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Abstract

This paper proposes a novel pixel-level non-local similarity (PNS)-based reconstruction method for
millimeter-wave interferometric synthetic aperture radiometer (InSAR) imaging. Unlike traditional
compressed sensing (CS) methods, which rely on predefined sparse transforms and often introduce
artifacts, our approach leverages structural redundancies in InSAR images through an enhanced sparse
representation model with dynamically filtered coefficients. This design simultaneously preserves
fine details and suppresses noise interference. Furthermore, an iterative refinement mechanism in-
corporates raw sampled data fidelity constraints, enhancing reconstruction accuracy. Simulation and
physical experiments demonstrate that the proposed InSAR-PNS method significantly outperforms
conventional techniques: it achieves a 1.93 dB average PSNR improvement over CS-based recon-
struction while operating at reduced sampling ratios compared to Nyquist-rate FFT methods. The
framework provides a practical and efficient solution for high-fidelity millimeter-wave InSAR imaging
under sub-Nyquist sampling conditions.

Keywords: millimeter-wave interferometric synthetic aperture radiometer; sparse reconstruction;
compressed sensing; pixel-level non-local similarity; image reconstruction

1. Introduction
The interferometric synthetic aperture radiometer (InSAR) synthesizes an equivalent large aper-

ture through an array of small-aperture antenna elements, overcoming the spatial resolution limitations
inherent in traditional single large-aperture antenna designs and achieving high-resolution real-time
imaging [1–3]. The ability of millimeter waves to penetrate natural obscurants, such as fog and clouds,
enables millimeter-wave InSAR systems to operate in near-all-weather and day-night conditions [4,5].
Additionally, the system’s inherent low observability, stemming from its passive detection principle,
coupled with high sensitivity to metallic objects, makes it critical for modern detection systems. As
a passive imaging technique, millimeter-wave InSAR finds broad applications in remote sensing,
environmental monitoring, and public safety [6–9].

The core principle of InSAR imaging involves acquiring samples of the visibility function (i.e.,
complex cross-correlations between antenna pairs) within the spatial-frequency domain, which consti-
tute sampled spatial spectra. To form the final image, the brightness temperature (BT) distribution
must be reconstructed by inversely transforming these sampled spatial spectra. This reconstruction
achieves high angular resolution determined by the longest baseline, surpassing the diffraction limit
of single-aperture systems and is critical to the overall imaging capability [10,11]. Consequently, BT
image reconstruction constitutes a crucial step in the InSAR imaging process. Under ideal conditions,
the visibility function corresponds to the spatial Fourier transform of the BT distribution. Due to this
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relationship, the Fast Fourier Transform (FFT) is established as the fundamental reconstruction method
for millimeter-wave InSAR imaging [12].

However, practical system implementations face dual technical challenges: on the one hand, the
limited number of antennas results in insufficient sampling in the spatial-frequency domain, failing to
meet the Nyquist sampling criterion; on the other hand, phase errors and system noise can significantly
amplify reconstruction artifacts [13,14]. These two key limitations severely constrain the performance
of traditional reconstruction methods (e.g., FFT) under non-ideal conditions. To mitigate these issues,
various strategies have been proposed in the literature. For instance, Anterrieu et al. [15] described an
algorithm for performing discrete Fourier transform calculations on hexagonal grids and proposed
an interpolation formula to resample data from such grids without introducing aliasing artifacts. In
a separate approach, Zhou et al. [16] introduced an iterative method for BT image reconstruction
from non-uniformly sampled visibility function data. This method combined the conjugate gradient
algorithm with a min-max non-uniform FFT approach to enhance image quality. While these engineer-
ing solutions offer some mitigation of the aforementioned shortcomings, traditional reconstruction
methods (including enhanced FFT and its variants) still suffer from significant image degradation
under high-noise scenarios or conditions of severe undersampling.

Compressed sensing (CS) emerged to address undersampling by exploiting scene sparsity. Based
on the inherent sparsity of InSAR images, CS technology has been successfully applied to InSAR
imaging in recent years [6,17–19]. It enables effective recovery of BT images from insufficient visibility
samples, reducing both receiver count and data requirements while maintaining high resolution
compared to FFT [17,18]. However, conventional CS algorithms degrade performance by converting
2D images into 1D vectors for sparse recovery, neglecting the inherent high-dimensional characteristics
and structural priors of InSAR data.

