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Abstract. This paper revisits the analytical theory of fractional vibrations with the highlights in five aspects.
First, we address the cases of structures with frequency dependent mass or damping or stiffness in Sections 2-
4. Second, we introduce the theory based on the general second-order vibration motion equation with
frequency dependent elements (mass, damping, stiffness) in Sections 5-7. Third, we present the analytical
theory of seven specific classes of second-order vibration systems with frequency dependent mass or damping
or stiffness in Sections 8 and 9. Fourth, we bring forward the analytical theory of seven classes of fractional
vibration systems in Sections 10-12. Finally, as an application, we give the closed form expression of the forced
response to multi-fractional Euler-Bernoulli beam in Section 13. The explanation of the nonlinearity of
fractional vibrations is given in Section 14.

Keywords. Frequency dependent mass or damping or stiffness; equivalent mass or damping or stiffness;
fractional inertia or damping or restoration force; equivalent motion equation; multi-fractional Euler-Bernoulli
beam

1. Introduction

Conventionally, vibration elements, say, mass m, damping ¢, and stiffness k, are commonly
assumed to be constants. However, in vibration engineering, people pay attention to the phenomena
of frequency dependent elements (mass or damping or stiffness), see e.g., Harris [1], Korotkin [2],
Palley et al. [3], Kristiansen and Egeland [4], Zou et al. [5], Wu and Hsie [6], Qiao et al. [7], Jaberzadeh
et al. [8], Xu et al. [9], Ghaemmaghami and Kwon [10], Hamdaoui et al. [11]. Since the analytical
theory of fractional vibrations established by Li [12-14] adopts frequency dependent elements in the
equivalent sense, we feel the usefulness of showing several realistic cases of frequency dependent
mass, damping, and stiffness respectively in Sections 2-4, so as to purposely write a general form of
a vibration system with frequency dependent mass, damping, and stiffness and discuss its vibration
theory in Sections 5-9. The intention of writing Sections 5-9 is in two aspects. One is for the pavement
of seven classes of fractional vibrators addressed in Sections 10-13. The other is to facilitate smoothing
away possible hesitations why m and or ¢ and or k may be frequency dependent. As an application,
we discuss the closed form expression of the forced response to the multi-fractional Euler-Bernoulli
beam in Section 13. The nonlinearity of fractional vibrations is discussed in Section 14, which is
followed by conclusions.

2. Cases of Frequency Dependent Mass

2.1. Frequency Dependent Mass in Auxiliary Mass Damper System

Consider a simple auxiliary mass damper indicated in Figure 1 (Harris [1]). The system consists
of a mass ., spring ki, and viscous damper ca.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Vibration foundation
\on(t) =Asinat
e,
a X, (t) = A sinwt
ma
Figure 1. Auxiliary mass damper.
The motion equation of the auxiliary mass damper system is given by
2
ox (¢, O IO+ x. 0 @1
dt dt
Let Xr and Xo be the phasors of x:(t) and xo(t), respectively. The phasor equation of the above is
in the form

(—k, —iwc, ) X, = —m,@? (X, + X,). (2.2)

Therefore,
2
X o M (2.3)

r

- -m,e” +k, +iec,
Denote by F the phasor of the force exerting on the foundation. Then,

r‘naa)2 (ka +ia)Ca) x . (2‘4)

F= > '
-m,o° +k, +iec,

As the force acted by an equivalent mass #1q is rigidly attached to the foundation, we have

F =m,o"X,, (2.5)
where
m - k, +iwc, m
T m,e® +k, +iwc, ° (2.6)
Rewriting the above yields
. (k, +iec,)(k, —m 0’ —iec, ) . K, (k, ~m,a" )+ (e, )’ ~im,c,o” . o
; (k, - maa)z)2 t(oc,) (k, —m, o’ )2 +(wc, )’ ’ .
In the polar system,
My, = My, |Argm,,, (2.8)
where
k, (k, —m,o?)+(wc,)’ 4 m,c,o°)
meq=[ ( ) (2)] (z ) N 2.9)
(ka - maa)z) +(ac,)
and
H 3
Argm,, =tan™ B (2.10)

ka(ka—maw2)+(a)ca)2'
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The above exhibits that both the modulus and argument of 1e.q are the functions of @. When o=
0, eq reduces to the primary mass ma. In general, 0 < |1meql < 0. When c. = 0, meq is real. Figure 2
illustrates a curve of |#eql.
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Figure 2. [llustration of |meql for ma=1, ca=1, and ka=1.

2.2. Added Mass

The frequency dependence of added mass is well known in the field of ship mechanics (Korotkin
[2]). In general, a ship motion is with six degrees of freedom (Palley et al. [3]). We adopt the following
symbols for discussions.

. gn(n=1, ..., 6): generalized coordinates.
e  fu generalized forces.
e  mjn: dry mass of the ship in direction j.
e i dry damping of the ship in direction .
e ki dry stiffness of the ship in direction j.
®  Madd ju: added mass of the ship in direction j.
e hp(t): impulse response function in direction j to an impulse in velocity in direction 7.
When gn(t) = gn cos(wt), according to Kristiansen and Egeland [4], one has
3T+ ()]0 3 (0D 3,5 = 1,0, @

n=1
where fi(t) is a sinusoidal force at @,

1% .
Mago o (@) = My, == [y, (O)sin ol 2.12)
0

and

Can.jn (@) = G + [ Ny, (1) cOs cotclt. (2.13)
0

Considering the equivalent mass 1.q, we have

Meq = Mjn + Madd, jn( @). (2.14)

Therefore, the equivalent mass meq of a ship in general is frequency dependent. Consequently,
Meq = Meq( ®).

