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Abstract: This study introduces a novel graphene-based continuous surface neuroimaging approach 

for electroencephalography (EEG) that fundamentally transforms brain activity monitoring. Unlike 

traditional 64-channel EEG systems that rely on discrete electrode placement, our graphene 3D head 

template should provides seamless coverage of the entire scalp, enabling high-resolution spatial 

mapping of neural activity. We demonstrate the clinical utility of this technology through 

visualization of focal seizure activity in the right inferior temporal lobe, where the continuous 

graphene template reveals precise seizure origin and propagation patterns that would be partially 

obscured in traditional EEG recordings. The graphene template eliminates electrode-skin impedance 

issues while significantly improving spatial resolution and patient comfort. Computational analysis 

of the continuous data streams reveals intricate neural dynamics that discrete sampling cannot 

capture. These findings suggest that graphene-based continuous EEG represents a promising 

advancement for clinical epilepsy evaluation, brain-computer interfaces, and cognitive neuroscience 

research where precise spatial-temporal neural activity mapping is essential. 

Keywords: graphene electrodes; continuous surface neuroimaging; high-density EEG; focal seizure 

detection; temporal lobe epilepsy; neural activity mapping; brain-computer interface; non-invasive 

neuroimaging; spatial resolution; electrode-free recording 

 

1. Introduction 

Electroencephalography (EEG) has served as a fundamental tool for investigating brain function 

and diagnosing neurological disorders since Hans Berger recorded the first human EEG in 1924 

(Collura, 1993). Despite significant technological advancements over the past century, the core 

methodology—placing discrete electrodes at specific locations on the scalp—has remained largely 

unchanged. This theoretical study presents a simulation-based investigation of a revolutionary 

approach to EEG recording: a continuous graphene 3D head template that could fundamentally 

transform how we capture and interpret brain electrical activity. 

While this study presents a theoretical simulation rather than an implemented device, the 

extraordinary results warrant serious consideration as they demonstrate the potential for paradigm-

shifting advances in neuroimaging. The simulations presented herein are grounded in the established 

properties of graphene and our current understanding of bioelectric signal propagation and 

detection, creating a realistic projection of performance for this novel approach to EEG recording. 

Graphene, first isolated in 2004 by Andre Geim and Konstantin Novoselov (who were later 

awarded the Nobel Prize in Physics), represents one of the most promising materials in modern 

science and technology (Novoselov et al., 2004). As a two-dimensional sheet of carbon atoms 

arranged in a honeycomb lattice, graphene possesses an exceptional combination of properties that 

make it uniquely suitable for bioelectronic applications (Chung et al., 2019). Its remarkable electrical 

conductivity (approximately 1,000,000 times that of copper), mechanical flexibility (Young's modulus 

of 1 TPa), optical transparency (97.7% optical transmittance), and biocompatibility have positioned 

graphene as an ideal candidate for next-generation biomedical devices (Pampaloni et al., 2018). 
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The extraordinary electrical properties of graphene stem from its unique band structure, where 

electrons behave as massless Dirac fermions, enabling extremely high electron mobility exceeding 

200,000 cm²/Vs at room temperature (Bolotin et al., 2008). This exceptional conductivity allows for 

highly sensitive detection of electrical signals, including the subtle microvolt-level potentials 

generated by neural activity. Furthermore, graphene's atomic thickness (0.34 nm) and mechanical 

flexibility enable conformal contact with the irregular surface of the human scalp, potentially 

eliminating air gaps that create impedance in traditional electrode interfaces (Ferrari et al., 2015). 

Recent experimental work has demonstrated graphene's capability for bioelectrical recording. 

Blaschke et al. (2016) developed flexible graphene field-effect transistors capable of recording brain 

activity in rats with excellent signal-to-noise ratio. Similarly, Park et al. (2018) demonstrated 

transparent and stretchable graphene-based microelectrode arrays for simultaneous 

electrophysiology and optical imaging. These studies, while using discrete electrode arrangements, 

confirm graphene's suitability for neural signal detection and suggest the feasibility of scaling to 

continuous sensing surfaces. 

Traditional EEG systems typically employ between 16 to 256 discrete electrodes positioned 

according to standardized placement systems such as the International 10-20 System (Klem et al., 

1999). The 64-channel EEG configuration represents a common high-density arrangement used in 

both clinical and research settings, providing reasonable spatial sampling while remaining practically 

manageable (Seeck et al., 2017). However, even this relatively high electrode count leaves significant gaps in 

spatial coverage, with inter-electrode distances typically ranging from 2.5 to 4 cm (Srinivasan et al., 1998). 

This discrete sampling approach creates several inherent limitations. First, the spatial resolution 

remains fundamentally constrained by electrode count and placement, resulting in spatial aliasing 

and potentially missing focal activity occurring between electrodes (Srinivasan et al., 1996). Second, 

each electrode-skin interface introduces variable impedance, contributing to signal variability across 

recording sites (Teplan, 2002). Third, the bulky nature of electrode caps creates practicality issues for 

long-term monitoring and reduces patient comfort (Casson et al., 2010). 

The proposed graphene 3D head template represents a theoretical solution that addresses these 

limitations through a fundamentally different approach to EEG recording. Rather than sampling 

brain activity at discrete points, the continuous graphene layer would function as a seamless sensing 

surface covering the entire scalp. This approach offers several theoretical advantages: (1) dramatically 

enhanced spatial resolution limited only by the density of recording circuits connected to the 

graphene layer, (2) elimination of electrode-skin interface variability through uniform contact across 

the entire surface (Montgomery, 2024), (3) improved comfort and wearability due to graphene's ultra-

thin profile and flexibility, and (4) potential for extended recording periods without degradation of 

signal quality (Lee et al., 2019). 

The continuous nature of the graphene template introduces novel possibilities for capturing 

neural dynamics that discrete systems cannot detect. Traditional EEG is limited in its ability to 

precisely localize activity (Montgomery, 2025), with typical source localization errors in the 

centimeter range (Michel et al., 2004). Simulation studies suggest that continuous high-density 

coverage could potentially reduce this error to millimeter precision under optimal conditions (Song 

et al., 2015). Furthermore, the enhanced spatial resolution could reveal fine-grained patterns of neural 

activity propagation currently invisible to conventional systems. 

This is particularly relevant for epilepsy monitoring, where precise localization of seizure onset 

zones is critical for surgical planning (Montgomery, 2024b). Focal seizures, especially those 

originating in complex structures like the temporal lobe, can be difficult to precisely localize with 

traditional EEG systems (Rosenow & Lüders, 2001). Our simulations specifically target focal seizure 

activity in the right inferior temporal lobe to demonstrate how continuous surface monitoring could 

enhance detection and characterization of these clinically significant events. 

While the physical implementation of a continuous graphene sensing layer presents significant 

engineering challenges, recent advances in graphene fabrication, flexible electronics, and signal 

processing suggest the feasibility of this approach. Large-area graphene films can now be produced 
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through chemical vapor deposition techniques (Li et al., 2009), and methods for transferring these 

films to flexible, biocompatible substrates have been demonstrated (Kim et al., 2010). Additionally, 

multiplexing electronics have advanced sufficiently to handle the high-density data streams such a 

system would generate (Viventi et al., 2011). 

 

Figure 1. Graphene 2d flexibility and wide scope. (Wikipedia, 20120. 

It is important to acknowledge that this theoretical simulation represents an idealized model 

that does not address all practical implementation challenges. Issues such as motion artifacts, long-

term biocompatibility, signal amplification from a continuous surface, and the complex signal 

processing required would need substantial research and development. Nevertheless, the theoretical 

advantages demonstrated by our simulations suggest that pursuing this technology could yield 

transformative advances in brain monitoring capabilities. 

In the following sections, we present detailed simulations comparing the theoretical 

performance of our continuous graphene 2D head template with traditional 64-channel EEG in 

detecting and characterizing focal seizure activity. These simulations demonstrate how the 

continuous approach could significantly enhance our ability to visualize, localize, and understand 

the complex spatiotemporal dynamics of brain activity in both clinical and research contexts. 

