Pre prints.org

Article Not peer-reviewed version

Contract-Graph Fusion and Cross-
Graph Matching for Smart-Contract
Vulnerability Detection

Xue Liang, Yao Tan, Jun Song, Fan Yang i

Posted Date: 11 September 2025
doi: 10.20944/preprints202509.0978v1

Keywords: smart contracts; blockchain security; software vulnerability detection; graph neural networks;
graph matching

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4732989
https://sciprofiles.com/profile/4733140
https://sciprofiles.com/profile/4595271

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Contract-Graph Fusion and Cross-Graph Matching for
Smart-Contract Vulnerability Detection

Xue Liang !, Yao Tan !, Jun Song 12 and Fan Yang *

School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China

School of Computing, Newcastle University, Urban Science Building, Newcastle upon Tyne, NE4 5TG, Newcastle, United
Kingdom

* Correspondence: fanyang@cug.edu.cn; Tel.: +86-13886091949

Abstract

Smart contracts empower many blockchain applications but are exposed to code-level defects. Existing
methods do not scale to the evolving code, do not represent complex control and data flows, and
lack granular and calibrated evidence. To address the above concerns, we present a across-graph
correspondering contract-graph method for vulnerability detection: abstract syntax, control flow, and
data flow are fused into a typed, directed contract graph whose nodes are enriched with pre-code
embeddings (GraphCodeBERT or CodeT5+). A Graph Matching Network with cross-graph attention
compares contract graphs, aligns homologous subgraphs associated with vulnerabilities, and supports
the interpretation of statements at the level of balance between a broad structural coverage and a
discriminative pairwise alignment. The evaluation follows a deployment-oriented protocol with
thresholds fixed for validation, multi-seed averaging and a conservative estimate of sensitivity under
low false-positive budgets. On SmartBugs Wild, the method consistently and markedly exceeds strong
rule-based and learning baselines and maintains a higher sensitivity to matching false positive rates;
ablations track the gains to multi-graph fusion, pre-trained encoders and cross-graph matching, stable
through seeds.

Keywords: smart contracts; blockchain security; software vulnerability detection; graph neural
networks; graph matching

1. Introduction

Smart contracts are the core element of the blockchain stack and face persistent security risks
due to code-level weaknesses. Many vulnerabilities are related to Solidity features and suboptimal
development practices [1]. High-impact incidents in 2023, including Lido DAO and Deus DAO with
losses over $6.5 million [2], and other events such as Euler Finance and CertiK [3], show that local
design or implementation flaws can escalate to protocol-level failures. As decentralized finance and
other critical applications are more dependent on chain execution [3], detection methods must balance
accuracy, scalability and operational reliability.

Vulnerability detection has therefore become a central theme of blockchain security [4]. Traditional
program analysis, including static analysis and formal verification, can provide strong guarantees for
some bugs, but it is difficult to adapt to large heterogeneous code bases and rapidly changing attack
surfaces. Data-driven methods reduce part of this gap. Earlier neural approaches treated code as token
sequences or shallow characteristics and could not capture program structure or data dependencies
[5]. Large language models improve context modeling, but are expensive and often underrepresent
complex control and data flows [6]. Graph-based analysis addresses these limitations by modeling
code as graphs, so that graph neural networks combine structural and semantic signals and reason
over paths and dependencies. Many existing graph methods still rely on a single mode such as AST,
CFG, or DFG, or operate only at the contract level, which limits the recognition of patterns that span

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

20f12

structural views or recur across contracts. Many existing graph methods still rely on a single modality
such as AST, CFG, or DFG, or operate only at the contract level, which limits recognition of patterns
that span structural views or recur across contracts [5,7].

This work presents an across-graph matching contract graph method for intelligent contract
vulnerability detection. Abstract syntax, control flow, and data flow are combined into a typed,
directed contract graph. Nodes are enriched by contextual integrations from pre-defined encoders
such as GraphCodeBERT and CodeT5+. A Graph Matching Network with cross-graph attention
compares pairs of contract graphs and focuses inference on homologous subgraphs associated with
vulnerabilities. The design balances broad structural coverage with discriminatory pairwise alignment,
and supports interpretation at the statement level.

The study is empirical and takes into account deployment needs. First, a unified multi-graph
representation combines AST, CFG, and DFG with encoded node features so that syntax, control, and
data dependencies are modeled in a single space with better coverage of execution semantics. Secondly,
an across-diagram alignment mechanism based on a Graph Matching Network with attention aligns
related subgraphs and concentrates evidence on regions relevant to vulnerabilities, thereby supporting
assertion-level clues and downstream localization. Thirdly, a deployment-oriented evaluation and
calibration protocol is employed, with thresholds set on validation, multi-seed reporting, and a
conservative estimate of the average normalized positive rate under low false positive budgets,
calculated from standard detection statistics.