There are other types of expressions with respect to frequency dependent mass, see e.g., Zou et
al. [5], Wu and Hsieh [6], Qiao et al. [7], Jaberzadeh et al. [8], Xu et al. [9], Ghaemmaghami, and Kwon
[10], Hamdaoui et al. [11], Li [12-14], Banerjee [15], White et al. [16], Dumont and Oliveira [17], Zhang
et al. [18], Sun et al. [19].
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3. Cases of Frequency Dependent Damping
3.1. Rigidly Connected Coulomb Damper

Have a look at Figure 3 that indicates a rigidly connected Coulomb damper.

Te
Tx = X, sin(awt + 6)
u = u, sin ot
Figure 3. Rigidly connected Coulomb damper.
The motion equation is given by
mx”+k(x—u)+ F, = F, +sin wt. (3.1)

Since there is discontinuity in the damping force that occurs as the sign of the velocity changes
at each half cycle, a step-by-step solution of the above is required (Harris [1], Den Hartog [20]). Let &
= x — u. Using the equivalence of energy dissipation for equating the energy dissipation per cycle for
viscous-damped and Coulomb damped systems produces (Harris [1], Jacobsen [21])

TCSy = 4F 5, 3.2)

In the above, the left side refers to the viscous-damped system and the right side to the Coulomb-
damped system. The symbol ¢ is the amplitude of relative displacement across the damper.

From the above, one has the equivalent viscous damping coefficient for a Coulomb-damped
system that has equivalent energy dissipation in the form

. A
“ s, (3-3)

One thing worth noting is that ceq is frequency dependent. Hence,
Ceq = Ceq(@). (34

3.2. Rayleigh Damping

The Rayleigh damping introduced by Rayleigh [22] is widely adopted in the field, see e.g., Harris
[1], Palley et al. [3], Li [12-14], Jin and Xia [23], Trombetti and Silvestri [24,25], Mohammad et al. [26],
Kim and Wiebe [27]. Rayleigh assumed his damping in the form

CRaylegh = am + bk, (35)

where a is proportional to @ while b is inversely proportional to w. Thus, we may write
CRaylegh = CRaylcgh(a)). (36)
The above exhibits that the frequency dependence is a radical property of the damping Rayleigh
assumed.
3.3. Remarks

Other types of frequency dependent dampers, refer to Kuo et al. [28], Stollwitzer et al. [29], Jith
and Sarkar [30], Zhou et al. [31], Zarraga et al. [32], Xie et al. [33,34], Hu et al. [35], Rouleau et al. [36],
Hamdaoui et al. [37], Deng et al. [38], Dai et al. [39], Adessina et al. [40], Chang et al. [41], Lin et al.
[42], Dai et al. [43], Catania and Sorrentino [44,45], Zhang and Turner [46], Yoshida et al. [47],
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Assimaki and Kausel [48], Pan et al. [49], Ghosh and Viswanath [50], Mcdaniel et al. [51], Zhang et al.
[52], Wang et al. [53], Lundén and Dahlberg [54], Figueroa et al. [55], Lazaro [56], and Crandall [57],
simply citing a few.

4. Cases of Frequency Dependent Stiffness

4.1. Frequency Dependent Stiffness in a Shaft Driven by a Periodic Force

Consider a shaft driven by a periodic force as shown in Figure 4. The mass m is supported by
two springs with the primary stiffness k. Under the excitation of a force in axis direction, there is a

X
force produced by displacement in the form T F cos wt.

F cos wt

Figure 4. A shaft excited by a periodic force.
Thus, the motion equation is given by
" X
mx +kx—|—Fcoswt:0. 4.1
Denote by keq the equivalent stiffness of the system. Then,
mx” +k,,x =0, 4.2)

where

F coswt
Ky =k — (4.3)

The above designates that the equivalent stiffness keq is frequency dependent. Hence, keq = keq( ).

4.2. Frequency Dependent Stiffness in Simple Pendulum

Let [ be the length of a simple pendulum. Denote by m the mass of the simple pendulum.
Suppose that the fulcrum position of the pendulum moves periodically as Aocosxl, see Figure 5.
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l X, = A, coswt
Figure 5. Simple pendulum.
The motion equation of the simple pendulum is given by
mlg”+m(g -’ A, cosat)sing =0. (4.4)
When @is small such that sin@~ 6, we have
mlg"+m(g-o’A, cosat)d =0. (4.5)
Replacing 6by x yields
" m 2
mx +T(g—a) Aocoswt)x:o. (4.6)
Let keq be the equivalent stiffness. Then,
m 2
Ke =|—(g—a) Aocoswt). 4.7)
Therefore, the motion equation is expressed by
mx” + Ky, X = 0. 4.8)

The above exhibits that the stiffness keq is frequency dependent.

The topic of frequency dependent stiffness attracts the interests of researchers. The other
references regarding frequency dependent stiffness refer to Li [12-14], Banerjee [15], White et al. [16],
Dumont and de Oliveira [17], Zhang et al. [18], Sun et al. [19], Yoshida et al. [47], Wu et al. [58], Blom
and Kari [59], Gao et al. [60], Song et al. [61], Liu et al. [62], Zhang et al. [63], Banerjee et al. [64,65], Lu
et al. [66], Sung et al. [67], Mezghani et al. [68], Liu et al. [69], Kong et al. [70], Ege et al. [71],
Mukhopadhyay et al. [72], Sainz-Ajalsidro et al. [73], Bozyigit [74], Varghese et al. [75], Failla et al.
[76], Fan et al. [77], Roozen et al. [78], Mochida and Ilanko [79], just citing a few.

