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Abstract: ‘Blood stasis’ (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine 

(TCM), where it is known as Xue Yu (血瘀). Similar concepts exist in Traditional Korean Medicine 

('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large 

variety of inflammatory diseases, though an exact equivalent in western systems medicine is yet to 

be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, 

creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many 

chronic, inflammatory diseases, are comparatively resistant to fibrinolysis, and thus have the ability 

to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological 

consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, 

and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also 

used by Virchow). First, the diseases known to be associated with microclots are all associated with 

blood stasis. Secondly, fibrinaloid microclots provide a simple mechanistic explanation for the 

physical slowing down (‘stasis’) of blood flow. Thirdly, Chinese herbal medicine formulae proposed 

to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to 

be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to 

lower the levels of fibrinaloid microclots, plausibly in part by blocking the catalysis of the 

polymerisation of fibrinogen into an amyloid form. We rehearse some of the known actions of its 

constituent herbs and specific bioactive molecules that they contain. Consequently, such herbal 

formulations (and some of their components), that are comparatively little known to Western 

science and medicine, would seem to offer the opportunity to provide novel, safe and useful 

treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic 

Encephalopathy/ Chronic Fatigue Syndrome and Long COVID. 

Keywords: blood stasis; clotting; amyloid; fibrinaloid; proteomics; natural products; bioactive 

molecules; Chinese herbal medicine; inflammation 
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1. Introduction 

1.1. Preamble, Audience, and Scope 

This review integrates concepts of systems medicine from both Eastern and Western systems 

medicine. It is intended to be read (and readable) by scientists, clinicians and patients from very 

different intellectual and cultural backgrounds, and will necessarily include subsections that are 

completely familiar to some but entirely arcane to others. We hope that at the end readers will 

recognise that the discovery of fibrinaloid microclots provides a ready general explanation for the 

traditional, if molecularly ill-defined, concept of ‘Blood Stasis’. Equivalently, the concepts (and 

extensive traditional knowledge) of blood stasis may provide extremely useful insights into the 

biology of fibrinaloid microclots and the means of treating them and the diseases with which they 

are associated. Our focus is on Chinese Herbal Medicine, and we acknowledge (but for reasons of 

scope we mainly do not rehearse) the underlying principles of Traditional Chinese Medicine (TCM) 

such as 5-element theory, and the analysis of pulses, meridians and Qi [1], nor do we directly consider 

other adjunctive treatment elements of TCM such as acupuncture, moxibustion, cupping, massage, 

and so on, since the focus is the mode of action of relevant Chinese herbal formulae and the molecules 

they contain, as they relate to blood stasis. We then focus on a particular herbal formulation used to 

treat blood stasis, and the nature and mechanisms of the bioactive chemicals that it contains. For 

reasons of accessibility we have avoided Chinese-languare publications. A preprint has been lodged 

[2]. 

1.2. A Note on Systems and Personalised Medicine 

Modern western medicine, especially that based on pharmaceuticals, has tended to assume 

(incorrectly) that a particular drug will be efficacious in all patients. Given the existence of some 

25,000 genes, each with many alleles, leave aside phenotypic variations such as those based on 

lifestyle effects, it has always been obvious that this could not be the case (e.g. [3]). As phrased by the 

18th century physician Caleb Parry (quoted in [4]), “It is much more important to know what kind of 

patient has a disease than to know what kind of disease a patient has”. This principle of personalised 

medicine (e.g. [5,6], including the role of AI therein [7,8]) lies at the heart of TCM, and is intimately 

linked with equivalent western concepts such as systems biology [9–15], systems medicine [16,17], 

polypharmacology [18–30], and network pharmacology [31–36]. An early approach to this (that could 

be seen as a subset of systems biology) known as metabolic control analysis (e.g. [37–44]) describes 

explicitly how and why individual biochemical reactions contribute only weakly to the control of 

metabolic fluxes, and why, to have big effects, one must modulate multiple reactions simultaneously. 

Natural evolution selects for robustness to individual insults [45], and the kinetic and architectural 

[46] properties of such networks tend to provide it; indeed, the interlinked kinetics of biochemical 

networks mean that it is easy to find circumstances in which two inhibitors individually have 

negligible effects on a metabolic flux whereas together their effect can be massive [47,48]. 