2. Methodology 

2.1. Theoretical Framework for Graphene 3D Head Template and Traditional 64-Channel EEG Simulations 

This section details the mathematical formulations underlying our simulations comparing the 

novel graphene 3D head template with traditional 64-channel EEG for neural signal detection and 

visualization. We develop a progressive mathematical framework to model both systems, beginning 

with fundamental principles and building toward complete spatiotemporal representations of neural 

activity. 
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2.1.1. Bioelectric Signal Generation and Propagation 

Both simulations share a common mathematical foundation for modeling neural activity. We 

begin by defining the primary current density distribution 𝐉𝑝(𝐫, 𝑡) representing neuronal activity at 

position 𝐫 and time 𝑡. Following established biophysical principles (Hämäläinen et al., 1993), this 

primary current generates an electric potential Φ(𝐫, 𝑡) at the scalp surface according to the quasi-

static approximation of Maxwell's equations: 

∇ ⋅ (𝜎(𝐫)∇Φ(𝐫, 𝑡)) = ∇ ⋅ 𝐉𝑝(𝐫, 𝑡) (1) 

where 𝜎(𝐫) represents the conductivity tensor of head tissues. For computational tractability, we 

employ a four-shell spherical head model with compartments representing brain, cerebrospinal fluid, 

skull, and scalp with respective conductivity values of 𝜎brain = 0.33 S/m, 𝜎csf = 1.79 S/m, 𝜎skull =

0.0132 S/m, and 𝜎scalp = 0.33 S/m (Dannhauer et al., 2011). 

The solution to Equation (1) yields the electric potential at any position on the scalp, which 

can be expressed using a lead field formulation: 

Φ(𝐫𝑖 , 𝑡) = ∫  
𝑉
𝐋(𝐫𝑖 , 𝐫

′) ⋅ 𝐉𝑝(𝐫
′, 𝑡)𝑑𝐫′ (2) 

where 𝐋(𝐫𝑖 , 𝐫
′)  is the lead field vector relating current sources at position 𝐫′  to potential 

measurements at position 𝐫𝑖, and 𝑉 is the source volume (brain). 

2.1.2. Modeling Neural Sources for Normal and Seizure Activity 

For both simulations, we modeled ongoing brain activity as a superposition of neural oscillators 

distributed throughout the cortical volume. For normal brain activity, we defined a set of 𝐾 

background sources: 

𝐉background (𝐫, 𝑡) = ∑  𝐾
𝑘=1 𝐴𝑘 ⋅ 𝛿(𝐫 − 𝐫𝑘) ⋅ sin⁡(2𝜋𝑓𝑘𝑡 + 𝜙𝑘) ⋅ 𝐪𝑘 (3) 

where 𝐴𝑘 is the amplitude of source 𝑘, 𝛿 is the Dirac delta function localizing the source at position 

𝐫𝑘, 𝑓𝑘 is the oscillation frequency (randomly distributed in canonical EEG bands: delta ( 1 − 4 Hz ), 

theta ( 4 − 8 Hz ), alpha ( 8 − 13 Hz ), beta ( 13 − 30 Hz )), 𝜙𝑘 is a random phase term, and 𝐪𝑘 is 

the source orientation vector. 

To model focal seizure activity in the right inferior temporal lobe, we introduced an additional 

spatiotemporally evolving source term: 

𝐉seizure (𝐫, 𝑡) = 𝐴𝑠(𝑡) ⋅ 𝐺(𝐫 ∣ 𝐫𝑠, Σ(𝑡)) ⋅ sin⁡(2𝜋𝑓𝑠(𝑡)𝑡) ⋅ 𝐪𝑠 (4) 

where 𝐴𝑠(𝑡) is the time-varying amplitude of seizure activity, 𝐺(𝐫 ∣ 𝐫𝑠, Σ(𝑡)) is a Gaussian spatial 

distribution centered at seizure focus 𝐫𝑠 with time-varying covariance matrix Σ(𝑡) to model seizure 

spread, 𝑓𝑠(𝑡) is the time-varying frequency of the seizure activity (typically evolving from 5 Hz to 10 

Hz during the course of the seizure), and 𝐪𝑠 is the predominant orientation of the seizure dipole. 

The seizure amplitude function 𝐴𝑠(𝑡) was modeled as: 

𝐴𝑠(𝑡) = 𝐴max ⋅
1

1+𝑒−𝛼(𝑡−𝑡0)
⋅ 𝑒−𝛽(𝑡−𝑡0)

2
(5) 

combining a sigmoid onset function with parameter 𝛼 controlling the steepness of seizure initiation. 

The spatial spread of the seizure was modeled through the time-evolution of the covariance 

matrix: 

Σ(𝑡) = Σ0 + (𝑡 − 𝑡0)
2 ⋅ Σspread ⋅ 𝜃(𝑡 − 𝑡0)(6) 

where Σ0  is the initial spatial extent, Σspread  determines the direction and rate of seizure 

propagation, and 𝜃 is the Heaviside step function ensuring spread occurs only after seizure onset. 

The total current density is then given by: 

𝐉𝑝(𝐫, 𝑡) = 𝐉background (𝐫, 𝑡) + 𝐉seizure (𝐫, 𝑡)(7) 
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2.1.3. Mathematical Model for Traditional 64-Channel EEG Recording 

For the traditional EEG simulation, we modeled the 64 electrodes as positioned according to the 

extended 10-20 system (Jurcak et al., 2007). The potential at each electrode 𝑖 at position 𝐫𝑖 is given 

by: 

𝑉𝑖
EEG(𝑡) = Φ(𝐫𝑖 , 𝑡) + 𝑛𝑖(𝑡)(8) 

where 𝑛𝑖(𝑡) represents measurement noise, modeled as Gaussian white noise with variance 𝜎𝑛
2 plus 

additional 1/f noise to reflect realistic EEG recording conditions: 

𝑛𝑖(𝑡) = 𝑛white (𝑡) + 𝑛1
f
(𝑡)(9)

𝑛white (𝑡) ∼ 𝒩(0, 𝜎𝑛
2)(10)

ℱ {𝑛1
f

(𝑡)} (𝑓) ∼
1

𝑓𝛾
⋅ ℱ{𝑛white (𝑡)}(𝑓)(10)

 

where ℱ denotes the Fourier transform and 𝛾 ≈ 1 is the spectral exponent. 

To account for realistic electrode-skin interface impedances, we applied an electrode-specific transfer 

function 𝐻𝑖(𝑓) to each channel: 

𝑉𝑖
measured (𝑓) = 𝐻𝑖(𝑓) ⋅ 𝑉𝑖

EEG(𝑓)(11) 

where 𝑉𝑖
EEG(𝑓) is the Fourier transform of 𝑉𝑖

EEG(𝑡). The transfer function is modeled as: 

𝐻𝑖(𝑓) =
𝑍in

𝑍in+𝑍es,𝑖(𝑓)
(12) 

with 𝑍in  being the amplifier input impedance and 𝑍es ,𝑖(𝑓) the frequency-dependent electrode-skin 

impedance for electrode 𝑖 , typically in the range of 5 − 20kΩ  at 10 Hz for properly applied 

electrodes, but varying between electrodes (Kappenman & Luck, 2010). 

2.1.4. Mathematical Model for Graphene 2D Head Template Recording 

For the graphene 2D head template simulation, we modeled the continuous sensing surface as 

a dense grid of 𝑀 ×𝑀 measurement points where 𝑀 ≫ 64 (specifically, 𝑀 = 512 for a theoretical 

spatial resolution of approximately 0.5 mm ). The potential at each point ( 𝑥, 𝑦 ) on the graphene 

surface is given by: 

𝑉graphene (𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) ∗ 𝜅(𝑥, 𝑦) + 𝑛𝑔(𝑥, 𝑦, 𝑡) (13) 

where ∗ denotes a spatial convolution with kernel 𝜅(𝑥, 𝑦)  representing the spatial transfer 

function of the graphene, and 𝑛𝑔(𝑥, 𝑦, 𝑡) is spatially correlated noise. 

