

1 Article

2 **Oridonin enhances radiation-induced cell death by**
3 **promoting DNA damage in non-small cell lung**
4 **cancer cells**

5

6 **Hyejin Park¹⁺, Ye Ji Jeong¹⁺, Na Kyung Han¹, Joong Sun Kim² and Hae-June Lee^{1,*}**

7 ¹ Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul,
8 01812 Korea; hjpark@kirams.re.kr (H.P); brightwisdm0914@gmail.com (Y.J.J); gmvxz@hanmail.net (N.-K.H)

9 ² K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 34054, Korea; centralline@kiom.re.kr
10 (J.S.K)

11 * Correspondence: hjlee@kirams.re.kr, Tel: +82-2-970-1638; Fax: +82-2-970-1985

12 ⁺ These authors contributed equally to this work.

13

14 **Abstract:** Although many attempts have been made to improve the efficacy of radiotherapy to treat
15 cancer, radiation resistance is still an obstacle in lung cancer treatment. Oridonin is a natural
16 compound with promising antitumor efficacy that can trigger cancer cell death; however, its direct
17 cellular targets, efficacy as a radiosensitizer, and underlying mechanisms of activity remain unclear.
18 Herein, we report that oridonin exhibits additive cytotoxic and antitumor activity with radiation
19 using H460 non-small cell lung cancer cell lines. We assessed the radiosensitizing effect of oridonin
20 by MTT, clonogenic, reactive oxygen species (ROS) production, DNA damage, and apoptosis
21 assays. *In vitro*, oridonin enhanced the radiation-induced inhibition of cell growth and clonogenic
22 survival. Oridonin also facilitated radiation-induced ROS production and DNA damage and
23 enhanced apoptotic cell death. *In vivo*, the combination of oridonin and radiation effectively
24 inhibited H460 xenograft tumor growth, with higher caspase-3 activation and H2A histone family
25 member X (H2AX) phosphorylation compared with that of radiation alone. Our findings suggest
26 that oridonin possesses a novel mechanism to enhance radiation therapeutic responses by
27 increasing DNA damage and apoptosis. In conclusion, oridonin may be a novel small molecule to
28 improve radiotherapy in non-small cell lung cancer.

29 **Keywords:** oridonin; radiation; sensitization; ROS; apoptosis

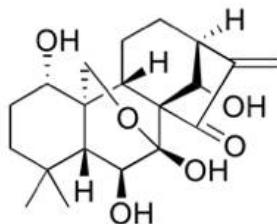
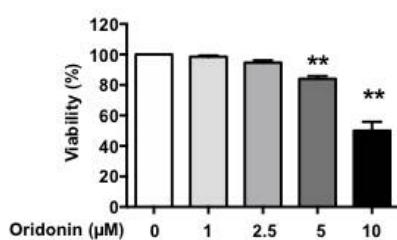
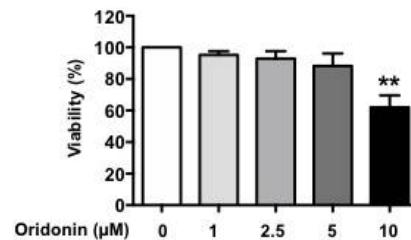
30

31 **1. Introduction**

32 Lung cancer is a leading cause of cancer-related deaths worldwide. Radiotherapy is an
33 important treatment for unresectable advanced human lung cancers, as well as an adjuvant therapy
34 after surgery and palliative treatment. It is used at every stage of clinical progression, with both non-
35 small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) forms of the disease [1]. According
36 to epidemiological studies, over 60% of patients with NSCLC have been treated with radiotherapy [2,
37 3]. However, lung cancer radiotherapy is far from ideal due to problems associated with radiation
38 resistance of the cancerous cells and severe cytotoxicity against noncancerous cells [4]. Despite recent
39 advances in the delivery of lung cancer radiotherapy, most patients relapse and show poor survival
40 [5, 6]. Therefore, it is necessary to develop new strategies to improve the efficacy of this treatment
41 procedure.

42 Radiation resistance is a major impediment to the success of cancer therapy. There have been
43 many attempts to reduce radioresistance to lung cancer treatment with the use of radiation
44 sensitizers, which have the potential to overcome resistance and improve treatment outcomes. There
45 have been many clinical trials examining the efficacy of enhancing radiotherapy; many of these trials

46 tested agents that were cytotoxic chemotherapies such as taxol and cisplatin [7, 8]. In addition, kinase
47 inhibitors targeting Akt, mammalian target of rapamycin (mTOR), and checkpoint kinase 1 (Chk1)
48 have been extensively studied as potent radiosensitizers but their benefits are limited due to their
49 broad biological activities and potential side effects [9, 10, 11]. Due to a critical need for the discovery
50 and development of new radiation enhancers, many investigations are ongoing on novel classes of
51 small molecule radiation sensitizers that have high efficacy and low toxicity, including those
52 targeting survivin [12, 13].

