

Article

Not peer-reviewed version

Analytical Theory of Fractional Vibrations

[Ming Li](#) *

Posted Date: 1 March 2024

doi: 10.20944/preprints202403.0002.v1

Keywords: Frequency dependent mass or damping or stiffness, fractional inertia or damping or restoration force, equivalent motion equation, multi-fractional Euler-Bernoulli beam

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Analytical Theory of Fractional Vibrations

Ming Li ^{1,2,*}

¹ Ocean College, Zhejiang University, Zhejiang 310012, P. R. China

² East China Normal University, Shanghai 200062, P. R. China

* Correspondence: mli@ee.ecnu.edu.cn; mli15@zju.edu.cn

URLs: <http://orcid.org/0000-0002-2725-353X>

<https://person.zju.edu.cn/mli>

Abstract. This paper revisits the analytical theory of fractional vibrations with the highlights in five aspects. First, we address the cases of structures with frequency dependent mass or damping or stiffness in Sections 2-4. Second, we introduce the theory based on the general second-order vibration motion equation with frequency dependent elements (mass, damping, stiffness) in Sections 5-7. Third, we present the analytical theory of seven specific classes of second-order vibration systems with frequency dependent mass or damping or stiffness in Sections 8 and 9. Fourth, we bring forward the analytical theory of seven classes of fractional vibration systems in Sections 10-12. Finally, as an application, we give the closed form expression of the forced response to multi-fractional Euler-Bernoulli beam in Section 13. The explanation of the nonlinearity of fractional vibrations is given in Section 14.

Keywords. Frequency dependent mass or damping or stiffness; equivalent mass or damping or stiffness; fractional inertia or damping or restoration force; equivalent motion equation; multi-fractional Euler-Bernoulli beam

1. Introduction

Conventionally, vibration elements, say, mass m , damping c , and stiffness k , are commonly assumed to be constants. However, in vibration engineering, people pay attention to the phenomena of frequency dependent elements (mass or damping or stiffness), see e.g., Harris [1], Korotkin [2], Palley et al. [3], Kristiansen and Egeland [4], Zou et al. [5], Wu and Hsie [6], Qiao et al. [7], Jaberzadeh et al. [8], Xu et al. [9], Ghaemmaghami and Kwon [10], Hamdaoui et al. [11]. Since the analytical theory of fractional vibrations established by Li [12–14] adopts frequency dependent elements in the equivalent sense, we feel the usefulness of showing several realistic cases of frequency dependent mass, damping, and stiffness respectively in Sections 2-4, so as to purposely write a general form of a vibration system with frequency dependent mass, damping, and stiffness and discuss its vibration theory in Sections 5-9. The intention of writing Sections 5-9 is in two aspects. One is for the pavement of seven classes of fractional vibrators addressed in Sections 10-13. The other is to facilitate smoothing away possible hesitations why m and or c and or k may be frequency dependent. As an application, we discuss the closed form expression of the forced response to the multi-fractional Euler-Bernoulli beam in Section 13. The nonlinearity of fractional vibrations is discussed in Section 14, which is followed by conclusions.

2. Cases of Frequency Dependent Mass

2.1. Frequency Dependent Mass in Auxiliary Mass Damper System

Consider a simple auxiliary mass damper indicated in Figure 1 (Harris [1]). The system consists of a mass m_a , spring k_a , and viscous damper c_a .

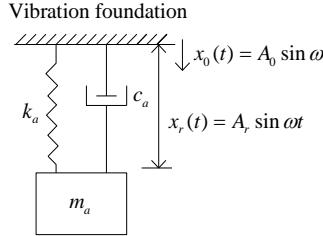


Figure 1. Auxiliary mass damper.

The motion equation of the auxiliary mass damper system is given by

$$-k_a x_r(t) - c_a \frac{dx_r(t)}{dt} = m_a \frac{d^2[x_0(t) + x_r(t)]}{dt^2}. \quad (2.1)$$

Let X_r and X_0 be the phasors of $x_r(t)$ and $x_0(t)$, respectively. The phasor equation of the above is in the form

$$(-k_a - i\omega c_a) X_r = -m_a \omega^2 (X_r + X_0). \quad (2.2)$$

Therefore,

$$X_r = \frac{m_a \omega^2}{-m_a \omega^2 + k_a + i\omega c_a}. \quad (2.3)$$

Denote by F the phasor of the force exerting on the foundation. Then,

$$F = \frac{m_a \omega^2 (k_a + i\omega c_a)}{-m_a \omega^2 + k_a + i\omega c_a} X_0. \quad (2.4)$$

As the force acted by an equivalent mass m_{eq} is rigidly attached to the foundation, we have

$$F = m_{\text{eq}} \omega^2 X_0, \quad (2.5)$$

where

$$m_{\text{eq}} = \frac{k_a + i\omega c_a}{-m_a \omega^2 + k_a + i\omega c_a} m_a. \quad (2.6)$$

Rewriting the above yields

$$m_{\text{eq}} = \frac{(k_a + i\omega c_a)(k_a - m_a \omega^2 - i\omega c_a)}{(k_a - m_a \omega^2)^2 + (\omega c_a)^2} m_a = \frac{k_a (k_a - m_a \omega^2) + (\omega c_a)^2 - i m_a c_a \omega^3}{(k_a - m_a \omega^2)^2 + (\omega c_a)^2} m_a. \quad (2.7)$$

In the polar system,

$$m_{\text{eq}} = |m_{\text{eq}}| \operatorname{Arg} m_{\text{eq}}, \quad (2.8)$$

where

$$|m_{\text{eq}}| = \frac{\left[k_a (k_a - m_a \omega^2) + (\omega c_a)^2 \right]^2 + (m_a c_a \omega^3)^2}{(k_a - m_a \omega^2)^2 + (\omega c_a)^2} m_a, \quad (2.9)$$

and

$$\operatorname{Arg} m_{\text{eq}} = \tan^{-1} \frac{-i m_a c_a \omega^3}{k_a (k_a - m_a \omega^2) + (\omega c_a)^2}. \quad (2.10)$$

The above exhibits that both the modulus and argument of m_{eq} are the functions of ω . When $\omega = 0$, m_{eq} reduces to the primary mass m_a . In general, $0 \leq |m_{eq}| < \infty$. When $c_a = 0$, m_{eq} is real. Figure 2 illustrates a curve of $|m_{eq}|$.

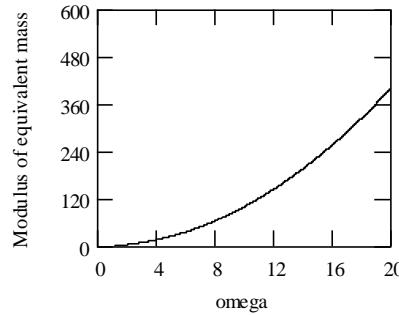


Figure 2. Illustration of $|m_{eq}|$ for $m_a = 1$, $c_a = 1$, and $k_a = 1$.

2.2. Added Mass

The frequency dependence of added mass is well known in the field of ship mechanics (Korotkin [2]). In general, a ship motion is with six degrees of freedom (Palley et al. [3]). We adopt the following symbols for discussions.

- q_n ($n = 1, \dots, 6$): generalized coordinates.
- f_n : generalized forces.
- m_{jn} : dry mass of the ship in direction j .
- c_{jn} : dry damping of the ship in direction j .
- k_{jn} : dry stiffness of the ship in direction j .
- $m_{add, jn}$: added mass of the ship in direction j .
- $h_{jn}(t)$: impulse response function in direction j to an impulse in velocity in direction n .

When $q_n(t) = q_n \cos(\omega t)$, according to Kristiansen and Egeland [4], one has

$$\sum_{n=1}^6 [m_{jn} + m_{add, jn}(\omega)] q_n'' + \sum_{n=1}^6 c_{eq, jn}(\omega) q_n' + \sum_{n=1}^6 k_{jn} q_n = f_j(t), \quad (2.11)$$

where $f_j(t)$ is a sinusoidal force at ω ,

$$m_{add, jn}(\omega) = m_{jn} - \frac{1}{\omega} \int_0^\omega h_{jn}(t) \sin \omega t dt \quad (2.12)$$

and

$$c_{eq, jn}(\omega) = c_{jn} + \int_0^\omega h_{jn}(t) \cos \omega t dt. \quad (2.13)$$

Considering the equivalent mass m_{eq} , we have

$$m_{eq} = m_{jn} + m_{add, jn}(\omega). \quad (2.14)$$

Therefore, the equivalent mass m_{eq} of a ship in general is frequency dependent. Consequently, $m_{eq} = m_{eq}(\omega)$.

There are other types of expressions with respect to frequency dependent mass, see e.g., Zou et al. [5], Wu and Hsieh [6], Qiao et al. [7], Jaberzadeh et al. [8], Xu et al. [9], Ghaemmaghami, and Kwon [10], Hamdaoui et al. [11], Li [12–14], Banerjee [15], White et al. [16], Dumont and Oliveira [17], Zhang et al. [18], Sun et al. [19].

3. Cases of Frequency Dependent Damping

3.1. Rigidly Connected Coulomb Damper

Have a look at Figure 3 that indicates a rigidly connected Coulomb damper.

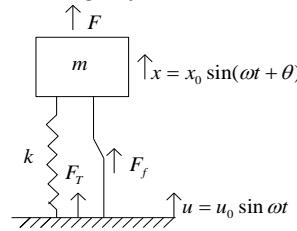


Figure 3. Rigidly connected Coulomb damper.

The motion equation is given by

$$mx'' + k(x - u) \pm F_f = F_0 + \sin \omega t. \quad (3.1)$$

Since there is discontinuity in the damping force that occurs as the sign of the velocity changes at each half cycle, a step-by-step solution of the above is required (Harris [1], Den Hartog [20]). Let $\delta = x - u$. Using the equivalence of energy dissipation for equating the energy dissipation per cycle for viscous-damped and Coulomb damped systems produces (Harris [1], Jacobsen [21])

$$\pi c_{\text{eq}} \omega \delta_0^2 = 4F_f \delta_0. \quad (3.2)$$

In the above, the left side refers to the viscous-damped system and the right side to the Coulomb-damped system. The symbol δ is the amplitude of relative displacement across the damper.

From the above, one has the equivalent viscous damping coefficient for a Coulomb-damped system that has equivalent energy dissipation in the form

$$c_{\text{eq}} = \frac{4F_f}{\pi \omega \delta_0}. \quad (3.3)$$

One thing worth noting is that c_{eq} is frequency dependent. Hence,

$$c_{\text{eq}} = c_{\text{eq}}(\omega). \quad (3.4)$$

3.2. Rayleigh Damping

The Rayleigh damping introduced by Rayleigh [22] is widely adopted in the field, see e.g., Harris [1], Palley et al. [3], Li [12–14], Jin and Xia [23], Trombetti and Silvestri [24,25], Mohammad et al. [26], Kim and Wiebe [27]. Rayleigh assumed his damping in the form

$$c_{\text{Rayleigh}} = am + bk, \quad (3.5)$$

where a is proportional to ω while b is inversely proportional to ω . Thus, we may write

$$c_{\text{Rayleigh}} = c_{\text{Rayleigh}}(\omega). \quad (3.6)$$

The above exhibits that the frequency dependence is a radical property of the damping Rayleigh assumed.