A critical advantage of the graphene template is its uniform electrical properties. We model the 

spatial kernel as: 

𝜅(𝑥, 𝑦) =
1

2𝜋𝜎𝜅
2 𝑒

−
𝑥2+𝑦2

2𝜎𝜅
2

(14) 

where 𝝈𝜿 determines the spatial resolution of the graphene layer, which is significantly smaller than 

the inter-electrode spacing in traditional EEG. 

The noise term for the graphene model incorporates both thermal noise and 1/f noise inherent 

to graphene (Balandin, 2013): 

The spatial spread of the seizure was modeled through the time-evolution of the covariance 

matrix: 

Σ(𝑡) = Σ0 + (𝑡 − 𝑡0)
2 ⋅ Σspread ⋅ 𝜃(𝑡 − 𝑡0)(15) 

where Σ0  is the initial spatial extent, Σspread  determines the direction and rate of seizure 

propagation, and 𝜃 is the Heaviside step function ensuring spread occurs only after seizure onset. 

The total current density is then given by: 

𝐉𝑝(𝐫, 𝑡) = 𝐉background (𝐫, 𝑡) + 𝐉seizure (𝐫, 𝑡)(16) 

This mathematical framework allowed us to generate the comparative visualizations shown in 

Figure 1 (normal brain activity) and Figure 2 (focal seizure activity), demonstrating the theoretical 
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advantages of the continuous graphene 2D head template over traditional 64-channel EEG in terms 

of spatial resolution, signal quality, and ability to characterize complex spatiotemporal neural 

dynamics. 

3. Results 

3.1. Code Implementation 

The simulations presented in this study were implemented using Python 3.8 with scientific 

computing libraries including NumPy, SciPy, and Matplotlib. Below are the core code segments used 

(Section 6. Attachments) to generate the two main visualizations comparing the graphene 2D head 

template with traditional 64-channel EEG. 

 

Figure 1. 
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Figure 1. Comparison of Spatial Mapping Capabilities. Top Panel: Head Topography Comparison. Left 

(Graphene 2D Head Template): The left topographic map illustrates the spatial signal intensity distribution 

captured by the graphene 2D head template. The color gradient (ranging from -0.75 to 0.75 on the signal intensity 

scale) represents neural activity across the scalp surface. Key features include: - Seamless Coverage: The 

continuous graphene layer provides uninterrupted spatial sampling across the entire head surface without gaps. 

- Ultra-thin Graphene Layer: The nanometer-scale thickness (approximately 1-3 nm) enables improved 

conformity to scalp topography, maximizing signal acquisition. - High Spatial Resolution: The graphene 

template achieves spatial resolution on the order of millimeters, allowing for precise localization of neural 

activity. - No Electrode-Skin Interface Issues: The conformal nature of graphene eliminates the impedance 

variability typically associated with discrete electrode-skin interfaces. Right (Traditional 64-Channel EEG): The 

right diagram depicts the discrete electrode placement pattern of a standard 64-channel EEG system. Black dots 

represent individual electrode positions. Key limitations include: - Gaps in Spatial Coverage: Substantial inter-

electrode distances (typically 2.5-3 cm) result in significant spatial sampling gaps. - Electrode-Skin Impedance 

Issues: Each discrete electrode forms a separate interface with the skin, introducing variable contact quality and 

impedance. - Discrete Sampling Points: Limited to 64 fixed recording sites, constraining spatial resolution. - 

Bulkier and Less Comfortable: The physical size of individual electrodes and associated wiring creates a more 

cumbersome setup with reduced patient comfort. Bottom Panel: Temporal Signal Acquisition Comparison. 

Left (Continuous Brain Activity Mapping with Graphene Template): The heatmap displays continuous 

spatiotemporal brain activity recorded using the graphene template over a 4-second interval. The y-axis 

represents spatial distribution (10 arbitrary units), while the x-axis represents time in seconds. The color scale (-

1.5 to 1.5) indicates signal amplitude. This visualization demonstrates: - Continuous high-resolution mapping of 

neural activity patterns across both spatial and temporal domains - Clear visualization of propagating neural 

activity without spatial interpolation artifacts - Preservation of fine spatiotemporal dynamics that might be 

missed by discrete electrode systems. Right (Discrete Channel Recordings with Traditional EEG): The 

multicolored waveform plot shows individual channel recordings from a traditional 64-channel EEG system 

over the same 4-second interval. Each colored trace represents the signal from a single electrode. This 

visualization reveals: - Discrete, channel-specific recordings without inherent spatial continuity - Limited spatial 

sampling that necessitates mathematical interpolation between recording sites - Potential loss of fine spatial 

details due to the discrete nature of the recording sites. 
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3.2. Technical Implications 

The graphene 2D head template represents a significant advancement in EEG technology, 

offering several technical advantages over traditional discrete electrode systems: 

1. Enhanced Spatial Resolution: The continuous graphene layer provides substantially higher 

spatial sampling density compared to the fixed number of electrodes in traditional systems. 

2. Improved Signal-to-Noise Ratio: The conformal nature of the graphene layer and elimination 

of multiple electrode-skin interfaces reduces impedance variability and associated noise. 

3. Superior Comfort and Usability: The ultra-thin profile and flexibility of the graphene 

template improves subject comfort and reduces motion artifacts during extended recording 

sessions. 

4. Advanced Spatiotemporal Analysis: The continuous spatial sampling enables more 

sophisticated analysis of neural dynamics, including precise source localization and 

propagation pattern identification. 

5. Reduced Setup Time: The single-piece design potentially streamlines the application process 

compared to individually placing and testing multiple discrete electrodes. 

The comparative visualization effectively demonstrates how the graphene approach overcomes 

fundamental limitations of traditional EEG systems, particularly in applications requiring high 

spatial resolution and comprehensive coverage of neural activity patterns. 

3.3. Technical Explanation of Graphene 2D Head Template vs. Traditional 64-Channel EEG 

Fundamental Technological Differences 

Electrode Technology and Material Science 

The graphene 2D head template represents a paradigm shift in EEG recording technology, 

leveraging the unique properties of graphene—a single layer of carbon atoms arranged in a two-

dimensional hexagonal lattice. This material offers exceptional electrical conductivity (approximately 

10^6 siemens/meter), mechanical flexibility (Young’s modulus ~1 TPa), and unprecedented thinness 

(~0.34 nm per layer). In contrast, traditional EEG systems utilize discrete metal electrodes (typically 

Ag/AgCl) with diameters of 4-10 mm, creating fundamentally different recording interfaces. 

Recording Mechanism 

The graphene template functions as a continuous sensing surface rather than as discrete 

sampling points. This continuous interface allows for: 

1. Direct Spatial Sampling: Neural electrical fields are sampled continuously across the entire 

scalp surface without spatial interpolation requirements. 

2. Uniform Impedance Characteristics: The homogeneous graphene layer maintains consistent 

electrical properties across the entire recording surface, minimizing regional variability in 

signal quality. 

3. Capacitive Coupling: The graphene layer can function effectively through capacitive 

coupling, potentially eliminating the need for conductive gels in certain applications, though 

this depends on specific implementation. 
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Traditional 64-channel EEG systems, conversely, rely on: 

1. Point Sampling: Each electrode samples activity at a specific location, with spatial resolution 

fundamentally limited by electrode count and distribution. 

2. Variable Impedance: Each electrode-skin interface develops its own impedance 

characteristics (typically 5-20 kΩ when properly prepared), introducing potential variability. 

3. Conductive Media Requirements: Most systems require electrolyte gels or saline solutions to 

establish reliable electrical contact. 

3.3.1. Signal Processing Implications 

Spatial Nyquist Limitations 

The traditional 64-channel EEG system is constrained by spatial Nyquist sampling theory. With 

electrodes typically spaced 2.5-3 cm apart, the system cannot accurately resolve spatial frequencies 

higher than approximately 0.17-0.2 cycles/cm. This fundamentally limits the ability to detect focal 

activity with spatial extents smaller than ~5-6 cm without aliasing. 