As a systems approach, Chinese herbal medicine adheres to the Jun-Chen-Zuo-Shi principle 

[49–53] (Westerners will find some minor variations of the Chinese characters). As phrased by [50] 

“The Jun (emperor) component is the principal phytocomplex targeting the major symptom of the 

disease. There are only a few varieties of Jun medicinals that are administered as a single formula, 

usually in large doses. The Chen (minister) herbs synergize with Jun to strengthen its therapeutic 

effects, and may also treat secondary symptoms. The Zuo (assistant) medicinal reduces or eliminates 

possible adverse or toxic effects of the Jun and/or Chen components, while also enhancing their 

effects and sometimes treating secondary symptoms. Finally, the Shi (courier) herbs facilitate delivery 

of the principal components to the lesion sites, or facilitate the overall action of the other 

components”. It is particularly interesting that the last component effectively relates to the 

significance of pharmaceutical drug transporter proteins, something finally being recognised more 

widely (e.g. [54–58]) and that in fact had evolved precisely to transport natural products [59]. 
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While recognising that TCM practitioners will vary treatments precisely to suit the individual, 

we do not normally have access to such information for our scientific purposes. Equally, we rarely 

know the multiple targets of even single pharmaceutical drugs [60] (in 2008 the average number of 

known targets per drug molecule was six [61]). Consequently, this review will seek to paint a big 

picture, recognising in particular that it is combinations of herbs affecting multiple processes that 

have the greatest chance of having useful effects [34,62–66], while seeking to bring together the 

biochemistry of microclots (see below) with what is known of blood stasis.  

1.3. Blood Stasis 

“Blood stasis” (or blood stasis syndrome, BSS) is a fundamental concept in Traditional Chinese 

Medicine (TCM), where it is known as Xue Yu (血瘀) [67]. BSS refers to conditions in which the 

circulation of blood is not smooth or is slowed down in some way (e.g. [68,69], and see later). It has 

been known (using other terms) at least from the time of The Yellow Emperor's Inner Classic (Huang 

Di Nei Jing) [67,70]. The same concept exists in many other traditional medicines, including 

Traditional Korean Medicine (where blood stasis is known as 'Eohyul' or ‘Ouhyul’) [15,71], and in 

Japanese Kampo medicine (where it is termed Oketsu). Even within TCM there are similar variants 

(e.g. [72]). Blood stasis can be caused by vascular obstruction, abnormal flow of blood, blood 

congestion in a viscous, and contaminated blood, has at least four subtypes [73], and is regarded as 

the cause or the result of a great many chronic, inflammatory diseases [74–76], that we summarise 

later. Many general reviews of blood stasis exist, e.g. [68,74,77–82]. 

Traditionally, BSS is measured somewhat subjectively by a practitioner’s observation of 

symptoms or manifestations such as tongue colour and the results of palpations. More recently 

attempts have been made to objectify or quantify the extent of BSS using various kinds of scores (e.g. 

[70,83–94]). Blood stasis is fundamentally related to haemorheology measurements (i.e. viscosity) 

[87,95,96]. We rehearse explicitly this point about scoring BSS, as such quantitative measurements (as 

used e.g. for scoring fatigue in long COVID [97]) will be highly desirable for future studies that seek 

to relate microclot burden to BSS. However, such data presently do not exist. 

It is also worth rehearsing here that the 19th-century physiologist Virchow recognised three 

factors (known as Virchow’s Triad [98–102]) that contribute to the development of venous 

thrombosis, and these are stasis of blood flow, hypercoagulability, and endothelial injury. The 

significance of the terminology of the first one is not lost on us.  

1.3. Fibrinaloid Microclots 

Fibrinogen, one of the most abundant plasma proteins (2-4 g.L-1), has dimensions of some 5x45 

nm giving a length:diameter ratio of ~9. As is well known, a key part of blood clotting involves the 

removal from fibrinogen by the protease thrombin of two fibrinopeptides (FpA and FpB), leading to 

a remarkable self-organisation in which fibrinogen molecules accrete to form far larger fibrils and 

protofibrils via a ‘knobs and stalks’ mechanism (Figure 1A-C). In normal clotting, the fibrinogen 

molecules are essentially oriented in the direction of the growing chain, that looks somewhat like 

cooked spaghetti in the electron microscope (EM) (Figure 1B). Other things such as erythrocytes and 

platelets may also be trapped, along with non-fibrin proteins whose concentrations in the clot roughly 

correlate with those in normal soluble plasma [103,104].  

Over a decade ago, it was discovered was that certain small molecules such as specific 

oestrogens [105,106] or unliganded iron [107–112] could cause fibrinogen to form highly anomalous 

clots that in the EM appeared like claggy aggregations of partly boiled spaghetti, and that were 

referred to at the time as ‘dense matted deposits’ [109,110,113–115] (Figure 1C). 
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Figure 1. Structure and dimensions of fibrinogen and its folding into healthy and pathological 

amyloid fibrin(ogen). A) Fluorescence microscopy of healthy plasma (with and witout spike protein), 

with thioflavin T (to shown amyloid areas in fibrin(ogen)) and added thrombin. B) Scanning electron 

microscopy of fibrin(ogen) with and without lipopolysaccharide (LPS) and thrombin C). Scanning 

electron microscopy of human plasma with FeCl3 and thrombin. (Adapted from [110,116]. Generated 

with Biorender.com. 