3.3. Remarks

Other types of frequency dependent dampers, refer to Kuo et al. [28], Stollwitzer et al. [29], Jith and Sarkar [30], Zhou et al. [31], Zarraga et al. [32], Xie et al. [33,34], Hu et al. [35], Rouleau et al. [36], Hamdaoui et al. [37], Deng et al. [38], Dai et al. [39], Adessina et al. [40], Chang et al. [41], Lin et al. [42], Dai et al. [43], Catania and Sorrentino [44,45], Zhang and Turner [46], Yoshida et al. [47],

Assimaki and Kausel [48], Pan et al. [49], Ghosh and Viswanath [50], McDaniel et al. [51], Zhang et al. [52], Wang et al. [53], Lundén and Dahlberg [54], Figueroa et al. [55], Lázaro [56], and Crandall [57], simply citing a few.

4. Cases of Frequency Dependent Stiffness

4.1. Frequency Dependent Stiffness in a Shaft Driven by a Periodic Force

Consider a shaft driven by a periodic force as shown in Figure 4. The mass m is supported by two springs with the primary stiffness k . Under the excitation of a force in axis direction, there is a force produced by displacement in the form $\frac{x}{l} F \cos \omega t$.

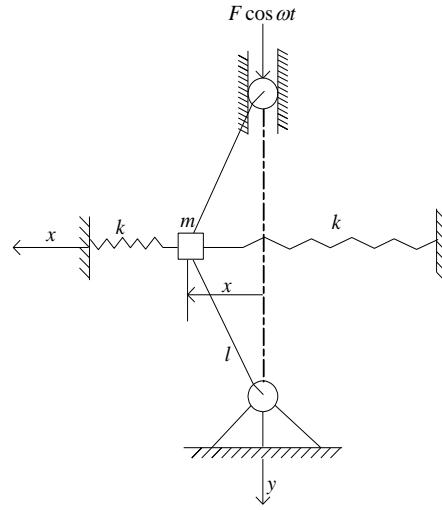


Figure 4. A shaft excited by a periodic force.

Thus, the motion equation is given by

$$mx'' + kx - \frac{x}{l} F \cos \omega t = 0. \quad (4.1)$$

Denote by k_{eq} the equivalent stiffness of the system. Then,

$$mx'' + k_{\text{eq}}x = 0, \quad (4.2)$$

where

$$k_{\text{eq}} = k - \frac{F \cos \omega t}{l}. \quad (4.3)$$

The above designates that the equivalent stiffness k_{eq} is frequency dependent. Hence, $k_{\text{eq}} = k_{\text{eq}}(\omega)$.

4.2. Frequency Dependent Stiffness in Simple Pendulum

Let l be the length of a simple pendulum. Denote by m the mass of the simple pendulum. Suppose that the fulcrum position of the pendulum moves periodically as $A_0 \cos \omega t$, see Figure 5.

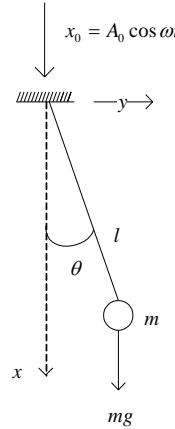


Figure 5. Simple pendulum.

The motion equation of the simple pendulum is given by

$$ml\theta'' + m(g - \omega^2 A_0 \cos \omega t) \sin \theta = 0. \quad (4.4)$$

When θ is small such that $\sin \theta \approx \theta$, we have

$$ml\theta'' + m(g - \omega^2 A_0 \cos \omega t) \theta = 0. \quad (4.5)$$

Replacing θ by x yields

$$mx'' + \frac{m}{l}(g - \omega^2 A_0 \cos \omega t)x = 0. \quad (4.6)$$

Let k_{eq} be the equivalent stiffness. Then,

$$k_{\text{eq}} = \frac{m}{l}(g - \omega^2 A_0 \cos \omega t). \quad (4.7)$$

Therefore, the motion equation is expressed by

$$mx'' + k_{\text{eq}}x = 0. \quad (4.8)$$

The above exhibits that the stiffness k_{eq} is frequency dependent.

The topic of frequency dependent stiffness attracts the interests of researchers. The other references regarding frequency dependent stiffness refer to Li [12–14], Banerjee [15], White et al. [16], Dumont and de Oliveira [17], Zhang et al. [18], Sun et al. [19], Yoshida et al. [47], Wu et al. [58], Blom and Kari [59], Gao et al. [60], Song et al. [61], Liu et al. [62], Zhang et al. [63], Banerjee et al. [64,65], Lu et al. [66], Sung et al. [67], Mezghani et al. [68], Liu et al. [69], Kong et al. [70], Ege et al. [71], Mukhopadhyay et al. [72], Sainz-AjaIsidro et al. [73], Bozyigit [74], Varghese et al. [75], Failla et al. [76], Fan et al. [77], Roozen et al. [78], Mochida and Ilanko [79], just citing a few.

5. General Vibration System with Frequency Dependent Elements

5.1. Motion Equation of General Vibration System

Based on the previous discussions, we write the motion equation with frequency dependent elements by

$$m_{\text{eq}}(\omega)x'' + c_{\text{eq}}(\omega)x' + k_{\text{eq}}(\omega)x = f(t), \quad (5.1)$$

where $f(t)$ is an excitation force.

Let $X(\omega)$ and $F(\omega)$ be the Fourier transform of $x(t)$ and $f(t)$, respectively. Then, the motion equation in the frequency domain is expressed by

$$[-\omega^2 m_{\text{eq}}(\omega) + i\omega c_{\text{eq}}(\omega) + k_{\text{eq}}(\omega)] X(\omega) = F(\omega). \quad (5.2)$$

5.2. Vibration Parameters of General Vibration System

Denote by ω_{eqn} the equivalent natural angular frequency with damping free. It is given by

$$\omega_{\text{eqn}} = \sqrt{\frac{k_{\text{eq}}(\omega)}{m_{\text{eq}}(\omega)}}. \quad (5.3)$$

Since either m_{eq} or k_{eq} is a function of ω , ω_{eqn} is a function of ω . Thus,

$$\omega_{\text{eqn}} = \omega_{\text{eqn}}(\omega). \quad (5.4)$$

Let $\zeta_{\text{eq}}(\omega)$ be the equivalent damping ratio in the form

$$\zeta_{\text{eq}}(\omega) = \frac{1}{2} \frac{c_{\text{eq}}}{\sqrt{m_{\text{eq}} k_{\text{eq}}}}. \quad (5.5)$$

Then, we rewrite (5.1) by

$$x'' + 2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)x' + \omega_{\text{eqn}}^2(\omega)x = \frac{f(t)}{m_{\text{eq}}(\omega)}. \quad (5.6)$$

Denote by $\omega_{\text{eqd}}(\omega)$ the equivalent damped natural angular frequency. Since $|\zeta_{\text{eq}}(\omega)| > 1$ does not make sense in vibrations (Harris [1], Palley et al. [2], Li [13], Nakagawa and Ringo [80]), we restrict ζ_{eq} by $|\zeta_{\text{eq}}(\omega)| \leq 1$. Thus,

$$\omega_{\text{eqd}}(\omega) = \omega_{\text{eqn}}(\omega)\sqrt{1 - \zeta_{\text{eq}}^2(\omega)}. \quad (5.7)$$

The equivalent frequency ratio is given by

$$\gamma_{\text{eq}} = \frac{\omega}{\omega_{\text{eqn}}(\omega)}. \quad (5.8)$$

5.3. Free Response of General Vibration System with Frequency Dependent Elements

When considering the free response to a general vibration system with frequency dependent elements, we have

$$\begin{cases} m_{\text{eq}}(\omega)x''(t) + c_{\text{eq}}(\omega)x'(t) + k_{\text{eq}}(\omega)x(t) = 0, \\ x(0) = x_0, x'(0) = v_0. \end{cases} \quad (5.9)$$

The above equation can be rewritten by

$$\begin{cases} x'' + 2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)x' + \omega_{\text{eqn}}^2(\omega)x = 0, \\ x(0) = x_0, x'(0) = v_0. \end{cases} \quad (5.10)$$

Then, the free response is

$$x(t) = e^{-\zeta_{\text{eq}}\omega_{\text{eqn}}t} \left(x_0 \cos \omega_{\text{eqd}}t + \frac{v_0 + \zeta_{\text{eq}}\omega_{\text{eqn}}x_0}{\omega_{\text{eqd}}} \sin \omega_{\text{eqd}}t \right), \quad t \geq 0. \quad (5.11)$$

5.4. Impulse Response of General Vibration System with Frequency Dependent Elements

When investigating the impulse response to a general vibration system with frequency dependent elements, we use the following equation

$$\begin{cases} h''(t) + 2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)h'(t) + \omega_{\text{eqn}}^2(\omega)h(t) = \frac{\delta(t)}{m_{\text{eq}}(\omega)}, \\ h(0) = 0, h'(0) = 0. \end{cases} \quad (5.12)$$

Thus,

$$h(t) = e^{-\zeta_{\text{eq}}\omega_{\text{eqn}}t} \frac{1}{m_{\text{eq}}\omega_{\text{eqd}}} \sin \omega_{\text{eqd}}t, \quad t \geq 0. \quad (5.13)$$

5.5. Step Response of General Vibration System with Frequency Dependent Elements

Denote by $g(t)$ the unit step response (step response for short) to a general vibration system with frequency dependent elements. Consider the following equation

$$\begin{cases} g''(t) + 2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)g'(t) + \omega_{\text{eqn}}^2(\omega)g(t) = \frac{u(t)}{m_{\text{eq}}(\omega)}, \\ g(0) = 0, g'(0) = 0. \end{cases} \quad (5.14)$$

Then,

$$g(t) = \frac{1}{k_{\text{eq}}(\omega)} \left[1 - \frac{e^{-\zeta_{\text{eq}}\omega_{\text{eqn}}t}}{\sqrt{1-\zeta_{\text{eq}}^2}} \cos(\omega_{\text{eqd}}t - \phi) \right], \quad t \geq 0, \quad (5.15)$$

where

$$\phi = \tan^{-1} \frac{\zeta_{\text{eq}}}{\sqrt{1-\zeta_{\text{eq}}^2}}. \quad (5.16)$$

6. Frequency Transfer Function of General Vibration System with Frequency Dependent Elements

Let $H(\omega)$ be the Fourier transform of $h(t)$. From (5.12), we have

$$[\omega_{\text{eqn}}^2(\omega) - \omega^2 + i2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)\omega]H(\omega) = \frac{1}{m_{\text{eq}}(\omega)}. \quad (6.1)$$