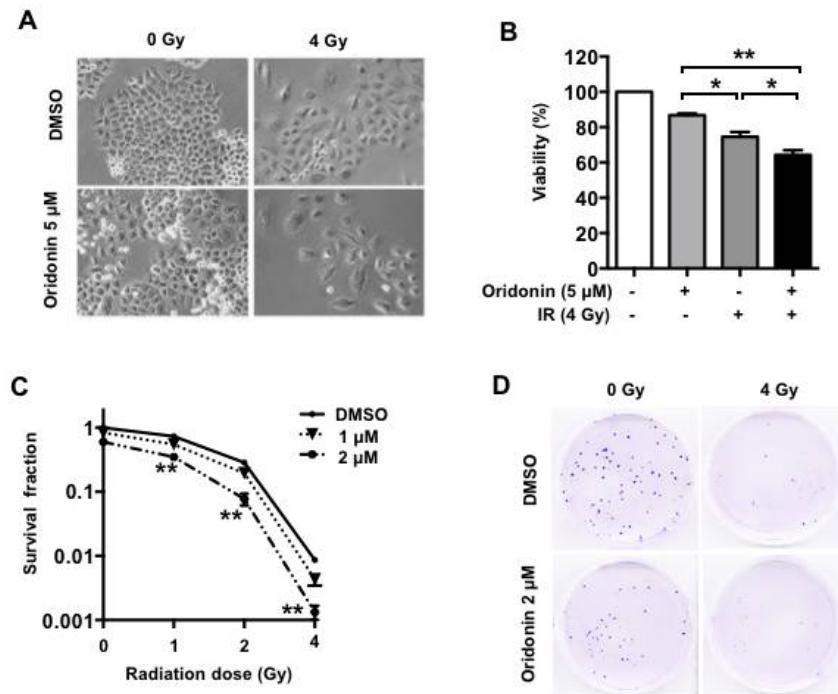



53 Oridonin is a natural diterpenoid compound that can be isolated from *Rabdodia rubescens* (*Isodon*
54 *rubescens*) and other plants in the genus *Isodon*, which are Chinese and Japanese traditional medicines
55 for the treatment of various human diseases [14, 15]. Oridonin has been reported to exhibits potent
56 anticancer activity both *in vitro* and *in vivo* against various cancer cells, including human gastric
57 cancer [16, 17], colorectal cancer [18], breast cancer [19], and leukemia [20]. Although many proteins,
58 including extracellular signal-regulated kinase (ERK) [21], Bax/Bcl-xL [22], and nuclear factor (NF)-
59 κ B [23, 24] have been found to be involved in the anticancer activity of oridonin, its therapeutic effects
60 remain largely unknown. Especially, a radiation sensitizing effect of oridonin has not been
61 established for cancer treatment.

62 The aim of this study was to investigate oridonin as an effective radiosensitizer and explore its
63 mechanism of action on human lung cancer cells. We found that oridonin could sensitize H460
64 NSCLC cells (both cultured and as xenograft tumors in mice) to radiation-induced cell death, most
65 likely involving increased production of reactive oxygen species (ROS), DNA damage, and apoptosis.

66 67 2. Results

68 2.1. Oridonin inhibits H460 lung cancer cell growth

69 Oridonin (Figure 1A) is a multifunctional drug that demonstrates powerful anticancer effects.
70 Accordingly, we determined the growth inhibitory effects of oridonin on H460 human lung cancer
71 cells and L132 human lung epithelial cells using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
72 diphenyltetrazolium bromide) assay. The cells were treated with different concentrations of oridonin
73 (1, 2.5, 5, and 10 μ M) for 48 h and the cell viability was measured. Oridonin inhibited H460 cell
74 proliferation at 5–10 μ M (Figure 1B). However, oridonin also showed cytotoxic effects on L132 human
75 lung epithelial cells at 10 μ M (Figure 1C). To reduce potential cytotoxicity toward normal cells, we
76 restricted the oridonin treatment of the H460 cells to 5 μ M for subsequent studies.