Subsequent studies, using the well-established [117–119] amyloid stain thioflavin T (Figure 2), 

as well as the commercial oligothiophene ‘Amytracker™’ stains [120,121], showed that this anomalous 

clotting (i) was actually due to the conversion of the fibrin(ogen) into amyloid forms, that are 

characterised by crossed- motifs that bind these stains and effect their observable fluorescence, (ii) 

could be induced by minuscule amounts of bacterial cell wall components (e.g. one molecule of 

bacterial lipopolysaccharide per 100 million fibrinogen molecules [120]), and (iii) could be observed 

in a large variety of chronic, inflammatory diseases (e.g. [122] and Table 1). Much as with prion and 

other amyloid proteins [123,124], there is no thermodynamic problem; the clotting will happen 

anyway and these molecules simply catalyse a different route of self-organisation that maintains the 

necessary close packing in the relevant macrostates.  
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Figure 2. Representative confocal images of human plasma with three amyloid markers (cyan: 

Amytracker™ 480; red: Amytracker™ 680; green: ThT). (A to C) Naïve human plasma; (D to F) Plasma 

exposed to Lipopolysaccharide (LPS); (G to I) Plasma exposed to iron; (J to L) Plasma exposed to 

lipoteichoic acid-1; (M to O) Plasma exposed to lipoteichoic acid-1. (Taken from a CC-BY Open Access 

publication [125].). 

Clearly such insoluble microclots (like other microparticulates [126,127]) can straightforwardly 

interfere with the flow of blood through microcapillaries, leading to a loss of O2 transfer, hypoxia, 

and other pathological consequences [128]. Finally, here, we recognise that amyloid proteins 

generally share crossed- structural motifs that serve to bind stains such as thioflavin T [117,119,129–

139], as well as ‘pan-amyloid’ peptides and antibodies (e.g. [140–144]). 

2. Diseases Involving Blood Stasis in Which Raised Levels of Fibrinaloid Microclots Have Been 

Detected 

Over the years, we and others have assessed the raised presence of fibrinaloid microclots in a 

series of chronic, inflammatory diseases, each of which, it transpires, is considered to involve blood 

stasis. Table 1 provides a summary. Note of course that many of these syndromes, especially those 

(as here) involving vascular issues, exhibit comorbidities because they have common causes. Diabetes 

and Alzheimer’s disease provide one such example [122,145–159] of many. TCM of course recognises 
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this explicitly, where it is known as “Treating Different Diseases with the Same Treatment” [82,160–

162].  

Table 1. Some diseases or syndromes in which fibrinaloid microclots have been observed, and which 

are considered to involve blood stasis. 

Disease or syndrome 
Selected references showing 

microclot formation 

Selected references relating the 

disease to blood stasis 

Alzheimer’s disease [163–166] [78,167–169]  

(Acute) COVID-19 infection [170–174] [175–182] 

Diabetes type 2 [164,174,183–185] [75,78,81,186–189] 

Long COVID [124,128,190–196] [178,197,198] 

Migraines [199] [78,200] 

Myalgic Encephalopathy/ 

Chronic Fatigue Syndrome 
[201,202] [198,203–206] (see also [207]) 

Parkinson’s disease [164,208–210] [68,211–213] 

Rheumatoid arthritis [190,214,215] [78,189,216,217] 

Sepsis [218] [219–245] 

Septic shock [218] [246–258] 

Stroke [259] [82,86,260–280] 

3. Diseases Involving Blood Stasis Where Fibrinaloid Microclots Are Yet to Be Measured 

Directly 

In a similar vein, effectively the converse of the above, there are many diseases involving blood 

stasis in which microclots have yet to be assessed, but which would make obvious objects of study 

from this point of view. The basic reasoning is as per the paired papers [281,282] on amyloid clot 

proteomics. In the first [281], we showed that known amyloid microclots had proteomes that differed 

markedly from those of known (‘normal’) clots. Besides fibrin they contained various proteins that 

were in low concentration in soluble plasma yet lacked many that were in high concentration there. 

Indeed, normal clots had a proteome that roughly mirrored the soluble plasma proteome, implying 

a relatively weak binding or sequestration (see Figure 3). The proteins ‘enriched’ in the microclots 

were highly amyloidogenic, suggesting that they were actually incorporated into the fibrils via the 

cross- motifs common to all amyloids. The second paper [282] asked the ‘inverse’ question, i.e. if we 

know the composition of the clot proteome in various thrombotic diseases can we predict whether or 

not the clot is amyloid(ogenic)? In all cases the answer was that these clots should indeed be amyloid, 

which can thus be tested (and in the case of ischaemic stroke had been [259]).  
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Figure 3. Weak binding or sequestration. Different classes or types of protein co-aggregation: 

Titration; Sequestration; Axial and lateral. (Figure adapted from Open Access papers [281,282], which 

was based on [283].) Generated with Biorender.com. 