The model capacity and overhead are kept clear. The encoder uses 12 Transformer layers with
hidden size of 768 and 12 attention heads. The matching network uses 100 dimensional node em-
beddings and four propagation layers. The evaluation is performed on SmartBugs Wild with 47,398
unique Solidity files and about 203,716 contracts. Sensitivity is summarized at the reference operating
points {1%,5%,10%} to reflect strict audit budgets. The results show consistent gains over strong
baselines in macro precision, recall and F; and higher sensitivity in low false positive regions. The
ablation confirms complementary benefits of fusion, encoder features and cross-graph matching. The
results are stable throughout the seeds. All claims are limited by the evaluated body and protocol.

The rest of the document is organized as follows. Section 2 examines the detection of vulnerability
based on graphs and motivates multi-graph fusion with cross-graph alignment. Section 3 describes
contract graph construction, encoder integration and matching architecture. Section 4 presents datasets,
baselines, measures and results, including low false positive sensitivity and ablations. Section 5
concludes with the limitations and directions for the deployment of unified extensions.

2. Related Works

Recent studies model the program code as graphs to combine structural and semantic hints.
Unique encoding (AST, CEG, or DFG only) often misses the interactions between control and data
that trigger vulnerabilities. Multi-graph and heterogeneous formulations address this gap by coding
syntax, control flow and data dependencies together, and report more stable detection and localization
at the function and statement level [5,8,9]. In smart contracts, attention mechanisms further separate
control signals from data signals and mitigate false correlations, improving trigger location through
dual or heterogeneous attention [7,10]. The work on robustness and interpretation uses contextual
graphic enhancement and assignment [11]. These results suggest that fusion benefits from explicit
relationship separation and task-aware weighting, rather than naive concatenation.

Pre-trained code models provide contextual inserts that capture long-term semantics and lexical
regularities. CodeT5+ is an example of code understanding and generation [12]. Hybrid pipelines
incorporating sequence-level embedding with graph encoders show improvements in software vulner-
ability detection and just-in-time scenarios [5,8,13]. Graph-aware alignment and cross-graph message
passing tend to overcome the heuristic stacking in ablations by selectively transmitting information
through modalities and reducing graphical conflicts.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

30f12

In the field of intelligent contracts, surveys synthesize the taxonomies of attacks, data sources,
evaluation practices and deployment concerns, and emphasize compromises between cover, inter-
pretability and operational costs [14-18]. The learner detectors customized to contracts extend coverage
through transfer and multi-label learning [19]. Program analysis and measurement studies reveal risks
that are rooted in contract-specific semantics and cross-contract interactions [20]. Public organiza-
tions such as SmartBugs Wild support reproducible evaluations and large-scale error analyses [21,22].
Throughout these studies, graph learning and pre-training embedding are complementary. Robust
detection still requires modeling how syntax, control flow, and data flow interact at fine granularity.
Our work follows this direction by combining AST, CFG and DFG under a spine with cross-graph
alignment and attention, with the aim of precisely locating the triggers and presenting evidence-based
reports at practical cost [14,17].

(a) Smart Contract Source Code
(b) Abstract Syntax Tree

1 contract VictimBank {

2 mapping (address => uint256) public wallet; @
Static Analysis | S —

4 function withdraw(uint256 anount) public { .

) ! ariableDeclaration) (waller)
5 if (amount>202588wallet[msg. sender]>=amount) { 0] | mapping
6 msg. sender . transfer (amount) ; @ ! Flementary TypeName

| uin1256 2

7 wallet[msg.sender] -= amount; G) | (ElementaryTypeName (Elementary TypeName BinaryOperation| (ExpressionStatement) (ExpressionStatement)

= ' address uint256 8& i &
8) | N

. BinaryOperation| (BinaryOperation) (FunctionCall BinaryOperation
9 3 I > > —=
10) ' NumberLiteral
| 2025
amount
(e) Fused Contract Graph (CG) amount

Merge
P
(¢) Data Flow Graph (d) Control Flow Graph

wallet i (
N 6) \ (—__mapping (address => uint256) public wallet)

mapping (address => uint256) public wallet)
T

2
BinaryOperation J

Y
> (function withdraw(uint256 amount) public)
wallet[msg.sender] -= amount T

(Tunction withdraw(uint256 amount) public) I
\

wallet v
\

- 7

| i y amount i

| amount /7 i if sender]>=amount) D~
i

I if (amount > 2025& &wallet[msg.sender]>=amount) > < | r— | Control
1 v Control \

i i
. msg.sender transfer(amount)

Lo ‘msg.sender.transfer(amount)] i e v)

Y
.) N . wallet[msg sender] -= amount
777777 > Control flow —emimemim> Dataflow ! ~(wallot[iag sender] = amount)< ("

Figure 1. Contract-graph construction. (a) Source snippet (VictimBank) with transfer logic to avoid reentry. (b)
Abstract syntax tree (AST), (c) data flow diagram (DFG), and (d) control flow diagram (CFG) of static analysis. (e)
Fused Contract Graphic (CG), in which the statement nodes are connected by a type dependency: control (orange)
and data (green). For readability, the AST leaves and syntax edges are cut and the virtual anchor nodes (functions
and loops) are omitted in this rendering.