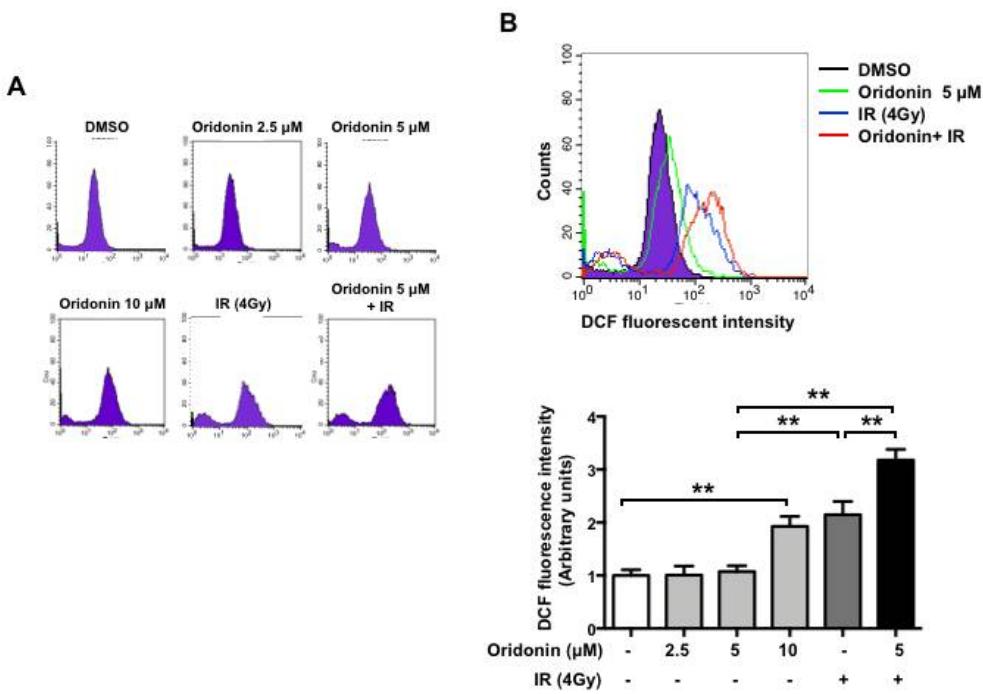

A**B****C**

77

78 **Figure 1.** The cytotoxic effect of oridonin on human lung cancer cells and non-cancer cells (A)
79 Molecular structure of oridonin. MTT assay in H460 cells (B) and L132 cells (C). 5×10^3 cells were
80 seeded into 24-well plates and incubated for 48 h in the presence of 0-10 μ M oridonin. All experiments
81 were independently performed three times. The data are shown as means \pm SEM; * $p < 0.05$ and **
82 $p < 0.01$ versus 0 μ M oridonin.

83 **2.2. Oridonin radiosensitizes lung cancer cells**

84 To explore the effect of combining oridonin and radiation on H460 cell growth, cell viability was
85 examined with oridonin and/or radiation using an MTT assay. Treatment of the cells with 5 μ M
86 oridonin or 4 Gy of gamma irradiation inhibited H460 cell growth by 12% and 23%, respectively;
87 combining the two treatments inhibited their growth by 33% (Figure 2A and 2B). Next, we conducted
88 clonogenic survival assays to determine the effect of oridonin on sensitizing the human lung cancer
89 cells to radiation. The H460 cells were treated with 1 or 2 μ M of oridonin for 1 h and then were
90 exposed to different doses of gamma rays. The assessment of colony formation showed that the
91 surviving cell fraction with combined oridonin and radiation treatment was significantly decreased
92 compared to that with radiation alone (two-way ANOVA test with Tukey's multiple comparison,
93 $p < 0.01$, Figure 2C and 2D). These data indicate that oridonin enhances the cytotoxic effect of radiation
94 in H460 lung cancer cells.