Table 2. gives a listing of various vascular and thrombotic diseases that are known from TCM 

to be associated with blood stasis but are not in Table 1, along with some mechanistic comments that 

suggest that such studies to assess whether or not the microclots were both present and amyloid in 

character in these diseases would likely be attended with success. 

Table 2. Diseases involving blood stasis where fibrinaloid microclots are yet to be measured directly. 

These diseases are mostly vascular or thrombotic. We here ignore classical amyloidoses and cancer. 

Disease or syndrome 

Selected references 

relating the disease 

to blood stasis 

Comments 

Angina pectoris [78,284–300] 

A very obvious example, as vasodilators are 

the main treatment. The tightening of the 

chest and shortness of breath are easily 

explained by microclots blocking capillaries. 

Atherosclerosis [301–307] 

Another very obvious example of fibrinaloid 

microclots resisting fibrinolysis contributing 

to atherosclerotic plaques (and later to stroke 

[259]). The pairing Danshen-Chuanxiong is 

often used [304,308].  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2025 doi:10.20944/preprints202502.1537.v2

https://doi.org/10.20944/preprints202502.1537.v2


 8 

 

Atrial Fibrillation (AF) [15] 

At one level, atrial blood stasis is seen as 

synonymous as an effect of AF [309,310]. 

Evidence that fibrinaloid microclots are more 

a cause than an effect of AF was summarised 

in [311] 

Attention deficit hyperactivity 

disorder (ADHD) 
[312–315] 

Plausibly due to decreased blood flow 

caused by microclots. 

Chronic kidney disease [77,316,317] 
Less likelihood of kidneys excreting 

microclots if diseased.  

Chronic obstructive pulmonary 

disease (COPD) 
[318–322] Strong hint in the term ‘obstructive’ 

Coronary heart disease 
[90,91,294,297,323–

334] 

Xue Fu Zhu Yu (a formula to overcome 

blood stasis) helps [325,327,335–337]. 

Deep vein thrombosis (DVT) [338–340] 

TCM classifies DVT as blood stasis in the 

category of “pulse closed” and “femoral 

swelling”. Xue Fu Zhu Yu helps, and there is 

evidence [282] that the thromboses are likely 

to be amyloid in nature. 

Dysmenorrhoea [341–346] 

Note that 17-b-oestradiol was one of the first 

small molecules discovered to induce 

anomalous clotting [105] 

Fibromyalgia syndrome (FMS) [203,347] 

We consider it likely that FMS (and fibrosis 

[320]) is caused by the deposition of fibrin 

caused by fibrinaloid microclots [116]. There 

is little actual work on BSS here. 

Heart failure and Ischaemic 

heart disease 
[348–351] 

Various formulas used for this kind of blood 

stasis 

Metabolic syndrome (MS) [78,87,352,353] 
MS covers a variety of different syndromes; 

at this stage we do not seek to deconvolve it. 

Non-alcoholic fatty liver disease 

(NAFLD) (since mid-2023 it is 

called metabolic dysfunction-

associated steatotic liver disease 

(MASLD) [354]) 

[189,355,356]  

Postural Orthostatic Tachycardia 

Syndrome (POTS) 
[357] 

Capillary blocking by fibrinaloid microclots 

provides a ready explanation for POTS [358] 

(see also [359]) 

Pre-eclampsia (PE) [360–363] 
PE has a microbial origin [364,365] and is 

significantly prothrombotic [366] 

Pulmonary embolism [98,367]  

Sub-arachnoid haemorrhage [368,369] 
The only predictor of a later stroke [370] was 

ESR, a measure of blood stasis  

Thrombotic diseases generally [371–373] 
High likelihood of the clots involved being 

amyloid in nature [282] 

Tinnitus [81,374] 

A common accompaniment to diseases (such 

as Long COVID) where microclots are 

involved and where both can be induced by 

spike protein (cf. [170] and [375–377]). 

Transient ischaemic attack (TIA) [271,378,379] 

TIA is of course a common precursor to 

ischaemic stroke [380], where amyloid 

clotting has been demonstrated [259] 
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Traumatic brain injury (TBI) [381–387] 

Blood stasis is seen as a core component of 

(the sequelae of) TBI, that include 

coagulopathy [388]. Most significantly, Xue 

Fu Zhu Yu ameliorated neurological 

deficiencies without impairing blood 

coagulation in a rat model [385]. 

Traumatic injury generally [72,389]  

These all tend to be systems diseases, and so the different components of herbal preparations 

will tend to interrogate different elements of what has been disrupted. An example from traumatic 

brain injury [387] is given in Figure 4, and one from Long COVID, showing the multiplicity of 

symptoms, in Figure 5. 

 

Figure 4. Multipotential drug treatment strategies for Traumatic Brain Injury. Redrawn from [387]. 