3. Proposed Approach
3.1. Overview

The proposed framework detects smart contract weaknesses by measuring the similarity between
contract diagrams, as shown in Figure 2. The training stage transforms contract pairs into graphs and
learns a similarity function that places vulnerable contracts close to each other, while pushing secure
contracts further away. The detection stage then incorporates a target contract and assigns a score
using the learned Matcher. A threshold determined during validation is applied to the similarity point.
The training process includes the creation of graphics from abstract syntax, control flow, and data flow
representations, and the detection process applies the learning matching model to threshold-based
similarity rule.

© 2025 by the). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

40f12

Contract Pool

- ~\
Safe Vulnerability Target
Contract Contract Contract
J

~~~~~ 1

______ [

-l

) i

L——>| Static Analysis |€-—-—-- 4

Abstract Control Data
Syntax Tree Flow Graph Flow Graph

Contract Graph (CG) Graph
Construction
Stage 1: |Training Stage 2: i)etecting
GraphCodeBERT Graph Embedding
Y
Graph Embedding Craniiieiching]l Score s(G) -
Network ©
: s(G) > 7Y
- y Tt ys(@ <7
Craphiilaiching Buggy Smart Clean Smart
Nisiers Contract Contract

Training objective: contrastive loss on
graph pairs; similarity s(G1,G2) com- Legend: solid = training flow; dashed = detecting flow.
puted by GMN with cross-graph attention.

Figure 2. Overview of the contract-graph matching framework. The static analysis extracts the AST/CFG/DFG
and constructs the fused contract graph (CG). The training stage learns cross-graph similarity with a contrastive
loss in CG pairs. The training process integrates a CG target, calculates a similarity point s(G) with the matcher,
and applies a decision threshold T selected for validation and kept fixed in the test. Solid arrows indicate training;
outlined arrows indicate detection.

3.2. Contract Graph Construction

The contract S contains a statement set I/ and a variable set V. Static analysis produces an
abstract syntax tree 7 = Past(S), a control flow graph Ges = (Vigg, Ecfg) and a data flow graph
Gatg = (Vg Edsg)- Each statement u € U aligns with a subtree 7y, through a parser map m : U — 2Vast,
The fused, typed multigraph is

CG(S) = (V,E,X,T),  E = EastUEcgg UEqgg,

constructed by replacing each control flow node for u with 7, (redundantly pruned leaves), introducing
virtual nodes v, and v)ep to preserve the function and cycle area, and maintaining type maps
¥ : E — {ast,cfg,dfg} and 7 : V — Zyoqe. Here, X € RIVI*? denotes the node-feature matrix (e.g.,
contextual code embeddings and local structural descriptors), and T collects node/edge type tags
consistent with ¢ and 7. A token alignment 77 : V — 2{1-L} from graph nodes to source tokens is
recorded for feature pooling. Once 7, E.tg, and Eg4¢g are available, the construction is completed in
O(|V| + |E|) time. Control flow and def-use metadata come from Slither [23]; ASTs with nodeType
use solc-typed-ast [24]. Algorithm 1 summarizes the extraction and fusion pipeline, specifying the
inputs (source code and analyzers), the token/statement alignments, and the typed-edge assembly on
the input in the final contract graph.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

50f12

Algorithm 1 BuildContractGraph: extraction and fusion

Require: Source code S, tokenizer, static analyzers
Ensure: CG(S) = (V,E, X, T) and alignment 7t
LT« PaS’t(S) (chg/ cfg) A CFG( ) (Vdfg/ Edfg) — DFG(S)
: Build m(u) = V(Ty) for u € U; record token alignment 7t
: Replace each CFG node by 7,; reconnect links; prune redundant leaves
Add gy, V1oep; connect statements within each function/loop
Set E = East U Ecgg U Eggg with type maps ¢, T
: return CG(S) = (V,E, &, T) and > X set in Section 3.3

o U W N

3.3. Pretrained Encoder and Node Features

The input sequence concatenates [CLS], code tokens, [SEP], and variable tokens (total length L).
A multilayer transformer produces contex states H(") € RL*4 with multi-head attention

Atn(Q,K,V; M) = sof’cmax(Q—\%T + M) v,

where the mask accepts adjacent token pairs in text, connected by control flow or data flow, aligned by
code-variable matches or marked as special tokens. Other entries receive —co. After encoding, node
features pool HN) over 7(i) and concatenate type and Skip-gram annotations,

= [pool(HMN [1(i)]) ; Wiypelr(s) 5 €],

and edge features «;; include type encodings and optional Skip-gram embeddings. Pre-training follows
previous work on masked language modeling [25], data flow prediction, and code flow alignment