Therefore,

$$\begin{aligned} H(\omega) &= \frac{1}{m_{\text{eq}}(\omega)[\omega_{\text{eqn}}^2(\omega) - \omega^2 + i2\zeta_{\text{eq}}(\omega)\omega_{\text{eqn}}(\omega)\omega]} \\ &= \frac{1}{k_{\text{eq}}(\omega)[1 - \gamma_{\text{eq}}^2 + i2\zeta_{\text{eq}}(\omega)\gamma_{\text{eq}}]}. \end{aligned} \quad (6.2)$$

The amplitude $|H(\omega)|$ is given by

$$|H(\omega)| = \frac{1/k_{\text{eq}}}{\sqrt{(1-\gamma_{\text{eq}}^2)^2 + (2\zeta_{\text{eq}}\gamma_{\text{eq}})^2}}. \quad (6.3)$$

The phase is expressed by

$$\varphi(\omega) = -\tan^{-1} \frac{2\zeta_{\text{eq}}(\omega)\gamma_{\text{eq}}}{1-\gamma_{\text{eq}}^2}. \quad (6.4)$$

When computing $\varphi(\omega)$ using digital computers,

$$\varphi(\omega) = \cos^{-1} \frac{1-\gamma_{\text{eq}}^2}{\sqrt{(1-\gamma_{\text{eq}}^2)^2 + (2\zeta_{\text{eq}}\gamma_{\text{eq}})^2}}. \quad (6.5)$$

7. Logarithmic Decrement and Q Factor of General Vibration System with Frequency Dependent Elements

Let t_i and t_{i+1} be two time points of the free response $x(t)$, where $x(t_i)$ and $x(t_{i+1})$ are successive peak values at t_i and t_{i+1} . Let Δ_{eq} be the logarithmic decrement of $x(t)$. Then,

$$\Delta_{\text{eq}} = \Delta_{\text{eq}}(\omega) = \ln \frac{x(t_i)}{x(t_{i+1})} = \frac{2\pi\zeta_{\text{eq}}(\omega)}{\sqrt{1-\zeta_{\text{eq}}^2(\omega)}}. \quad (7.1)$$

Let Q_{eq} be the Q factor of a general vibration system with frequency dependent elements. Then,

$$Q_{\text{eq}} = Q_{\text{eq}}(\omega) = \frac{1}{2\zeta_{\text{eq}}(\omega)}. \quad (7.2)$$

8. Li's Vibration System with Frequency Dependent Elements

8.1. Motion Equation of Li's Vibration System

Recently, Li introduced a class of vibration systems with frequency dependent elements. Its motion equation is in the form

$$\begin{aligned} & - \left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{d^2 x_6(t)}{dt^2} \\ & + \left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \frac{dx_6(t)}{dt} \\ & + k\omega^\lambda \cos \frac{\lambda\pi}{2} x_6(t) = f(t), \quad 1 < \alpha < 3, \quad 0 < \beta < 2, \quad 0 \leq \lambda < 1, \end{aligned} \quad (8.1)$$

where $f(t)$ is driven force and $x_6(t)$ is the response. For facilitating discussions, we call the above Li's vibration system with frequency dependent elements or Li's vibration system in short.

8.2. Vibration Parameters of Li's Vibration System

When writing (8.1) by

$$m_{\text{eq6}} \frac{d^2 x_6(t)}{dt^2} + c_{\text{eq6}} \frac{dx_6(t)}{dt} + k_{\text{eq6}} x_6(t) = f(t), \quad 1 < \alpha < 3, \quad 0 < \beta < 2, \quad 0 \leq \lambda < 1, \quad (8.2)$$

we have the equivalent mass of (8.1) in the form

$$m_{\text{eq6}} = m_{\text{eq6}}(\omega) = -\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right), \quad (8.3)$$

the equivalent damping expressed by

$$c_{\text{eq6}} = c_{\text{eq6}}(\omega) = c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}, \quad (8.4)$$

and the equivalent stiffness given by

$$k_{\text{eq6}} = k_{\text{eq6}}(\omega) = k\omega^{\lambda} \cos \frac{\lambda\pi}{2}. \quad (8.5)$$

Let ζ_{eq6} be the equivalent damping ratio for the system (8.1). Define it by

$$\zeta_{\text{eq6}} = \frac{c_{\text{eq6}}}{2\sqrt{m_{\text{eq6}}k_{\text{eq6}}}}. \quad (8.6)$$

Then,

$$\zeta_{\text{eq6}} = \zeta_{\text{eq6}}(\omega) = \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^{\lambda} \cos \frac{\lambda\pi}{2}}}. \quad (8.7)$$

Denote by ω_{eqn6} the equivalent natural angular frequency with damping free with respect to the system (8.1). Define it by

$$\omega_{\text{eqn6}} = \sqrt{\frac{k_{\text{eq6}}(\omega)}{m_{\text{eq6}}(\omega)}}. \quad (8.8)$$

Then,

$$\omega_{\text{eqn6}} = \sqrt{\frac{k\omega^{\lambda} \cos \frac{\lambda\pi}{2}}{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}. \quad (8.9)$$

Let ω_{eqd6} be the equivalent damped natural angular frequency for the system (8.1). In vibrations, small damping $|\zeta_{\text{eq6}}| \leq 1$ is assumed in what follows. Define ω_{eqd6} by

$$\omega_{\text{eqd6}} = \omega_{\text{eqn6}} \sqrt{1 - \zeta_{\text{eq6}}^2}, \quad |\zeta_{\text{eq6}}| \leq 1. \quad (8.10)$$

Then,

$$\omega_{\text{eqd6}} = \sqrt{\frac{k\omega^{\lambda} \cos \frac{\lambda\pi}{2}}{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}} \sqrt{1 - \left(\frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^{\lambda} \cos \frac{\lambda\pi}{2}}} \right)^2}. \quad (8.11)$$

Denote the equivalent frequency ratio for the system (8.1) by γ_{eq6} and define it by

$$\gamma_{\text{eq6}} = \frac{\omega}{\omega_{\text{eqn6}}}. \quad (8.12)$$

Then,

$$\gamma_{\text{eq6}} = \gamma \sqrt{\frac{-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n\omega^{\beta-2} \cos \frac{\beta\pi}{2}\right)}{\omega^\lambda \cos \frac{\lambda\pi}{2}}}, \quad (8.13)$$

where $\gamma = \frac{\omega}{\omega_n}$ and $\omega_n = \sqrt{\frac{k}{m}}$.

8.3. Free Response of Li's Vibration System

Consider

$$\begin{cases} m_{\text{eq6}} \frac{d^2 x_6(t)}{dt^2} + c_{\text{eq6}} \frac{dx_6(t)}{dt} + k_{\text{eq6}} x_6(t) = 0, \\ x_6(0) = x_{60}, x'_6(0) = v_{60}. \end{cases} \quad (8.14)$$

Then, the free response $x_6(t)$ is expressed by

$$x_6(t) = e^{-\zeta_{\text{eq6}}\omega_{\text{eqn6}}t} \left(x_{60} \cos \omega_{\text{eqd6}}t + \frac{v_{60} + \zeta_{\text{eq6}}\omega_{\text{eqn6}}x_{60}}{\omega_{\text{eqd6}}} \sin \omega_{\text{eqd6}}t \right), \quad t \geq 0. \quad (8.15)$$

8.4. Impulse Response of Li's Vibration System

Let $h_6(t)$ be the impulse response of the system (8.1). Then,

$$h_6(t) = e^{-\zeta_{\text{eq6}}\omega_{\text{eqn6}}t} \frac{1}{m_{\text{eq6}}\omega_{\text{eqd6}}} \sin \omega_{\text{eqd6}}t, \quad t \geq 0. \quad (8.16)$$

8.5. Step Response of Li's Vibration System

Denote by $g_6(t)$ the unit step response of the system (8.1). Then,

$$g_6(t) = \frac{1}{k_{\text{eq6}}} \left[1 - \frac{e^{-\zeta_{\text{eq6}}\omega_{\text{eqn6}}t}}{\sqrt{1 - \zeta_{\text{eq6}}^2}} \cos \left(\omega_{\text{eqd6}}t - \phi_6 \right) \right], \quad t \geq 0, \quad (8.17)$$

where

$$\phi_6 = \tan^{-1} \frac{\zeta_{\text{eq6}}}{\sqrt{1 - \zeta_{\text{eq6}}^2}}. \quad (8.18)$$

8.6. Frequency Transfer Function of Li's Vibration System

Let $H_6(\omega)$ be the frequency transfer function of the system (8.1). Then,

$$\begin{aligned}
H_6(\omega) &= \frac{1}{k_{\text{eq6}} \left(1 - \gamma_{\text{eq6}}^2 + i2\zeta_{\text{eq6}}\gamma_{\text{eq6}} \right)} \\
&= \frac{1}{k \left[\omega^\lambda \cos \frac{\lambda\pi}{2} + \gamma^2 \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \right.} \\
&\quad \left. + i\gamma \left(\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta\omega_n\omega^{\beta-1} \sin \frac{\beta\pi}{2} + \omega_n^2\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \right]}.
\end{aligned} \tag{8.19}$$

8.7. Logarithmic Decrement and Q Factor of Li's Vibration System

Let t_i and t_{i+1} be two time points of the fractional free response $x_6(t)$, where $x_6(t_i)$ and $x_6(t_{i+1})$ are its successive peak values at t_i and t_{i+1} . Let Δ_{eq6} be the equivalent logarithmic decrement of $x_6(t)$. Then,

$$\Delta_{\text{eq6}} = \ln \frac{x_6(t_i)}{x_6(t_{i+1})} = \frac{\pi \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}}{\sqrt{1 - \frac{\left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right)^2}{4 \left[-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2} \right]}}}}. \tag{8.20}$$

Denote by Q_{eq6} the equivalent Q factor of the system (8.1). Then,

$$Q_{\text{eq6}} = \frac{\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}{\frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2}}. \tag{8.21}$$

8.8. Equivalent Fractional System of Li's Vibration System

Theorem 1. An equivalent fractional system of Li's vibration system is expressed by

$$m \frac{d^\alpha x_6(t)}{dt^\alpha} + c \frac{d^\beta x_6(t)}{dt^\beta} + k \frac{d^\lambda x_6(t)}{dt^\lambda} = f(t). \tag{8.22}$$

Proof. Let F be the operator of Fourier transform. Let

$$\begin{aligned}
A_6(t) &= -\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{d^2 x_6(t)}{dt^2} \\
&\quad + \left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \frac{dx_6(t)}{dt} + k\omega^\lambda \cos \frac{\lambda\pi}{2} x_6(t).
\end{aligned} \tag{8.23}$$

Let

$$B_6(t) = m \frac{d^\alpha x_6(t)}{dt^\alpha} + c \frac{d^\beta x_6(t)}{dt^\beta} + k \frac{d^\lambda x_6(t)}{dt^\lambda}. \tag{8.24}$$

Because $F[A_6(t)] = F[B_6(t)]$, we have

$$A_6(t) = B_6(t) \tag{8.25}$$

in the sense of $F[A_6(t) - B_6(t)] = 0$. The proof is finished.