To better exploit these high-dimensional priors, non-local self-similarity (NSS) techniques
have been introduced. NSS improves upon CS by aggregating similar image patches, leverag-
ing image correlations to achieve lower reconstruction errors and superior visual quality under
undersampling [20]. Nevertheless, NSS operates at the patch level, inherently limiting its ability to
preserve fine details due to coarse granularity. Recognizing pixels as fundamental image constituents,
Hou et al. developed a pixel-level NSS method for magnetic resonance imaging (MRI), employing row-
matching similarity modeling to enhance reconstruction fidelity [21]. Notably, while pixel-level NSS
has demonstrated cross-domain applicability in InSAR mixed noise suppression [22], its potential for
direct InSAR image reconstruction from undersampled data remains unexplored. Building on this gap,
we pioneer the integration of pixel-level non-local similarity (PNS) into a dedicated millimeter-wave
InSAR reconstruction framework, establishing the novel InSAR-PNS method. The main contributions
are summarized as follows:

1) Incorporation of PNS into millimeter-wave InSAR reconstruction framework, establishing
a joint high-dimensional sparse representation model. This approach enhances structural
feature extraction through pixel-level similarity mining, addressing detail-preservation
limitations inherent in patch-based methods.

2) Development of an adaptive thresholding strategy for sparse coefficients, which dynam-
ically adjusts parameters based on noise distribution during reconstruction stages. This
design enhances robustness against complex noise interference while balancing detail preser-
vation and noise suppression.

3) Implementation of an iteratively guided reconstruction algorithm that integrates high-
dimensional feature learning from initial BT images with raw sampled data fidelity con-
straints, overcoming error accumulation limitations in conventional approaches.

4) Validation through simulations and physical experiments, confirming the method’s efficacy
and applicability to complex environments in millimeter-wave InSAR imaging.

The rest of this article is organized as follows. Section 2 introduces the basic theoretical principles
of millimeter-wave InSAR imaging. Section 3 presents the details of the proposed InSAR-PNS recon-
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struction method. The simulation and physical experiments are compared and discussed in Section 4.
In addition, Section 5 provides the conclusions.

2. Theoretical Principles of Millimeter-Wave InSAR Imaging
Millimeter-wave InSAR imaging technology is based on the well-known Van Cittert-Zernike

theorem, and its core component is a binary interferometer [23,24]. The InSAR imaging system utilizes
a spatially separated antenna array to form a series of antenna pairs and measures millimeter-wave
radiation within the target space and performs complex correlation operations on the collected signals
to obtain the visibility function. Subsequently, high-resolution millimeter-wave BT distribution images
are reconstructed from the visibility function using reconstruction algorithms such as the FFT method
or G-matrix method [25]. The millimeter-wave InSAR imaging processing flow can be shown as
Figure 1.

Figure 1. Schematic of millimeter-wave InSAR imaging.

Assume that the radiation source S in the radiation scenario shown in Figure 1 is discretized
into M point-source targets, denoted as ∆Sm. Let the distances between the radiation source ∆Sm and
antennas Ac and Al be Rc

m and Rc
m, respectively. According to [26,27], the visibility function of the

antenna pair (Ac - Al) can be expressed as

Vc,l =
〈

Ec(Rc
m, t) · E∗

l(Rl
m, t)

〉
=

M

∑
m=1

√
DcDl
4π

Fc(xm, ym)Fl
∗(xm, ym)TB(xm, ym) · rc,l(−(

Rc
m − Rl

m
λ0

))e−j2π(
Rc

m−Rl
m

λ0
)

(1)

where TB(xm, ym) is the BT distribution. F#(xm, ym) is the normalized antenna pattern. rc,l is the
fringe-washing function taking into account the spatial decorrelation effect of the receiver frequency
response, which is approximately equal to 1 for the narrow bandwidth receiver. λ0 is the operating
wavelength.