5. General Vibration System with Frequency Dependent Elements

5.1. Motion Equation of General Vibration System

Based on the previous discussions, we write the motion equation with frequency dependent
elements by

Mgy (@) X" + Coq (@) X"+ Kq (@)X = (1), (5.1

where f(t) is an excitation force.
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Let X(w) and F(w) be the Fourier transform of x(¢) and f{f), respectively. Then, the motion
equation in the frequency domain is expressed by

[0’ M, (0) +iC,, (0) + ko (0) | X (@) = F (0). (5.2)

5.2. Vibration Parameters of General Vibration System

Denote by axqn the equivalent natural angular frequency with damping free. It is given by

k(@)
O = (@) (5.3)

Since either #eq Or keq is a function of @, weqn is a function of w. Thus,

Wogn = Weqn (a)) (54)

Let {eq( @) be the equivalent damping ratio in the form

1 Cq
e (CO) =7 .
q 2 meqkeq (5 5)
Then, we rewrite (5.1) by
. : f()
2 2 =)
X" + 264 (0) Wy (@) X' + 05, (@) X () (5.6)

Denote by axqd(w) the equivalent damped natural angular frequency. Since | {eq(®) | > 1 does not
make sense in vibrations (Harris [1], Palley et al. [2], Li [13], Nakagawa and Ringo [80]), we restrict

Geq by | eq(w) | < 1. Thus,
a)eqd (60) = a)eqn (a))‘\ll_ Gezq (a)) . (57)

The equivalent frequency ratio is given by

@

a)eqn (60) .

Yeg = (5.8)

5.3. Free Response of General Vibration System with Frequency Dependent Elements

When considering the free response to a general vibration system with frequency dependent
elements, we have

{meq (@)X"(£) + Cog (@)X () + Keq (@)X (1) =0, (5.9)

X(0) = X,, X'(0) = v,.

The above equation can be rewritten by

{X” + deq (w)weqn (w)X’ + a)ezqﬂ (a))X = 0’ (510)

X(0) = Xy, X'(0) = v,.

Then, the free response is
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e w V, + [ .
X(t) —e Geq@eqnt (X() Cosa)eth'kmmn a)eth], t>0. (51 1)

a)eqd

5.4. Impulse Response of General Vibration System with Frequency Dependent Elements

When investigating the impulse response to a general vibration system with frequency
dependent elements, we use the following equation

n ! 6 t
(1) + 2., ()0 (@) + 0, (@)h(t) =2
m,, (@) (5.12)
h(0) = 0, () = 0.
Thus,
h(t) = e =" — 1 sin Oets  120. (5.13)

eq a)eqd

5.5. Step Response of General Vibration System with Frequency Dependent Elements

Denote by g(t) the unit step response (step response for short) to a general vibration system with
frequency dependent elements. Consider the following equation

t
0°()+ 26 (00 ()3 1) 05y ()90 = 00,
Meq (@) (5.14)
g(0)=0,9'(0) =0.
Then,
g(t) = 1 1- ~Geq@eqnt cos(a)eth —¢) , t>0, (5.15)
keq (6()) ’1— gezq
where

1 Se
¢=tan R - . (5 16)
2 .
wll_geq

6. Frequency Transfer Function of General Vibration System with Frequency Dependent
Elements

Let H(w) be the Fourier transform of h(t). From (5.12), we have

2 2 1
[ @2 (@) — & +126, ()0 (@) |H (00) = @) 6.1)
Therefore,
1
H(w) = 5 P
meq (60) I:weqn (60) 2 Izgeq (w)weqn ((0)(0]
(6.2)

1
K (@) [ 1= 72 +126,4 (@)1 |
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The amplitude |H(w)! is given by
IH ()| 1/k,,
)| = .
2 6.3
\/(1_7ezq) +(2geq}/eq )2 ( )
The phase is expressed by
1 26 (@)7,
— _tan 12« e
p(w) an 1-52 (6.4)
When computing ¢(w) using digital computers,
] 1-7,
o(w) =cos™ A d . 65)
) .
\/(l_yeq) +(2geq7eq)

7. Logarithmic Decrement and Q Factor of General Vibration System with Frequency Dependent
Elements

Let i and ti+1 be two time points of the free response x(t), where x(ti) and x(ti+1) are successive
peak values at ti and ti+1. Let Aeq be the logarithmic decrement of x(t). Then,

x(t;) _ Zﬂ-Geq(w)

X(t..) J1-¢2 (a)). 7.1)

Let Qeq be the Q factor of a general vibration system with frequency dependent elements. Then,

Ay = A (@) =1In

1

Qu = Q@) =5 (7.2)

8. Li's Vibration System with Frequency Dependent Elements

8.1. Motion Equation of Li's Vibration System

Recently, Li introduced a class of vibration systems with frequency dependent elements. Its
motion equation is in the form

2
—(ma)“ cos % +ca”?cos ﬁj %

+ ma)“’lsinﬂ+cwﬂ’lsinﬁ+ka)“sin/l—” (0 (8.1)
2 2 2 dt

+kaﬂcos%”x6(t)= f(t), 1<a<3, 0<f<2 0<A<],

where f{(t) is driven force and x¢(t) is the response. For facilitating discussions, we call the above Li's
vibration system with frequency dependent elements or Li's vibration system in short.

8.2. Vibration Parameters of Li's Vibration System
When writing (8.1) by

d2x, (1) dx, (t)
e dt62 7 Ceas (;t

theeXs () = (1), 1<a<3 0<pB<2, 0<4<], (8.2)

we have the equivalent mass of (8.1) in the form
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_ _ -2 ar -2 pr
Mege = My (@) = —| M 0057+cw 0057 , (8.3)
the equivalent damping expressed by
A
Cags = Cog (@) =€’ sin '82 +ko'* n%, (8.4)
and the equivalent stiffness given by
Ar
Kegs = Kege (@) = ko' 0037 (8.5)
Let &eqs be the equivalent damping ratio for the system (8.1). Define it by
9 e (8.6)
eq6 .
meqskeqﬁ
Then,
me *sin 22 ) 7 s ol sin 2T ko tsinE
geqe = geqe (0)) = (87)