9. Seven Classes of Li's Vibration Systems with Frequency Dependent Elements and Their Fractional Equivalences

The system (8.1) contains other six classes of vibration systems with frequency dependent elements. Meanwhile, the system (8.22) includes six other classes of fractional vibration systems. We address them in this subsection.

9.1. Li's Vibration System of Class I and its Fractional Equivalence

When $c = 0$ and $\lambda = 0$ in (8.1), we have the motion equation in the form

$$-m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} \frac{d^2x_1(t)}{dt^2} + m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} \frac{dx_1(t)}{dt} + kx_1(t) \triangleq A_1(t), \quad 1 < \alpha < 3. \quad (9.1)$$

The above is called the class I Li's vibration system with frequency dependent elements. Letting $c = 0$ and $\lambda = 0$ in (8.22) produces the motion equation

$$m \frac{d^\alpha x_1(t)}{dt^\alpha} + kx_1(t) \triangleq B_1(t), \quad 1 < \alpha < 3. \quad (9.2)$$

We call the above the class I fractional vibration system. That is the fractional equivalence of the class I Li's vibration system. In fact, $F[A_1(t) - B_1(t)] = 0$.

9.2. Li's Vibration System of Class II and its Fractional Equivalence

Let $\alpha = 2$ and $\lambda = 0$ in (8.1). Then, (8.1) reduces to

$$\left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{d^2x_2(t)}{dt^2} + \left(c\omega^{\beta-1} \sin \frac{\beta\pi}{2} \right) \frac{dx_2(t)}{dt} + kx_2(t) \triangleq A_2(t), \quad 0 < \beta < 2. \quad (9.3)$$

We call the above the class II Li's vibration system with frequency dependent elements. If $\alpha = 2$ and $\lambda = 0$ in (8.22), (8.22) becomes

$$m \frac{d^2x_2(t)}{dt^2} + c \frac{d^\beta x_2(t)}{dt^\beta} + kx_2(t) \triangleq B_2(t), \quad (9.4)$$

which we call the class II fractional vibrator. That is the fractional equivalence of the class II Li's vibration system. Obviously, $F[A_2(t) - B_2(t)] = 0$.

9.3. Li's Vibration System of Class III and its Fractional Equivalence

Let $\lambda = 0$ in (8.1). Then, (8.1) turns to be

$$\begin{aligned} & - \left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{d^2x_3(t)}{dt^2} \\ & + \left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} \right) \frac{dx_3(t)}{dt} + kx_3(t) \triangleq A_3(t), \quad 1 < \alpha < 3, \quad 0 < \beta < 2. \end{aligned} \quad (9.5)$$

The above is called the class III Li's vibration system. Letting $\lambda = 0$ in (8.22) yields the class III fractional vibrator in the form

$$m \frac{d^\alpha x_3(t)}{dt^\alpha} + c \frac{d^\beta x_3(t)}{dt^\beta} + kx_3(t) \triangleq B_3(t). \quad (9.6)$$

That is the fractional equivalence of the class III Li's vibration system. Clearly, $F[A_3(t) - B_3(t)] = 0$.

9.4. Li's Vibration System of Class IV and its Fractional Equivalence

By letting $c = 0$ in (8.1), we have the class IV Li's vibration system in the form

$$\begin{aligned} & -m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} \frac{d^2 x_4(t)}{dt^2} + \left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \frac{dx_4(t)}{dt} \\ & + k\omega^\lambda \cos \frac{\lambda\pi}{2} x_4(t) \triangleq A_4(t), \quad 1 < \alpha < 3, 0 \leq \lambda < 1. \end{aligned} \quad (9.7)$$

Similarly, letting $c = 0$ in (8.22) results in the class IV fractional vibrator given by

$$m \frac{d^\alpha x_4(t)}{dt^\alpha} + k \frac{d^\lambda x_4(t)}{dt^\lambda} \triangleq B_4(t), \quad 1 < \alpha < 3, 0 \leq \lambda < 1. \quad (9.8)$$

The above is the fractional equivalence of the class IV Li's vibration system. It is easily seen that $F[A_4(t) - B_4(t)] = 0$.

9.5. Li's Vibration System of Class V and its Fractional Equivalence

When $\alpha = 2$ and $c = 0$ in (8.1), we have the class V Li's vibration system in the form

$$m \frac{d^2 x_5(t)}{dt^2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \frac{dx_5(t)}{dt} + k\omega^\lambda \cos \frac{\lambda\pi}{2} x_5(t) \triangleq A_5(t), \quad 0 \leq \lambda < 1. \quad (9.9)$$

Letting $\alpha = 2$ and $c = 0$ in (8.22) produces the class V fractional vibrator given by

$$m \frac{d^2 x_5(t)}{dt^2} + k \frac{d^\lambda x_5(t)}{dt^\lambda} \triangleq B_5(t), \quad 0 \leq \lambda < 1. \quad (9.10)$$

The above is the fractional equivalence of the class V Li's vibration system. As a matter of fact, $F[A_5(t) - B_5(t)] = 0$.

9.6. Li's Vibration System of Class VI and its Fractional Equivalence

The expression (8.1) stands for the class VI Li's vibration system. Its fractional equivalence, that is, (8.22), designates the class VI fractional vibrator.

9.7. Li's Vibration System of Class VII and its Fractional Equivalence

If $\alpha = 2$ in (8.1), we have the class VII Li's vibration system expressed by

$$\begin{aligned} & \left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{d^2 x_7(t)}{dt^2} + \left(c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \frac{dx_7(t)}{dt} \\ & + k\omega^\lambda \cos \frac{\lambda\pi}{2} x_7(t) \triangleq A_7(t), \quad 0 < \beta < 2, 0 \leq \lambda < 1. \end{aligned} \quad (9.11)$$

When $\alpha = 2$ in (8.22), we have the class VII fractional vibrator in the form

$$m \frac{d^2 x_7(t)}{dt^2} + c \frac{d^\beta x_7(t)}{dt^\beta} + k \frac{d^\lambda x_7(t)}{dt^\lambda} \triangleq B_7(t), \quad 0 < \beta < 2, 0 \leq \lambda < 1. \quad (9.12)$$

The above is the fractional equivalence of the class VII Li's vibration system. Obviously, $F[A_7(t) - B_7(t)] = 0$.

10. Vibration Parameters of Seven Classes of Fractional Vibrators

Consider

$$A_j(t) = m_{eqj} \frac{d^2 x_j(t)}{dt^2} + c_{eqj} \frac{dx_j(t)}{dt} + k_{eqj} \frac{dx_j(t)}{dt}, \quad (10.1)$$

where m_{eqj} is the equivalent mass of the j th class fractional vibrator ($j = 1, \dots, 7$). Let c_{eqj} be the equivalent damping of the j th class fractional vibrator. Then, from Section 9, we list m_{eqj} and c_{eqj} in Table 1.

Table 1. Equivalent mass and damping of seven classes of fractional vibrators.

Fractional vibrations	Equivalent mass	Equivalent damping
Class I	$m_{eq1} = -m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}$	$c_{eq1} = m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2}$
Class II	$m_{eq2} = m \left(1 - 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)$	$c_{eq2} = c\omega^{\beta-1} \sin \frac{\beta\pi}{2}$
Class III	$m_{eq3} = - \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \frac{1}{\omega_n^{\alpha-2}}$	$c_{eq3} = m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2}$
Class IV	$m_{eq4} = m_{eq1}$	$c_{eq4} = m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}$
Class V	$m_{eq5} = m$	$c_{eq5} = k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}$
Class VI	$m_{eq6} = m_{eq3}$	$c_{eq6} = c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}$
Class VII	$m_{eq7} = m_{eq2}$	$c_{eq7} = c_{eq6}$

Denote by k_{eqj} be the equivalent stiffness of the j th class fractional vibrator. Let

$$\zeta_{eqj} = \frac{c_{eqj}}{2\sqrt{m_{eqj} k_{eqj}}}. \quad (10.2)$$

We list k_{eqj} and ζ_{eqj} in Table 2.

Table 2. Equivalent stiffness and damping ratio of seven classes of fractional vibrators.

Fractional vibrations	Equivalent stiffness	Equivalent damping ratio
Class I	$k_{eq1} = k$	$\zeta_{eq1} = \frac{\frac{\alpha}{2} \sin \frac{\alpha\pi}{2}}{2\omega_n \sqrt{-\cos \frac{\alpha\pi}{2}}}$
Class II	$k_{eq2} = k$	$\zeta_{eq2} = \frac{\zeta\omega^{\beta-1} \sin \frac{\beta\pi}{2}}{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}}$
Class III	$k_{eq3} = k$	$\zeta_{eq3} = \frac{\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2}}{2\omega_n \sqrt{- \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}$
Class IV	$k_{eq4} = k\omega^{\lambda} \cos \frac{\lambda\pi}{2}$	$\zeta_{eq4} = \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \left \cos \frac{\lambda\pi}{2} \right }}$

Class V	$k_{eq5} = k_{eq4}$	$\zeta_{eq5} = \frac{\omega_n \omega^2 \frac{\lambda-1}{2} \sin \frac{\lambda\pi}{2}}{2\sqrt{\cos \frac{\lambda\pi}{2}}}$
Class VI	$k_{eq6} = k_{eq4}$	$\zeta_{eq6} = \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}$
Class VII	$k_{eq7} = k_{eq4}$	$\zeta_{eq7} = \frac{c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{\left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}$

Let ω_{eqnj} be the equivalent damping free natural angular frequency of the j th class fractional vibrator. Define it by

$$\omega_{eqnj} = \sqrt{\frac{k_{eqj}}{m_{eqj}}}. \quad (10.3)$$

Denote by ω_{eqdj} the equivalent damped natural angular frequency for the j th class fractional vibrator. Suppose small damping of $|\zeta_{eqj}| \leq 1$ from a view of engineering.

Define ω_{eqdj} by

$$\omega_{eqdj} = \omega_{eqnj} \sqrt{1 - \zeta_{eqj}^2}. \quad (10.4)$$

We list ω_{eqnj} and ω_{eqdj} in Table 3.

Table 3. Equivalent natural angular frequencies of seven classes of fractional vibrators.

