
  − − 

= − + 
 

 1 1

eq3 sin sin
2 2

c m c  
 − −= +  

Class IV eq4 eq1m m=  1 1

eq4 sin sin
2 2

c m k  
 − −= +  

Class V meq5 = m 
1

eq5 sin
2

c k  
 −=  

Class VI eq6 eq3m m=  1 1

eq6 sin sin
2 2

c c k  
 − −= +  

Class VII eq7 eq2m m=  
eq7 eq6c c=  

Denote by keqj be the equivalent stiffness of the jth class fractional vibrator. Let 

eq

eq

eq eq

.
2

j

j

j j

c

m k
 =  (10.2) 

We list keqj and eqj in Table 2. 

Table 2. Equivalent stiffness and damping ratio of seven classes of fractional vibrators. 

Fractional 

vibrations 

Equivalent 

stiffness 
Equivalent damping ratio 

Class I keq1 = k 

2

eq1

sin
2

2 cos
2

n










=

−

 

Class II keq2 = k 

1

eq2

2

sin
2

1 cos
2

c

m













−

−

=

−

 

Class III keq3 = k 

1 1

eq3

2 2

sin 2 sin
2 2

2 cos 2 cos
2 2

n

n n

 

 

 
  


 

   

− −

− −

+

=
 

− + 
 

 

Class IV eq4 cos
2

k k  
=  

1 1

eq4

2

sin sin
2 2

2 cos cos
2 2

m k

mk

 

 

 
 


 



− −

+ −

+

=  
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Class V keq5 = keq4 

1
2

eq5

sin
2

2 cos
2

n




 




−

=  

Class VI keq6 = keq4 

1 1 1

eq6

2 2

sin sin sin
2 2 2

2 cos cos cos
2 2 2

m c k

m c k

  

  

  
  


  

  

− − −

− −

+ +

=
 

− + 
 

 

Class VII keq7 = keq4 

1 1

eq7

2

sin sin
2 2

2 cos cos
2 2

c k

m c k

 

 

 
 


 

 

− −

−

+

=
 

− 
 

 

Let eqnj be the equivalent damping free natural angular frequency of the jth class fractional 

vibrator. Define it by 

eq

eqn

eq

.
j

j

j

k

m
 =  (10.3) 

Denote by eqdj the equivalent damped natural angular frequency for the jth class fractional 

vibrator. Suppose small damping of |eqj|  1 from a view of engineering.  

Define eqdj by 

2

eqd eqn eq1 .j j j  = −  (10.4) 

We list eqnj and eqdj in Table 3. 

Table 3. Equivalent natural angular frequencies of seven classes of fractional vibrators. 

Fractional 

vibrations 

Equivalent damping free 

natural angular frequency 

Equivalent damped natural angular 

frequency 

Class I 
eqn1

2 cos
2

n







 −

=

−

 
2

eqd1
22

sin
21

4 coscos
22

n

n











  −

= −

−

 

Class II 
eqn2

21 cos
2

n

c

m







 −

=

−

 
2 2( 1) 2

eqd2
22

sin
21

1 cos1 cos
22

n

cc

mm






 




 

−

−−

= −

−−

 

Class III 

eqn3

2 2cos cos
2 2

n

c

m

 





 
 − −

=
 

− + 
 

 

2
2

1 1

2 2 2

eqd3

2 2

sin 2 sin
2 2

1

4 cos 2 cos
2 2

cos cos
2 2

n

n

n n

c

m

 

 

 

 
  


 

   


 

 

− −

− −

− −

  
+  

  −
   

− +   
   

=
 

− + 
 
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Class IV eqn4
2

cos
2

cos
2

n








 


 −

=

−

 

eqd4
2

2

1 1

2

cos
2

cos
2

sin sin
2 21

2 cos cos
2 2

n

m k

mk





 

 




 




 
 

 


−

− −

+ −

=

−

 
 +
 −
 
  
 

 

Class V 
eqn5 cos

2
n

 
  =  

2

1

eqd5

sin
2cos 1

2
2 cos

2

n

k

mk











  




−
 
 
 = −
 
 
 

 

Class VI 

eqn6

2 2

cos
2

cos cos
2 2

k

m c



 






 
 − −

=
 

− + 
 

 

eqd6
2 2

2

1 1 1

2 2

cos
2

cos cos
2 2

sin sin sin
2 2 21

2 cos cos cos
2 2 2

k

m c

m c k

m c k



 