Defining the spatial-frequency coordinates
(

u = Xc−Xl
λ0

, v = Yc−Yl
λ0

)
and replacing the rectangular

coordinates with polar coordinates
(
ξ = xm

R , η = ym
R
)
, Equation (1) can be rewritten as

V(u, v) =
∫∫

ξ2+η2≤1

TI(ξ, η)e−j2π(uξ+vη)dξdη (2)

where TI(ξ, η) =
√

DcDl
4π

Fc(ξ,η)Fl
∗(ξ,η)√

1−ξ2−η2
rc,l(−

uξ+vη
f0

, )TB(ξ, η).

According to Equation (2), when the requirement on imaging accuracy is not stringent, the most
basic BT image reconstruction can be directly achieved by taking an inverse Fourier transform on
V(u, v). Considering the observation errors and InSAR receiving noise, the basic signal model for
InSAR imaging can be expressed as
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V(u, v) = F [T(ξ, η)] + ε (3)

where ε represents the observation errors and receiving noise.
The reconstruction method that directly performs an inverse Fourier transform on V(u, v) often

requires highly rigorous calibration. Otherwise, its performance will degrade due to the presence of
observation errors and receiving noise ε. In order to minimize the interference of ε with InSAR imaging,
an alternative reconstruction method is to use a generalized shock function operator, i.e., the G-matrix
model instead of the Fourier transform relationship in Equation (3). The visibility function and BT are
represented as vectors while taking into account the errors and noise ε [28]. Then the approximate
discrete linear system of the InSAR image reconstruction model can be rewritten as

VM×1 = GM×NTN×1 + EM×1 (4)

where T ∈ RN denotes the BT image to be recovered. G ∈ RM×N is the generalized shock function
operator. V ∈ RM is the actual undersampled visibility function data. E ∈ RM is the error and
receiver noise.

3. InSAR-PNS Reconstruction Method
This section outlines the theoretical foundations of PNS, introduces the proposed InSAR-PNS

reconstruction framework, and specifies the implementation methodology.

3.1. Principle of PNS

Millimeter-wave BT images exhibit inherent low-rank characteristics [29]. From the perspective
of prior knowledge, pixels within the image demonstrate strong spatial correlations. A single pixel
existing independently lacks practical significance; instead, adjacent pixels collectively constitute
textural or structural features. Such structures are extensively distributed across various regions of the
image. For instance, regions exhibiting periodic repetition or texture characteristics contain substantial
redundant structural information.

The NSS prior plays a pivotal role in fields such as texture synthesis [30,31], image denoising [32–34],
super-resolution [35,36], and image reconstruction [21]. In denoising applications, the non-local means
(NLM) algorithm pioneered NSS utilization, estimating true pixel values through weighted averaging
of similar patches. This approach effectively preserves edges and textures while suppressing noise.
Patch-level NSS was further advanced in the block-matching and 3D filtering (BM3D) algorithm [33]
and subsequent studies [34]. While classical NLM and BM3D exploit patch-level self-similarity, they of-
ten disregard intra-patch pixel variations. Given that pixels constitute the fundamental units of images
and exhibit intrinsic correlations within patches. Therefore, based on the utilization of the similarity
prior at the patch-level, we can further locate and match similar pixels to more comprehensively utilize
the similarity prior information, thus achieving pixel-level image processing.

The workflow for identifying non-local similar pixels is as follows: First, extract non-local similar
patches and vectorize each patch into column vectors. Then, combine all the column vectors to
construct a similar-patch matrix. For each row in the matrix, use the patch-level NSS prior to establish
inherent correlations. Subsequently, compute Euclidean distances between matrix rows to locate
non-local similar pixels. Figure 2 provides a schematic overview.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 July 2025 doi:10.20944/preprints202507.2315.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2315.v1
http://creativecommons.org/licenses/by/4.0/


5 of 16

Patch 
Matching

Row 
Matching

Similar Patches Similar Pixel Groups

Vectorizing

︙

︙

Figure 2. Schematic diagram and illustration of non-local similar pixel grouping.