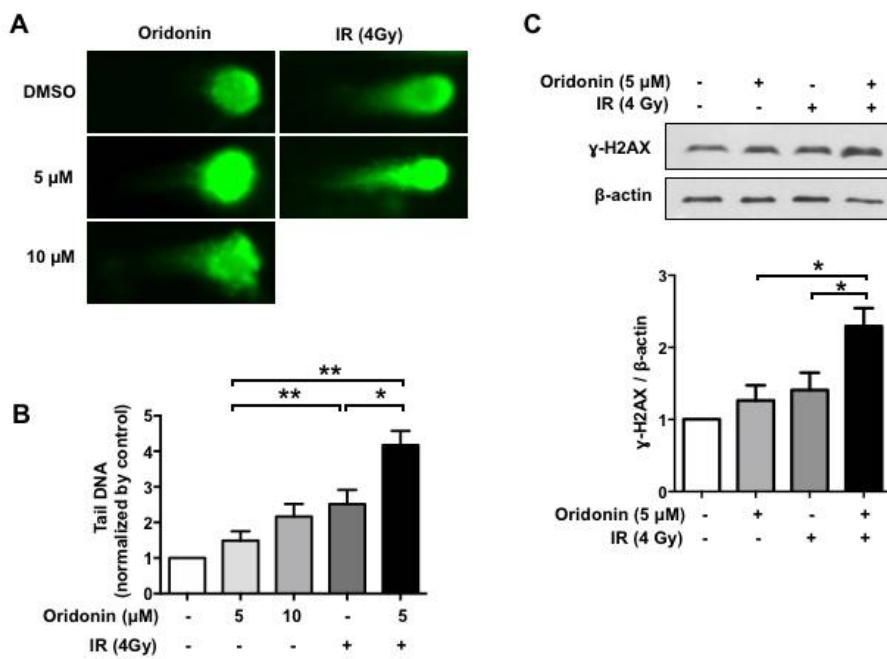


95

96 **Figure 2.** Effect of oridonin on sensitivity of H460 cells to radiation (A) Representative images of
 97 cultured H460 cells in the presence of oridonin (5 μ M) and/or radiation (IR, 4 Gy) (B) H460 cell
 98 viability was measured using MTT assay. The data are presented as means \pm SEM (n=3); * p <0.05 and
 99 ** p <0.01. (C) Survival fractions obtained by colony forming assay. Three independent experiments
 100 were carried out. ** p <0.01; p -values represent two-way ANOVA results. (D) Representative photos
 101 of colony formation in the presence of 4 Gy radiation and/or 2 μ M oridonin. DMSO, dimethyl
 102 sulfoxide vehicle.

103 **2.3. Oridonin enhances radiation-induced ROS production**

104 Oridonin has been reported to exhibit antitumor effects via ROS production [25]. Therefore, to
 105 explore further the mechanisms by which oridonin increases the radiation sensitivity of lung cancer
 106 cells, we investigated whether oridonin affects ROS production. We measured ROS production in
 107 H460 cells with increasing concentrations of oridonin from 2.5 to 10 μ M. There was a significant
 108 increase in ROS production by ~2-fold at 10 μ M oridonin, but concentrations \leq 5 μ M had no effect on
 109 ROS production (Figure 3A). Compared with that of irradiation alone, co-treatment with 5 μ M
 110 oridonin significantly enhanced the radiation-induced ROS production (p <0.01, Figure 3B).



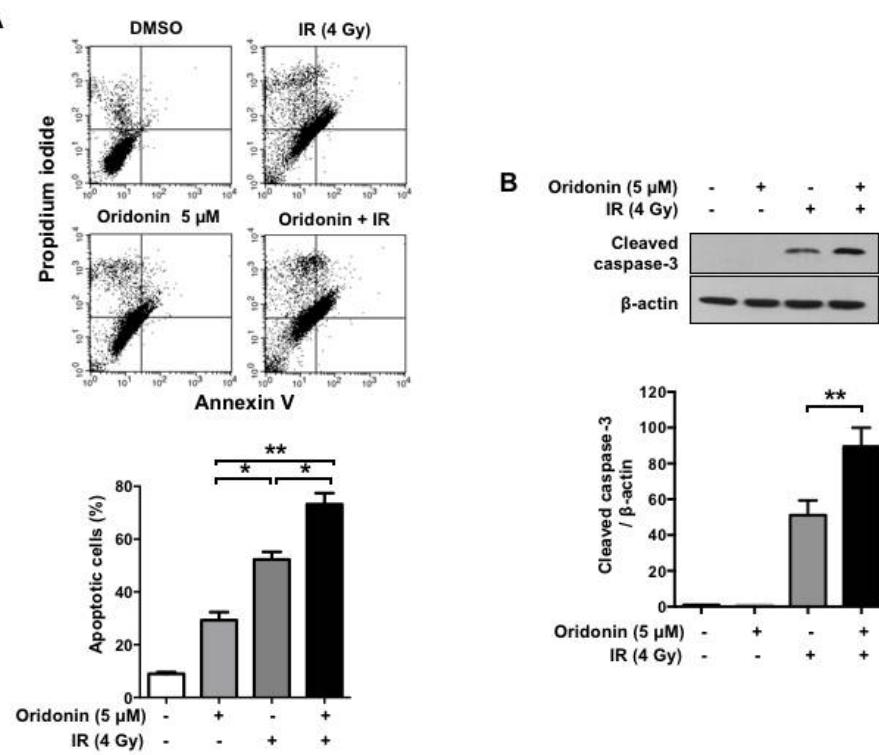
111

112 **Figure 3.** The effect of oridonin on radiation-induced ROS accumulation (A) Cellular ROS levels were
 113 determined by DCFH-DA staining 48 h after treatment with oridonin (0–10 μ M) and/or irradiation
 114 (IR, 4 Gy). DCFH-DA fluorescence was measured by flow cytometry. (B) Upper panel. Univariate
 115 histogram plots represent DCF mean fluorescence of control (vehicle, 0.05% DMSO), oridonin (5 μ M),
 116 IR (4 Gy), and combination of oridonin and IR. Lower panel. DCF fluorescence was quantified and
 117 values were normalized to the mean fluorescence of the control. Values are the average of three
 118 independent experiments (means \pm SEM; ** p < 0.01). DCFH-DA, 2',7'-dichlorodihydrofluorescein
 119 diacetate; DCF, 2',7'-dichlorofluorescein; DMSO, dimethyl sulfoxide.