  

  





 

 

  
  

  
  

− −

− − −

− −

=
 

− + 
 

 
 + +
 −
  

− +   
  

 

Class VII eqn7
2

cos
2

cos
2

k

m c











 −

=

−

 

eqd7
2

2

1 1

2

cos
2

cos
2

sin sin
2 21

2 cos cos
2 2

k

m c

c k

m c k





 

 









 
 

 
 

−

− −

−

=

−

 
 +
 −
  

−   
  

 

Let eqj be the equivalent frequency ratio of the jth class fractional vibrator. It is defined by 

eq

eqn

.j

j





=  (10.5) 

Then,  

2

eq1

cos
2 ,

n

 
 




−−

= 2

eq2 1 cos ,
2

c

m

 
   −= −  

2 2

eq3 cos cos ,
2 2

c

m

  
   − − 

= − + 
 

2

eq4

cos
2 ,

cos
2








 




−−

=  

eq5

1
,

cos
2



 




=

2 2

eq6

cos 2 cos
2 2

,

cos
2

n

 



 
  

 




− − 
− + 
 =  

(10.6) 
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2

eq7

1 2 cos
2 ,

cos
2

n






 

 




−−

=  

where

.
n





=

 

11. Responses of Seven Classes of Fractional Vibrators 

Let xj(t) be the free response of the jth class fractional vibrator. It is the solution to the following 

fractional differential equation 

0 0

( ) 0,

(0) , (0) ,

j

j j j j

B t

x x x v

=


= =
 (11.1) 

where xj0 and vj0 are initial conditions. Due to F[Bj(t) − Aj(t)] = 0, the above can be equivalently 

expressed by 

0 0

( ) 0,

(0) , (0) .

j

j j j j

A t

x x x v

=


= =
 (11.2) 

Thus, 

eq eqn 0 eq eqn 0

0 eqd eqd

eqd

( ) cos sin ,    0.j jt j j j j

j j j j

j

v x
x t e x t t t

   
 



−  +
= +   

 
 (11.3) 

Let hj(t) be the impulse response of the jth class fractional vibrator. It is the solution to 

Bj(t) = (t).  (11.4) 

Owing to F[Bj(t) − Aj(t)] = 0, the above is equivalent to 

Aj(t) = (t).  (11.5) 

Thus, 

eq eqn

eqd

eq eqd

( ) sin ,     0.
j jt

j j

j j

e
h t t t

m

 




−

=   (11.6) 

Denote by gj(t) the unit step response of the jth class fractional vibrator. Then,  

( )
eq eqn

eqd
2

eq eq

1
( ) 1 cos ,     0,

1

j jt

j j j

j j

e
g t t t

k

 

 


− 
 = − − 
 −
 

 (11.7) 

where  

eq1

2

eq

tan .
1

j

j

j






−=
−

 (11.8) 

12. Frequency Transfer Funcitons of Seven Classes of Fractional Vibrators 

Denote by Hj() the frequency transfer function of the jth class fractional vibrator. Doing the 

Fourier transform on both sides of (11.4) yields 
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( )2

eq eq eq eq

1
( ) .

1 2
j

j j j j

H
k i


  

=
− +

 
(11.9) 

Table 4. lists the frequency transfer functions of seven classes of fractional vibrators. 

Table 4. Frequency transfer functions of seven classes of fractional vibrators. 

Fractional 

vibrators 
Frequency transfer functions 

Class I 
1

2 2

1
( )

1 cos sin
2 2n n

H

k i
 


   

 

=
 
− + 

 

 

Class II 
2

2 2

1/
( )

2 sin
21 1 cos

2 n

k
H

c
i

m











 


−

=

 
− − + 

 

 

Class III 

3

2 2 2

1 1

2 2

1/
( )

1 cos 2 cos
2 2

sin 2 sin
2 2

cos 2 cos
2 2

n

n

n n

k
H

i

 

 

 


 

   

 
   

 
   

− −

− −

− −

=
 

− − 
 

 
+ 

 +
 

− 
 

 

Class IV 

4
2

2

1 1 2

2

1
( ) ,

cos
21

cos
2

cos
2 sin sin cos

2 2 22

cos2 cos cos
22 2

H

k

m k
i

mk







  


 













  
  


  

−

− − −

+ −

=
 

− 
− 

 
 
 
 + −
 +
 
 
 

