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Abstract: The intersection of artificial intelligence (AI) with medical imaging has advanced at an unprecedented
rate over the last decade, enabling the diagnosis of disease, the planning of treatment, and monitoring of patients.
Deep learning, specifically convolutional neural networks and their derivatives, has been employed to interpret
medical images with specialized methods and proven high accuracy in working with complex forms of medical
imaging. This review summarizes the most well-known of deep learning architectures in the implementation of
medical image analysis, including CNNs, U-Net, ResNet, DenseNet, GANs, and transformer architecture-based
models. We discuss the most common applications (e.g., tumor detection, organ segmentation of medical images
and image enhancement) associated with each of the architectures. Even with successful applications of Al
analyses in medical imaging, specific challenges remain that limit adoption of Al tools by the clinical community
that range from lack of annotated data to questions of interpretability and ultimately clinical applicability. We
highlight the current work and future directions intended to mitigate main challenges, thus maximizing the
potential of Al in clinical practice. This article serves as a detailed overview of Al and medical imaging, and will
serve as a deep resource to the reader that wishes to engage in the discussion of Al and its applications in medical

imaging.
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1. Introduction

In the last several years, the expanding intersection of medicine and artificial intelligence (AI)
has brought on unprecedented advancements in medical imaging interpretation and processing.
Deep learning —a series of algorithms based on the structure and operation of the human brain—is
perhaps the most impactful Al extension in this regard. Deep learning has been an impressive agent
for the interpretation of complex visual data, sometimes rivalling or even bettering human experts at
certain diagnostics [1,2].

Medical imaging is an essential component of modern medicine, enabling physicians to
diagnose disease, plan treatment, and monitor recovery. Modalities like MRI, CT, ultrasound, X-rays,
and PET scans generate enormous volumes of data to be read. Traditionally, radiologists read these
images using experience and visual inspection—a time-consuming, error-prone, and unscaleable
process [3,4].

Deep learning reshapes this landscape by allowing computers to learn autonomously patterns
and features from large sets of medical images. Instead of writing rules by hand or extracting features
manually, models such as convolutional neural networks (CNNSs) learn from data directly,
occasionally enhancing the accuracy as well as the efficiency. Such models have been applied to
tumor detection, organ segmentation, anomaly classification, and even image enhancement [5,6].

While their growing use, deep learning models remain beset by several challenges, such as the
existence of limited amounts of labeled data, model interpretability, and integration into clinical
workflows. In this work, we try to provide an overview understandable to the field of how medical
image analysis is being transformed by deep learning. We describe the fundamental architectures of
these models, summarize their uses, and outline the main challenges that remain below [7,8].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2151.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2 vl

2 of 6

2. Medical Image Analysis Architectures in Deep Learning

Deep learning has offered a range of neural network architectures, each applied for a specific
type of task in image analysis. While many were originally developed for natural images, scientists
have adapted them successfully to suit the particular challenges in deep learning for medical
imaging —low data availability, 3D imaging, and pixel-level accuracy [9].

2.1. Convolutional Neural Networks (CNNs)

CNNs are the backbone of most image-based deep models. They are employed for spatial
pattern recognition through convolutional layers and have been broadly used for classification,
feature detection, and also medical image registration [10].

2.2. U-Net and Its Variants

One of the most influential architectures for medical image segmentation is the U-Net. It uses an
encoder-decoder architecture with skip connections, which help preserve fine-grained spatial
information. U-Net is very effective when there is scarce labeled data, a common situation in medical
applications. Versions like 3D U-Net and Attention U-Net extended its usage to volumetric data and
focusing attention on the target areas [5,6,11].

2.3. ResNet and DenseNet

Deeper models such as ResNet (Residual Networks) and DenseNet have been adopted for their
ability to improve training stability as well as model accuracy. ResNet uses skip connections to
reverse the vanishing gradient problem, while DenseNet allows feature reuse through dense
connectivity. They have both been successful in classification tasks as well as feature extractors for
hybrid systems [10,11].

2.4. V-Net

V-Net is a 3D U-Net specifically designed for volumetric segmentation. It uses 3D convolutions
and is best suited for modalities like MRI and CT, which are inherently three-dimensional [9].

2.5. Generative Adversarial Networks (GANs)

GANs have opened up new opportunities for image synthesis and enhancement. In medical
imaging, GANs have been used to reconstruct images, eliminate noise, and even generate synthetic
data for augmenting training datasets. However, their training is often unstable, and their output is
sometimes difficult to interpret for clinical application [12].

2.6. Transformer-based Architectures

As spurred by developments in natural language processing, transformers are increasingly
making their presence known in medical image processing. Models like TransUNet combine the
capacity of U-Net to localize with global contextual modeling via transformers. While promising,
these models have a tendency to require vast amounts of data along with compute-intensive abilities
[13].
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Table 1. Summary of the most prominent deep learning architectures used in medical image analysis, including

their key characteristics, common applications, advantages, limitations, and relevant references.