L = A Lyvim + A2LprG + A3 L Align-

3.4. Cross-Graph Similarity with a Contract-Graph Matcher
Given CGy = (W4, E1, X;1) and CG, = (V,, Ep, X»p), initialize

0 M
771'( )= MLP0de (%), Cij = LPedge(“ij )-
In iteration ¢,

:u](ZZ = fTH(”i(t)r 17]‘(t)/ eij)/ (ll ]) € El U EZ/ al(]?) = SOftman((ni(t))TWﬂ]{(t))r

ol =aifl i, Y = £ (" /Zﬂwf Z o).

Here, 11.(t)

1
intra-graph aggregation, and node updates, respectively. Figure 3 illustrates the cross-graph attentino

()

and 7 j denote the hidden states of nodes i and j at iteration ¢. Functions f;,;, and f,, handle

mechanism. After T iterations,

s1=fo{n " Yiev), g2 = fol{n " Yew), s =cos(g1,82),

here, f, denote the graph aggregation function,with ¢, normalization before cos(-, -). Construction
is O(|V| + |E|); the cost per layer encoder is O(Ld); the matcher is O(T(|E;| + |Ez|)) for intra-graph
messages and O(T |V;||V,]) for cross-graph attention.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

6 of 12

e12 ,
- ===
az—+a
€34 €ab
\\\\\\\\i‘ pﬁ%\
CG4q CGo

Figure 3. Cross-graph attention in the contract-graph matcher. The blue nodes represent a CG; subgraph with
edges e1, €23, €1;, €3;; the red nodes represent a CG, subgraph with edges ey, ¢;5. The drawn arrows from v; in
CG to {v4,vp, vj} in CG; indicate attention.

3.5. Training and Detection

A contrastive loss of the margin trains the matcher on pair labeled (S,, Sy, y) with similarity
s = cos(ga, gp):
Loair =y (1—5)* + (1 —y) max(0, s —m)?,
where y € {0,1} and m € (0,1). Let Z be a graph of vulnerable embeddings from the training data.
For a target contract graph with encapsulation g,

s(G) = max cos(g,z),
Z€EZ
and the decision is 1{s(G) > 7} with a 7 threshold fixed in validation. Algorithm 2 details the
process from end to end, including graph construction, encoder pre-training and pooling, pair-wise
optimization, assembling the reference embeddings and the maximum similarity inference rule.

Algorithm 2 TrainAndDetect: compact training and inference

Require: Labeled contracts {(S;, y;)}; validation-chosen threshold T
1: Build CG(S) and alignment 7 via Alg. 1
2: Pretrain encoder; pool node/edge features
3: Train the matcher on pairs (S, Sy, y) minimizing Lpair
4: Form graph Z < {z = embed(S) : y =1}
5. Detect: embed target G as g; compute s(G); output vulnerable if s(G) > T, else secure

4. Empirical Evaluation

The method is evaluated on three fronts. First, the end-to-end accuracy against the Rule-based
and Learning-based baselines. Secondly, the benefit of fusing AST+CFG+DFG over single views.
Thirdly, the ablations of the key modules. Sensitivity is also studied under low false positive budgets.

4.1. Datasets

SmartBugs Wild [26] is used as a public corpus of Solidity contracts. It contains 47,398 unique .sol
files (approximately 203,716 contracts). Labels cover Reentrancy (RE), Timestamp Dependency (TD)
and Integer Overflow/Underflow (10), plus non-vulnerable files.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

7 of 12

4.2. Baselines and Setup

1) Static analysis and graphs. ASTs are extracted with solc-typed-ast [24]. CFG/DFG and def-use
metadata come from Slither [23]. These artifacts are merged into contract-level graphs (Section 3.2)
using NetworkX [27].

2) Encoder and matcher. GraphCodeBERT [25] is used (12 layers, hidden size 768, 12 heads, Adam).
The contract graphs matcher uses embedded size 100, four hidden layers, learning rate 104, and test
time threshold T = 0.8. Training is for 85 iterations (Section 3.4).

3) Baselines. For transparency and comparability, the baselines are organized into two families
under a uniform evaluation interface: Rule-based: sFuzz [28], SmartCheck [29], Osiris [30], Oyente [31],
Mythril [32]; Learning-based: LineVul [33], GCN [34], TMP [35], AME [36], Peculiar [37], CBGRU [3§],
CGE [39]. All experiments follow the configurations specified in the original works.

4) Splits and protocol. A 60/20/20 train/validation/test split is used. The thresholds are chosen
during validation and fixed during testing. Each experiment uses five random seeds; the means are
reported.

5) Metrics. Precision, recall, and F; follow the standard definitions and are not repeated here. For
completeness, F, and Fowlkes—-Mallows (FM) are reported as deterministic functions of (P, R).

4.3. End-to-End Results

Table 1 reports per class and macro P/R/F;. The right block adds F, and FM calculated from
(P,R). On a macro-average, the proposed method reaches Recall = 89.37%, Precision = 91.02% and F
= 90.18%, improving over CGE by +3.03, +4.40 and +3.71 points. Each class F, and FM show the
same trend, with the highest gains in RE.