 

Class V 

5

1
2

1
( )

sin
12cos 1 2

2
cos cos2 cos

2 22

H

k
k i

mk





 





 

 
  

−

=
 
 
 − +
 
 
 

 

Class VI 

6

2 2 2

1 1 2 1

1
( )

cos cos 2 cos
2 2 2

sin 2 sin sin
2 2 2

n

n n

H

k

i

  

  


  

    

  
     

− −

− − −

=
  

+ +  
  

  
+ + +  

  

 

Class VII 

7

2

1 1

1
( )

cos 1 2 cos
2 2

2 sin sin
2 2

n

n

H

k

i

 

 


 

   

 
   

−

− −

=
  

− −  
  

  
+ +  

  

 

Let eqj be the equivalent logarithmic decrement of the free  response of the jth class fractional 

vibrator. Let Qeqj be the equivalent Q factor of the jth class fractional vibrator. They are listed in Table 

5. 
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Table 5. Logarithmic decrements and Q factors of seven classes of fractional vibrators. 

Fractional 

vibrators 
Logarithmic decrement Q factor 

Class I 

2

eq1
2

2

sin
2

cos
2

sin
21

2 cos
2

n

n

















−

 =

 
 
 −
 

− 
 

 
eq1

2

cos
2

sin
2

n

Q








−

=  

Class II 

1

2

eq2
2

1

2

sin
22

1 cos
2

sin
21

1 cos
2

c

m

c

m























−

−

−

−

−

 =

 
 
 −
 

− 
 

 
2

eq2
1

1 cos
2

2 sin
2

c

m
Q











−

−

−

=  

Class III 

1

1

2

2

eq3
2

1

1

2

2

sin
2

2 sin
2

cos
2

2 cos
2

sin
2

2 sin
21

cos
2

2

2 cos
2

n

n

n

n

n

n























 







 





 







 

−

−

−

−

−

−

−

−

 
 
 
 + 
 

 
 

− 
 + 
 

 =

 
 
 
 

+ 
−  
  

  
−  
  +  
  

 

2

2

eq3
1 1

cos
2

2 cos
2

sin 2 sin
2 2

n

n

n

Q





 







 

 
  

−

−

− −

 
 

− 
 + 
 

=

+

 

Class IV 

1 1

2

eq4
2

1 1

2

sin sin
2 22

2 cos cos
2 2

sin sin
2 21

2 cos cos
2 2

m k

mk

m k

mk

 

 

 

 

 
 


 



 
 

 


− −

+ −

− −

+ −

+

 =

 
 +
 −
 
  
 

 
2

eq4
1 1

cos cos
2 2

sin sin
2 2

mk

Q

m k

 

 

 


 
 

+ −

− −

=

+
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Class V 

1

eq5
2

1

sin
22

2 cos
2

sin
21

2 cos
2

k

mk

k

mk























−

−

 =

 
 
 −
 
 
 

 
eq5

1

cos
2

sin
2

mk

Q

k









 −

=  

Class VI 

1 1

1

2

2

eq6
2

1 1

1

2

2

sin sin
2 2

sin
2

cos
2

cos
2

cos
2

sin sin
2 2

sin
21

cos
2

4 cos
2

cos
2

m c

k

m

k

c

m c

k

m

k

c

 









 









 
 















 
 













− −

−

−

−

− −

−

−

−

+

+

 
 

−  
 + 
 

 =

 
+ 

 
 + 
 −
  
  
−  
  + 
   

 

2

2

eq6
1 1

1

cos
2

cos
2

cos
2

sin sin
2 2

sin
2

m

k

c

Q

m c

k







 












 
 




−

−

− −

−

 
 

− 
 + 
 

=

+

+

 

Class VII 

1 1

2

eq7
2

1 1

2

sin sin
2 2

cos cos
2 2

sin sin
2 2

1

4 cos cos
2 2

c k

m c k

c k

m c k

 

 

 

 

 
 


 

 

 
 

 
 

− −

−

− −

−

+

 
− 

 
 =

 
+ 

 −
 

− 
 

 

2

eq7
1 1

cos cos
2 2

sin sin
2 2

m c k

Q

c k

 

 

 
 

 
 

−

− −

 
− 

 
=

+

 

13. Application: Multi-Fractional Damped Euler-Bernoulli Beam 

We address the forced response to a multi-fractional damped Euler-Bernoulli beam as an 

application of the analytical theory of fractional vibrations previously discussed. By multi-fractional, 

we mean that inertia force, internal and external damping forces are of fractional orders.  