For an input image Tn ∈ Ra×b, the procedure for identifying non-locally similar pixels comprises
four stages:

1) Non-local patch extraction
Decompose Tn into L overlapping patches of size (w × w)

tl = PlTn (5)

where tl ∈ Rw×w, l ∈ {1, · · · , L}, and Pl represents the patch extraction operator.
2) Patch matching
For a reference patch tl,i (yellow-framed in Figure 2), identify similar patches (purple-framed)

within a C × C search window (blue-framed) by minimizing the Euclidean distance:

Dl,ij =
∥∥∥tl,i − tl,j

∥∥∥
2

(6)

Select the d − 1 most similar patches. Vectorize each patch ( w × w → w2 × 1 ) and concatenate
them with the reference patch to form a patch-similarity matrix:

Tl = [tl,1, . . . , tl,d] =


t1,1
l . . . t1,d

l
...

. . .
...

tw2,1
l · · · tw2,d

l

 ∈ Rw2×d (7)

3) Row matching
For each row vector ti

l in the patch-similarity matrix Tl (representing geometrically corresponding
pixels across patches), compute Euclidean distances to other rows:

dij
l =

∥∥∥ti
l − tj

l

∥∥∥
2

(8)

Select g rows with minimal distances to form a pixel-similarity submatrix:
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Tg
l =


ti1,1
l . . . ti1,d

l
...

. . .
...

t
ig ,1
l · · · t

ig ,d
l

 ∈ Rg×d (9)

where
{

i1, . . . , ig
}
⊂

{
1, . . . , w2}, l ∈ {1, · · · , L}.

4) Iteration
Repeat steps 2-3 for all reference patches.

3.2. InSAR-PNS Reconstruction Model

In InSAR imaging, although the FFT algorithm can achieve BT image reconstruction, it requires
full visibility function sampling, necessitating a full populated antenna array. This constraint severely
limits the practical application of millimeter-wave InSAR imaging. CS-based imaging algorithm can
reconstruct images from undersampled visibility function, which can be measured with a smaller
number of antennas. The CS reconstruction model is formulated as:

min
∥∥T̂

∥∥
1 s.t. V = GΨT̂ + ε (10)

where T̂ = Ψ−1 ·T represents the sparse vector of the BT image T, which needs to be recovered from the
sparse basis matrix Ψ. Additionally, G is the observation matrix, representing the sampling operation
on the BT image T under various sampling modes. Moreover, V denotes the actual undersampled
data of the visibility function.

Traditional CS-based InSAR reconstruction techniques utilize the sparsity of millimeter-wave
InSAR images. These methods employ predefined sparse transforms (e.g., wavelet, discrete cosine
transform) to represent 2D InSAR images as vectors and complete the reconstruction in the 1D data
space. The final outputs are reshaped to match original image dimensions. This means that CS-based
reconstruction methods cannot utilize high-dimensional signal features and prior knowledge, often
fail to provide sufficient sparse representations for the images to be reconstructed. From a Bayesian
perspective, sparsity regularization is crucial importance in CS-InSAR imaging. To comprehensively
capture high-dimensional priors in BT images, we design a PNS-based sparsifying operator A(·) and
formulate the InSAR-PNS reconstruction model:

T̂ = min
T

∥A(T)∥1︸ ︷︷ ︸
sparsity

+λ ∥V − GT∥2
2︸ ︷︷ ︸

data fidelity

(11)

where λ is the regularization parameter, which is used to balance sparsity (ℓ1 - norm) and data fidelity
(ℓ2 - norm).

The PNS-derived operator A(·) enforces structural sparsity constraints through pixel-level corre-
lations. This model allows us to establish a general formula to balance the sparsity of these patches
based on data consistency and provides the feasibility of integrating prior information learned from
undersampled data, thus optimizing the sparse representation of the images to be reconstructed.

3.3. InSAR-PNS Reconstruction Algorithm

As Figure 3 shows, the PNS-based InSAR image reconstruction framework comprises two parts:
pixel-level non-local sparsification optimization (PNSO) and iterative refinement (IR). Given undersam-
pled measurement data V ∈ RM, we first apply zero-padding to generate full-sized spatial-frequency
domain data V0. Subsequently, by performing an inverse FFT on V0, we obtain a preliminarily recon-
structed BT image T0.
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Figure 3. Workflow of the InSAR-PNS reconstruction framework.