120 **2.4. Oridonin accelerates radiation-induced DNA damage**

121 As it is known that an increase in ROS levels can result in DNA damage [26, 27], we determined
 122 the effect of oridonin on radiation-induced DNA damage using a comet assay. As shown in Figure
 123 4A, oridonin treatment of H460 cells for 48 h resulted in concentration-dependent DNA damage. This
 124 DNA damage was determined by measurement of the DNA comet tail, photographed under a
 125 microscope, using OpenComet (the open-source software in ImageJ) [28]. Compared with that of
 126 both oridonin and IR individual treatments, the combination of 5 μ M oridonin and irradiation
 127 showed a significant increase in the size of the DNA comet tail in the treated H460 cells (p < 0.01, Figure
 128 4B). Additionally, we evaluated the effect of oridonin on phospho-Histone H2A.X (γ -H2AX), a
 129 common marker of DNA damage. Five micromolar of oridonin alone did not alter γ -H2AX levels,
 130 but oridonin in combination with IR significantly increased γ -H2AX content (p < 0.05, Figure 4C).
 131

132

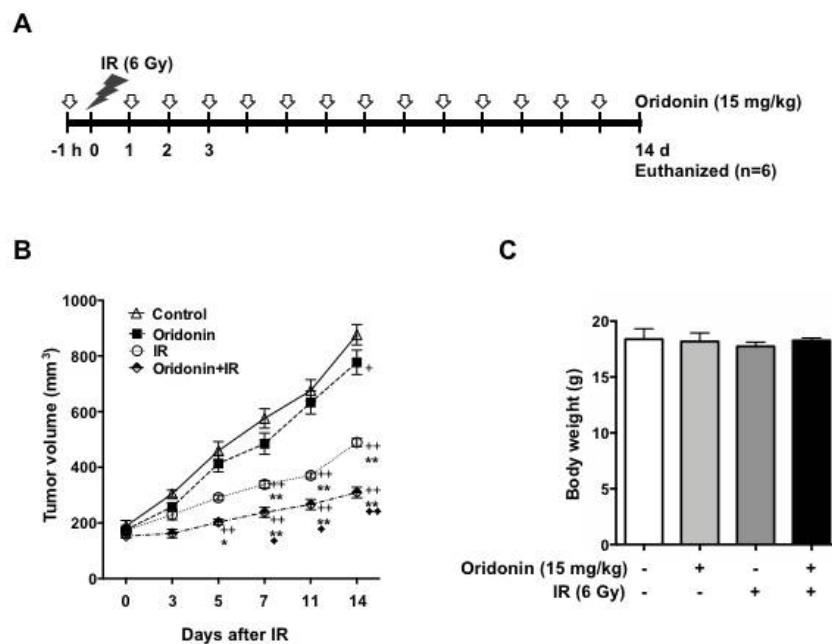

133 **Figure 4.** Effect of oridonin on radiation-induced DNA damage (A) Representative images show
 134 DNA comet assays. (B) Comet tail sizes were measured by OpenComet, an ImageJ program, and
 135 normalized to the tail intensity of the DMSO control. (C) γ-H2AX protein levels were analyzed by
 136 western blot. Ten micrograms of protein was loaded per lane (upper panel). Band intensity was
 137 quantified by ImageJ and normalized to control levels (white bar, bottom panel). Data are
 138 representative of more than three independent experiments and values are expressed as means ± SEM;
 139 * $p<0.05$ and ** $p<0.01$. DMSO, dimethyl sulfoxide.

140 *2.5. Oridonin increases radiation-induced apoptotic cell death*

141

142 To explore the mechanisms by which oridonin enhances the radiation sensitivity of lung cancer
 143 cells, we investigated whether it increased IR-induced apoptosis. Apoptotic cell death induced by
 144 oridonin and/or IR treatment was evaluated in H460 cells using an Annexin V-fluorescein
 145 isothiocyanate (FITC) apoptosis detection kit (Figure 5A). Flow cytometry revealed that oridonin and
 146 IR alone induced apoptotic cell death in 29% and 52% of the cells, respectively; however, their
 147 combination significantly increased the proportion of apoptotic cells to 73% ($p<0.05$). Therefore, the
 148 treatment with oridonin was found to be effective in enhancing the apoptosis of H460 cells. Similarly,
 149 western blot analysis showed that the combination of oridonin and irradiation profoundly increased
 150 the cleavage of caspase-3 compared to that of irradiation alone ($p<0.01$, Figure 5B). These findings
 151 suggest that co-treatment with oridonin enhances radiation-induced apoptotic cell death.