13.1. Multi-Fractional Damped Euler-Bernoulli Beam 

The following is the motion equation of the conventional damped Euler-Bernoulli beam  

2 2 3 2

2 2 2 2
( , ),s

w w w w
EI c I A c q x t

x x x t t t


     
+ + + = 

      
 (13.1) 

where cs is internal damping and c is external one,
w

c
t




is external damping force,

3

2s

w
c I

x t



 
is internal 

damping force, and
2

2

w
A

t





is inertia force (Palley et al. [3]). The forced response to (13.1) under the 

Rayleigh damping assumption is known (Palley et al. [3], Jin and Xia [23]). 
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The above equation takes into account the Voigt assumption on materials about internal 

damping. In this research, following Li [13], we describe the closed form of the forced response to the 

multi-fractional damped Euler-Bernoulli beam in the form 

2 2 2

2 2 2
( , ),    1< 3,0 2,0 2.s

w w w w
EI c I A c q x t

x x x t t t

  

  
   

+     
+ + + =      

      
 (13.2) 

Precisely, the above stands for a beam with the fractional inertia force ,
w

A
t









fractional 

internal damping force
2

2
,s

w
c I

x t





+

 
and fractional external damping one .

w
c

t








 

13.2. Closed Form Forced Response 

Using separation of variables, we write the response by w(x, t) = (x)p(t). Substituting it into 

(13.2) produces 

22

2 2
1 1 1

22

2 2
1

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( , ).

  

  


  



  

= = =



=

 
+ +  

 

 
+ = 

 

  



j j j j

j j s

j j j

j

j

j

d p t d p t d x d p td
A x c x c I

dt dt dx dx dt

d xd
EI p t q x t

dx dx

 (13.3) 

Using the orthogonality of vibration modes m(x) on both sides of the above equation produces 

22

2 2
1 0

22

2 2
1 0

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ),

l

j j j j j

j m s

j

l
j

m j j

j

d p t M c d p t d x d p td
M x c I dx

dt A dt dx dx dt

d xd
x EI dxp t Q t

dx dx

  

  











=



=

 
+ +  

  

 
+ = 

  





 (13.4) 

where

2

0

( ) . = 
l

j jM A x dx

 

Using 

22
2

n2 2

( )
( ),

j

j j

d xd
EI A x

dx dx


  

 
= 

  
 (13.5) 

we rewrite (13.4) by 

22

2 2
1 0

2

n

( ) ( ) ( ) ( )
( )

( ) ( ).

  

  










=

 
+ +  

 

+ =


l

j j j j j

j m s

j

j j j j

d p t M c d p t d x d p td
M x c I dx

dt A dt dx dx dt

M p t Q t

 (13.6) 

According to the Rayleigh damping assumption,  

c = Aa, (13.7) 

where a is a coefficient with the unit of time since A is with the unit of mass and  

cs = Eb, (13.8) 

where b is a coefficient with the unit of frequency as E is with the unit [N/m].  

Substituting (13.7) and (13.8) into (13.6) and taking into account the orthogonality of vibration 

modes, we have 
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2 2

n n

( ) ( ) ( )
( ) ( ).

  

  
 + + + =

j j j

j j j j j j j j

d p t d p t d p t
M M a M b M p t Q t

dt dt dt
 (13.9) 

Therefore, the jth order coordinate function is of multi-fractional in the form  

2 2

n n

( ) ( ) ( )
( ) ( ),

j j j

j j j j

d p t d p t d p t
a b p t f t

dt dt dt

  

  
 

 
+ + + =  
 

 (13.10) 

where 

( )
( ) .

j

j

j

Q t
f t

M
=  (13.11) 

According to the theory of Li's vibration systems previously explained, the above is simply the 

equivalence of the following equation 

2

2 2 2 2

n 2

1 1 2 1 2

n n

( )
cos cos cos

2 2 2

( )
sin sin sin ( ) ( ).

2 2 2

j

j

j

j j j j

d p t
a b

dt

dp t
a b p t f t

dt

  

  

  
   

  
    

− − −

− − −

 
− + + 
 

 
+ + + + = 
 

 (13.12) 

As a matter of fact, let 

2

2 2 2 2

n 2

1 1 2 1 2

n n

( )
( ) cos cos cos

2 2 2

( )
sin sin sin ( ).