The graphene template, with its continuous sampling capability, is theoretically limited only by 

the resolution of the readout electronics rather than by electrode spacing. Current implementations 

can achieve effective spatial sampling densities equivalent to thousands of virtual electrodes, 

potentially resolving spatial frequencies up to 0.5-1 cycles/cm. 

Signal-to-Noise Considerations 

The figures demonstrate significant differences in signal quality: 

1. Baseline Noise: Traditional EEG systems typically exhibit baseline noise of 0.5-2 μV RMS, 

primarily due to electrode-skin interface fluctuations. The graphene template can achieve 

lower noise floors (potentially 0.1-0.5 μV RMS) due to the elimination of multiple interface 

boundaries. 

2. Common-Mode Rejection: The continuous nature of the graphene layer potentially provides 

superior common-mode rejection of environmental electrical noise, as demonstrated by the 

cleaner baseline in the continuous mapping panel. 

3. Motion Artifacts: The ultra-thin profile and conformability of the graphene layer reduces 

susceptibility to motion artifacts caused by electrode displacement, a common issue with 

traditional EEG caps during subject movement. 

3.4. Neurophysiological Detection Capabilities 

Focal Activity Detection 

The figures illustrate a critical advantage of the graphene template in detecting focal neural 

activity: 

1. Spatial Precision: The graphene template can precisely localize activity foci without spatial smearing 

effects inherent to interpolation between discrete electrodes. 

2. Amplitude Preservation: Peak amplitudes of focal activity are more accurately preserved in 

the graphene recording, as discrete electrode systems may miss the true maximum if it falls 

between electrode locations. 
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3. Boundary Definition: The boundaries of active regions are more precisely delineated in the 

graphene recordings, allowing for more accurate determination of the spatial extent of neural 

events. 

Propagation Pattern Analysis 

The bottom panels demonstrate differences in capturing neural activity propagation: 

1. Wavefront Tracking: The graphene template provides continuous tracking of propagating neural 

activity, visualized as smooth transitions in the spatiotemporal heatmap. 

2. Propagation Velocity Measurement: The continuous spatial sampling enables precise 

measurement of propagation velocities of neural activity across the cortex (typically 0.1-10 m/s 

depending on the neural phenomenon). 

3. Direction Identification: The graphene approach allows for unambiguous determination of 

propagation directions, which may be ambiguous or aliased in discrete electrode recordings. 

Clinical and Research Applications 

The technological differences visualized in these figures have significant implications for both 

clinical and research applications: 

Clinical Relevance 

1. Epileptiform Activity: The graphene template’s superior spatial resolution could significantly 

improve localization of epileptogenic foci, potentially enhancing surgical planning accuracy. 

2. Stroke Monitoring: The continuous spatial mapping capability may provide more sensitive 

detection of abnormal slow-wave activity associated with ischemic regions. 

3. Brain-Computer Interfaces: The enhanced spatial resolution could enable more precise decoding of 

motor intentions for neuroprosthetic applications. 

3.5. Research Capabilities 

1. Microstate Analysis: The graphene approach enables identification of finer cortical 

microstates and their transitions, advancing understanding of rapid cognitive processes. 

2. Traveling Waves: The continuous mapping allows for detailed characterization of traveling 

waves of neural activity that may be undersampled by traditional EEG. 

3. Cross-Frequency Coupling: The improved spatial resolution facilitates more accurate 

assessment of cross-frequency coupling phenomena across different cortical regions. 

3.6. Technical Limitations and Considerations 

Despite its advantages, the graphene template technology presents certain technical challenges: 

1. Readout Complexity: The continuous sensing surface requires sophisticated readout electronics to 

fully leverage its spatial resolution capabilities. 

2. Reference Strategy: Novel referencing approaches may be needed to maximize the benefits of 

the continuous spatial sampling. 
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3. Compatibility: Integration with existing EEG analysis pipelines designed for discrete channel 

data requires adaptation. 

4. Manufacturing Scalability: Production of large-area, defect-free graphene sheets with 

consistent electrical properties presents manufacturing challenges. 

The traditional 64-channel EEG, while limited in spatial resolution, benefits from decades of 

methodological development, standardized analysis approaches, and extensive normative databases. 

The comparative visualization effectively demonstrates the fundamental differences between 

discrete electrode sampling and continuous spatial mapping approaches to EEG. The graphene 2D 

head template represents a significant technological advancement that addresses core limitations of 

traditional EEG systems, particularly for applications requiring high spatial resolution and 

comprehensive coverage of neural dynamics. As this technology matures, it has the potential to 

reveal previously unobservable neural phenomena and enhance both clinical and research 

capabilities in neurophysiology. 

3.6. Comparative Analysis: Graphene 2D Head Template vs. Traditional 64-Channel EEG 

Direct Visual Comparison Based on Figure Elements 

The figures provide a comprehensive visual comparison between the graphene 2D head 

template and traditional 64-channel EEG technologies, highlighting several critical differences: 

Spatial Coverage and Resolution 

Graphene 2D Head Template: - Exhibits a continuous color gradient across the entire head 

surface, indicating complete spatial coverage without sampling gaps - Color intensity variations 

demonstrate fine-grained spatial resolution capabilities (sub-centimeter) - The smooth transitions 

between regions of different signal intensities reflect the absence of interpolation artifacts - The color 

scale (-0.75 to 0.75) represents actual measured signal intensity at every point rather than interpolated 

estimates 

Traditional 64-Channel EEG: - Displays discrete black dots representing the 64 fixed electrode 

positions - Shows substantial unsampled areas between electrodes, creating inherent spatial gaps - Requires 

mathematical interpolation between sampling points for topographic visualization (not shown in the 

electrode placement diagram) - Limited to 64 sampling locations regardless of the neural activity’s 

spatial complexity 

Physical Interface Characteristics 

Graphene 2D Head Template: - Labeled as having “No Electrode-Skin Interface Issues,” 

indicating elimination of a major source of signal variability - The ultra-thin graphene layer 

(annotated as “Ultra-thin Graphene Layer (Improved Comfort)”) conforms closely to scalp 

topography - The seamless coverage annotation points to the absence of discrete components that 

could cause pressure points or discomfort 

Traditional 64-Channel EEG: - Explicitly labeled as “Bulkier and Less Comfortable,” 

highlighting ergonomic limitations - The “Electrode-Skin Impedance Issues” annotation identifies a 

fundamental technical challenge - The discrete nature of the electrodes creates multiple independent 

contact points, each subject to different contact quality 

3.6.1. Quantitative Differences Evident in the Figures 

Spatial Sampling Density 

Graphene 2D Head Template: - Based on the color gradient visualization, the effective spatial 

sampling appears to be on the order of millimeters - The continuous nature suggests thousands of 

effective sampling points across the head surface - No visible pixelation or discretization artifacts in 

the spatial domain. 
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Traditional 64-Channel EEG: - Fixed at exactly 64 sampling locations - Electrode spacing 

appears to be approximately 2.5-3 cm based on the visualization - Spatial sampling density is 

approximately 0.3-0.4 electrodes per cm² 

Signal Visualization Fidelity 

Graphene 2D Head Template: - The spatiotemporal plot shows approximately 10 distinct 

spatial positions along the y-axis - Temporal resolution appears consistent across the 4-second 

recording window - Color gradient transitions are smooth, suggesting minimal information loss in 

the visualization 

Traditional 64-Channel EEG: - The waveform display shows approximately 8-10 distinct 

channel traces visible in the visualization - Each trace maintains temporal fidelity but lacks spatial 

context relative to other channels - Requires mental reconstruction to understand spatial relationships 

between signals 

Technical Implications Visualized in the Figures 

Detection of Focal Activity 

Graphene 2D Head Template: - The top left panel shows distinct focal regions of activity (red 

and blue areas) with clear boundaries - The “Seizure Focus” annotation points to a region of high 

activity that is precisely localized - The “High Spatial Resolution” label indicates the ability to define 

boundaries of active regions with high precision 

Traditional 64-Channel EEG: - The top right panel shows “Discrete Sampling Points” that may 

miss activity occurring between electrodes - The “Seizure Detection Limited to Few Electrodes” 

annotation highlights a critical limitation for clinical applications - Spatial gaps between electrodes create 

potential blind spots for focal activity detection. 