152


153

154
155
156
157
158
159
160 **Figure 5.** Effect of oridonin on radiation-induced cell death and cleavage of caspase-3. Cells were
treated with oridonin (5 μM) and/or IR for 72 h. (A) Cells were stained with Annexin V-FITC/PI prior
to flow cytometry analysis. Apoptotic cells were estimated by the sum of upper left, upper right, and
lower right quadrants in each dot plot. Plotted values represent the percentages of apoptotic cells. (B)
Representative western blots (upper) and plotted, quantified data (lower) for cleaved caspase-3. All
plotted data represent the means ± SEM of three independent experiments * p<0.05 and ** p<0.01. PI,
propidium iodide.

161 **2.6. Oridonin enhances radiation-induced tumor growth inhibition**

162 To investigate the radiosensitizing effect of oridonin *in vivo*, we established an H460-bearing
163 tumor model. Once the tumors reached 150 mm³, the mice were treated with radiation (6 Gy) and/or
164 oridonin (15 mg/kg) as shown in Figure 6A. Oridonin alone (15 mg/kg) showed a weak inhibitory
165 effect on tumor growth (up to 11%, p<0.05). IR alone (6 Gy) led to 44% growth inhibition when
166 compared to that of control (p<0.05), while the combination of oridonin and IR decreased tumor
167 volume by 65% (p<0.01 versus control) And combination treatment of oridonin and IR significantly
168 reduced the tumor volume compared to oridonin alone (p<0.01) and IR alone (p<0.01) (Figure 6B). IR
169 treatment alone led to a slight decrease in body weight; however, there was no significant difference
170 in body weights among the groups at the end of treatment (Figure 6C). Immunohistochemical
171 analysis showed that co-treatment with oridonin increased cleaved caspase-3 and γ-H2AX levels up
172 to 2.2-fold (p<0.05) and 2.6-fold (p<0.05), respectively, compared to the values with IR alone (Figure
173 7). These findings suggest that the mechanism of oridonin-mediated radiosensitization involves
174 increased DNA damage and apoptotic cell death.

175

176

177 **Figure 6.** Effect of oridonin on radiotherapy (A) Schema of the timeline for oridonin and irradiation
 178 treatment. Daily oridonin (15 mg/kg, intraperitoneal injection) administered up to the indicated time
 179 points pre- and post-irradiation (6 Gy). (B) Growth curves of H460 tumors following oridonin and/or
 180 IR treatment. (C) Mean body weights of experimental groups at study termination. The data represent
 181 the means \pm SEM of 6 mice per group. $^+$ $p < 0.05$ and $^{++}$ $p < 0.01$ compared to control; $*$ $p < 0.05$ and ** $p < 0.01$
 182 compared to oridonin; \dagger $p < 0.05$ and \ddagger $p < 0.01$ compared to IR.

183

184 **Figure 7.** Histopathological analysis of H460 tumors following combination treatment with oridonin
185 and radiation. Hematoxylin and eosin (H-E) staining and immunohistochemistry for cleaved
186 caspase-3 and γ -H2AX were performed on tumors harvested at 14 days after IR. Representative image
187 of cleaved caspase-3 and γ -H2AX positive cells (brown staining) and quantification of cleaved
188 caspase-3 and γ -H2AX-positive staining from 6 mice in each group (means \pm SEM); * p <0.05.

189 **3. Discussion**

190 Radiotherapy is an important modality in lung cancer patients during the course of cancer
191 treatment both as a curative modality and for palliation. However, tumor radioresistance and toxic
192 side effects toward normal tissue, which impede dose escalation, are major obstacles to the success
193 of radiation therapy [29, 30]. Thus, strategies for optimizing the response of cancer to increase the
194 therapeutic efficiency of radiotherapy are needed. There is an increasing interest in combining
195 radiation and natural compounds to enhance the efficacy of radiotherapy. The use of natural products
196 as antitumor agents or radiosensitizers for the management of human cancers is an attractive idea
197 because they are readily available and exhibit little or no toxicity [31-33]. Oridonin, a natural
198 tetracyclic diterpenoid compound, has well-known potent anticancer activity against a wide range of
199 cancer cell types, including prostate [34] and breast cancers [19] and acute leukemia [20]. It has been
200 reported that oridonin elicits an antiproliferative effect on lung cancer cell lines *in vitro* and *in vivo*
201 [35, 36]. However, the effects of oridonin on the radiosensitization of lung cancer cells remain poorly
202 understood. In this study, we found a novel potential of oridonin to sensitize the anticancer effect of
203 radiation via increases in ROS accumulation, DNA damage, and apoptosis in H460 cells. To the best
204 of our knowledge, this is the first report to support the potential beneficial effect of oridonin to
205 improve responses to radiotherapy in NSCLC patients.