Table 1. Detection results by method. Columns 2-13 report per-class recall (R), precision (P), and F; for Reentrancy,
Timestamp, and Integer Overflow, with macro-averaged P/R/F; (cols. 11-13). The three right-hand columns
show the F,/FM class calculated from (P, R).

Methods Reentrancy Timestamp Integer Overflow Macro Avg E/FM

R P F R P R R P F R P F RE TD 10
sFuzz 13.99 10.71 12.13 28.05 24.73 26.29 25.66 27.70 26.64 2257 21.05 21.69 13.18/12.24 27.32/26.34 26.04/26.66
SmartCheck 17.24 46.86 25.21 78.81 47.65 59.39 69.79 41.35 51.93 55.28 4529 4551 19.73/28.42 69.69/61.28 61.35/53.72
Osiris 62.82 39.91 48.81 53.65 59.85 56.58 61.33 41.79 49.71 59.27 47.18 51.70 56.35/50.07 54.79/56.67 56.09/50.63

Oyente 63.20 45.08 52.62 57.01 59.17 58.07 58.13 58.53 58.33 69.45 54.26 56.34 58.50/53.38 57.43/58.08 58.21/58.33
Mythril 76.00 43.22 55.10 50.00 58.05 53.73 70.73 68.73 69.72 65.58 56.67 59.52 65.99/57.31 51.43/53.87 70.32/69.72

LineVul 72.84 83.57 77.84 65.80 88.90 75.63 73.42 7545 7442 70.69 82.64 7596 74.76/78.02 69.41/76.48 73.82/74.43

GCN 74.37 73.70 74.03 79.25 74.03 76.55 71.02 68.61 69.79 74.88 72.11 73.46 74.24/74.03 78.15/76.60 70.52/69.80
T™MP 76.16 7626 76.21 74.52 78.36 76.39 68.58 71.62 70.07 73.09 75.41 74.22 76.18/76.21 75.26/76.42 69.17/70.08
AME 79.71 81.31 80.50 82.24 80.98 81.61 69.48 71.75 70.60 77.14 78.01 77.57 80.02/80.51 81.98/81.61 69.92/70.61

Peculiar 80.53 85.39 82.89 87.94 87.60 87.77 83.72 84.23 83.97 84.06 85.74 84.88 81.46/82.92 87.87/87.77 83.82/83.97
CBGRU 81.70 85.16 83.39 81.68 81.51 81.59 79.48 80.29 79.88 80.95 82.32 81.62 82.37/83.41 81.65/81.59 79.64/79.88
CGE 86.78 83.83 85.28 87.39 89.09 88.23 84.86 86.95 85.89 86.34 86.62 86.47 86.17/85.29 87.72/88.24 85.27/85.90

Proposed 90.27 92.34 91.29 90.38 91.54 90.95 87.45 89.17 88.30 89.37 91.02 90.18 90.68/91.30 90.61/90.96 87.79/88.31

4.4. Low-FPR Sensitivity

1) Definition. Let 7= € (0,1) denote the prevalence of positives, and let R and P denote recall
(true positive rate, TPR) and precision at a fixed operating threshold. By standard confusion-matrix
relations,

1

P= FPR, =
7R+ (1—_n) FPR, . 1-n

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

8 of 12

For a target false-positive budget « € (0,1), the low-FPR normalized sensitivity[40] is defined as the
vertically normalized partial ROC area (pAUC), i.e., the average TPR on [0, «]:

R (®) = %/O“ TPR(u) du € [0,1].

2) Attainable lower bound under ROCCH. Under the ROC convex-hull model (allowing ran-
domized thresholds so that points on chords between ROC points are attainable), the least-favourable
concave, nondecreasing ROC consistent with the origin and the observed point (FPR,, R) is the chord
from (0,0) to (FPR,, R) followed by the horizontal ray at level R. Substituting this piecewise-linear
ROC into the definition of low-FPR normalized sensitivity yields the closed-form attainable lower

bound R
4
2L < FPR
<2 > FPR,’ =T

lower
HTpR (&) =
FPR
R(l - “*>, « > FPR,,

which is continuous at « = FPR, with value R/2. Reported values are leOI?I’{er(uc) x 100%.

3) Evaluation protocol. Unless otherwise stated, the prevalence is fixed at 7t = 0.05 for calculating
the false positive rate. For each method and class, FPR, is determined using the relationship between
(P,R, ), and plower(a) is derived from the attainable lower bound definition at the budgets a €
{0.01,0.05,0.10}. This procedure requires only (P, R, 7r) at the reported operating point and does not
assume access to unobserved ROC segments.

Figure 4 plots p!9We™(a) versus the FPR budget a. The vertical dashed lines mark a €
{1%,5%,10%}. For a < 5%, the Proposed method attains the highest low-FPR normalized sen-
sitivity across all classes. Ata € {1%,5%,10%}, the performance margin is relative to the strongest

baseline,

P d li
Ae) = prpr (%) — max pice(a).

On average across RE, TD, and IO, the gains span 11.82-54.91 at 1% poisoning, 4.97-40.09 at 5%, and
3.95-31.96 at 10%, with improvements decreasing as the poisoning ratio grows. The curve is monotone
nondecreasing in & and upper-bounded by R for each method and class, consistent with the attainable
lower bound definition.

Reentrancy (RE) Timestamp (TD) Integer Overflow (IO)
100 —— T T 100 — T T 100 —— T T
| | | | | |

o | | | |
§ 80 |- ! 1 ] 80 |- ! | 80 |- !
© | M ! [ !

i ] , s
& I | I | | 1 -
- 60 |- 1 | 60 |- 1 | 60 |- L o
=3 | | | 1
C\E’ | 1 | | |

| | | |

- I

3 [ - — -
1 40 : ‘ — Ours 40 ‘\ I — Ours 40 1‘ : — Ours
= ! ! — CGE : \ — CGE : | — CGE
g 20 I I — Peculiar 20 I | — Peculiar 20 | — Peculiar
‘23 : : -~ CBGRU p : —— CBGRU : : -~ CBGRU

| — Mythril | | — Mythril | | —— Mythril