Common

Architecture Key Characteristics L. Strengths Limitations References
Applications
Uses convolutional Classification Fast trainin Struggles with
assification, ast training, . .
CNN (Classic) layers to extract . . & localization & spatial ~ [1,10]
. detection well-studied ..
spatial features precision

Encoder-decoder  Segmentation Excellent for

ixel-level M fit 1
U-Net with skip (e.g., tumors, pixeievel ay overiitsma [5,6]
) prediction with datasets
connections organs) .
limited data
3D U-Net 3D Convolu.tions for 3D segmentation Preserves.spatial Computati‘onally (6,15]
volumetric data (MRI, CT) context in 3D expensive
Deep architecture = Classification, Solves vanishing Complex for small
ResNet . . . . [10]
with residual blocks feature extraction gradient problem datasets
. Image s
Feat Eff t
DenseNet cature reuse via classification, raentm Slower training [11]

dense connections . parameter usage
anomaly detection

3D segmentation Prostate, liver, .
& Works well with

V-Net (volumetric U-Net brain volumetric labels High memory usage  [9,15]

variant) segmentation
GAN:s (e.g., . Image . . -
t High- lit table t

Pix2Pix, advecr;se:rei!;?tlr‘:i!nin reconstruction, ima li gr?:rzlit}ilon If:;i; Itjoeinlt.“,zlrm:e%, (1216171

CycleGAN) & synthesis 58 P

Transformer- Requires large

based (e.g., Uses self-attention ~ Segmentation, Captures global q . 8

. . . L datasets, high [13,14,18]
TransUNet, Swin for spatial modeling  classification context
UNet) compute

3. Difficulties in Implementing Deep Learning in Medical Imaging

While deep learning in medical imaging is advancing tremendously, there remain a number of
challenges that hinder their widespread implementation in clinical settings:
3.1. Lack of Labeled Data

High-quality labeled datasets in medical images are difficult to acquire, mainly because of
privacy issues, the need for expert annotators to label the images and the costs. The scarcity of labeled
data limits the ability of models to train and generalize, particularly because many medical imaging
tasks use supervised training [7,14].

3.2. Model Explainability

Deep learning models, when appropriately constructed, are so-called "black boxes," meaning it
is difficult for clinicians to understand how the decision was made. A lack of understanding hinders
trust and buy-in in the clinical workflow [8,19].

3.3. Data Heterogeneity

Medical images, which can include regard to either modality of imaging, acquisition parameters,
population demographics, and institution-specific influences vary immensely. Therefore, a model
trained on a specific dataset may not generalize to other datasets [3,14].

3.4. Clinical Workflow

Integrating Al tools into existing hospital infrastructure remains a technical and operational
difficulty given the need to collaborate with other clinicians [7].
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3.5. Regulatory and Ethical Issues

There exists numerous issues related to privacy of the patient, establishing regulatory approval
and ethical issues related to bias and accountability related to Artificial Intelligence that create
challenges regarding clinical deployment [19].

4. Future Directions and Opportunities

Al in medical imaging is swiftly changing and presents dynamic future possibilities.

4.1. Self-Supervised and Semi-Supervised Learning

Self-supervised and semi-supervised learning methods can harness vast amounts of unlabeled
data to enhance the performance of machine-learning models [14], addressing the challenge of data
scarcity.

4.2. Explainable AI (XAI)

The development of ways to make Al models more transparent and interpretable will allay
clinician worry about how clinical decision support can be operationalized, as well as acceptability
by regulatory bodies to make the technology available to physicians [19].

4.3. Multi-Modal Learning

Multi-modal learning is based on the idea that we can combine imaging data with other related
clinical data (e.g., genomic data, electronic health record data) in an informal way to provide
additional context for diagnostic decisions, and improve diagnostic performance and accuracy [13].

4.4. Real-Time Al Assistance

The deployment of Al models that incorporate image acquisitions does so in real-time at the
point of diagnosis or clinical aquantification will create fundamentally new workflows and impact
patient outcomes positively [7].

4.5. Federated Learning

The utilization of federated-learning permits decentralized training of machine-learning models
across multiple institutions while preserving patient data privacy and not copying patient data to
other institutions [14].

5. Discussion

The application of deep learning for medical imaging has initiated a paradigm-shift in medical
imaging, but there is still a long way to go for a seamless integration into routine clinical practice.
The studies discussed here highlight some compelling architectures that successfully automated
complex analyses of medical imaging data with an accuracy level that parallels or exceeds the level
of confidence provided by human experts in select applications. Yet serious pitfalls still must be
addressed.

Firstly, data quality and availability remain key bottlenecks. Contrary to a dataset of natural
images, a medical image must be annotated by an expert, potentially creating a serious barrier
because of the time and cost involved. Furthermore, the heterogeneity of imaging devices, imaging
protocols, and patient populations create serious concerns with generalizability of a model.
Identifying techniques such as transfer learning, data augmentation, and federated learning may
provide encouraging alternatives but have not been fully developed through implementation.

Second, while the ability to trust a model is important in any decision-making process, the
complexity of healthcare demands at least some level of model interpretability. Understanding why
an Al tool is making a certain decision is important to clinicians trusting and using these tools. While
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the "black box" nature of machine learning-based models is very promising, this may present an
impediment to acceptance because dilemmas may or may not have medical implications. There is an
acute need for the development of explainable Al methods and we suggest the use of concordant
reporting standards.

Lastly, creating an effective clinical pathway is challenging from both a technological and
logistical standpoint. To avoid adding additional burdens on overworked team members, Al systems
must convey and process data smoothly into the clinical workflow. One successful solution to this
problem may come from collaborating with engineers and developers of Al, radiologists, and the IT
teams within the hospitals to ensure a concerted effort is made.

6. Conclusions

Deep learning has transformed the reading of images for medical analysis to be both more
accurate and efficient when interpreting complex imaging data. Improvements in architectures like
CNNs, U-Net variants, GANs, and Transformers have helped enable applications from tumor
detection to image enhancement. Some challenges remain as well: limited labeled data,
interpretability, and clinical integration, for example. All of these must be resolved to realize the full
potential of Al in medicine, and it will take the ongoing commitment of Al researchers, clinical
delivery experts, and policy makers to transition these promising applications into everyday clinical
practice.
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