206 Many recent studies have focused on the antitumor effects of oridonin, and its derivatives have
207 been developed to be used in combination with other anticancer drugs. Guo et al. reported that
208 oridonin synergizes the anti-leukemia effect of imatinib via the LYN/mTOR pathway [37]. Zhang et
209 al. also reported that oridonin treatment could overcome ciplastin-resistance in human acute
210 leukemia cells [38]. Wu et al. reported that an analog of oridonin, named CYD-6-28, effectively
211 suppressed triple-negative breast cancer cell growth via induction of death receptor 5 [39]. Therefore,
212 our findings and those from other investigators strongly support the potential of oridonin as an
213 anticancer agent.

214 An ideal radiosensitizer enhances the ability of radiation to kill tumor cells while not altering
215 the radioresponse of normal tissues [40]. We investigated the ability of oridonin, a natural small
216 molecule, to act as a radiosensitizer in human non-cancer cells. As previously reported, we found
217 that oridonin has a potent anticancer effect to inhibit the proliferation and clonogenic ability of cancer
218 cells. However, we also identified cytotoxicity against non-cancerous cells that was not considered in
219 previous studies. Specifically, oridonin demonstrated cytotoxicity against both normal lung epithelial
220 cells and lung cancer cells. To diminish the toxic side effects of oridonin, we used a lower
221 concentration of oridonin (5 μ M), which showed a weaker anticancer effect compared to that in
222 previous studies, to observe its beneficial effects on radiotherapy. Five micromolar of oridonin alone
223 did not alter ROS production and DNA damage in the comet assay, but still showed mild effects on
224 growth inhibition and cell death of the H460 cells. However, notably, the combination of 5 μ M
225 oridonin and radiation greatly enhanced ROS production, DNA damage, and apoptotic cell death of
226 H460 cells. In addition, H460 tumors were sensitized to the effect of radiation by oridonin treatment,
227 which was assessed by the inhibition of tumor growth (i.e., tumor volume). Although the dose of
228 oridonin used in this study (15 mg/kg) is a low to moderate dose compared to that used in previous
229 studies (7.5–40 mg/kg) [41-43], the combination of oridonin and radiotherapy significantly inhibited
230 tumor growth in the experimental time period. Our results suggest carefully considering dose
231 reduction to minimize side effects while promoting therapeutic efficacy. Therefore, further studies
232 will be needed to optimize the dosage and assess the toxicity of oridonin in various types of cancer.

233

234 In the present study, we demonstrated that oridonin enhanced the therapeutic effect of radiation
235 by augmenting radiation-induced apoptotic death. Our results identify and highlight a new role of
236 oridonin as a radiosensitizer and we propose that oridonin be used as a novel adjuvant treatment
237 during radiotherapy.

238

239 **4. Materials and Methods**

240 *4.1. Cells and treatments*

241 The NCI-H460 NSCLC cell line was cultured in RPMI medium (WELGENE, INC.,
242 Gyeongsangbuk-do, Korea) with 10% fetal bovine serum (FBS, 35-015-CV, CORNING, NY, USA) and
243 1% Gibco® antibiotic-antimycotic (15240-062, Thermo Fisher Scientific, UK) at 37°C in a 5% CO₂
244 humidified incubator. The cells were seeded at the indicated numbers and incubated overnight
245 before treatment with various concentrations of oridonin and doses of IR. Oridonin was purchased
246 from Selleck Chemicals (S2335, TX, USA).

247 *4.2. MTT assay*

248 H460 cells (5×10^3) were seeded into 24-well plates and incubated overnight. Oridonin was
249 added at various concentrations and the cells incubated for 48 h. After incubation, MTT stock solution
250 (5 mg/mL) was added at 10% of the culture medium volume and the cells were incubated for 2 h at
251 37°C. Then, the medium was discarded and DMSO (200 μ L) was added to each well and incubated
252 for 10 min to dissolve the insoluble formazan precipitate. The solution was then transferred to a 96-
253 well plate and its absorbance read at 560 nm.

254 *4.3. Clonogenic assay*

255 The cells were seeded in 60-mm dishes according to radiation dose (0 Gy 100 cells, 1 Gy 200 cells,
256 2 Gy 500 cells, and 4 Gy 2000 cells) and incubated overnight. Then, the cells were treated with
257 oridonin (0, 1, and 2 μ M and 0.05%) for one hour prior to radiation exposure. The cells were then
258 exposed to radiation using ¹³⁷Cs as a radiation source (BIOBEAM GM 8000, Gamma Service Medical
259 GmbH, DE, UK). After treatments for 7 days, the dishes were washed with PBS and incubated with
260 0.5% crystal violet in 5% neutral-buffered formalin. Then, the dishes were washed and the colonies
261 were counted.