0 L l l L l 0 L l l L l 0 L l l L l
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
FPR budget a (%) FPR budget o (%) FPR budget o (%)

Figure 4. Class-wise low FPR sensitivity (lower limit) at prevalence 7 = 5%. The ordinate is the average
normalized TPR (%) above [0, a]. The vertical stripes mark a € {1%, 5%, 10%}.

4.5. Visual Diagnostics

Figure 5 couples F; bars with empty recall and precise markers. The tight marker co-location near
the bar tip indicates a well-calibrated threshold. The gaps reveal asymmetric errors. The proposed
method is the rightmost in all classes and shows minimal gaps. CGE is close but loses recall on RE.
Peculiar is precisely biased. CBGRU suppresses the recall. Rule-based tools trail.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

9of12
Reentrancy (RE) Timestamp (TD) Integer Overflow (1I0)
‘ T T T T 1 T T
Mythril | O A o B oAn 7.9]
3 o Recall
s A Fy (bar tip)
CGE 2o = @ a1
| | L | | | | | J
40 60 80 10040 60 80 10040 60 80 100
Score (%) Score (%) Score (%)

Figure 5. Bars represent F;. Hollow circles and squares indicate recall and precision. The proposed method is
consistently rightmost with aligned markers.
4.6. Fusion and Ablations

The inputs and ablations of the single view are in Table 2. AST-only, CFG-only, and DFG-only
are weaker than fusion. The removal of GraphCodeBERT affects RE and TD most. The removal the
matcher damages all classes. Replacing the fused graph with DFG-only reduces the results. Fusion
adds context. Semantics of the encoder help. The cross-graph matching focuses on evidence.

Table 2. Single-view inputs and ablations on three vulnerabilities.

Methods Reentrancy Timestamp Integer Overflow

R(%) P(%) Fi(%) R(%) P(%) Fi(%) R(%) P(%) Fi(%)
AST-only 82.19 86.23 84.16 8247 85.68 84.04 80.34 83.75 82.00
CFG-only 83.45 86.78 85.08 83.19 8527 84.22 81.27 83.53 82.39
DFG-only 84.56 88.34 86.41 84.34 87.12 8571 82.14 8522 83.65
Proposed (DFG only) 84.56 88.34 86.41 8434 87.12 8571 82.14 8522 83.65
Proposed (no pretrained encoder) 80.58 85.12 82.78 81.22 85.89 83.49 79.34 83.62 81.42
Proposed (no matcher) 82.19 83.45 82.82 82.67 8423 8344 8148 8227 81.87
Proposed (full) 90.27 92.34 91.29 90.38 91.54 90.95 87.45 89.17 88.30

Notation: “no pretrained encoder” removes the pretrained code encoder; “no matcher” removes cross-graph matching.

4.7. Uncertainty and Limits

Stratified bootstraps (1,000 resamples) are used for macro F; and low-FPR sensitivity, and pairs
tests vs. CGE support statistical significance. The main threats include label noise, split leakage
through shared libraries, and data distribution. The use of five random seeds and validation thresholds
helps reduce bias, but external validity depends on future data. Overall, the results are consistent
in tables and figures: multi-graph fusion, pre-trained encoder, and cross-graph matching provide
complementary contributions, and the observed gains persist under limited false positive budgets.

5. Conclusion and Future Work

This work introduces a contract-graph vulnerability detection framework that combines Abstract
Syntax Trees (AST), Control-Flow Graphs (CFG), and Data-Flow Graphs (DFG) into a typed, guided
multigraph, couples a graphical-aware encoder with a cross-graph matcher, and applies a threshold
decision rule fixed by validation. On SmartBugs Wild, the framework achieved a macro F; of 90.18%
over reentry, timestamp dependency and integer overflow /underflow, surpassing strong Rule-based
and Learning-based baselines. The deployment-aligned criteria, including Matthews correlation
coefficient (MCC) for robustness under class imbalance, partial AUROC in low-FPR bands (pAUROC)
for budgeted false positives, and calibration metrics (ECE/Brier) for probability reliability, show
further improvements in discrimination and confidence alignment.

Two limitations suggest concrete next steps. First, potential temporal drift and label noise in
public organizations may limit the availability of distributions; future evaluations should adopt

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

10 of 12

rolling, time-sharing standards with labeled judgments and report MCC, pAUROC at low FPR,
and calibration before and after adaptation. Second, a static, single-contract abstraction captures
environment- and context-dependent uses; enriching the graph with inter-contract call structure and
selective dynamic evidence (e.g., symbolic execution traces or fuzzing witnesses), aligning objectives
to low-FPR operating points (e.g., partial AUC-based or cost-sensitive losses), and expanding graph
retrieval by closest approximate neighbors with subgraph-level attribution constitute promising