Fractional vibrations	Equivalent damping free natural angular frequency	Equivalent damped natural angular frequency
Class I	$\omega_{eqn1} = \frac{\omega_n}{\sqrt{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}}$	$\omega_{eqd1} = \frac{\omega_n}{\sqrt{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}} \sqrt{1 - \frac{\omega^\alpha \sin^2 \frac{\alpha\pi}{2}}{4\omega_n^2 \left \cos \frac{\alpha\pi}{2} \right }}$
Class II	$\omega_{eqn2} = \frac{\omega_n}{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}}$	$\omega_{eqd2} = \frac{\omega_n}{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}} \sqrt{1 - \frac{\zeta^2 \omega^{2(\beta-1)} \sin^2 \frac{\beta\pi}{2}}{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}}$
Class III	$\omega_{eqn3} = \frac{\omega_n}{\sqrt{-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \omega_{eqd3}}}$	$\omega_{eqd3} = \frac{\omega_n \sqrt{1 - \left[\frac{\left(\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2} \right)^2}{4\omega_n^2 \left[-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \right]} \right]^2}}{\sqrt{-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}$

Class IV	$\omega_{\text{eqn4}} = \omega_n \sqrt{\frac{\omega^\lambda \cos \frac{\lambda\pi}{2}}{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}}$	$\omega_{\text{eqd4}} = \omega_n \sqrt{\frac{\omega^\lambda \cos \frac{\lambda\pi}{2}}{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}}$
		$\sqrt{1 - \left(\frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \cos \frac{\lambda\pi}{2}}} \right)^2}$
Class V	$\omega_{\text{eqn5}} = \omega_n \sqrt{\omega^\lambda \cos \frac{\lambda\pi}{2}}$	$\omega_{\text{eqd5}} = \omega_n \sqrt{\omega^\lambda \cos \frac{\lambda\pi}{2}} \sqrt{1 - \left(\frac{k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^\lambda \cos \frac{\lambda\pi}{2}}} \right)^2}$
Class VI	ω_{eqn6}	$\omega_{\text{eqd6}} = \sqrt{\frac{k\omega^\lambda \cos \frac{\lambda\pi}{2}}{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}$
	$= \sqrt{\frac{k\omega^\lambda \cos \frac{\lambda\pi}{2}}{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}} \sqrt{1 - \left(\frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}} \right)^2}$	
Class VII	$\omega_{\text{eqn7}} = \sqrt{\frac{k\omega^\lambda \cos \frac{\lambda\pi}{2}}{m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2}}}$	$\omega_{\text{eqd7}} = \sqrt{\frac{k\omega^\lambda \cos \frac{\lambda\pi}{2}}{m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2}}}$
		$\sqrt{1 - \left(\frac{c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{\left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}} \right)^2}$

Let γ_{eqj} be the equivalent frequency ratio of the j th class fractional vibrator. It is defined by

$$\gamma_{\text{eqj}} = \frac{\omega}{\omega_{\text{eqn}j}}. \quad (10.5)$$

Then,

$$\gamma_{\text{eq1}} = \frac{\omega \sqrt{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}}{\omega_n}, \quad \gamma_{\text{eq2}} = \gamma \sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}},$$

$$\gamma_{\text{eq3}} = \gamma \sqrt{-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}, \quad \gamma_{\text{eq4}} = \gamma \sqrt{\frac{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}{\omega^\lambda \cos \frac{\lambda\pi}{2}}}, \quad (10.6)$$

$$\gamma_{\text{eq5}} = \gamma \sqrt{\frac{1}{\omega^\lambda \cos \frac{\lambda\pi}{2}}}, \quad \gamma_{\text{eq6}} = \gamma \sqrt{\frac{-\left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}{\omega^\lambda \cos \frac{\lambda\pi}{2}}},$$

$$\gamma_{eq7} = \gamma \sqrt{\frac{1 - 2\zeta\omega_n\omega^{\beta-2} \cos \frac{\beta\pi}{2}}{\omega^2 \cos \frac{\lambda\pi}{2}}},$$

$$\text{where } \gamma = \frac{\omega}{\omega_n}.$$

11. Responses of Seven Classes of Fractional Vibrators

Let $x_j(t)$ be the free response of the j th class fractional vibrator. It is the solution to the following fractional differential equation

$$\begin{cases} B_j(t) = 0, \\ x_j(0) = x_{j0}, x'_j(0) = v_{j0}, \end{cases} \quad (11.1)$$

where x_{j0} and v_{j0} are initial conditions. Due to $F[B_j(t) - A_j(t)] = 0$, the above can be equivalently expressed by

$$\begin{cases} A_j(t) = 0, \\ x_j(0) = x_{j0}, x'_j(0) = v_{j0}. \end{cases} \quad (11.2)$$

Thus,

$$x_j(t) = e^{-\zeta_{eqj}\omega_{eqj}t} \left(x_{j0} \cos \omega_{eqj}t + \frac{v_{j0} + \zeta_{eqj}\omega_{eqj}x_{j0}}{\omega_{eqj}} \sin \omega_{eqj}t \right), \quad t \geq 0. \quad (11.3)$$

Let $h_j(t)$ be the impulse response of the j th class fractional vibrator. It is the solution to

$$B_j(t) = \delta(t). \quad (11.4)$$

Owing to $F[B_j(t) - A_j(t)] = 0$, the above is equivalent to

$$A_j(t) = \delta(t). \quad (11.5)$$

Thus,

$$h_j(t) = \frac{e^{-\zeta_{eqj}\omega_{eqj}t}}{m_{eqj}\omega_{eqj}} \sin \omega_{eqj}t, \quad t \geq 0. \quad (11.6)$$

Denote by $g_j(t)$ the unit step response of the j th class fractional vibrator. Then,

$$g_j(t) = \frac{1}{k_{eqj}} \left[1 - \frac{e^{-\zeta_{eqj}\omega_{eqj}t}}{\sqrt{1 - \zeta_{eqj}^2}} \cos(\omega_{eqj}t - \phi_j) \right], \quad t \geq 0, \quad (11.7)$$

where

$$\phi_j = \tan^{-1} \frac{\zeta_{eqj}}{\sqrt{1 - \zeta_{eqj}^2}}. \quad (11.8)$$

12. Frequency Transfer Funcitons of Seven Classes of Fractional Vibrators

Denote by $H_j(\omega)$ the frequency transfer function of the j th class fractional vibrator. Doing the Fourier transform on both sides of (11.4) yields

$$H_j(\omega) = \frac{1}{k_{eqj} \left(1 - \gamma_{eqj}^2 + i2\zeta_{eqj}\gamma_{eqj} \right)}. \quad (11.9)$$

Table 4. lists the frequency transfer functions of seven classes of fractional vibrators.

Table 4. Frequency transfer functions of seven classes of fractional vibrators.

Fractional vibrators	Frequency transfer functions
Class I	$H_1(\omega) = \frac{1}{k \left(1 - \frac{\omega^\alpha}{\omega_n^2} \left \cos \frac{\alpha\pi}{2} \right + i \frac{\omega^\alpha}{\omega_n^2} \sin \frac{\alpha\pi}{2} \right)}$
Class II	$H_2(\omega) = \frac{1/k}{1 - \gamma^2 \left(1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) + i \frac{2\zeta\omega^\beta \sin \frac{\beta\pi}{2}}{\omega_n}}$
Class III	$H_3(\omega) = \frac{1/k}{1 - \gamma^2 \left(\omega^{\alpha-2} \left \cos \frac{\alpha\pi}{2} \right - 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}$ $+ i \frac{\gamma \left(\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2} \right)}{\omega_n \left(\omega^{\alpha-2} \left \cos \frac{\alpha\pi}{2} \right - 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}$
Class IV	$H_4(\omega) = \frac{1}{k\omega^\lambda \cos \frac{\lambda\pi}{2} \left(1 - \gamma^2 \frac{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}{\omega^\lambda \cos \frac{\lambda\pi}{2}} \right.}$ $\left. + i2\gamma \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \cos \frac{\lambda\pi}{2}} \sqrt{\frac{-\omega^{\alpha-2} \cos \frac{\alpha\pi}{2}}{\omega^\lambda \cos \frac{\lambda\pi}{2}}}} \right),$
Class V	$H_5(\omega) = \frac{1}{k\omega^\lambda \cos \frac{\lambda\pi}{2} \left(1 - \frac{\gamma^2}{\omega^\lambda \cos \frac{\lambda\pi}{2}} + i2\gamma \frac{k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^\lambda \cos \frac{\lambda\pi}{2}} \sqrt{\frac{1}{\omega^\lambda \cos \frac{\lambda\pi}{2}}}} \right)}$
Class VI	$H_6(\omega) = \frac{1}{k \left[\omega^\lambda \cos \frac{\lambda\pi}{2} + \gamma^2 \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \right.}$ $\left. + i\gamma \left(\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta\omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2} + \omega_n^2 \omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \right]$
Class VII	$H_7(\omega) = \frac{1}{k \left[\omega^\lambda \cos \frac{\lambda\pi}{2} - \gamma \left(1 - 2\zeta\omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) \right.}$ $\left. + i\gamma \left(2\zeta\omega^{\beta-1} \sin \frac{\beta\pi}{2} + \omega_n \omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right) \right]$

Let Δ_{eqj} be the equivalent logarithmic decrement of the free response of the j th class fractional vibrator. Let Q_{eqj} be the equivalent Q factor of the j th class fractional vibrator. They are listed in Table 5.

Table 5. Logarithmic decrements and Q factors of seven classes of fractional vibrators.

Fractional vibrators	Logarithmic decrement	Q factor
Class I	$\Delta_{eq1} = \frac{\pi \omega^2 \sin \frac{\alpha\pi}{2}}{\omega_n \sqrt{-\cos \frac{\alpha\pi}{2}}}$ $\sqrt{1 - \left(\frac{\omega^2 \sin \frac{\alpha\pi}{2}}{2\omega_n \sqrt{-\cos \frac{\alpha\pi}{2}}} \right)^2}$	$Q_{eq1} = \frac{\omega_n \sqrt{-\cos \frac{\alpha\pi}{2}}}{\omega^2 \sin \frac{\alpha\pi}{2}}$
Class II	$\Delta_{eq2} = \frac{2\pi \frac{\zeta \omega^{\beta-1} \sin \frac{\beta\pi}{2}}{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}}}{\sqrt{1 - \left(\frac{\zeta \omega^{\beta-1} \sin \frac{\beta\pi}{2}}{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}} \right)^2}}$	$Q_{eq2} = \frac{\sqrt{1 - \frac{c}{m} \omega^{\beta-2} \cos \frac{\beta\pi}{2}}}{2\zeta \omega^{\beta-1} \sin \frac{\beta\pi}{2}}$
Class III	$\Delta_{eq3} = \frac{\pi \left(\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2} \right)}{\omega_n \sqrt{- \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}$ $\sqrt{1 - \left(\frac{\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2}}{2\omega_n \sqrt{- \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}} \right)^2}$	$Q_{eq3} = \frac{\omega_n \sqrt{- \left(\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-2} \cos \frac{\beta\pi}{2} \right)}}{\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + 2\zeta \omega_n \omega^{\beta-1} \sin \frac{\beta\pi}{2}}$
Class IV	$\Delta_{eq4} = \frac{2\pi \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \cos \frac{\lambda\pi}{2}}}}{\sqrt{1 - \left(\frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \cos \frac{\lambda\pi}{2}}} \right)^2}}$	$Q_{eq4} = \frac{\sqrt{mk\omega^{\alpha+\lambda-2} \left \cos \frac{\alpha\pi}{2} \right \cos \frac{\lambda\pi}{2}}}{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}$