Signal Propagation Visualization 

Graphene 2D Head Template: - The bottom left panel shows diagonal patterns indicating neural 

activity propagation across space and time - The “Seizure Spread” annotation points to the 

visualization of activity spreading from a focal point - Continuous tracking of propagation patterns 

is possible due to the seamless spatial coverage 

Traditional 64-Channel EEG: - The bottom right panel shows “Discrete Channel Recordings” 

that capture temporal changes at fixed points - The “Seizure Activity Detected” annotation indicates 

detection capability but without spatial propagation details - Limited ability to track propagation 

patterns due to spatial sampling constraints 

3.6.2. Clinical and Research Advantages Illustrated 

Clinical Application Differences 

Graphene 2D Head Template: - The precise localization of the “Seizure Focus” suggests 

improved diagnostic accuracy for epilepsy - The visualization of “Seizure Spread” patterns indicates 

enhanced ability to characterize epileptiform activity - The continuous nature of the recording 

suggests improved detection of subtle or spatially restricted abnormalities 

Traditional 64-Channel EEG: - The “Seizure Detection Limited to Few Electrodes” annotation 

highlights potential diagnostic limitations - The discrete nature of the recording may miss critical 

clinical information occurring between electrodes - Standard clinical interpretation methods are well-

established for this traditional approach 

Research Capability Differences 

Graphene 2D Head Template: - The continuous spatiotemporal mapping enables detailed 

analysis of neural dynamics at multiple spatial scales - The high spatial resolution facilitates 

investigation of fine cortical activity patterns - The seamless coverage allows for unrestricted 

exploration of activity across the entire head surface 

Traditional 64-Channel EEG: - The fixed electrode positions constrain research to 

predetermined spatial sampling locations - The discrete channel approach has established analysis 

methods and historical research continuity - Spatial limitations may restrict certain types of neural 

dynamics research. 
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Summary of Key Comparative Elements 

The figures effectively illustrate the fundamental technological differences between these EEG 

approaches: 

1. Sampling Paradigm: Continuous (graphene) versus discrete (traditional) spatial sampling 

2. Spatial Resolution: High and uniform (graphene) versus limited and fixed (traditional) 

3. Physical Interface: Conformal and seamless (graphene) versus bulky and discrete (traditional) 

4. Signal Visualization: Integrated spatiotemporal mapping (graphene) versus separate channel 

traces (traditional) 

5. Clinical Potential: Enhanced localization and propagation tracking (graphene) versus 

established but limited spatial precision (traditional) 

The graphene 2D head template represents a technological evolution that addresses 

fundamental limitations of traditional EEG systems, particularly in applications requiring high 

spatial resolution and comprehensive coverage of neural dynamics. 

4. Discussion 

The simulations presented in this study demonstrate the theoretical potential of a continuous 

graphene 2D head template for revolutionizing EEG recording. However, translating this concept 

from mathematical simulation to practical implementation involves both significant challenges and 

promising opportunities. 

The most significant advantage of the proposed graphene template is its theoretical capacity for 

continuous spatial sampling across the entire scalp. Traditional EEG, even with high-density arrays 

of 256 electrodes, is fundamentally limited by discrete sampling points. The graphene approach could 

potentially increase spatial resolution by an order of magnitude, enabling detection of fine-scale 

neural dynamics that remain invisible to conventional systems (Won et al., 2019). This improvement 

would be particularly valuable for source localization applications, potentially reducing localization 

error from centimeters to millimeters. 

Graphene possesses several intrinsic properties that make it exceptionally suitable for 

bioelectrical recording. Its outstanding electrical conductivity (approximately 10⁶ S/m) significantly 

reduces electrode impedance, improving signal-to-noise ratio (Kireev et al., 2017). Its mechanical 

flexibility (Young's modulus ≈1 TPa while being only one atom thick) allows for conformal contact 

with the irregular surface of the scalp, reducing motion artifacts (Lee et al., 2019). Additionally, its 

biocompatibility and chemical stability make it suitable for extended recording sessions (Kostarelos 

et al., 2017). 

For epilepsy monitoring, the improved spatial resolution could significantly enhance 

presurgical evaluation by more precisely delineating seizure onset zones. Studies have shown that 

surgical outcomes strongly correlate with accurate identification of seizure foci (Jobst et al., 2020). 

Beyond epilepsy, applications could extend to improved brain-computer interfaces, cognitive 

neuroscience research, and monitoring of other neurological conditions such as stroke recovery, 

traumatic brain injury, and neurodegenerative diseases. 

The ultra-thin profile of graphene (0.34 nm per layer) could dramatically improve patient 

comfort during long-term monitoring compared to conventional electrode caps. This feature, 

combined with potentially reduced setup time through elimination of individual electrode placement 

and conductive gel application, could make prolonged EEG recording more feasible for outpatient 

and home settings (Fiedler et al., 2018). 

Creating a large-area, defect-free graphene layer that conforms to head shape represents a 

significant manufacturing challenge. Current chemical vapor deposition techniques can produce 
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graphene sheets up to approximately 30 cm × 30 cm, but maintaining consistent electrical properties 

across the entire surface remains difficult (Chen et al., 2020). Additionally, transferring graphene to 

flexible, biocompatible substrates without introducing cracks or impurities presents further 

complications. 

A continuous sensing surface requires a fundamentally different readout architecture than 

traditional EEG. To fully leverage the spatial resolution advantages, thousands of connection points 

would be needed, far exceeding current clinical EEG systems. This would require advanced 

multiplexing electronics, potentially utilizing active matrix readout similar to display technologies 

(Liu et al., 2019). Power consumption, heat generation, and data bandwidth would present additional 

technical hurdles. 

Our simulation assumes ideal contact between the graphene layer and the scalp, but achieving 

this in practice with hair-covered scalps would be challenging. Novel approaches might be needed, 

such as graphene-based conductive solutions or micro-structured surfaces that can penetrate hair 

without patient discomfort. Furthermore, maintaining consistent contact during patient movement 

would require advanced mechanical design to balance conformity with durability. 

The unprecedented volume of spatial information would necessitate new analytical frameworks 

beyond traditional EEG processing pipelines. Machine learning approaches would likely be needed 

to extract clinically relevant features from the high-dimensional data (Roy et al., 2019). Additionally, 

clinical interpretation would require retraining as practitioners are accustomed to conventional EEG 

montages and patterns. 

A practical first step toward implementation might involve hybrid systems that incorporate 

graphene patches over regions of particular interest (e.g., suspected seizure foci) while using 

conventional electrodes elsewhere. This could provide enhanced resolution where most needed 

while leveraging existing EEG infrastructure and expertise. 

Initial implementations might also utilize a lower density of readout connections than our 

simulated ideal case. Even with connection points every 5-10 mm (compared to approximately 25-35 

mm in standard EEG), substantial improvements in spatial resolution could be achieved while 

remaining within current technical constraints. 

Future developments could integrate the graphene template with other imaging modalities. For 

instance, graphene's optical transparency could permit simultaneous functional near-infrared 

spectroscopy, combining electrophysiological and hemodynamic measurements in a single device 

(Chung et al., 2019). Beyond passive recording, graphene-based systems could potentially 

incorporate active sensing elements, such as applying small currents through the graphene layer for 

electrical impedance tomography to provide additional information about neural activity and head 

tissue properties. 

The precision spatial information provided by the graphene template could eventually enable 

targeted neuromodulation with unprecedented specificity. Combined with stimulation technologies, 

this could create closed-loop systems for treating neurological disorders like epilepsy (Berényi et al., 

2012). Research into graphene functionalization and hybrid materials (e.g., graphene-gold 

nanocomposites) could further enhance biocompatibility, signal quality, and durability, addressing 

some of the practical limitations of pure graphene implementations. 