Generated with Biorender.com. 
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Figure 5. Long COVID symptoms (taken from [194]). Generated with Biorender.com. 

3.1. Cancer and classical amyloidoses 

We did not include the classical amyloidoses in the above Table (though Alzheimer’s and 

Parkinson’s, listed in Table 1, would certainly fall into those categories), not least because there are a 

great variety of them (including polymorphs) [390–400], cross-seeding is commonplace (e.g. 

[281,401]), and they deserve a separate treatment in their own right. Similarly, cancer is a topic that 

is so broad and massive that it too deserves (and will receive) a separate treatment. Consequently, 

we here note only four things:  
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• Cancer, particularly pancreatic cancer (PDAC), is strongly linked to thromboembolic states [402–

419], with thrombotic events often leading to a worse outcome.  

• Cancer is strongly associated (as, of course, are Long COVID [420–427] and ME/CFS 

[202,424,426,428,429]) with fatigue [430–437] 

• Unsurprisingly, therefore, cancers are strongly associated with blood stasis [69,72,78,324,438–

445] 

• Consequently, components of XueFu ZhuYu [446] such as saikosaponins (e.g. [447–459]) have 

been found to have efficacy as anti-cancer agents. 

4. Amyloid Nature of the Blood Clots in Blood Stasis 

While we are not aware of any measurement of the amyloid nature (or otherwise) of microclots 

in samples characterised by CHM practitioners as involving blood stasis, proteomics can on its own 

predict whether a clot is likely to be normal or amyloid in character [281,460], and all the recent 

assessments of the microclots occurring in these various diseases shows that they are amyloid in 

character. Such proteins (that include prions and prionoids) are well known, because of the cross- 

sheet motifs, to be rather resistant to most proteases [461–467]. This, together with the presence of 

various anti-fibrinolytics trapped in such clots [191,192], provides a ready explanation for the failure 

to remove them, such that they can contribute strongly to the phenomena of blood stasis. 

5. A Focus on Xue Fu Zhu Yu 

Having established the consonance between cases (accompanied by inflammation and 

coagulopathies) where fibrinaloid microclots have been measured, and the co-existence of blood 

stasis as defined within TCM, it is of interest to begin to understand what these various herbs may 

be doing. As mentioned, even single pharmaceutical drugs have multiple known targets [61]; in some 

cases (such as statins, reviewed in [468]) the so-called ‘off-target’ effects are actually largely 

responsible for the efficacy of the drug in terms of increasing longevity. Consequently, deconvolving 

accurately what everything is doing within a Chinese herbal medicine cocktail is going to be very 

difficult. However, this does not mean that some progress cannot be made in terms of establishing 

components that e.g. are anti-inflammatory or anti-oxidant, and [320] provides a nice example for 

pulmonary fibrosis. To rehearse again, it is by hitting these multiple targets simultaneously that one 

can expect and find that the formulae are efficacious. 

Xue-Fu-Zhu-Yu (sometimes XueFu ZhuYu, Zuefuzhuyu) is a herb combination designed to 

boost Qi and remove blood stasis [469–474]. Xuefu Zhuyu Decocti[510–512on (Xuefu zhuyu tang, 

XFZYD) is used explicitly for a variety of coronary diseases [286,291,293,294,325,327,336,475–491] 

(notably a decreased mortality from ischaemic heart disease more than 4-fold [492]), as well as 

traumatic brain injury [51,385,493–504], NAFLD [355,505] (nowadays known as MASLD [354]), 

deep vein thrombosis [340], fibrosis [506], ischaemic stroke [488,507,508], COPD [319], sepsis 

[219](including a five-herb injectable variant known as Xuebijing (XBJ, see below) [220–245]), 

amyloidogenesis [167], myocardial fibrosis [478], dysmenorrhea [341,343,344], hypertension [509], 

and tumours [446]. 

For illustrative purposes, we are therefore going to concentrate on Xue Fu Zhu Yu (血府逐瘀); 

‘Blood stasis-expelling decoction’ or Stasis in the mansion of blood’), since – while others such as 

Danshen-Chuanxiong – are certainly in use against some diseases of blood stasis (e.g. [510–512]), this 

Xue Fu Zhu Yu formula https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 

(accessed 6/2/2025) is among those most commonly used to treat blood stasis (e.g. 

[325,471,474,481,513,514]). Figure 6 provides a screen dump from part of that page, while Figure 7 

provides a summary analysis. 
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Figure 6. ‘Blood stasis-expelling decoction’ (Xue Fu Zhu Yu Tang) or ‘Stasis in the mansion of blood’, 

showing (with the database owner’s permission) the part of the page at 

https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115. 

 

Figure 7. A summary of Xue Fu Zhu Yu, based on the material at 

https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115. 