2 |- mw*? cos % +Cw”cosﬂ ko’ cos/l—
2 2 2

Denote by axqns the equivalent natural angular frequency with damping free with respect to the
system (8.1). Define it by

Kegs (@)
eq6
Oy = : (8.8)
ane M6 (@)
Then,
ko’ cos’%”
weqne = (89)

_ ar _ )
—(mw" Zcos7+0wﬂ 2cosﬂzj

Let @eqds be the equivalent damped natural angular frequency for the system (8.1). In vibrations,
small damping | fes| <1 is assumed in what follows. Define @eqdas by

a)equ = weqne \/1_ gezqG ' gqu <l (810)
Then,
ko™ cos’%ﬂ
weqde =
—| mo*?cos &% + caf? cos&
2 2
2 (8.11)
ma®tsin 2% + co’" 1smﬂ + ke ni—”
- 2 2

2\/—(ma)‘” cos &% 5 T 4 ca’ Zcosﬂ”)kaﬂ cos%r

Denote the equivalent frequency ratio for the system (8.1) by jqs and define it by
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Ve =— 8.12
e weqne ( . )
Then,
—[w"‘z cos 2% + 2609, /"% cos ﬂ”j
_ 2 2 (8.13)
7eq6 Y A ’
o' cos” -
o
"o K
where  “and g = \/:
m
8.3. Free Response of Li’s Vibration System
Consider
d?xs(t) dx, (t)
eq6 dt62 + Cego ('jt + keqsxe () =0, (8.14)
%6 (0) = Xgq, X5 (0) = Vo
Then, the free response x¢(t) is expressed by
—Goq6@eqnt v +ge (o X .
Xg (t) = g 5! (xeo COS @45t +%sm a)eqdet} t>0. (8.15)
eqd6
8.4. Impulse Response of Li’s Vibration System
Let hs(t) be the impulse response of the system (8.1). Then,
- 1 .
h,(t)=e B L ——— )| Oy6l, 120, 816
° meqﬁwequ e ( ) )
8.5. Step Response of Li’s Vibration System
Denote by g¢(t) the unit step response of the system (8.1). Then,
1 ~Geqs@eqnst
0 (1) = —| 1= =005 (@t ~4) |, 120, 8.17)
(6 1- gqu
where
4, = tan ™ — 2

W- (8.18)
eqb

8.6. Frequency Transfer Function of Li’s Vibration System

Let He(w) be the frequency transfer function of the system (8.1). Then,
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1
H (o) = -
6 keq6 (1_ yezqe + I2geq6}/eq6)
_ 1
o’ cos /17” +7° (a)‘“ cos a—zﬂ +2¢w,0" 7 cos 132”) (8.19)

k
pr

+i7/(a)”"1 sin %+ 2lw,0"sin > + @' sin /Z[j

8.7. Logarithmic Decrement and Q Factor of Li's Vibration System

Let ti and ti+1 be two time points of the fractional free response xs(t), where xe(t) and xs(ti+1) are
its successive peak values at ti and fi+1. Let Aegs be the equivalent logarithmic decrement of xs(t). Then,

pr Ar

maw®sin &% ) T e’ tsin 2l 1kt tsin 2t

T
\/—(mwa‘z cos %+ c 2 cos 27 jkw cos™”
_in e (t) 2 2 2
eq6 - 820)
X (tiJr ) 2 (
o Mmoo *sin %% + co sin 27 1+ ko tsin T
1- 2 2 2
4 - mo*? cos “ + ¢’ cos PZ |k cos T
2 2 2
Denote by Qeqgs the equivalent Q factor of the system (8.1). Then,
[ Mo cos “ + e 2 cos 27 |k cosF
2 2 2
Qus = — i — (8.21)
ma” sin— ) +ca’sin=+ ko' sin =~
8.8. Equivalent Fractional System of Li’s Vibration System
Theorem 1. An equivalent fractional system of Li’s vibration system is expressed by
d“xs(t) dﬂxe(t) d*x(t)
m =f(t 8.22
dt” dt” dt* . (822
Proof. Let F be the operator of Fourier transform. Let
A () =—| mo™? cos X 4 ca’? cos 22X fr ) d7%(t)
2 2 dt? 8.23)
+(ma)“‘lsn + e’ sinPZ 4 ke sin lﬂjm+k #cos 22 x4 (t).
2 2 2 dt
Let
d“x (t) dﬁx (t) d X5 (1)
By(t)=m 6 6 o, 8.24
o0 dt” dt” dt* (529
Because F[As(t)] = F[Bs(t)], we have
As(f) = By(1) (8.25)

in the sense of F[As(t) — Bs(t)] = 0. The proof is finished.
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9. Seven Classes of Li's Vibration Systems with Frequency Dependent Elements and Their
Fractional Equivalences

The system (8.1) contains other six classes of vibration systems with frequency dependent
elements. Meanwhile, the system (8.22) includes six other classes of fractional vibration systems. We
address them in this subsection.

9.1. Li’s Vibration System of Class I and its Fractional Equivalence

When ¢ =0 and 4= 0 in (8.1), we have the motion equation in the form

ar d*x,(t)
2

X
_ma)a—Z cos 2~ 1 ar d (t)

+mae” ™ sin— > dt +kx, () £ A(), l<a<3. 9.1

The above is called the class I Li's vibration system with frequency dependent elements. Letting
c=0and A=0in (8.22) produces the motion equation

md d’;la(t) Tk ()2 B(), l<a<3. 9.2)

We call the above the class I fractional vibration system. That is the fractional equivalence of the
class I Li's vibration system. In face, F[Ai(t) — Bi(t)] =

9.2. Li’s Vibration System of Class II and its Fractional Equivalence
Let e=2 and A=01in (8.1). Then, (8.1) reduces to

ﬁﬂ] d*x, (1)

m—ce’? cos t
2 dt

(c pgin P ] PO 02 A(D), 0<p<2, 9.3)

We call the above the class II Li's vibration system with frequency dependent elements. If o =2
and 1=0in (8.22), (8.22) becomes

IO A0

dt? dt? +kx, (t) = B, (t), 9.4)

which we call the class II fractional vibrator. That is the fractional equivalence of the class II Li's
vibration system. Obviously, F[Ax(t) — B2(t)] =

9.3. Li’s Vibration System of Class 11l and its Fractional Equivalence
Let A=01in (8.1). Then, (8.1) turns to be

ﬂ”) d’ X,(t)

~| mo™ 2 cos 2= + car? cos :
2 2 dt

dx,(t 9.5)
+(ma)‘”‘1sin%+caﬁ‘lsin%)%+kx3(t) 2 A1), 1<a<3, 0<pB<2.