However, this initial reconstruction typically suffers from aliasing artifacts and noise. Therefore,
to improve reconstruction quality and exploit pixel-level self-similarity in the image, we introduce
PNS before transformation. This allows construction of an adaptive sparsifying transform operator
that facilitates pixel-level non-local coefficient updates, generating optimized images T′

k(k = 1, · · · , K).
This procedure can not only recover undersampled signals, suppress artifacts, but also maintain image
sparsity. Next, FFT converts T′

k to spatial-frequency domain data Vk. Crucially, during each iteration,
we update the k-th reconstruction’s frequency components Vk in the originally zero-padded positions
of V0, ensuring data fidelity at sampled locations. The visibility function update during iteration k is
formulated as:

Vk =

vk if v0 = 0,

v0 if v0 ̸= 0.
(12)

PNS sparse optimization is primarily based on lifting Haar wavelet transform (LHWT) and
performs adaptive double hard-thresholding on sparse coefficients of the pixel similarity matrix. For
the initial InSAR BT image T0 requiring optimization, this process follows the pixel similarity matrix
search procedure detailed in Section 3.1. Non-local patches tl are first extracted. Subsequently, within a
C × C local search window, the d − 1 most similar patches are identified to construct a patch similarity
matrix Tl . For each row in Tl , g similar rows are selected to form a pixel similarity matrix Tg

l , Then, the
LHWT is applied to Tg

l to generate sparse coefficients:

Cg
l = H

(
Tg

l

)
(13)

where H(·) represents the LHWT. Apply the first hard-thresholding on Cg
l :
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Ĉg
l (x, y) =

{
Cg

l (x, y) Cg
l ≥ βσt

0 Cg
l < βσt

(14)

where x ∈ {1, . . . , g}, y ∈ {1, . . . , d} denote the row and column indices of Cg
l ; β represents the filtering

coefficient; and σt is the threshold parameter. During iterations, σt decays logarithmically:
σ
(k)
t = σ0/ log(k + 1)

σ0 = 1
L

L
∑

l=1

1
w2(g−1)

g
∑

j=2

w2

∑
i=1

√
1
d

(
dij

l

)2 (15)

where log(·) denotes the natural logarithm, σ0 represents the noise variance estimation of the initial
image T0, and k is the iteration index, thereby progressively reducing hard-thresholding intensity.
Early iterations primarily suppress dominant artifacts, while later stages focus on eliminating residual
noise and preserving textural details.

According to wavelet theory [37], the coefficients in the last two rows (excluding column 1) of
the coefficient matrix correspond to high-frequency components dominated by artifacts and noise.
Consequently, we apply a secondary hard-thresholding operation:

C̃g
l (x, y) =

{
Ĉg

l (x, y)
0 (x = g − 1, g)&(y ̸= 1)

(16)

Subsequently, apply the inverse LHWT to C̃g
l :

T′g
l = H−1

(
C̃g

l

)
(17)

where H−1(·) denotes the inverse LHWT operator.
Finally, the filtering operations are applied to all pixel-similarity matrices. Aggregating the

optimized pixels yields a refined BT image T′
k. The detailed procedures of PNSO and IR algorithms are

provided in Tables 1 and 2, respectively.

Table 1. PNSO algorithm workflow.

Input: BT image Tk for optimization

Output: Optimized BT image T′
k

1: Divide Tk into overlapping L patches (Equation (5))
2: for (l = 1 to L) do
3: Perform patch matching via Equation (6) to construct Tl (Equation (7))
4: for (i = 1 to w2) do
5: Find similar rows via Equation (8) to form Tg

l (Equation (9))
6: Apply LHWT to Tg

l (Equation (13))
7: Implement dual hard-thresholding on coefficients (Equations (14) - (16))
8: Compute T′g

l via Equation (17)
9: end for

10: end for
11: Aggregate optimized pixels to output T′

k
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Table 2. IR algorithm workflow.