The aim here is to indicate the kind of knowledge we presently have of the most significant 

chemical components in each herb, while recognising that some modest variations would likely be 

prescribed for individuals who are physically seen by a Chinese Medical Herbalist. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2025 doi:10.20944/preprints202502.1537.v2

https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115
https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115
https://doi.org/10.20944/preprints202502.1537.v2


 13 

 

Xue Fu Zhu Yu or Xuefu Zhuyu has 11 herbal components [515–517]. Proportions vary, but we 

give the percentages in a particular preparation of which we are aware. The ingredients are Semen 

persicae aka Prunus persica = peach seed (Tao Ren) 16%, Radix rehmanniae from Rehmannia glutinosa 

Libosch (Di Huang or Sheng Di depending on whether dried or fresh) 12%, Radix Achyranthis 

Bidentata or Cyathulae Radix (Niu Xi) 12%, Radix Angelicae sinensis (Chinese angelica)(Dang Gui) 12%, 

Flos carthami aka safflower (Hong Hua) 12%, Fructus aurantia (Zhi Qiao) 8%, Radix paeoniae rubra Chi 

Shao) 8%, Radix platycodonis (Jie Geng) 6%, Rhizoma chuanxiong (= Ligusticum chuanxiong) or Szechaun 

lovage roots 6%, Radix glycorrhizae (Chinese licorice)(Gan Cao) 4%, Radix Bupleuri (Chinese Thorawax 

Root)(Chai Hu) 4%. We note also that Angelica sinensis also houses endophytic fungi that can have 

great effects on the metabolome [518]. (Xuebijing is an injectable subset of Xue Fu Xhu Yu plus 

Danshen (Salviae Miltiorrhizae Radix et Rhizoma).composed of five Chinese herbs, which are Honghua 

(Carthami Flos), Chishao (Paeoniae Radix Rubra), Chuanxiong (Chuanxiong Rhizoma), Danggui 

(Angelicae Sinensis Radix) and Danshen (Salviae Miltiorrhizae Radix et Rhizoma), particularly used 

against sepsis [230,239]. A recent study [242] selected hydroxysaffron yellow A (HSYA), vanillin, 

ligustilide, paeoniflorin and other substances as the main active ingredients of XueBijing through a 

comprehensive analysis of metabolomics and network pharmacology. Among them, HSYA showed 

outstanding performance in promoting endothelial cell proliferation [242]. 

According to https://sys02.lib.hkbu.edu.hk/cmfid/details.asp?lang=eng&id=F00115 (and using 

slightly different names), within the Jun-Chen-Zuo-Shi (Emperor-Minister-Assistant-Courier) 

principle mentioned above, the components are considered to be: Tao Ren and Hong Hua as 

Emperor; Chi Shao, ChuanXiong and Niu Xi as Minister; Sheng Di, Danggui, Jie Geng, Zhi Qiao and 

Chai Hu as Assistant; and Gan Cao as Courier.  

5.1. Bioactive Molecules in Xue Fu Zhu Yu 

We now look at some of the molecules that are considered to be actives within the different herbs 

(Table 3). While this is likely to be far from complete, it shows clearly the known and multiple effects 

of some of the major bioactive components in the herbs comprising Xue Fu Zhu Yu.  

Table 3. Constituent herbs of Xue Fu Zhu Yu, some known bioactives it contains, and some known 

activities. 

Herb  
Some known bioactive 

molecules therein 
Some known targets or general properties 

Tao Ren; Semen persicae; 

peach kernel (Emperor) 
Amygdalin [519,520] 

Follistatin induction [519]; ERK1/2 activation 

[520] 

Hong Hua; Flos carthami; 

Carthamus tinctorius L.; 

safflower (Emperor) 

(Hydroxy)safflor yellow A 

[521–526] 

Antithrombotic, angiogenic, anticoagulant, 

antiplatelet. Reviews: [527–532] 

 Kaempferol, quercetin Antioxidants/ anti inflammatory [521] 

 Endothelial cell protection Enhances HIF1-a [521] 

Chi Shao; Radix paeoniae 

rubra; Paeonia lactiflora 

Pall; red peony root 

(Minister) 

Oxypaeoniflorin Anti-thrombin [372] 

 Paeoniflorin [533] 

Anti-stroke [534,535], Anti-thrombotic 

[536,537], Anti-inflammatory [538–542] and 

antioxidant [543]; blocks TGF1b signalling, 

ERK1/2, JNK1/2, NF-kB, etc [533,544,545]; 

deactivation of STAT3 [546]; Akt/Nrf2/GPX4 

[213], MAPK [547,548], Raptor [549], TRPV1 

[550], HIF-1a [551], adenosine A1 receptor 

[552,553]. Analgesic [554]. Reviews of 
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nervous system [555] and cardioprotective 

[556] effects. [557]. 