The above is called the class III Li's vibration system. Letting A4 = 0 in (8.22) yields the class III
fractional vibrator in the form

%M 470

i 7 +kx(t) = B,(t). (9.6)

That is the fractional equivalence of the class III Li's vibration system. Clearly, F[As(t) — Bs(f)] =
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9.4. Li's Vibration System of Class IV and its Fractional Equivalence
By letting ¢ = 0 in (8.1), we have the class IV Li's vibration system in the form
2
“ma* 2 cos % d x42(t) +| mo*sin %E 4+ ko' sin kA0
2 dt dt
a 9.7
+keo* cosTﬂ X, ()2 A(), l<a<30<Ai<l.
Similarly, letting ¢ = 0 in (8.22) results in the class IV fractional vibrator given by
a A
md%® [ IX%O a5 1 1cpc3 0<a<L 9.8)

dt® dt*

The above is the fractional equivalence of the class IV Li's vibration system. It is easily seen that
F[A4(t) — Bs(1)] = 0.

9.5. Li’s Vibration System of Class V and its Fractional Equivalence

When a=2 and c =0 in (8.1), we have the class V Li's vibration system in the form

o 8% (1)

dtz nﬂ’_ﬂ-dXS(t) +k A

+ ka)/i—l Sl ) 00317” XS(t) é A‘S(t)’ 0<A<1. (99)

Letting =2 and ¢ =0 in (8.22) produces the class V fractional vibrator given by

2 A
00 40 5
dt dt

B.(t), 0<A<l. (9.10)

The above is the fractional equivalence of the class V Li's vibration system. As a matter of fact,
F[As(t) — Bs(#)] = 0.
9.6. Li’s Vibration System of Class VI and its Fractional Equivalence

The expression (8.1) stands for the class VI Li' vibration system. Its fractional equivalence, that
is, (8.22), designates the class VI fractional vibrator.
9.7. Li’s Vibration System of Class VII and its Fractional Equivalence

If a=21in (8.1), we have the class VII Li's vibration system expressed by

2
(m —ce’ % cos ﬁ) a0 X72(t) + (Ca)ﬂ‘1 sin 2% k' sin l—”j 9% ()
2 dt 2 2 dt

(9.11)
+ko” cos%[xxt) 2A(), 0<p<2 0<A<l.
When =2 in (8.22), we have the class VII fractional vibrator in the form
2 B 2
m a7 (1) +cd X (1 +k 4% o B,(t), 0<pB<2 0<A<l, 9.12)

dt? dt”? dt*

The above is the fractional equivalence of the class VII Li's vibration system. Obviously, F[ A7(t)
- Bs(t)] =0.

10. Vibration Parameters of Seven Classes of Fractional Vibrators

Consider
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A0 a0 )

a4 g gt Wt (10.1)

A (t)=m,

where meq is the equivalent mass of the jth class fractional vibrator (j = 1, ..., 7). Let ceqj be the
equivalent damping of the jth class fractional vibrator. Then, from Section 9, we list #eqj and ceqj in
Table 1.

Table 1. Equivalent mass and damping of seven classes of fractional vibrators.

Fractional . . .
vibrations Equivalent mass Equivalent damping
_ ar 74
Class I My, = —Mo”™ cos—~ Coq =M™ 5iN >
- 7z a.. P
Class I My, =M (1— 2¢t,0"* cos %) Cyp = C’ 5N %
- ar _ T 4. ar .. pr
Class III My = —(a) 2 cos—~+ 2c00,0" cosﬂTa%I3 =ma**sin > +Co”*sin pr
a4 Of .
Class IV Megs = Megy Coqe =M™ siN -t ko' sin =
L. AT
Class V Meqs = 1M Cogs = ka5 >
a.. P a AT
Class VI Megs = Mg Coge = '8N ’87+ ko' sin==
Class VII meq7 = meqz Ceq7 = Ceq6
Denote by keqj be the equivalent stiffness of the jth class fractional vibrator. Let
P (10.2)
eq ' .
2,/m, ;K

We list keqj and Ceqj in Table 2.

Table 2. Equivalent stiffness and damping ratio of seven classes of fractional vibrators.

Fractional Equivalent Equivalent damping ratio
vibrations stiffness q ping
S T
Class 1 kequ =k G = ——F——
ar
20, /— oS ——
2
ga)ﬁ “sin %
Class II kqu =k gqu = C ﬂﬂ'
\/1—@“ cos =

pr

o i QT .
1) 1Sln7+2gaona)’“sln

Class III kegs = k Seqz = or i
20, \/—(a)“‘z cos— "+ 2c0,0" 7 cos 2)

n

4. ar 1. AT
mae* 1sm7+kaﬂ Lsin ==

A

COS——
2

Ar _
Class IV Koy = ko COS—— Seat = o
2 2\/mkaf““ cos7
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Class V keqS = keq4 geqS =

pr

_ A
meo®*sin &% ) T rca’ tsin2E ko' tsin2E

Class VI kqu = keq4 g9q6 = ﬂ Ax
2 -[ mo®? cos X + ca’ 2 cos 2F |ke* cos 2
2 2 2
co’tsin == pr + ke sin Ar
Class VII keq7 = keq4 g6q7 = ﬂ A
2\/(m cw’?cos = 5 jka) cos7