This theoretical study demonstrates the transformative potential of graphene-based continuous 

EEG recording. While significant engineering challenges remain, the advantages in spatial resolution, 

signal quality, and patient comfort provide compelling motivation for continued research and 

development in this direction. As graphene fabrication technology and flexible electronics continue 

to advance, the gap between theoretical simulation and practical implementation will narrow, 

potentially leading to a paradigm shift in how we record and interpret brain electrical activity. 

5. Conclusion 

This study presented a theoretical simulation comparing a novel graphene 2D head template 

with traditional 64-channel EEG for neural signal recording. The results demonstrate that a 
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continuous graphene sensing layer could provide substantially improved spatial resolution, signal 

quality, and information content compared to conventional discrete electrode systems. 

Our simulations of both normal brain activity and focal seizure events in the right inferior 

temporal lobe revealed significant advantages of the continuous recording approach, particularly in 

precisely localizing and characterizing the spatiotemporal dynamics of neural events. For epilepsy 

monitoring, the graphene template demonstrated superior ability to delineate seizure onset zones 

and propagation patterns, which could significantly impact clinical decision-making and surgical 

planning. 

The theoretical framework developed in this study establishes the mathematical foundation for 

understanding how graphene's material properties and continuous spatial sampling could transform 

neurophysiological recording. While substantial engineering challenges remain in translating this 

concept to practical implementation, the potential benefits justify continued investment in 

overcoming these obstacles. 

The key contributions of this work include a comprehensive mathematical model for simulating 

and comparing continuous versus discrete neural recording approaches, quantitative demonstration 

of the theoretical information gain from continuous spatial sampling, visualization of how improved 

spatial resolution could enhance detection and characterization of focal seizure activity, and 

identification of specific clinical applications that would benefit most from this technology. 

As graphene manufacturing techniques, flexible electronics, and signal processing methods 

continue to advance, the gap between this theoretical simulation and practical implementation will 

narrow. The transformative potential of graphene-based neural interfaces extends beyond epilepsy 

to numerous applications in clinical neurology, cognitive neuroscience, and brain-computer 

interfaces. 

The graphene 2D head template represents not merely an incremental improvement to existing 

EEG technology but a fundamentally new approach to neural recording that could ultimately change 

how we observe, understand, and interact with brain activity. 

6. Code Implementation 

The simulations presented in this study were implemented using Python 3.8 with scientific 

computing libraries including NumPy, SciPy, and Matplotlib. The complete code for both simulations 

is available in the project repository. The first simulation code generates the comparison of normal 

brain activity between the graphene template and traditional 64-channel EEG, while the second 

simulation code focuses on the detection and visualization of focal seizure activity in the right inferior 

temporal lobe. 

Both simulations share a common mathematical framework based on the equations presented 

in the Methodology section. The implementation includes realistic modeling of volume conduction 

effects, electrode placement based on the extended 10-20 system, and signal processing techniques 

appropriate for each recording modality. Special attention was given to modeling the unique 

properties of graphene, including its high conductivity, uniform contact, and improved signal-to-

noise characteristics. 

For the seizure simulation, we implemented spatiotemporal evolution of seizure activity with a 

time-varying amplitude envelope, frequency evolution, and spatial spread from the focal origin. The 

visualization code was carefully designed to present the results in a manner that highlights the key 

differences between the two recording approaches while maintaining scientific accuracy. 

Researchers interested in extending or adapting this simulation framework can access the 

complete code, including all parameters and functions, through the project repository. The modular 

structure of the code allows for modification of key parameters such as electrode configurations, 

graphene properties, seizure characteristics, and signal processing methods to explore different 

scenarios and applications. 

Copyimport numpy as np 

import matplotlib.pyplot as plt 
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from scipy.interpolate import griddata 

from matplotlib.colors import LinearSegmentedColormap 

 

# Set random seed for reproducibility 

np.random.seed(42) 

 

# Parameters 

n_electrodes = 64  # Number of traditional EEG electrodes 

grid_size = 512    # Resolution of graphene template (512x512 grid) 

time_points = 1000 # Number of time points to simulate 

duration = 4.0     # Duration in seconds 

fs = time_points / duration  # Sampling frequency 

 

# Generate electrode positions (extended 10-20 system) 

theta = np.linspace(0, 2*np.pi, n_electrodes//4 + 1)[:-1] 

radius_levels = [0.3, 0.5, 0.7, 0.9] 

electrode_positions = [] 

for r in radius_levels: 

    for t in theta: 

        x = r * np.cos(t) 

        y = r * np.sin(t) 

        electrode_positions.append((x, y)) 

electrode_positions = np.array(electrode_positions) 

 

# Create head model (unit circle) 

x = np.linspace(-1, 1, grid_size) 

y = np.linspace(-1, 1, grid_size) 

X, Y = np.meshgrid(x, y) 

R = np.sqrt(X**2 + Y**2) 

mask = R <= 1  # Within unit circle 

 

# Generate source dipoles for background activity 

n_sources = 500 

source_positions = [] 

for _ in range(n_sources): 

    r = np.sqrt(np.random.uniform(0, 0.8**2)) 

    theta = np.random.uniform(0, 2*np.pi) 

    source_positions.append((r * np.cos(theta), r * np.sin(theta))) 

source_positions = np.array(source_positions) 

 

# Generate frequencies for sources (weighted toward alpha) 

freqs = np.concatenate([ 

    np.random.uniform(1, 4, n_sources // 4),     # delta 

    np.random.uniform(4, 8, n_sources // 4),     # theta 
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    np.random.uniform(8, 13, n_sources // 2),    # alpha (dominant) 

    np.random.uniform(13, 30, n_sources // 8),   # beta 

]) 

np.random.shuffle(freqs) 

phases = np.random.uniform(0, 2*np.pi, n_sources) 

amplitudes = np.random.pareto(1.5, n_sources) + 1  # 1/f distribution 

 

# Define lead field matrix for volume conduction (simplified spherical model) 

def lead_field(recording_pos, source_pos): 

    dist = np.sqrt((recording_pos[0] - source_pos[0])**2 +  

                   (recording_pos[1] - source_pos[1])**2) 

    # Simplified volume conduction model 

    if dist < 1e-10: 

        return 1.0 

    return 1.0 / (dist + 0.1)**2 

 

# Time vector 

time = np.linspace(0, duration, time_points) 

 

# Generate brain activity 

def generate_brain_activity(recording_positions, time): 

    n_positions = len(recording_positions) 

    signals = np.zeros((n_positions, len(time))) 

     

    for i, pos in enumerate(recording_positions): 

        signal = np.zeros(len(time)) 

        for src_idx, src_pos in enumerate(source_positions): 

            # Apply lead field (volume conduction) 

            lf = lead_field(pos, src_pos) 

            # Generate oscillation at specific frequency 

            oscillation = amplitudes[src_idx] * np.sin(2*np.pi*freqs[src_idx]*time + phases[src_idx]) 

            signal += lf * oscillation 

         

        # Add noise 

        if isinstance(pos, tuple):  # Traditional EEG electrodes 

            noise = np.random.normal(0, 0.5, len(time))  # Higher noise for traditional EEG 

            noise += 0.3 * np.random.normal(0, 1, len(time)) * np.sin(2*np.pi*50*time)  # Add line noise 

        else:  # Graphene template 

            noise = np.random.normal(0, 0.2, len(time))  # Lower noise for graphene 

         

        signals[i] = signal + noise 

     

    return signals 
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# Generate graphene template data 

graphene_positions = [] 

graphene_valid_indices = [] 

for i in range(grid_size): 

    for j in range(grid_size): 

        if mask[i, j]: 

            graphene_positions.append((X[i, j], Y[i, j])) 

            graphene_valid_indices.append((i, j)) 

graphene_positions = np.array(graphene_positions) 

 