Input: Undersampled spatial-frequency data V

Output: Reconstructed millimeter-wave InSAR image T

1: Apply zero-padding to generate V0
2: Compute initial BT image T0 = F−1(V0) (Equation (3))
3: for (k = 1 to K) do
4: Apply PNSO algorithm to obtain the refined T′

k
5: Compute Vk = FFT(T′

k)
6: Update zero-filled positions in V0 with Vk via Equation (12)
7: Reconstruct Tk = F−1(Vk)
8: end for
9: Output T = TK

4. Experimental Results and Discussion
This section validates the efficacy of the proposed InSAR-PNS reconstruction method through

simulated and physical imaging systems. Comparative analysis includes the traditional modified fast
Fourier transform (MFFT) and CS-based reconstruction. Experiments were conducted in MATLAB
2020a on a workstation with an Intel® Core™ i7-10750H CPU and 16 GB RAM.

4.1. Simulation Platform Experiments

An InSAR imaging simulation model was implemented to emulate the millimeter-wave propaga-
tion and data acquisition chain. As depicted in Figure 1, this model comprehensively simulates the
entire imaging process, including target radiation, antenna array visibility sampling, cross-correlation
computation between antenna pairs, visibility function generation, and BT image reconstruction.

The simulation process started with millimeter-wave radiation source modeling, where each
discrete point source was derived from two ideal scenes, as shown in Figures 4(a) and 5(a). The
image dimension is 100×100 pixels, and the gray value of each pixel represents the intensity of the
radiation emitted from a discrete point source. Subsequently, in-phase and quadrature(IQ) signals were
acquired through coherent integration across the simulated scene. According to Equation (1), complex
cross-correlation was applied to compute the visibility function V. Following phase compensation of
the visibility data, the calibrated visibility function Vm was generated. The BT image was ultimately
reconstructed from Vm using different inversion algorithms.

The system operates at 100 GHz (λ = 3 mm) and employs a T-shaped antenna array configu-
ration comprising 150 elements. The inter-element spacing was set to 12 mm (4λ), yielding a 1.2 m
equivalent synthetic aperture. The specific simulation parameters are shown in Table 3. The MFFT
method reconstructs BT images using the full set of visibility function samples, as demonstrated in
Figures 4(b) and 5(b). In contrast, the CS and InSAR-PNS methods employ reduced sampling rates of
90% to 40%. Specifically, Figures 4(c) and 5(c) present reconstruction results for both methods at 80%
sampling rate, while Figures 4(d) and 5(d) correspond to results at 50% sampling rate.
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Table 3. Parameter configuration of InSAR imaging simulation system.

Simulation Parameters FFT Reconstruction CS and InSAR-PNS
Reconstruction

Center frequency 100GHz 100GHz
Antenna array size 100 x 100 (90-40) x (90-40)
Receiver number 150 135-60

Inter-element spacing 12mm 12mm
Image distance 6m 6m
Image pixel size 100 x 100 100 x 100

image gray 0-255 0-255

(a) (b) (c) (d)

Figure 4. Comparative reconstruction performance on simulated data: (a) Original simulated BT image; (b)
MFFT reconstruction with full sampling; (c) CS reconstruction with 80% sampling; (d) Proposed InSAR-PNS
reconstruction with 80% sampling.

(a) (b) (c) (d)

Figure 5. Comparative reconstruction performance on simulated data: (a) Original simulated BT image; (b)
MFFT reconstruction with full sampling; (c) CS reconstruction with 50% sampling; (d) Proposed InSAR-PNS
reconstruction with 50% sampling.

Comparative analysis of the reconstruction results in FigureS 4 and 5 demonstrates that the
proposed InSAR-PNS method (FigureS 4(d) and 5(d)) outperforms both the MFFT (Figures 4(b) and
5(b)) and CS (Figures 4(c) and 5(c)) methods in terms of visual clarity, contour preservation, and target
detail representation. The MFFT method exhibits performance degradation due to constraints from
discrete and finite antenna array sampling, while the CS method, limited by fixed sparse basis, fails
to learn high-dimensional features of BT images. Notably under 50% sampling, CS method shows a
significant quality deterioration (Figure 5(c)), whereas the InSAR-PNS method maintains high-fidelity
BT images with preserved fine details (Figure 5(d)) through its iterative adaptive learning mechanism.