Let axqnj be the equivalent damping free natural angular frequency of the jth class fractional
vibrator. Define it by

O = |- (10.3)

Denote by axqdj the equivalent damped natural angular frequency for the jth class fractional
vibrator. Suppose small damping of | {eqil <1 from a view of engineering.
Define axqdj by

a)eqdj eqnj 1 geqj (104)
We list @weqnj and @eqdj in Table 3.
Table 3. Equivalent natural angular frequencies of seven classes of fractional vibrators.
Fractional = Equivalent damping free Equivalent damped natural angular
vibrations natural angular frequency frequency
w2 O
o = @, o " sin El
Class I et 2 005 &% Deqqr = - 1- g
2 \/_0)“2 cos an 40)5 cos ‘
2 2
Dy ™ sin? pr
Class II ez c P Doy = & 1- 2
v p-2 P eqd2 — c
\/1 m? 5 \/1— cosﬂ” 1- S o7 cos B2
m 2
ar pr :
o (a)alsin+2ga)nwﬂlsinj
eqn3 2 2
o w, |1- 5
Class Il = = 4ot —(a)"z cos  + 26, 2 cos ”j
-2 ar  C 5 Br 2 2
—| ®"° cos—+—w" “ cos =
2 m - L c Br
\/— o"? cos% +—a"?cos j




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2024 d0i:10.20944/preprints202403.0002.v1

17

a)equ

Class IV Ons =

4. QT 4. A
ma*® 1sm7+kw‘ tsin ==

2\/mka)a+l 2
" T ka)“sin/l—”
Class V Ops = @, Ja) COs— Oys = O, /a) cos’E - ——2
2 2 A AT
2, Imkaw cos7

ke* cosl—”
2

1-—

A
Tlcos 2%
2

cos 2%
2

a)equ =

_ an _ T
ean6 —(ma)“ 2 cos7+ cw’? cos ’sz

i 7
Class VI ko COST [ 2

B _ anr _ T a-1 s P A
—[ma)“cos ) +ca’ ZCOS’BZJ ma**sin 22 2 T+ e’ sin 28 > +keo*sin =~

2\/—(mw"2 cos % 5 T i ca’ zcosﬁ”)kwl cos’%ﬁ

ko™ cosﬂ
a) 2

eqd7 = ﬂﬂ'

m—ce” 2 cos

Class VII Oy =

+kao™™ nﬂl

pr

co’tsin =
2\/(m Ca)ﬂzcosﬂ2 jka) 003/12

Let 4 be the equivalent frequency ratio of the jth class fractional vibrator. It is defined by

e @ 10
j = 5
" (105)
Then,
-2 ar
o, /—a) cos =~ c i
Vet = e Yo = y\/l—aw“ cos ==,
Ver =7 || @*2cos ZE + & o2 2 cos 27 j Ves =7 | ————2— (10.6)
eq 2 'm 2 e An
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pr

1-2¢e,0" % cos 7~
Veqt =7 2
eq7 4 /172. !
@’ c0s =~

y=—

w
where n

11. Responses of Seven Classes of Fractional Vibrators

Let xj(t) be the free response of the jth class fractional vibrator. It is the solution to the following
fractional differential equation

{ Bi(t):lo’ (11.1)

X;(0) = X0, X{(0) = v,
where xjo and vjo are initial conditions. Due to F[Bj(t) — Aj(t)] = 0, the above can be equivalently

expressed by

A B 0 (11.2)

X;(0) = X0, X{(0) = v,

Thus,
—Goqi Denii V'+e'a)en'x' -
X, (t) = g %o (xjocosweqdju%sm a)eqdjtJ, t>0. (11.3)
eqdj

Let hj(t) be the impulse response of the jth class fractional vibrator. It is the solution to
B(f) = X0). (11.4)

Owing to F[Bj(t) — Aj(t)] = 0, the above is equivalent to

A1) = Ko). (11.5)
Thus,
’gequeqnjt
hj (t)=—a)Sin a)eqdjt, t>0. (116)
eqj —eqdj

Denote by gj(t) the unit step response of the jth class fractional vibrator. Then,

~Geqj Deqnit

1
g;(t) = —| 1-=——=c0s(@4t—¢;) |, 20, (11.7)
ke‘-‘ﬂ ‘\'1_ge2qj
where
-1 ge'
¢, = tan 1_q’2 : (11.8)
eqj

12. Frequency Transfer Funcitons of Seven Classes of Fractional Vibrators

Denote by Hj(w) the frequency transfer function of the jth class fractional vibrator. Doing the
Fourier transform on both sides of (11.4) yields
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1
keqj (l_yeij +i2geqj7/eqj). (119)

Hj(a)):

Table 4. lists the frequency transfer functions of seven classes of fractional vibrators.

Table 4. Frequency transfer functions of seven classes of fractional vibrators.