Class V	$\Delta_{eq5} = \frac{2\pi \frac{k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^\lambda \cos \frac{\lambda\pi}{2}}}}{\sqrt{1 - \left(\frac{k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{2\sqrt{mk\omega^\lambda \cos \frac{\lambda\pi}{2}}} \right)^2}}$	$Q_{eq5} = \frac{\sqrt{mk\omega^\lambda \cos \frac{\lambda\pi}{2}}}{k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}$
Class VI	$\Delta_{eq6} = \frac{\pi \frac{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}}{\sqrt{1 - \frac{\left(m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right)^2}{4 \left(-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2} \right)}}$	$Q_{eq6} = \frac{\sqrt{-\left(m\omega^{\alpha-2} \cos \frac{\alpha\pi}{2} + c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}{m\omega^{\alpha-1} \sin \frac{\alpha\pi}{2} + c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}$
Class VII	$\Delta_{eq7} = \frac{\pi \frac{c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}{\sqrt{\left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}}{\sqrt{1 - \frac{\left(c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2} \right)^2}{4 \left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}}$	$Q_{eq7} = \frac{\sqrt{\left(m - c\omega^{\beta-2} \cos \frac{\beta\pi}{2} \right) k\omega^\lambda \cos \frac{\lambda\pi}{2}}}{c\omega^{\beta-1} \sin \frac{\beta\pi}{2} + k\omega^{\lambda-1} \sin \frac{\lambda\pi}{2}}$

13. Application: Multi-Fractional Damped Euler-Bernoulli Beam

We address the forced response to a multi-fractional damped Euler-Bernoulli beam as an application of the analytical theory of fractional vibrations previously discussed. By multi-fractional, we mean that inertia force, internal and external damping forces are of fractional orders.

13.1. Multi-Fractional Damped Euler-Bernoulli Beam

The following is the motion equation of the conventional damped Euler-Bernoulli beam

$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 w}{\partial x^2} + c_s I \frac{\partial^3 w}{\partial x^2 \partial t} \right) + \rho A \frac{\partial^2 w}{\partial t^2} + c \frac{\partial w}{\partial t} = q(x, t), \quad (13.1)$$

where c_s is internal damping and c is external one, $c \frac{\partial w}{\partial t}$ is external damping force, $c_s I \frac{\partial^3 w}{\partial x^2 \partial t}$ is internal damping force, and $\rho A \frac{\partial^2 w}{\partial t^2}$ is inertia force (Palley et al. [3]). The forced response to (13.1) under the Rayleigh damping assumption is known (Palley et al. [3], Jin and Xia [23]).

The above equation takes into account the Voigt assumption on materials about internal damping. In this research, following Li [13], we describe the closed form of the forced response to the multi-fractional damped Euler-Bernoulli beam in the form

$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 w}{\partial x^2} + c_s I \frac{\partial^{2+\lambda} w}{\partial x^2 \partial t^\lambda} \right) + \rho A \frac{\partial^\alpha w}{\partial t^\alpha} + c \frac{\partial^\beta w}{\partial t^\beta} = q(x, t), \quad 1 < \alpha < 3, 0 < \beta < 2, 0 < \lambda < 2. \quad (13.2)$$

Precisely, the above stands for a beam with the fractional inertia force $\rho A \frac{\partial^\alpha w}{\partial t^\alpha}$, fractional internal damping force $c_s I \frac{\partial^{2+\lambda} w}{\partial x^2 \partial t^\lambda}$, and fractional external damping one $c \frac{\partial^\beta w}{\partial t^\beta}$.

13.2. Closed Form Forced Response

Using separation of variables, we write the response by $w(x, t) = \varphi(x)p(t)$. Substituting it into (13.2) produces

$$\begin{aligned} & \sum_{j=1}^{\infty} \rho A \varphi_j(x) \frac{d^\alpha p_j(t)}{dt^\alpha} + \sum_{j=1}^{\infty} c \varphi_j(x) \frac{d^\beta p_j(t)}{dt^\beta} + \sum_{j=1}^{\infty} \frac{d^2}{dx^2} \left[c_s I \frac{d^2 \varphi_j(x)}{dx^2} \right] \frac{d^\lambda p_j(t)}{dt^\lambda} \\ & + \sum_{j=1}^{\infty} \frac{d^2}{dx^2} \left[EI \frac{d^2 \varphi_j(x)}{dx^2} \right] p_j(t) = q(x, t). \end{aligned} \quad (13.3)$$

Using the orthogonality of vibration modes $\varphi_m(x)$ on both sides of the above equation produces

$$\begin{aligned} & M_j \frac{d^\alpha p_j(t)}{dt^\alpha} + \frac{M_j c}{\rho A} \frac{d^\beta p_j(t)}{dt^\beta} + \sum_{j=1}^{\infty} \int_0^l \varphi_m(x) \frac{d^2}{dx^2} \left[c_s I \frac{d^2 \varphi_j(x)}{dx^2} \right] dx \frac{d^\lambda p_j(t)}{dt^\lambda} \\ & + \sum_{j=1}^{\infty} \int_0^l \varphi_m(x) \frac{d^2}{dx^2} \left[EI \frac{d^2 \varphi_j(x)}{dx^2} \right] dx p_j(t) = Q_j(t), \end{aligned} \quad (13.4)$$

$$M_j = \rho A \int_0^l \varphi_j^2(x) dx.$$

where

Using

$$\frac{d^2}{dx^2} \left[EI \frac{d^2 \varphi_j(x)}{dx^2} \right] = \rho A \omega_{nj}^2 \varphi_j(x), \quad (13.5)$$

we rewrite (13.4) by

$$\begin{aligned} & M_j \frac{d^\alpha p_j(t)}{dt^\alpha} + \frac{M_j c}{\rho A} \frac{d^\beta p_j(t)}{dt^\beta} + \sum_{j=1}^{\infty} \int_0^l \varphi_m(x) \frac{d^2}{dx^2} \left[c_s I \frac{d^2 \varphi_j(x)}{dx^2} \right] dx \frac{d^\lambda p_j(t)}{dt^\lambda} \\ & + M_j \omega_{nj}^2 p_j(t) = Q_j(t). \end{aligned} \quad (13.6)$$

According to the Rayleigh damping assumption,

$$c = \rho A a, \quad (13.7)$$

where a is a coefficient with the unit of time since ρA is with the unit of mass and

$$c_s = E b, \quad (13.8)$$

where b is a coefficient with the unit of frequency as E is with the unit [N/m].

Substituting (13.7) and (13.8) into (13.6) and taking into account the orthogonality of vibration modes, we have

$$M_j \frac{d^\alpha p_j(t)}{dt^\alpha} + M_j a \frac{d^\beta p_j(t)}{dt^\beta} + M_j \omega_{nj}^2 b \frac{d^\lambda p_j(t)}{dt^\lambda} + M_j \omega_{nj}^2 p_j(t) = Q_j(t). \quad (13.9)$$

Therefore, the j th order coordinate function is of multi-fractional in the form

$$\frac{d^\alpha p_j(t)}{dt^\alpha} + \left(a \frac{d^\beta p_j(t)}{dt^\beta} + \omega_{nj}^2 b \frac{d^\lambda p_j(t)}{dt^\lambda} \right) + \omega_{nj}^2 p_j(t) = f_j(t), \quad (13.10)$$

where

$$f_j(t) = \frac{Q_j(t)}{M_j}. \quad (13.11)$$

According to the theory of Li's vibration systems previously explained, the above is simply the equivalence of the following equation

$$\begin{aligned} & - \left(\cos \frac{\alpha\pi}{2} \omega^{\alpha-2} + a \cos \frac{\beta\pi}{2} \omega^{\beta-2} + \omega_{nj}^2 b \cos \frac{\lambda\pi}{2} \omega^{\lambda-2} \right) \frac{d^2 p_j(t)}{dt^2} \\ & + \left(\sin \frac{\alpha\pi}{2} \omega^{\alpha-1} + a \sin \frac{\beta\pi}{2} \omega^{\beta-1} + \omega_{nj}^2 b \sin \frac{\lambda\pi}{2} \omega^{\lambda-1} \right) \frac{dp_j(t)}{dt} + \omega_{nj}^2 p_j(t) = f_j(t). \end{aligned} \quad (13.12)$$

As a matter of fact, let

$$\begin{aligned} C_j(t) \triangleq & - \left(\cos \frac{\alpha\pi}{2} \omega^{\alpha-2} + a \cos \frac{\beta\pi}{2} \omega^{\beta-2} + \omega_{nj}^2 b \cos \frac{\lambda\pi}{2} \omega^{\lambda-2} \right) \frac{d^2 p_j(t)}{dt^2} \\ & + \left(\sin \frac{\alpha\pi}{2} \omega^{\alpha-1} + a \sin \frac{\beta\pi}{2} \omega^{\beta-1} + \omega_{nj}^2 b \sin \frac{\lambda\pi}{2} \omega^{\lambda-1} \right) \frac{dp_j(t)}{dt} + \omega_{nj}^2 p_j(t). \end{aligned} \quad (13.13)$$

Let

$$D_j(t) \triangleq \frac{d^\alpha p_j(t)}{dt^\alpha} + \left(a \frac{d^\beta p_j(t)}{dt^\beta} + \omega_{nj}^2 b \frac{d^\lambda p_j(t)}{dt^\lambda} \right) + \omega_{nj}^2 p_j(t). \quad (13.14)$$

Then, $F[C_j(t) - D_j(t)] = 0$.