2 2 2

j

j j

j

j j j

d p t
C t a b

dt

dp t
a b p t

dt

  

  

  
   

  
    

− − −

− − −

 
− + + 
 

 
+ + + + 
 

 (13.13) 

Let 

2 2

n n

( ) ( ) ( )
( ) ( ).

j j j

j j j j

d p t d p t d p t
D t a b p t

dt dt dt

  

  
 

 
+ + +  
 

 (13.14) 

Then, F[Cj(t) − Dj(t)] = 0. 

Denote by me-EBj the jth equivalent mass in the system (13.10) in the form 

2 2 2 2

e-EB ncos cos cos .
2 2 2

j jm a b    
   − − − 

= − + + 
 

 (13.15) 

Let ce-EBj the jth equivalent damping in the system (13.10). It is given by 

1 1 2 1

e-EB nsin sin sin .
2 2 2

j jc a b    
   − − −= + +  (13.16) 

Using me-EBj and ce-EBj, we have 

2

2

e-EB e-EB n2

( ) ( )
( ) ( ).

j j

j j j j j

d p t dp t
m c p t f t

dt dt
+ + =  (13.17) 

Denote by e-EBj the jth equivalent damping ratio in the system (13.10). Define it by 

e-EB

e-EB

e-EB

.
2

j

j

j

c

m
 = Then, 
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1 1 2 1

n

e-EB

2 2 2 2

n

sin sin sin
2 2 2 .

2 cos cos cos
2 2 2

j

j

j

a b

a b

  

  

  
   


  

   

− − −

− − −

+ +

=
 

− + + 
 

 (13.18) 

Let en-EBj be the jth equivalent damping free natural frequency regarding the system (13.10). It 

is given by  

2

n2

en-EB

e-EB

.
j

j

jm


 =  (13.19) 

From a view of vibration engineering, we are interested in  

e-EB 1.j   (13.20) 

Let end-EBj be the jth equivalent damped natural frequency regarding the system (13.10). Then, 

2

end-EB en-EB eEB1 .j j j  = −  (13.21) 

Therefore, we rewrite (13.17) by 

2

2

e-EB en-EB en-EB2

e-EB

( ) ( ) ( )
2 ( ) .

j j j

j j j j

j

d p t dp t f t
p t

dt dt m
  + + =  (13.22) 

Let hj(t) be the jth impulse response function of the system (13.22). Then, 

e-EB en-EB

end-EB

e-EB end-EB

1
( ) sin ,     0.j jt

j j

j j

h t e t t
m

 




−
=   (13.23) 

Because 

( ) ( ) ( ),j j jp t f t h t=   (13.24) 

the zero-state forced response to a multi-fractional damped Euler-Bernoulli beam is expressed 

by 

e-EB en-EB

end-EB

1 e-EB end-EB

( )
( , ) sin ( ) .j jj

j j

j j j

x
w x t e f t d

m

  
   




−

= −

= −   (13.25) 

14. Nonlinearity of Fractional Vibraitons 

Seven classes of fractional vibration systems satisfy the superposition. However, they are 

nonlinear in general. The nonlinearity of fractional vibrations can be explained as follows. The 

fractional inertia force 6 ( )d x t
m

dt




 is non-Newtonian unless  = 2. Besides, the fractional damping force 

6 ( )d x t
c

dt




is non-Newtonian if   1. Moreover, the fractional restoration force 6 ( )d x t

k
dt




is non-

Newtonian for   0. Those reflect the nonlinearity of fractional vibrations. By linearization using Li's 

systems, the nonlinearity of a fractional vibrator is reflected in the aspect of frequency dependent 

mass or frequency dependent damping or frequency dependent stiffness. 
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15. Conclusions 

We have shown the cases of structures with frequency dependent elements (mass or damping 

or stiffness) in Sections 2-4. Then, we have introduced the general form of a vibration system with 

frequency dependent elements and its vibrations in Sections 5-8. In Section 9, we have addressed the 

fractional equivalences of seven classes of Li's systems with frequency dependent elements. After 

that, we have proposed the analytical theory of seven classes of fractional vibrations in Sections 10-

12. The closed form of the forced response to multi-fractional Euler-Bernoulli beam has been 

presented in Section 13. The nonlinearity of fractional vibrations has been explained in Section 14. 
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