During practical imaging, noise interference and measurement errors are inevitable, primarily
caused by hardware inconsistencies, antenna position deviations, and system noise. To simulate
complex imaging environments, we employ zero-mean Gaussian white noise with varying variances
σ2 to characterize interference factors. To evaluate the robustness of the InSAR-PNS method, Gaussian
white noise with varying intensities was added to the visibility function samples corresponding to the
BT image shown in Figure 5(a), simulating actual noise-corrupted imaging processes. Figure 6(a)-(c)
respectively display BT images reconstructed under low-intensity interference (σ2 = 0.01) using: (a)
MFFT with full visibility function samples; (b) CS with 80% visibility samples; (c) InSAR-PNS with
80% visibility samples. Figure 6(d)-(f) respectively show BT images reconstructed under high-intensity

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 July 2025 doi:10.20944/preprints202507.2315.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2315.v1
http://creativecommons.org/licenses/by/4.0/


11 of 16

interference (σ2 = 0.1) using: (d) MFFT with full visibility samples; (e) CS with 80% visibility samples;
(f) InSAR-PNS with 80% visibility samples.

(a) (b) (c)

(d) (e) (f)

Figure 6. Comparative reconstruction performance under simulated interference conditions: (a) MFFT, (b) CS,
and (c) proposed InSAR-PNS with low-intensity interference; (d) MFFT, (e) CS, and (f) proposed InSAR-PNS with
high-intensity interference.

Analysis the reconstruction results in Figure 6 demonstrates that the MFFT output experiences
severe noise degradation, nearly failing to preserve target contour information (Figure 6(d)) due to its
lack of noise suppression capability and susceptibility to the Gibbs phenomenon. Conversely, both
CS and InSAR-PNS reconstructions exhibit superior visual performance. Specifically, the InSAR-PNS
method retains target contours and provides rich detail while suppressing noise contamination under
strong interference conditions (σ2 = 0.1).

In addition, Figure 7 summarizes the peak signal-to-noise ratio (PSNR) values of MFFT, CS, and
InSAR-PNS under varying sampling rates and noise levels. The data indicate that as the sampling
rate decreases, InSAR-PNS demonstrates superior performance compared to CS. Concurrently, the
PSNR values of all three algorithms decline with increasing noise intensity, reflecting a degradation in
algorithmic performance. This deterioration is primarily attributed to the increasing dominance of
noise components. Although heightened noise intensity poses greater challenges for reconstruction
tasks, the proposed method (InSAR-PNS) consistently outperforms the other algorithms in terms of
performance.

4.2. Physical Imaging System Experiments

In millimeter-wave InSAR imaging research, discrepancies persist between simulation envi-
ronments and actual physical systems. Practical systems are frequently subject to non-ideal con-
straints such as hardware mismatches and environmental noise, leading to deviations in imaging
outcomes from simulation predictions. Consequently, experimental validation using physical plat-
forms becomes imperative.
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Figure 7. Quantitative results (PSNR) of a comparative study on the simulation system. (a) PSNR performance
of CS and InSAR-PNS with different sampling rate. (b) PSNR performance of MFFT, CS, and InSAR-PNS with
different intensity levels of noise.

Leveraging the principles of millimeter-wave InSAR imaging, a two-element interferometer
enables 2D imaging through baseline scanning when imaging speed is not the primary concern.
Owing to its minimalist architecture and cost-effective design, this configuration constitutes a standard
testbed for algorithm verification in millimeter-wave InSAR studies. This work utilizes a T-shaped
mechanically-scanned millimeter-wave InSAR system equipped with a two-element interferometer to
assess the reconstruction performance of the proposed algorithm. Key system parameters are detailed
in Table 4.

Table 4. Main Parameters of the two-Element InSAR imaging system.