Denote by m_{e-EBj} the j th equivalent mass in the system (13.10) in the form

$$m_{e-EBj} = - \left(\cos \frac{\alpha\pi}{2} \omega^{\alpha-2} + a \cos \frac{\beta\pi}{2} \omega^{\beta-2} + \omega_{nj}^2 b \cos \frac{\lambda\pi}{2} \omega^{\lambda-2} \right). \quad (13.15)$$

Let c_{e-EBj} the j th equivalent damping in the system (13.10). It is given by

$$c_{e-EBj} = \sin \frac{\alpha\pi}{2} \omega^{\alpha-1} + a \sin \frac{\beta\pi}{2} \omega^{\beta-1} + \omega_{nj}^2 b \sin \frac{\lambda\pi}{2} \omega^{\lambda-1}. \quad (13.16)$$

Using m_{e-EBj} and c_{e-EBj} , we have

$$m_{e-EBj} \frac{d^2 p_j(t)}{dt^2} + c_{e-EBj} \frac{dp_j(t)}{dt} + \omega_{nj}^2 p_j(t) = f_j(t). \quad (13.17)$$

Denote by ζ_{e-EBj} the j th equivalent damping ratio in the system (13.10). Define it by

$$\zeta_{e-EBj} = \frac{c_{e-EBj}}{2\sqrt{m_{e-EBj}}}. \text{ Then,}$$

$$\zeta_{e-EBj} = \frac{\sin \frac{\alpha\pi}{2} \omega^{\alpha-1} + a \sin \frac{\beta\pi}{2} \omega^{\beta-1} + \omega_{nj}^2 b \sin \frac{\lambda\pi}{2} \omega^{\lambda-1}}{2 \sqrt{-\left(\cos \frac{\alpha\pi}{2} \omega^{\alpha-2} + a \cos \frac{\beta\pi}{2} \omega^{\beta-2} + \omega_{nj}^2 b \cos \frac{\lambda\pi}{2} \omega^{\lambda-2} \right)}}. \quad (13.18)$$

Let ω_{en-EBj} be the j th equivalent damping free natural frequency regarding the system (13.10). It is given by

$$\omega_{en-EBj}^2 = \frac{\omega_{nj}^2}{m_{e-EBj}}. \quad (13.19)$$

From a view of vibration engineering, we are interested in

$$|\zeta_{e-EBj}| \leq 1. \quad (13.20)$$

Let $\omega_{end-EBj}$ be the j th equivalent damped natural frequency regarding the system (13.10). Then,

$$\omega_{end-EBj} = \omega_{en-EBj} \sqrt{1 - \zeta_{e-EBj}^2}. \quad (13.21)$$

Therefore, we rewrite (13.17) by

$$\frac{d^2 p_j(t)}{dt^2} + 2\zeta_{e-EBj} \omega_{en-EBj} \frac{dp_j(t)}{dt} + \omega_{en-EBj}^2 p_j(t) = \frac{f_j(t)}{m_{e-EBj}}. \quad (13.22)$$

Let $h_j(t)$ be the j th impulse response function of the system (13.22). Then,

$$h_j(t) = \frac{1}{m_{e-EBj} \omega_{end-EBj}} e^{-\zeta_{e-EBj} \omega_{en-EBj} t} \sin \omega_{end-EBj} t, \quad t > 0. \quad (13.23)$$

Because

$$p_j(t) = f_j(t) * h_j(t), \quad (13.24)$$

the zero-state forced response to a multi-fractional damped Euler-Bernoulli beam is expressed by

$$w(x, t) = \sum_{j=1}^{\infty} \frac{\varphi_j(x)}{m_{e-EBj} \omega_{end-EBj}} \int_{-\infty}^{\infty} e^{-\zeta_{e-EBj} \omega_{en-EBj} \tau} \sin \omega_{end-EBj} \tau f_j(t - \tau) d\tau. \quad (13.25)$$

14. Nonlinearity of Fractional Vibrations

Seven classes of fractional vibration systems satisfy the superposition. However, they are nonlinear in general. The nonlinearity of fractional vibrations can be explained as follows. The fractional inertia force $m \frac{d^\alpha x_6(t)}{dt^\alpha}$ is non-Newtonian unless $\alpha = 2$. Besides, the fractional damping force $c \frac{d^\beta x_6(t)}{dt^\beta}$ is non-Newtonian if $\beta \neq 1$. Moreover, the fractional restoration force $k \frac{d^\lambda x_6(t)}{dt^\lambda}$ is non-Newtonian for $\lambda \neq 0$. Those reflect the nonlinearity of fractional vibrations. By linearization using Li's systems, the nonlinearity of a fractional vibrator is reflected in the aspect of frequency dependent mass or frequency dependent damping or frequency dependent stiffness.

15. Conclusions

We have shown the cases of structures with frequency dependent elements (mass or damping or stiffness) in Sections 2-4. Then, we have introduced the general form of a vibration system with frequency dependent elements and its vibrations in Sections 5-8. In Section 9, we have addressed the fractional equivalences of seven classes of Li's systems with frequency dependent elements. After that, we have proposed the analytical theory of seven classes of fractional vibrations in Sections 10-12. The closed form of the forced response to multi-fractional Euler-Bernoulli beam has been presented in Section 13. The nonlinearity of fractional vibrations has been explained in Section 14.

References

1. C. M. Harris, Shock and Vibration Handbook, 5th Ed., McGraw-Hill, 2002.
2. A. I. Korotkin, Added Masses of Ship Structures, Fluid Mechanics and Its Applications, vol. 88, Springer, Netherlands, 2009.
3. O. M. Palley, O. B. Bahizov, and E. I. Voroneysk, Handbook of Ship Structural Mechanics, National Defense Industry Publishing House, Beijing, China, 2002. In Chinese. Translated from Russian by B. H. Xu, X. Xu, and M. Q. Xu.
4. E. Kristiansen and O. Egeland, Frequency-dependent added mass in models for controller design for wave motion damping, IFAC Proceedings Volumes, 36(21) 2003, 67-72.
5. M.-S. Zou, Y.-S. Wu, Y.-M. Liu, and C.-G. Lin, A three-dimensional hydroelasticity theory for ship structures in acoustic field of shallow sea, Journal of Hydrodynamics, vol. 25, 2013, 929-937.
6. J.-S. Wu and M. Hsieh, An experimental method for determining the frequency-dependent added mass and added mass moment of inertia for a floating body in heave and pitch motions, Ocean Engineering, 28(4) 2001, 417-438.
7. Y. Qiao, J. Zhang, and P. Zhai, A magnetic field- and frequency-dependent dynamic shear modulus model for isotropic silicone rubber-based magnetorheological elastomers, Composites Science and Technology, vol. 204, 2021, 108637.
8. M. Jaberzadeh, B. Li, and K. T. Tan, Wave propagation in an elastic metamaterial with anisotropic effective mass density, Wave Motion, vol. 89, 2019, 131-141.
9. C. Xu, M.-Z. Wu, and M. Hamdaoui, Mixed integer multi-objective optimization of composite structures with frequency-dependent interleaved viscoelastic damping layers, Computers & Structures, vol. 172, 2016, 81-92.
10. A. R. Ghaemmaghami and O.-S. Kwon, Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain, temperature and frequency-dependent properties, Engineering Structures, vol. 168, 2018, 903-914.
11. M. Hamdaoui, G. Robin, M. Jrad, and E. M. Daya, Optimal design of frequency dependent three-layered rectangular composite beams for low mass and high damping, Composite Structures, vol. 120, 2015, 174-182.
12. M. Li, Three classes of fractional oscillators, Symmetry-Basel, 10(2) 2018 (91 pages).
13. M. Li, Fractional Vibrations with Applications to Euler-Bernoulli Beams, CRC Press, Boca Raton, 2023.
14. M. Li, Theory of vibrators with variable-order fractional forces, 7 July 2021. <https://arxiv.org/abs/2107.02340>
15. J. R. Banerjee, Frequency dependent mass and stiffness matrices of bar and beam elements and their equivalency with the dynamic stiffness matrix, Computers & Structures, vol. 254, 2021, 106616.
16. R. E. White, J. H. G. Macdonald, and N. A. Alexander, A nonlinear frequency-dependent spring-mass model for estimating loading caused by rhythmic human jumping, Engineering Structures, vol. 240, 2021, 112229.
17. N. A. Dumont and R. de Oliveira, From frequency-dependent mass and stiffness matrices to the dynamic response of elastic systems, International Journal of Solids and Structures, 38(10-13) 2001, 1813-1830.
18. J. Zhang, D. Yao, M. Shen, X. Sheng, J. Li, and S. Guo, Temperature- and frequency-dependent vibroacoustic response of aluminium extrusions damped with viscoelastic materials, Composite Structures, vol. 272, 2021, 114148.
19. P. Sun, H. Yang, and Y. Zhao, Time-domain calculation method of improved hysteretic damped system based on frequency-dependent loss factor, Journal of Sound and Vibration, vol. 488, 2020, 115658.
20. J. P. Den Hartog, Mechanical Vibrations, 4th ed., McGraw-Hill, New York, 1956.
21. L. S. Jacobsen, Steady forced vibrations as influenced by damping, Transactions of the American Society of Mechanical Engineers, 52(1) 1930, 169-181.
22. J. W. Strutt, 3rd Baron Rayleigh, M. A., F. R. S., The Theory of Sound, Vol. 1, Macmillan & Co., Ltd., London, 1877.
23. X. D. Jin and L. J. Xia, Ship Hull Vibration, The Press of Shanghai Jiaotong University, Shanghai, China, 2011. In Chinese.