 Paeonol 

Anti-inflammatory, antioxidant, protects 

endothelium [558]; endothelium-protecting 

and antiplatelet [559]; antioxidant and anti-

inflammatory [560] 

Rhizoma chuanxiong (= 

Ligusticum chuanxiong); 

Szechaun lovage roots 

(Minister) 

Reviews [561–564]  

 Ligustrazine 

Anti-inflammatory [565,566]. Dilates blood 

vessels, inhibits platelet aggregation and 

prevents thrombopoiesis [566]. Anti-anginal 

[567]. Multiple roles [568].  

 
Ligustilide (also in Dang 

Gui and Niu Xi) 

Anti-inflammatory and anti-oxidant [569]. 

Improves lipid metabolism, 

antioxidant and anti-inflammatory, protects 

vascular endothelium, inhibits vascular 

endothelial fibrosis [570]. Senolytic [571]. 

Cannabinoid receptor 2 activation [572]. 

 Sekyunolide I (SEI) 

Reviews on antioxidant and anti-

inflammatory properties [573–575]. Other 

targets of SEI include Nrf2 [576], activity vs 

NAFLD [577], UVB damage [578], NET 

formation [579], ischaemia-reperfusion 

injury [580–583], It occurs in appreciable 

concentrations in both ChuanXiong 

[584,585]. and Angelica sinensis (Danggui) 

[586]. 

 Ferulic acid Anti-thrombin activity [587] 

Radix Achyranthis 

Bidentata (Niu Xi), also 

Cyathulae Radix 

(Minister; may also be a 

Courier [588]) 

Achyranthine, but no real 

stand-outs 
Seemingly not well understood [589,590] 

Radix rehmanniae (Di 

Huang or Sheng Di) 

(Assistant) 

Reviews: [591–593] 

Multiple effects, including  

anti-inflammation, antioxidation, anti-tumor, 

immunomodulation, cardiovascular and 

cerebrovascular regulation [593]. 

Hypoglycaemic [594] 

 
iridoid glycosides (such as 

catalpol and aucuboside),  

Catalpol blocks AMPK signalling [595] and 

promotes angiogenesis [596] and cell 

migration [597]. Antioxidant via Nrf2/HO-1 

[598] and NF-kB [599], Many other 

references, reviewed in [600–602]. 

Aucuboside is an immunomodulator [603].  

 

phenylpropanoid 

glycosides (such as 

acteoside), 

Acteoside e.g. stimulates amyloid 

degradation [604] and ameliorates 

ischaemia-reperfusion injury [605], and has 

many other effects [606] including anticancer 

[607]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 March 2025 doi:10.20944/preprints202502.1537.v2

https://doi.org/10.20944/preprints202502.1537.v2


 15 

 

Radix Angelicae sinensis 

(Chinese angelica) (Dang 

Gui) (Assistant) 

  

 Z-lingustilide (see above)  

 Ferulic acid 

Antioxidant and anti-inflammatory [608]. 

Nephroprotective [609]. Ameliorates lipid 

metabolism 

via AMPK/ACC and PI3K/AKT pathways 

[610]. 

 Sekyunolide I (see above)  

Radix platycodonis 

(Balloonflower root) (Jie 

Geng) (Assistant; may 

also be a Courier [588]) 

Platycodins [611,612] 

(triterpenoid saponins) 

Many activities [613–615] including anti-

inflammatory and antioxidant [611,616,617], 

vasodilatory[618], antiviral [619], 

antithrombotic [620], autophagy-modulating 

[621], mitophagy-regulating [622,623]  

Fructus aurantia (Citrus 

aurantium L.) Bitter 

orange (Zhi Qiao) 

(Assistant)  

Flavones and flavonoids, 

including sinensetin, 

tangeretin, 5-

demethylnobiletin and 

chrysin. 

Antioxidant, anti-inflammatory [624] and 

other activities via JAK-STAT3 and PI3K-

AKT signalling [625] 

Radix Bupleuri (Chinese 

Thorawax Root) (Chai 

Hu) (Assistant) 

Quercetin [294] 
Antioxidant and other properties (some not 

at all newly discovered [626,627]) 

 

Saikosaponins (triterpenoid 

saponins) (may involve 

stimulation by endophytic 

fungi [628–630]) 

Many activities [631] including antioxidant 

and anti-inflammatory [455,456,632–650], as 

well as anti-fibrotic [651–659], anti-HIF-1a 

[660], antiviral [648,661], anti-sepsis [662–

665]. 

Radix glycyrrhizae 

(Glycyrrhiza uralensis 

Fisch; Chinese licorice) 

(Gan Cao) (Courier) 

Flavanones Liquiritigenin 

and Isoliquiritigenin  

Anti-oxidant [666], also anti-amyloid [667] 

and transporter inducers. Reviews [668,669]. 

 

Triterpene saponins 

including glycyrrhizin, 

glycyrrhet(in)ic acid 

Antiviral and other [650,670–681]. Anti-

sepsis [682–694]. Atheroprotective [695,696]. 