Fractional
r.ac rona Frequency transfer functions
vibrators
1
| H, (@) = - -
Class I K 1—60—2 cos 2% +iw—zsin ax
A 2 w; 2
H,(®) = L7k B
Class II c B 2¢0” sin S
1-y° (l——a)ﬁ’2 cos j+ i———%
m 2 ,
1/k
H;(w) = ar Br
1-y%| @*?*|cos ‘ —2¢m,0" 7 cos
2 2
Class III 7| @ *sin or 2¢o " " sin pr
. 2 " 2
+i
w,| " *|cos m‘—2ga;na>’” cos 2%
2 2
1
H4(a)) = an )
—0"* cos
[— 2 - @ @&
1 Y 1 ﬂ/ﬂ'
®" COS—
Class IV Koo' COS Ax
2 mo*sin % + ke sin 2%
+i2y 2
2 Imke*2|cos % |cos A7
2 2
1
Hs(w) = )
2 ke 'sin 2%
Class V ke cos | 1-— 7 +i2y 2 ! 7
" cosZZ 2 Imkar cos 2% \/aﬂ cos 2%
2 2 2
1
Hole)= An ar pr
o' cos ==+ y? (a)” oS~ + 2cm, " % cos j
Class VI K 2 2 2
+iy o sin 22 4 2w,0" " sin &+ wfa)l_lsin/l—ﬂ
2 2 2
1
H; (o) = e Br
o' cos== —y (1— 2c0,0" % cos )
Class VII 2 2

+iy 2ga)ﬁ'lsin@+a) a)’HSinﬂ'—”
2 ! 2

Let Acqj be the equivalent logarithmic decrement of the free response of the jth class fractional

vibrator. Let Qeqj be the equivalent Q factor of the jth class fractional vibrator. They are listed in Table
5.
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Table 5. Logarithmic decrements and Q factors of seven classes of fractional vibrators.
Fractional . .
. Logarithmic decrement Q factor
vibrators
S am
7w* SIN——
2
ar
—cos 2t an
A D[ 7057, @y -c0s -
Class I eat . 2 Qe = Y
a a
w?sin " w?sin %%
1- 2 2
20, /— cos 2%
2
¢’ sin pr
2 2 7
74
1- o/ cos P C 4 7
B m? 1-C o2 cos PP
eq2 — _ m
Class I e 2 Qe = -
¢’ tsin = 2¢c0”sin =
1— 2 2
C
\/1—a)’” cos 2%
m 2
ar
Tsin==
2
7
+2¢w,@" " sin pr
2
2c0s 4%
o |- 2
n -2 arn
+26w,0"? cos 2% €S-
o, |-
Class 111 eas +2600,0" cos 2%
w*tsin %" Qs = 2
- eq3
2 a)“_lsin%+2ga)na)ﬂ_lsin&
1 P 2
+2¢w,0" " sin =~
1— 2
2 ar
0057
20, |-
+26m,0" % cos ﬁZ
. A
mo**sin 2% 1+ ko' tsin 2L
o0 2 2
Arx
2. |mke**2|cos “*|cos 7 p)
3 \/ 2 2 mkao® 2 cos7 00577[
Class IV et 2 Quu = 7
ma)“’lsin%_i_kwi’lsinll ma)“’lsin%+ka)ﬁ’lsinl
1- 2 2 2
An
COS* COS——

2\/mkwa+/1 2
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kwl’lsinﬂ—”
2. |mke” 0057” ke cosi—”
Class V €5~ 2 Q, v 2
q5
kw“sini—” ka)“sinﬂ—”
T T 2
2 /mka/‘ cos’l—”
2
mw”’lsin%+cwﬂ’1sin&
ko' sin 27
p 2
me*? cos 225 1 cos &%
-~ 2 ke cos T _ 2 ko' cos 2%
+ca”? cos - ﬁ z 2 52 x| 2
+cw’?cos £
Class VI Auge = 5 2 Qus =
mao®sin ©% 4+ e’ tsin 25 ma)“’lsinﬂJerﬁ’lsin&
ke sin2E ket sin 2ZE
1- 2
2cos “*
4| - 2 ot cos%[
+ca”? cos&
2
Ca)“slnﬂ +ko? n/i—”
52
) \/(m ¢’ cos = )ka) cos =~ 2 \/(m o Zcos’Bz jk 1 /127r
Class VII Aoy = i JYRY Quy = B g
(cw‘”sm ) +ko*? nzj co’tsin 2% 1 kot tsin 2t

1-—

4(m cw*’“cosﬁ jka) cos'L
2 2

13. Application: Multi-Fractional Damped Euler-Bernoulli Beam

We address the forced response to a multi-fractional damped Euler-Bernoulli beam as an
application of the analytical theory of fractional vibrations previously discussed. By multi-fractional,

we mean that inertia force, internal and external damping forces are of fractional orders.

13.1. Multi-Fractional Damped Euler-Bernoulli Beam

The following is the motion equation of the conventional damped Euler-Bernoulli beam

ow
where ¢ is internal damping and c is external one, CE is external damping force, C,| pwn
X

o (_ 0w, . ow ow
SEALNPY AR MY
ox ( e axzatj PR e

2

ow
c— =g(x,t),
at a(x,t)

(13.1)

3,
is internal

damping force, and pA%T\;v is inertia force (Palley et al. [3]). The forced response to (13.1) under the

Rayleigh damping assumption is known (Palley et al. [3], Jin and Xia [23]).
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The above equation takes into account the Voigt assumption on materials about internal
damping. In this research, following Li [13], we describe the closed form of the forced response to the
multi-fractional damped Euler-Bernoulli beam in the form

o° o*w % w o'w 0w
El +c.l + pA +C =q(x,t), 1<a<3,0<pf<2,0<A<?2. .
X2 [ ol axzatzj P e o’ a(x,t) B (13.2)

oa

o‘w
Precisely, the above stands for a beam with the fractional inertia force pA—— e , fractional

2+ s
0
internal damping force C;| Py and fractional external damping one Cat—ﬁ.
X

13.2. Closed Form Forced Response

Using separation of variables, we write the response by w(x, t) = ¢(x)p(t). Substituting it into

(13.2) produces
< dp;(t) & d’p,(t) & d?| | de(x) |d*p()
5 onei 0 20 ST B0 S 01 TR0

-1 -1 = d dx
» d
ZH g"'(x)} P, (0 =a(x.1).