24. T. Trombetti and S. Silvestri, On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems, *Journal of Sound and Vibration*, 292(1-2) 2006, 21-58.
25. T. Trombetti and S. Silvestri, Novel schemes for inserting seismic dampers in shear-type systems based upon the mass proportional component of the Rayleigh damping matrix, *Journal of Sound and Vibration*, 302(3) 2007, 486-526.
26. D. R. A. Mohammad, N. U. Khan, and V. Ramamurti, On the role of Rayleigh damping, *Journal of Sound and Vibration*, 185(2) 1995, 207-218.
27. H.-G. Kim and R. Wiebe, Experimental and numerical investigation of nonlinear dynamics and snap-through boundaries of post-buckled laminated composite plates, *Journal of Sound and Vibration*, vol. 439, 2019, 362-387.
28. C.-H. Kuo, J.-Y. Huang, C.-M. Lin, C.-T. Chen, and K.-L. Wen, Near-surface frequency-dependent nonlinear damping ratio observation of ground motions using SMART1, *Soil Dynamics and Earthquake Engineering*, vol. 147, 2021, 106798.
29. A. Stollwitzer, J. Fink, and T. Malik, Experimental analysis of damping mechanisms in ballasted track on single-track railway bridges, *Engineering Structures*, vol. 220, 2020, 110982.
30. J. Jith and S. Sarkar, A model order reduction technique for systems with nonlinear frequency dependent damping, *Applied Mathematical Modelling*, vol. 77, Part 2, 2020, 1662-1678.
31. Y. Zhou, A. Liu, and Y. Jia, Frequency-dependent orthotropic damping properties of Nomex honeycomb composites, *Thin-Walled Structures*, vol. 160, 2021, 107372.
32. O. Zarraga, I. Sarría, J. García-Barruetabeña, and F. Cortés, Dynamic analysis of plates with thick unconstrained layer damping, *Engineering Structures*, vol. 201, 2019, 109809.
33. X. Xie, H. Zheng, S. Jonckheere, and W. Desmet, Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models, *Computer Methods in Applied Mechanics and Engineering*, vol. 355, 2019, 591-613.
34. X. Xie, H. Zheng, S. Jonckheere, A. de Walle, B. Pluymers, and W. Desmet, Adaptive model reduction technique for large-scale dynamical systems with frequency-dependent damping, *Computer Methods in Applied Mechanics and Engineering*, vol. 332, 2018, 363-381.
35. J. Hu, J. Ren, Z. Zhe, M. Xue, Y. Tong, J. Zou, Q. Zheng, and H. Tang, A pressure, amplitude and frequency dependent hybrid damping mechanical model of flexible joint, *Journal of Sound and Vibration*, vol. 471, 2020, 115173.
36. L. Rouleau, J.-F. Deü, and A. Legay, A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping, *Mechanical Systems and Signal Processing*, vol. 90, 2017, 110-125.
37. M. Hamdaoui, K. S. Ledi, G. Robin, and E. M. Daya, Identification of frequency-dependent viscoelastic damped structures using an adjoint method, *Journal of Sound and Vibration*, vol. 453, 2019, 237-252.
38. Y. Deng, S. Y. Zhang, M. Zhang, and P. Gou, Frequency-dependent aerodynamic damping and its effects on dynamic responses of floating offshore wind turbines, *Ocean Engineering*, vol. 278, 2023, 114444.
39. X.-J. Dai, J.-H. Lin, H.-R. Chen, and F. W. Williams, Random vibration of composite structures with an attached frequency-dependent damping layer, *Composites Part B: Engineering*, 39(2) 2008, 405-413.
40. A. Adessina, M. Hamdaoui, C. Xu, and E. M. Daya, Damping properties of bi-dimensional sandwich structures with multi-layered frequency-dependent visco-elastic cores, *Composite Structures*, vol. 154, 2016, 334-343.
41. D.-W. Chang, J. M Roessel, and C.-H. Wen, A time-domain viscous damping model based on frequency-dependent damping ratios, *Soil Dynamics and Earthquake Engineering*, 19(8) 2000, 551-558.
42. T. R. Lin, N. H. Farag, and J. Pan, Evaluation of frequency dependent rubber mount stiffness and damping by impact test, *Applied Acoustics*, 66(7) 2005, 829-844.
43. Q. Dai, Z. Qin, and F. Chu, Parametric study of damping characteristics of rotating laminated composite cylindrical shells using Haar wavelets, *Thin-Walled Structures*, vol. 161, 2021, 107500.
44. G. Catania and S. Sorrentino, Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: Part 1 – Modeling fluid lines, *Mechanical Systems and Signal Processing*, vol. 50-51, 2015, 260-280.
45. G. Catania and S. Sorrentino, Dynamical analysis of fluid lines coupled to mechanical systems taking into account fluid frequency-dependent damping and non-conventional constitutive models: Part 2 – Coupling with mechanical systems, *Mechanical Systems and Signal Processing*, vol. 50-51, 2015, 281-295.
46. W. Zhang and K. Turner, Frequency dependent fluid damping of micro/nano flexural resonators: Experiment, model and analysis, *Sensors and Actuators A: Physical*, 134(2) 2007, 594-599.
47. N. Yoshida, S. Kobayashi, and K. Miura, Equivalent linear method considering frequency dependent characteristics of stiffness and damping, *Soil Dynamics and Earthquake Engineering*, 22(3) 2002, 205-222.
48. D. Assimaki and E. Kausel, An equivalent linear algorithm with frequency- and pressure-dependent moduli and damping for the seismic analysis of deep sites, *Soil Dynamics and Earthquake Engineering*, 22(9-12) 2002, 959-965.

49. S. Pan, Q. Dai, Z. Qin, and F. Chu, Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams, *Thin-Walled Structures*, vol. 166, 2021, 108127.
50. M. K. Ghosh and N. S. Viswanath, Frequency dependent stiffness and damping coefficients of orifice compensated multi-recess hydrostatic journal bearings, *International Journal of Machine Tools and Manufacture*, 27(3) 1987, 275-287.
51. J. G. McDaniel, P. Dupont, and L. Salvino, A wave approach to estimating frequency-dependent damping under transient loading, *Journal of Sound and Vibration*, 231(2) 2000, 433-449.
52. H. Zhang, X. Ding, and H. Li, Topology optimization of composite material with high broadband damping, *Computers & Structures*, vol. 239, 2020, 106331.
53. X. Wang, X. Li, R.-P. Yu, J.-W. Ren, Q.-C. Zhang, Z.-Y. Zhao, C.-Y. Ni, B. Han, and T. J. Lu, Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets, *Composite Structures*, vol. 251, 2020, 112591.
54. R. Lundén and T. Dahlberg, Frequency-dependent damping in structural vibration analysis by use of complex series expansion of transfer functions and numerical Fourier transformation, *Journal of Sound and Vibration*, 80(2) 1982, 161-178.
55. A. Figueroa, M. Telenko, L. Chen, and S. F. Wu, Determining structural damping and vibroacoustic characteristics of a non-symmetrical vibrating plate in free boundary conditions using the modified Helmholtz equation least squares method, *Journal of Sound and Vibration*, vol. 495, 2021, 115903.
56. M. Lázaro, Critical damping in nonviscously damped linear systems, *Applied Mathematical Modelling*, vol. 65, 2019, 661-675.
57. S. H. Crandall, The role of damping in vibration theory, *Journal of Sound and Vibration*, 11(1) 1970, 3-18.
58. M. Y. Wu, H. Yin, X. B. Li, J. C. Lv, G. Q. Liang, and Y. T. Wei, A new dynamic stiffness model with hysteresis of air springs based on thermodynamics, *Journal of Sound and Vibration*, vol. 521, 2022, 116693.
59. P. Blom and L. Kari, The frequency, amplitude and magnetic field dependent torsional stiffness of a magneto-sensitive rubber bushing, *International Journal of Mechanical Sciences*, vol. 60, 2012, 54-58.
60. X. Gao, Q. Feng, A. Wang, X. Sheng, and G. Cheng, Testing research on frequency-dependent characteristics of dynamic stiffness and damping for high-speed railway fastener, *Engineering Failure Analysis*, vol. 129, 2021, 105689.
61. X. Song, H. Wu, H. Jin, and C. S. Cai, Noise contribution analysis of a U-shaped girder bridge with consideration of frequency dependent stiffness of rail fasteners, *Applied Acoustics*, vol. 205, 2023, 109280.
62. X. Liu, X. Zhao, S. Adhikari, and X. Liu, Stochastic dynamic stiffness for damped taut membranes, *Computers & Structures*, vol. 248, 2021, 106483.
63. X. Zhang, D. Thompson, H. Jeong, M. Toward, D. Herron, and N. Vincent, Measurements of the high frequency dynamic stiffness of railway ballast and subgrade, *Journal of Sound and Vibration*, vol. 468, 2020, 115081.
64. J. R. Banerjee, A. Ananthapuvirajah, and S. O. Papkov, Dynamic stiffness matrix of a conical bar using the Rayleigh-Love theory with applications, *European Journal of Mechanics - A/Solids*, vol. 86, 2021, 104144.
65. J. R. Banerjee, A. Ananthapuvirajah, X. Liu, and C. Sun, Coupled axial-bending dynamic stiffness matrix and its applications for a Timoshenko beam with mass and elastic axes eccentricity, *Thin-Walled Structures*, vol. 159, 2021, 107197.
66. T. Lu, A. V. Metrikine, and M. J. M. Steenbergen, The equivalent dynamic stiffness of a visco-elastic half-space in interaction with a periodically supported beam under a moving load, *European Journal of Mechanics - A/Solids*, vol. 84, 2020, 104065.
67. D. Sung, S. Chang, and S. Kim, Effect of additional anti-vibration sleeper track considering sleeper spacing and track support stiffness on reducing low-frequency vibrations, *Construction and Building Materials*, vol. 263, 2020, 120140.
68. F. Mezghani, A. F. del Rincón, M. A. B. Souf, P. G. Fernandez, F. Chaari, F. V. Rueda, and M. Haddar, Alternating Frequency Time Domains identification technique: Parameters determination for nonlinear system from measured transmissibility data, *European Journal of Mechanics - A/Solids*, vol. 80, 2020, 103886.
69. X. Liu, D. Thompson, G. Squicciarini, M. Rissmann, P. Bouvet, G. Xie, J. Martínez-Casas, J. Carballeira, I. L. Arteaga, M. A. Garralaga, and J. A. Chover, Measurements and modelling of dynamic stiffness of a railway vehicle primary suspension element and its use in a structure-borne noise transmission model, *Applied Acoustics*, vol. 182, 2021, 108232.
70. X. Kong, X. Zeng, and K. Han, Dynamical measurements on viscoelastic behaviors of spiders in electro-dynamic loudspeakers, *Applied Acoustics*, vol. 104, 2016, 67-75.
71. K. Ege, N. B. Roozen, Q. Leclère, and R. G. Rinaldi, Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment, *Journal of Sound and Vibration*, vol. 426, 2018, 129-149.
72. T. Mukhopadhyay, S. Adhikari, and A. Alu, Probing the frequency-dependent elastic moduli of lattice materials, *Acta Materialia*, vol. 165, 2019, 654-665.

73. J. A. Sainz-AjaIsidro, A. Carrascal, and S. Diego, Influence of the operational conditions on static and dynamic stiffness of rail pads, *Mechanics of Materials*, vol. 148, 2020, 103505.
74. B. Bozyigit, Seismic response of pile supported frames using the combination of dynamic stiffness approach and Galerkin's method, *Engineering Structures*, vol. 244, 2021, 112822.
75. R. Varghese, A. Boominathan, and S. Banerjee, Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads, *Soil Dynamics and Earthquake Engineering*, vol. 133, 2020, 106117.
76. G. Failla, R. Santoro, A. Burlon, and A. F. Russillo, An exact approach to the dynamics of locally-resonant beams, *Mechanics Research Communications*, vol. 103, 2020, 103460.
77. R.-L. Fan, Z.-N. Fei, B.-Y. Zhou, H.-B. Gong, and P.-J. Song, Two-step dynamics of a semiactive hydraulic engine mount with four-chamber and three-fluid-channel, *Journal of Sound and Vibration*, vol. 480, 2020, 115403.
78. N. B. Roozen, L. Labelle, Q. Leclère, K. Ege, and S. Alvarado, Non-contact experimental assessment of apparent dynamic stiffness of constrained-layer damping sandwich plates in a broad frequency range using a Nd:YAG pump laser and a laser Doppler vibrometer, *Journal of Sound and Vibration*, vol. 395, 2017, 90-101.
79. Y. Mochida and S. Ilanko, On the Rayleigh-Ritz method, Gorman's superposition method and the exact dynamic stiffness method for vibration and stability analysis of continuous systems, *Thin-Walled Structures*, vol. 161, 2021, 107470.
80. K. Nakagawa and M. Ringo, *Engineering Vibrations*, Shanghai Science and Technology Publishing House, Shanghai, China, 1981. In Chinese. Translated from Japanese by S. R. Xia.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.