What is also clear is that there is a wealth of literature in some cases and a dearth in others, and 

comparing subsets of the mixtures leads to an infeasible combinatorial explosion [697]. There are also 

some consonances, with molecules or classes being common to more than one of the herbs (Table 3), 

and of course it is well known that natural products can make for successful drugs, even in western 

medicine (e.g. [698–702]). It is also of interest that the triterpenoid saponins (here platycodins, 

saikosaponins and glycyrrhizin), a class of molecules of increasing importance in natural products 

drug discovery [703–715], can also contain most or all of a steroid nucleus [716–721], and have good 

bioavailability [722,723] (probably through their chemical relatedness to steroids and bile acids [724–

726]). Importantly, such triterpenoids may inhibit toxic amyloidogenesis (e.g. [727–766]), and indeed 

appear in other herbal formulae for stimulating blood circulation in blood stasis syndrome (e.g. [767–

771]).  

To avoid cluttering up Table 3, chemical structures of some of the main components of the herbs 

in Xue Fu Zhu Yu are given in Table 4. 

Table 4. Chemical structures of some of the constituents in Xue Fu Zhu Yu as mentioned in Table 3. 
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Molecule Structure 

Acteoside 

 

Amygdalin 

 

Aucuboside 
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Catalpol 

 

Glycyrrhizin 

 

Hydroxysafflor yellow A 
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Isoliquiritigenin  

(2',4,4'-Trihydroxychalcone) 

 

(Z-)Ligustilide 

 

Ligustrazine (2,3,5,6-tetramethylpyrazine) 
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Liquiritigenin 4’, 7- dihydroxyflavanone 

 

Oxypaeoniflorin 

 

Paeniflorin 
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Paeonol 

 

Platycodins: variants of structure at right. One 

example is below, in which R1 is glucose and 

R2 is arabinose-rhamnose-xylose-apifuranosyl 

 

Platycodin D 
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Quercetin 

 

Safflor yellow A 

 

Saikosaponin nucleus 

 
Saikosaponin A As above, R1 = b-OH, R2 = CH2OH 
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Sekyunolide I 

 

What is also clear from Table 4 is the large number of different chemical structures of even the 

main, known, bioactives in Xue Fu Zhu Yu, as well as their multiple targets (Table 3).  

Natural products tend to be larger than purely chemical drugs [772–781], which may imply that 

they have even more targets than the average of six mentioned above for pharmaceutical drugs [61]. 

While relatively little is known of the transporters responsible for their uptake into cells, it is known 

that pharmaceutical drugs that are taken up do mimic natural products [59]. 

6. Mechanism(s) of Action of Xuefu Zhuyu Decoction 

For illustrative purposes, these include at least the following: 

1. Neuroprotective effects: XFZYD may exert neuroprotective effects by regulating miRNA 

expression and promoting synaptic remodelling. A study found that XFZYD could reverse the 

reduction of BDNF and TrkB in the hippocampus caused by Traumatic Brain Injury, and 

increase the number of synaptic connections, as well as the expression of synaptic-related 

protein PSD95, axon-related protein GAP43, and neuron-specific protein TUBB3 [503]. 

2. Anti-inflammatory effects: Multiple studies have shown that XFZYD has anti-inflammatory 

effects. In an alopecia model, XFZYD can significantly inhibit the levels of IL-6, IL-1β, and TNF-

α in serum and skin tissue [782]. 

3. Promoting angiogenesis: A study evaluated the angiogenic effect of XFZYD using a PTK787-

induced segmental vascular injury zebrafish model. Through various analytical methods, seven 

active components promoting angiogenesis were identified, including ferulic acid, paeoniflorin, 

and hesperidin [783]. 

7. Summarising and Concluding Remarks 

The concept of blood stasis is exceptionally important in traditional Asian medicines, and we 

have here argued that it reflects the fibrinaloid microclots that two of us had discovered. The 

recognition that herbal formulae such as Xue Fu Zhu Yu are well known (by relevant practitioners) 

to be of value in treating blood stasis, as well as some of the bioactive molecules that it contains, thus 

opens up the area of microclots to focused pharmacological analyses. This said, Xue Fu Zhu Yu 

contains 11 separate herbs, each containing multiple bioactives, and each of which is likely to have 

multiple targets (Table 3, and more generally [60,61,784]). Deconvolving the precise effects in 

different cases is consequently going to be difficult, though progress is being made (Table 3). 

However, the recognition that microclots may largely equate to or be responsible for ‘blood stasis’ 

also offers the hope of effective treatments.  
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Future research might focus on the synergistic effects of Xue Fu Zhu Yu components, their 

pharmacokinetics, and their clinical efficacy in treating chronic diseases, as well as metabolomics 

methods for their composition and effects. Additionally, the development of standardized 

biomarkers for BSS and of microclot burden will be crucial for personalized treatment strategies. 
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