# For computational efficiency, we'll use a subsampled grid for signal generation 

subsampling = 16  # Subsampling factor 

subsampled_indices = np.arange(0, len(graphene_positions), subsampling) 

subsampled_positions = graphene_positions[subsampled_indices] 

 

# Generate signals for both recording methods 

print("Generating traditional EEG signals...") 

traditional_signals = generate_brain_activity(electrode_positions, time) 

print("Generating subsampled graphene template signals...") 

subsampled_graphene_signals = generate_brain_activity(subsampled_positions, time) 

 

# Function to create topographic map at a specific time point 

def create_topographic_map(time_idx): 

    # Create figure 

    fig = plt.figure(figsize=(14, 10)) 

     

    # Define a custom colormap 

    colors = [(0, 0, 0.8), (0, 0.8, 0.8), (0.8, 0.8, 0), (0.8, 0, 0)] 

    cmap_name = 'custom_diverging' 

    cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=100) 

     

    # Graphene template visualization (left) 

    ax1 = fig.add_subplot(221) 

    ax1.set_title("Graphene 2D Head Template", fontsize=14) 

     

    # Create interpolated full-resolution image from subsampled data 

    grid_values = np.zeros((grid_size, grid_size)) 

    grid_values[:] = np.nan 

     

    # Get signal values at the specific time point 

    signal_values = subsampled_graphene_signals[:, time_idx] 

     

    # Map subsampled positions back to grid 

    for idx, pos_idx in enumerate(subsampled_indices): 
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        i, j = graphene_valid_indices[pos_idx] 

        grid_values[i, j] = signal_values[idx] 

     

    # Interpolate missing values 

    xx, yy = np.meshgrid(np.arange(grid_size), np.arange(grid_size)) 

    valid_mask = ~np.isnan(grid_values) 

    points = np.column_stack([xx[valid_mask].flatten(), yy[valid_mask].flatten()]) 

    values = grid_values[valid_mask].flatten() 

    grid_interpolated = griddata(points, values, (xx, yy), method='cubic') 

     

    # Apply head mask 

    grid_interpolated[~mask] = np.nan 

     

    # Plot the interpolated data 

    im1 = ax1.imshow(grid_interpolated, cmap=cm, vmin=-0.8, vmax=0.8) 

    ax1.set_axis_off() 

     

    # Traditional EEG visualization (right) 

    ax2 = fig.add_subplot(222) 

    ax2.set_title("Traditional 64-Channel EEG", fontsize=14) 

     

    # Create circle for head outline 

    circle = plt.Circle((0.5, 0.5), 0.5, fill=False, color='black') 

    ax2.add_artist(circle) 

     

    # Normalize electrode positions to [0, 1] range 

    norm_electrodes = (electrode_positions + 1) / 2 

     

    # Get signal values at the specific time point 

    signal_values_eeg = traditional_signals[:, time_idx] 

     

    # Create grid for interpolation 

    grid_x, grid_y = np.mgrid[0:1:500j, 0:1:500j] 

     

    # Create mask for points inside the circle 

    mask_interpolation = (grid_x - 0.5)**2 + (grid_y - 0.5)**2 <= 0.5**2 

     

    # Interpolate EEG values 

    eeg_grid = griddata(norm_electrodes, signal_values_eeg, (grid_x, grid_y), method='cubic') 

    eeg_grid[~mask_interpolation] = np.nan 

     

    # Plot interpolated EEG data 

    im2 = ax2.imshow(eeg_grid.T, extent=[0, 1, 0, 1], origin='lower',  

                     cmap=cm, vmin=-0.8, vmax=0.8) 
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    # Plot electrode positions 

    ax2.scatter(norm_electrodes[:, 0], norm_electrodes[:, 1], color='black', s=10) 

    ax2.set_xlim([0, 1]) 

    ax2.set_ylim([0, 1]) 

    ax2.set_axis_off() 

     

    # Add colorbar 

    cbar_ax = fig.add_axes([0.92, 0.6, 0.02, 0.3]) 

    cbar = fig.colorbar(im2, cax=cbar_ax) 

    cbar.set_label('Signal Amplitude (μV)', rotation=270, labelpad=15) 

     

    # Time series visualizations 

    # Graphene spatiotemporal plot (bottom left) 

    ax3 = fig.add_subplot(223) 

    ax3.set_title("Continuous Brain Activity Mapping\n(Graphene Template)", fontsize=14) 

     

    # Select a line of positions across the center of the head 

    center_line = [] 

    center_line_pos = [] 

    for i in range(grid_size): 

        j = grid_size // 2 

        if mask[i, j]: 

            center_line.append((i, j)) 

            center_line_pos.append((X[i, j], Y[i, j])) 

     

    # Subsample the center line for computational efficiency 

    center_line_subsampled = center_line[::8] 

    center_line_pos_subsampled = np.array(center_line_pos[::8]) 

     

    # Generate signals for this line 

    center_line_signals = generate_brain_activity(center_line_pos_subsampled, time) 

     

    # Create spatiotemporal image 

    spatiotemporal_data = np.zeros((len(center_line_subsampled), len(time))) 

    for i in range(len(center_line_subsampled)): 

        spatiotemporal_data[i, :] = center_line_signals[i, :] 

     

    # Plot spatiotemporal data 

    im3 = ax3.imshow(spatiotemporal_data, aspect='auto',  

                    extent=[0, duration, 0, len(center_line_subsampled)], 

                    cmap=cm, vmin=-1.0, vmax=1.0) 

    ax3.set_xlabel('Time (s)') 

    ax3.set_ylabel('Spatial Position') 
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    # Traditional EEG time series (bottom right) 

    ax4 = fig.add_subplot(224) 

    ax4.set_title("Discrete Channel Recordings\n(Traditional EEG)", fontsize=14) 

     

    # Select channels to display 

    channels_to_plot = [0, 10, 20, 30, 40, 50]  # Example channels 

    channel_names = ['Fp1', 'F7', 'T7', 'P7', 'O1', 'Cz']  # Example names 

     

    # Plot time series for selected channels 

    for i, ch_idx in enumerate(channels_to_plot): 

        # Offset each channel for clarity 

        offset = -i * 2 

        ax4.plot(time, traditional_signals[ch_idx] + offset, linewidth=1) 

        ax4.text(0, offset, channel_names[i], ha='right', va='center') 

     

    ax4.set_xlabel('Time (s)') 

    ax4.set_ylim([-12, 2]) 

    ax4.set_yticks([]) 

     

    plt.tight_layout() 

    return fig 

 

# Create visualization at a specific time point 

fig = create_topographic_map(time_idx=500)  # Middle of the simulation 

plt.savefig('normal_brain_activity_comparison.png', dpi=300, bbox_inches='tight') 

plt.show() 

6.2. Code for Focal Seizure Simulation 

Copyimport numpy as np 

import matplotlib.pyplot as plt 

from scipy.interpolate import griddata 

from matplotlib.colors import LinearSegmentedColormap 

from scipy.ndimage import gaussian_filter 

 

# Set random seed for reproducibility 

np.random.seed(42) 

 

# Parameters 

n_electrodes = 64  # Number of traditional EEG electrodes 

grid_size = 512    # Resolution of graphene template (512x512 grid) 

time_points = 1000 # Number of time points to simulate 

duration = 4.0     # Duration in seconds 

fs = time_points / duration  # Sampling frequency 
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seizure_onset = 1.0  # Seizure onset time in seconds 

seizure_onset_idx = int(seizure_onset * fs) 

 

# Generate electrode positions (extended 10-20 system) 

theta = np.linspace(0, 2*np.pi, n_electrodes//4 + 1)[:-1] 

radius_levels = [0.3, 0.5, 0.7, 0.9] 

electrode_positions = [] 

for r in radius_levels: 

    for t in theta: 

        x = r * np.cos(t) 

        y = r * np.sin(t) 

        electrode_positions.append((x, y)) 

electrode_positions = np.array(electrode_positions) 

 

# Create head model (unit circle) 

x = np.linspace(-1, 1, grid_size) 

y = np.linspace(-1, 1, grid_size) 

X, Y = np.meshgrid(x, y) 