directions towards a more robust, interpretable, and deployable detector.

References

1. Ivanov, N., C. Li, Q. Yan, Z. Sun, Z. Cao, and X. Luo. 2023. Security threat mitigation for smart contracts: A
comprehensive survey. ACM Computing Surveys 55(14s): 326:1-326:37.

2. Tsai, C.-C., C.-C. Lin, and S.-W. Liao. 2023. Unveiling vulnerabilities in DAO: A comprehensive security
analysis and protective framework. In Proceedings of the 2023 IEEE International Conference on Blockchain
(Blockchain 2023), 151-158. IEEE.

3.  Wu, H, Q. Yao, Z. Liu, B. Huang, Y. Zhuang, H. Tang, and E. Liu. 2024. Blockchain for finance: A survey.
IET Blockchain 4(2): 101-123.

4. Li, S., Y. Zhou, J. Wu, Y. Li, X. Liu, J. Zhou, and Y. Zhang. 2023. Survey of vulnerability detection and defense
for Ethereum smart contracts. IEEE Transactions on Network Science and Engineering 10(5): 2419-2437.

5. Qiu, F; Z. Liu; X. Hu; X. Xia; G. Chen; X. Wang. 2024. Vulnerability Detection via Multiple-Graph-Based
Code Representation. IEEE Transactions on Software Engineering 50(8), 2178-2199. IEEE.

6. Ding, H., Y. Liu, X. Piao, H. Song, and Z. Ji. 2025. SmartGuard: An LLM-enhanced framework for smart
contract vulnerability detection. Expert Systems with Applications 269: 126479.

7. Luo, F; R. Luo; T. Chen; A. Qiao; Z. He; S. Song; Y. Jiang; S. Li. 2024. SCVHunter: Smart Contract
Vulnerability Detection Based on Heterogeneous Graph Attention Network. In Proceedings of the 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE 2024),170:1-170:13. ACM/IEEE.

8.  Chen, D.; L. Feng; Y. Fan; S. Shang; Z. Wei. 2023. Smart contract vulnerability detection based on semantic
graph and residual graph convolutional networks with edge attention. Journal of Systems and Software 202,
111705. Elsevier.

9. Cai, J.; B. Li; J. Zhang; X. Sun; B. Chen. 2023. Combine sliced joint graph with graph neural networks for
smart contract vulnerability detection. Journal of Systems and Software 195, 111550. Elsevier.

10. Zhen, Z.; X. Zhao; J. Zhang; Y. Wang; H. Chen. 2024. DA-GNN: A smart contract vulnerability detection
method based on Dual Attention Graph Neural Network. Computer Networks 242, 110238. Elsevier.

11. Cao, S; X. Sun; X. Wu; D. Lo; L. Bo; B. Li; W. Liu. 2024. Coca: Improving and Explaining Graph Neural
Network-Based Vulnerability Detection Systems. In Proceedings of the 2024 IEEE/ACM International Conference
on Software Engineering (ICSE 2024), 155:1-155:13. ACM/IEEE.

12.  Wang, Y,; H. Le; A. D. Gotmare; N. D. Q. Bui; J. Li; S. C. H. Hoi. 2023. CodeT5+: Open Code Large Language
Models for Code Understanding and Generation. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing (EMINLP 2023), 1069-1088. Association for Computational Linguistics.

13. Hussain, S.; M. Nadeem; J. Baber; M. Hamdi; A. Rajab; M. S. Al Reshan; A. Shaikh. 2024. Vulnerability
detection in Java source code using a quantum convolutional neural network with self-attentive pooling,
deep sequence, and graph-based hybrid feature extraction. Scientific Reports 14, 7406. Springer Nature.

14. Jiao, T., Z. Xu, M. Qj, S. Wen, Y. Xiang, and G. Nan. 2024. A survey of Ethereum smart contract security:
Attacks and detection. Distributed Ledger Technologies: Research and Practice 3(3): 1-28.

15.  Chu, H., P. Zhang, H. Dong, Y. Xiao, S. Ji, and W. Li. 2023. A survey on smart contract vulnerabilities: Data
sources, detection and repair. Information and Software Technology 159: 107221.

16. Wei, Z,,]. Sun, Z. Zhang, X. Zhang, X. Yang, and L. Zhu. 2024. Survey on quality assurance of smart contracts.
ACM Computing Surveys 57(2): Article 32.

17.  Vidal, F. R., N. Ivaki, and N. Laranjeiro. 2024. Vulnerability detection techniques for smart contracts: A
systematic literature review. Journal of Systems and Software 217: 112160.

18. Wu, G., H. Wang, X. Lai, M. Wang, D. He, and K.-K. R. Choo. 2024. A comprehensive survey of smart
contract security: State of the art and research directions. Journal of Network and Computer Applications 226:
103882.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

11 of 12

19. Sendner, C., L. Petzi, J. Stang, and A. Dmitrienko. 2023. Smarter Contracts: Detecting vulnerabilities in smart
contracts with deep transfer learning (ESCORT). In Proceedings of the Network and Distributed System Security
Symposium (NDSS 2023), 1-18. Internet Society.

20. Ruaro, N, F. Gritti, R. McLaughlin, I. Grishchenko, C. Kruegel, and G. Vigna. 2024. Not your type! Detecting
storage collision vulnerabilities in Ethereum smart contracts. In Proceedings of the Network and Distributed
System Security Symposium (NDSS 2024), 1-16. Internet Society.