System Parameter Value

Operating Frequency 100 GHz
Bandwidth 1 GHz

Number of Antenna Elements 2
Field of View (FOV) 20◦

Angular Resolution 0.3◦

Temperature Sensitivity 2K

The physical implementation of the system is presented in Figure 8. Full spatial baseline sampling
within the observation airspace is achieved through independent displacement of two array elements
along orthogonal horizontal and vertical axes. The correlator receiver integrates two identical 3-mm
wavelength radiometers, each consisting of a receiving antenna, front-end module, intermediate-
frequency (IF) module, and local oscillator (LO) module.

The antenna unit employs two small-aperture conical horn antennas to capture radiation from
the observed scene. The front-end module amplifies received signals and suppresses image band
interference through bandpass filtering. Signals are then downconverted to the IF band by mixing
with a 16.7 GHz LO reference. Within the IF stage, the analog signals are subjected to quadrature
demodulation to generate IQ components, which are forwarded to the digital processing unit. Fol-
lowing Analog-to-Digital Conversion, the digitized I/Q signals undergo cross-correlation to generate
visibility function samples. These samples are transferred to a host computer for storage, processing,
and rendering the reconstructed images using the BT reconstruction algorithm.
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(a) (b) (c) (d)

Figure 8. 100 GHz millimeter-wave InSAR imaging system. (a) Front view: T-shaped antenna array (b) Rear
view: digital control units and host computer (c) Scene 1: vehicle target at 6 m (d) Scene 2: human carrying
semi-concealed metal disk at 3.3 m

Subsequently, the effectiveness of the proposed InSAR reconstruction algorithm was validated
using the scanning imaging system designed in this study. The test configurations are illustrated
in Figures 8(c) and (d): 8(c) depicts the imaging scenario for a vehicle at 6 m under clear-weather
and weak interference conditions, while Figure 8(d) shows the imaging scenario for a human subject
carrying a metallic disc at 3.3 m under cloudy conditions with textile occlusion.

Figures 9 and 10 comparably demonstrate the reconstruction characteristics of different meth-
ods: (a) displays the optical reference images of the targets, and (b) to (d) respectively show the
reconstruction results of MFFT full sampling, CS, and InSAR-PNS 70% sparse sampling.

(a) (b) (c) (d)

Figure 9. Reconstruction performance under clear-sky conditions: (a) Reference optical image; (b) FFT reconstruc-
tion; (c) CS reconstruction; (d) Proposed InSAR-PNS reconstruction.

(a) (b) (c) (d)

Figure 10. Reconstruction performance under partly cloudy conditions with textile occlusion: (a) Reference optical
image; (b) FFT reconstruction; (c) CS reconstruction; (d) Proposed InSAR-PNS reconstruction.

Experimental results indicate that, under both strong and weak interference environments, InSAR-
PNS can achieve superior reconstruction fidelity compared to both MFFT and CS methods. The
method generates smooth-textured images that preserve essential features of BT images, exhibiting
well-defined boundaries with suppressed background noise. This demonstrates that the proposed
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InSAR-PNS method has strong adaptability to complex environments, validating its efficacy and
practical utility in physical millimeter-wave InSAR applications.

5. Conclusions
In this study, we propose a novel InSAR reconstruction method based on pixel-level non-local

similarity (InSAR-PNS), with its reconstruction performance validated through simulations and
practical millimeter-wave InSAR systems. Building upon millimeter-wave InSAR imaging principles,
we introduce pixel-level non-local similarity matching mechanism to construct an enhanced sparse
representation model. This model leverages high-dimensional prior information from non-local
similarity and dynamically optimizes threshold coefficients to effectively preserve image details while
suppressing noise interference. Through iterative refinement design, the algorithm simultaneously
retains raw sampled data to enhance reconstruction accuracy.

Experimental results demonstrate that, compared to traditional FFT methods requiring full sam-
pling without calibration strategies, InSAR-PNS achieves an average PSNR gain of 5.88 dB across
varying noise variances, with advantages amplifying under intensified interference. When bench-
marked against CS reconstruction using fixed sparse dictionaries, InSAR-PNS exhibits an average
PSNR improvement of 1.93 dB across different sampling rates. Both visual evaluation and quantitative
analysis confirm that the proposed InSAR-PNS reconstruction method exhibits superior performance
in improving reconstruction quality and noise suppression, providing a robust solution for millimeter-
wave InSAR imaging in complex environments.
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