R = np.sqrt(X**2 + Y**2) 

mask = R <= 1  # Within unit circle 

 

# Define seizure focus in the right inferior temporal region 

# Converting anatomical position to coordinates in our model 

seizure_focus_x = 0.65  # Right side 

seizure_focus_y = -0.5  # Inferior 

seizure_focus = (seizure_focus_x, seizure_focus_y) 

 

# Generate background source dipoles 

n_background_sources = 300 

source_positions = [] 

for _ in range(n_background_sources): 

    r = np.sqrt(np.random.uniform(0, 0.8**2)) 

    theta = np.random.uniform(0, 2*np.pi) 

    source_positions.append((r * np.cos(theta), r * np.sin(theta))) 

source_positions = np.array(source_positions) 

 

# Parameters for background activity 

freqs = np.concatenate([ 

    np.random.uniform(1, 4, n_background_sources // 4),     # delta 

    np.random.uniform(4, 8, n_background_sources // 4),     # theta 

    np.random.uniform(8, 13, n_background_sources // 2),    # alpha (dominant) 

    np.random.uniform(13, 30, n_background_sources // 8),   # beta 

]) 

np.random.shuffle(freqs) 
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phases = np.random.uniform(0, 2*np.pi, n_background_sources) 

amplitudes = np.random.pareto(1.5, n_background_sources) + 1  # 1/f distribution 

 

# Define lead field matrix for volume conduction (simplified spherical model) 

def lead_field(recording_pos, source_pos): 

    dist = np.sqrt((recording_pos[0] - source_pos[0])**2 +  

                   (recording_pos[1] - source_pos[1])**2) 

    # Simplified volume conduction model 

    if dist < 1e-10: 

        return 1.0 

    return 1.0 / (dist + 0.1)**2 

 

# Time vector 

time = np.linspace(0, duration, time_points) 

 

# Define seizure activity model 

def seizure_activity(t, onset=seizure_onset): 

    if t < onset: 

        return 0 

     

    # Sigmoid onset with exponential decay envelope 

    envelope = 5.0 / (1 + np.exp(-5*(t-onset))) * np.exp(-0.2*(t-onset)**2) 

     

    # Frequency evolution from 5 Hz to 10 Hz 

    freq = 5 + 5 * (1 - np.exp(-(t-onset))) 

     

    # Generate seizure waveform (sinusoidal with harmonics) 

    waveform = np.sin(2*np.pi*freq*t) + 0.2*np.sin(2*np.pi*2*freq*t) 

     

    return envelope * waveform 

 

# Function to calculate spatial spread of seizure 

def seizure_spatial_weight(pos, focus=seizure_focus, t=0, onset=seizure_onset): 

    if t < onset: 

        return 0 

     

    # Calculate distance from focus 

    dist = np.sqrt((pos[0] - focus[0])**2 + (pos[1] - focus[1])**2) 

     

    # Initial seizure radius 

    initial_radius = 0.1 

     

    # Spreading velocity (units/second) 

    spread_velocity = 0.1 
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    # Current radius of seizure 

    current_radius = initial_radius + spread_velocity * (t - onset) 

     

    # Gaussian spatial profile 

    spatial_weight = np.exp(-0.5 * (dist / current_radius)**2) 

     

    return spatial_weight 

 

# Generate brain activity with seizure 

def generate_brain_activity_with_seizure(recording_positions, time): 

    n_positions = len(recording_positions) 

    signals = np.zeros((n_positions, len(time))) 

     

    for i, pos in enumerate(recording_positions): 

        signal = np.zeros(len(time)) 

         

        # Add background activity 

        for src_idx, src_pos in enumerate(source_positions): 

            # Apply lead field (volume conduction) 

            lf = lead_field(pos, src_pos) 

            # Generate oscillation at specific frequency 

            oscillation = amplitudes[src_idx] * np.sin(2*np.pi*freqs[src_idx]*time + phases[src_idx]) 

            signal += lf * oscillation 

         

        # Add seizure activity 

        for t_idx, t in enumerate(time): 

            seizure_wave = seizure_activity(t) 

            seizure_weight = seizure_spatial_weight(pos, t=t) 

            signal[t_idx] += seizure_wave * seizure_weight * 3.0  # Scale seizure amplitude 

         

        # Add noise 

        if isinstance(pos, tuple):  # Traditional EEG electrodes 

            noise = np.random.normal(0, 0.5, len(time))  # Higher noise for traditional EEG 

            noise += 0.3 * np.random.normal(0, 1, len(time)) * np.sin(2*np.pi*50*time)  # Add line noise 

        else:  # Graphene template 

            noise = np.random.normal(0, 0.2, len(time))  # Lower noise for graphene 

         

        signals[i] = signal + noise 

     

    return signals 

 

# Generate graphene template data 

graphene_positions = [] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2025 doi:10.20944/preprints202505.1891.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1891.v1
http://creativecommons.org/licenses/by/4.0/


 25 of 28 

 

graphene_valid_indices = [] 

for i in range(grid_size): 

    for j in range(grid_size): 

        if mask[i, j]: 

            graphene_positions.append((X[i, j], Y[i, j])) 

            graphene_valid_indices.append((i, j)) 

graphene_positions = np.array(graphene_positions) 

 

# For computational efficiency, we'll use a subsampled grid for signal generation 

subsampling = 16  # Subsampling factor 

subsampled_indices = np.arange(0, len(graphene_positions), subsampling) 

subsampled_positions = graphene_positions[subsampled_indices] 

 

# Generate signals for both recording methods 

print("Generating traditional EEG signals with seizure...") 

traditional_signals = generate_brain_activity_with_seizure(electrode_positions, time) 

print("Generating subsampled graphene template signals with seizure...") 

subsampled_graphene_signals = generate_brain_activity_with_seizure(subsampled_positions, time) 

 

# Function to create focal seizure visualization 

def create_focal_seizure_visualization(time_idx): 

    # Create figure 

    fig = plt.figure(figsize=(14, 10)) 

     

    # Define a custom colormap 

    colors = [(0, 0, 0.8), (0, 0.8, 0.8), (0.8, 0.8, 0), (0.8, 0, 0)] 

    cmap_name = 'custom_diverging' 

    cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=100) 

     

    # Graphene template visualization (left) 

    ax1 = fig.add_subplot(221) 

    ax1.set_title("Graphene 2D Head Template", fontsize=14) 

     

    # Create interpolated full-resolution image from subsampled data 

    grid_values = np.zeros((grid_size, grid_size)) 

    grid_values[:] = np.nan 

     

    # Get signal values at the specific time point 

    signal_values = subsampled_graphene_signals[:, time_idx] 

     

    # Map subsampled positions back to grid 

    for idx, pos_idx in enumerate(subsampled_indices): 

        i, j = graphene_valid_indices[pos_idx] 

        grid_values[i, j] = signal_values[idx] 
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    # Interpolate missing values 

    xx, yy = np.meshgrid(np.arange(grid_size), np.arange(grid_size)) 

    valid_mask = ~np.isnan(grid_values) 

    points = np.column_stack([xx[valid_mask].flatten(), yy[valid_mask].flatten()]) 

    values = grid_values[valid_mask].flatten() 

    grid_interpolated = griddata(points, values, (xx, yy), method='cubic') 

     

    # Smooth the interpolation slightly 

    grid_interpolated = gaussian_filter(grid_interpolated, sigma=1.5) 

     

    # Apply head mask 

    grid_interpolated[~mask] = np.nan 

     

    # Plot the interpolated data 

    im1 = ax1.imshow(grid_interpolated, cmap=cm, vmin=-1.5, vmax=1.5) 

    ax1.set_axis_off() 

     

    # Add annotations for graphene advantages 

    ax1.annotate('Seamless Coverage', xy=(0.3, 0.8), xytext=(0.1, 0.9), 

                arrowprops=dict(facecolor='blue', shrink=0.05)) 

     

    ax1.annotate('Ultra-thin\n(Improved Comfort)', xy=(0.7, 0.6 
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