Using the orthogonality of vibration modes ¢n(x) on both sides of the above equation produces

dp.(t) M.cd’p.(t w' d? d x) | d*p.(t
dt*  pA dtf A dx

(13.3)

J dx2 dt*
(13.4)
(p,( )
5y j ¢m<x) X, (1) =Q (1),
=10
|
M, = ij @? (x)dx.
where 0
Using
d’ | _, d’p;(x)
@{E' d)iz = pAwsp;(X), (13.5)
we rewrite (13.4) by
dp.(t) M.cd’p;(t) & d? d dl.t
dt” pA dtf i dx dt (13.6)
+M 0} p, (1) =Q; (1),
According to the Rayleigh damping assumption,
¢ = pAa, (13.7)
where 4 is a coefficient with the unit of time since pA is with the unit of mass and
¢, = Eb, (13.8)

where b is a coefficient with the unit of frequency as E is with the unit [N/m].
Substituting (13.7) and (13.8) into (13.6) and taking into account the orthogonality of vibration
modes, we have
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d“p;(t) d”p;(t) d*p;(t)
My — e tMa—5 +Mja)§ij+Mjw§jpj(t)=Qj(t). (13.9)
Therefore, the jth order coordinate function is of multi-fractional in the form
d“p;(t) d’p;t) , d*p;(t) 2
preamil Ky, + )b o +app; (1) = ,(0), (13.10)
where
Q;®
=7 (13.11)

]

According to the theory of Li's vibration systems previously explained, the above is simply the
equivalence of the following equation

2
(t
—(cosﬂ o +acos P w7 4 a)nz.bcosl—” a)“jdp—‘z()
2 2 ! 2 dt (13.12)
dp, (t '
+(sin%a)‘“ +asin%af“ + a)nzjbsin/l—”a)“jr;'—t()+ @p, () = £,(0).
As a matter of fact, let
d?p,(t
NOE _(cosa—zﬁ 0"+ acos% 0"+ a)nzjbcos%[ aﬂ‘zj dpt‘z( )
N .0 (13.13)
+(sin0[—7rcl)c‘1 + asin&a)’H +w§.bsin—ﬂw‘1jL+ @’ p;(t).
2 2 ' 2 dt "
Let
d“p;() (_d”p;(t) d’p;(1)
4 J i 2 i 2
D;(t)= e +la oy +ayb e +ay p; (1) (13.14)
Then, F[Ci(t) — Di(#)] = 0.
Denote by metsj the jth equivalent mass in the system (13.10) in the form
M, g = —(cosa—zﬁwf“2 +aCOS%a)ﬂ_2 + a)nzjbcos%raf‘zj. (13.15)
Let cers; the jth equivalent damping in the system (13.10). It is given by
7 S . P 4 Am
Coggy = SiN—- 0" asin2Z o '+ apbsin =", (13.16)
2 2 2
Using meesj and ce8j, we have
d*p; (1) dp; (t)
me-EBjT_{_Ce-EBj#_i_wfj pj(t): fj(t)' (13-17)

Denote by {eesj the jth equivalent damping ratio in the system (13.10). Define it by
Ce-EBj

.Then,
2./m

CeEBj =
e-EBj

do0i:10.20944/preprints202403.0002.v1
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p

.ar . . B 4 AT
S|n7a)a 1+asm7a)ﬂ 1+a)n2jbsm7aﬂ !

CeEBj =

: (13.18)
ZJ—(COSOZ[w"Z +acos%co’}’2 +w§jbcos/12”a)“)

Let axnzej be the jth equivalent damping free natural frequency regarding the system (13.10). It
is given by

a)en-EBj = ' (1319)

e-EBj

From a view of vibration engineering, we are interested in

Geen| <1 (13.20)

Let axnd-esj be the jth equivalent damped natural frequency regarding the system (13.10). Then,

Deng-e8j = Den-£sj \ll_gezEBj- (13.21)

Therefore, we rewrite (13.17) by
dp;(t)

d*p;(t) f (1)
d—tjz + 2§e-EBj Dpr g ot + Wy P (t)y=—"—. (13.22)

e-EBj

Let hj(t) be the jth impulse response function of the system (13.22). Then,

1 ot .
h. t) = e Ce-EBj Pen-EBj sinw. -t, t>0
i (1) Moo @enrn n-E8j (13.23)
Because
pj(t)= fj(t)*hj(t), (1324)

the zero-state forced response to a multi-fractional damped Euler-Bernoulli beam is expressed

by
_ < q’j (X) K —Ge-EBj YenEBiT of
w(x,t)y=> —21—— I e SIN @, g7 F(t—7)d7. (13.25)
=1 Me £gj Dend-egj o

14. Nonlinearity of Fractional Vibraitons

Seven classes of fractional vibration systems satisfy the superposition. However, they are
nonlinear in general. The nonlinearity of fractional vibrations can be explained as follows. The
d”xs(t)

ta

fractional inertia force m

c97%0

dt”
Newtonian for 4 # 0. Those reflect the nonlinearity of fractional vibrations. By linearization using Li's
systems, the nonlinearity of a fractional vibrator is reflected in the aspect of frequency dependent
mass or frequency dependent damping or frequency dependent stiffness.

isnon-Newtonian unless o= 2. Besides, the fractional damping force

d*x,(t)

is non-Newtonian if B # 1. Moreover, the fractional restoration force k at is non-
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15. Conclusions

We have shown the cases of structures with frequency dependent elements (mass or damping
or stiffness) in Sections 2-4. Then, we have introduced the general form of a vibration system with
frequency dependent elements and its vibrations in Sections 5-8. In Section 9, we have addressed the
fractional equivalences of seven classes of Li's systems with frequency dependent elements. After
that, we have proposed the analytical theory of seven classes of fractional vibrations in Sections 10-
12. The closed form of the forced response to multi-fractional Euler-Bernoulli beam has been
presented in Section 13. The nonlinearity of fractional vibrations has been explained in Section 14.
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