21. Ferreira, J. F, and contributors. 2020-. SmartBugs Wild Dataset: 47,398 smart contracts from Ethereum.
Dataset. Available at: https://github.com/smartbugs/smartbugs-wild

22. Huang, Q., Z. Zeng, and Y. Shang. 2024. An empirical study of integer overflow detection and false positive
analysis in smart contracts. In Proceedings of the 8th International Conference on Big Data and Internet of Things
(BDIOT 2024), 247-251. ACM.

23. PFeist, J., G. Grieco, and A. Groce. 2019. Slither: A static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB),
8-15. IEEE.

24. ConsenSys Diligence Docs. 2025. solc-typed-ast Documentation. Available at: https:/ /consensys.github.io/
solc-typed-ast. Accessed Aug 25, 2025

25. Guo, H,, Y. Yu, and X. Li. 2020. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In
Proceedings of the 2020 IEEE International Conference on Software Testing, Verification and Validation (ICST),
191-201. IEEE.

26. Durieux, T.; Ferreira, J. F.; Abreu, R.; Cruz, P. 2020. Empirical review of automated analysis tools on 47,587
Ethereum smart contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE 2020), 530-541. ACM/IEEE.

27. Hasan, M., N. Kumar, A. Majeed, A. Ahmad, and S. Mukhtar. 2023. Protein-Protein Interaction Network
Analysis Using NetworkX. In Protein—Protein Interactions: Methods and Protocols, 457—467. Springer.

28. Nguyen, T. D., L. H. Pham, ]. Sun, Y. Lin, and Q. T. Minh. 2020. sFuzz: An efficient adaptive fuzzer for
Solidity smart contracts. In Proceedings of the 42nd International Conference on Software Engineering (ICSE 2020),
778-788. ACM/IEEE.

29. Tikhomirov, S., E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov. 2018.
SmartCheck: Static analysis of Ethereum smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB), 9-16. ACM.

30. Torres, C. F,]. Schiitte, and R. State. 2018. Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts. In
Proceedings of the 2018 Annual Computer Security Applications Conference (ACSAC 2018), 664-676. ACM.

31. Luu, L. D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. 2016. Making smart contracts smarter. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), 254-269. ACM.

32. Chee, C.Y. M, S. Pal, L. Pan, and R. Doss. 2023. An analysis of important factors affecting the success of
blockchain smart contract security vulnerability scanning tools. In Proceedings of the 5th ACM International
Symposium on Blockchain and Secure Critical Infrastructure (BSCI 2023), 105-113. ACM.

33. Fu, M., and C. Tantithamthavorn. 2022. LineVul: A transformer-based line-level vulnerability prediction. In
Proceedings of the 19th International Conference on Mining Software Repositories (MSR 2022), 608-620. ACM/IEEE.

34. Zhang, H., G. Lu, M. Zhan, and B. Zhang. 2022. Semi-Supervised Classification of Graph Convolutional
Networks with Laplacian Rank Constraints. Neural Processing Letters 54(4): 2645-2656.

35. Zhuang, Y., Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He. 2021. Smart contract vulnerability detection using
graph neural networks. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI
2020), 3283-3290.

36. Liu, Z, Q. Xu, H. Chen, and W. Zhang. 2021. Hybrid analysis of integer overflow vulnerabilities in Ethereum
smart contracts. Future Generation Computer Systems 119: 91-100.

37. Wu, H,, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X. Mao. 2021. Peculiar: Smart contract
vulnerability detection based on crucial data flow graph and pre-training techniques. In Proceedings of the
32nd IEEE International Symposium on Software Reliability Engineering (ISSRE 2021), Wuhan, China, October
25-28, 2021, 378-389. IEEE.

38. Zhang, R., P. Wang, and L. Zhao. 2022. Machine learning-based detection of reentrancy vulnerabilities in
smart contracts. Future Generation Computer Systems 127: 362-373.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://github.com/smartbugs/smartbugs-wild
https://consensys.github.io/solc-typed-ast
https://consensys.github.io/solc-typed-ast
https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0978.v1

12 0of 12

39. He, L., X. Zhao, and Y. Wang. 2023. GraphSA: Smart Contract Vulnerability Detection Combining Graph
Neural Networks and Static Analysis. In ECAI 2023 (Frontiers in Artificial Intelligence and Applications),
1026-1036. IOS Press.

40. Arp, D, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger, L. Cavallaro, and K. Rieck. 2024.
Pitfalls in Machine Learning for Computer Security. Communications of the ACM 67(11): 104-112.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0978.v1
http://creativecommons.org/licenses/by/4.0/