262 *4.4. Determination of ROS production*

263 Cellular ROS levels were estimated using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA)
264 purchased from Cayman Chemical (85155, MI, USA). The cells were trypsinized and mixed with 1%
265 FBS in PBS containing 10 μ M DCFH-DA for 15 min, protecting from light. The fluorescent cells were
266 analyzed on a FACSCalibur™ flow cytometer (Becton-Dickinson, ON, Canada).

267 *4.5. Comet assay*

268 The CometAssay™ (4250-050-K, TREVIZEN, MD, USA) was used for DNA damage assessment.
269 Cells (1×10^5) were collected in 50 μ L ice-cold PBS. 10 volumes of completely melted low-melting
270 agarose (LMA) was mixed with 10 volumes of suspended cells and 75 μ L cell/agarose mixture was
271 spread on the comet slide and incubated at 4°C for 30 min to solidify the agarose. After congelation,
272 the slides were incubated in lysis solution (4250-050-01, TREVIZEN, MD, USA) at 4°C for 60 min.
273 Then, the slides were moved carefully into alkaline solution (pH >13) and incubated at room
274 temperature for 30 min. For neutralization, the slides were washed once in 1×TBE buffer and
275 electrophoresis was performed at 31 V for 40 min. The slides were washed with 70 % ethanol and air
276 dried after removing excess liquid. Fifty microliters of SYBR® Green I was placed on each sample

277 and the slides were analyzed by fluorescence microscopy. The signal of the tail DNA of 50 - 80 cells
278 from five high magnification fields (x100) was analyzed to estimate DNA damage in each group. The
279 values were measured using OpenComet in ImageJ software.

280 *4.6. Western blots*

281 The cells (2×10^4) were seeded in 60-mm dishes and incubated for 72 h in RPMI. The cells were
282 trypsinized and lysed in 100 μ L of ice-cold RIPA buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1%
283 NP-40, 0.5% sodium deoxycholate, 0.5% SDS, 1 mM Na₃VO₄, 5 mM NaF, and 1 mM
284 phenylmethylsulfonyl fluoride). The cell suspension was sonicated and incubated on ice for 30 min.
285 After centrifugation at 13,000 rpm for 10 min, the supernatants were collected and protein
286 concentrations were quantified by the bicinchoninic acid (BCA) method (23227, Pierce Biotechnology,
287 Inc., IL, USA). For western blot analysis, proteins (60 μ g) were electrophoresed on SDS-
288 polyacrylamide gels and transferred to nitrocellulose membranes. The specific antibodies were
289 cleaved caspase-3 (1:1000, #9661, Cell Signaling Technology, Inc., MA, USA), γ -H2AX (1:3000, 05-636,
290 Merck KGaA, Darmstadt, Germany), and β -actin (1:5000, sc-47778, Santa Cruz Biotechnology, Inc.,
291 CA, USA).

292 *4.7. Apoptotic cell death by flow cytometry*

293 The Annexin V-FITC Apoptosis Detection Kit (K101-25, BioVision Incorporated, CA, USA) was
294 used for detecting apoptotic cell death. The cells were seeded (1×10^4 per well) into 6-well plates and
295 incubated with various concentrations of oridonin before irradiation (IR). The cells were exposed to
296 IR (4 Gy) and incubated for 72 h. The cells were then washed with cold PBS and resuspended in 500
297 μ L of 1 \times binding buffer containing 5 μ L of annexin-FITC and 5 μ L of propidium iodide. After mixing,
298 the apoptotic cells were analyzed immediately using the FACSCalibur™ flow cytometer
299 (Becton-Dickinson).

300 *4.8. Animal experiments*

301 All protocols in this study were approved by the Institutional Animal Care and Use Committee
302 of the Korean Institute of Radiological and Medical Sciences (IACUC permit number: KIRAMS2017-
303 0007). Six-week-old female BALB/c nude mice were purchased from Orient Bio Inc. (Seoul, Korea).
304 The animals were maintained at $23 \pm 2^\circ\text{C}$ with humidity of $50 \pm 5\%$, lighting cycle of 08:00 to 20:00,
305 and 13–18 air changes per hour. The H460 cells were cultured in RPMI containing 10% FBS and 1%
306 antibiotic/antimitotic at 37°C in a 5 % CO₂ humidified incubator. A xenograft tumor was created by
307 subcutaneous injection of 1×10^6 cells to the right hind leg. When the tumor volume reached 100–120
308 mm², oridonin treatment (15 mg/kg) was initiated by intraperitoneal injection one hour before IR
309 treatment. Each mouse was anesthetized with tiletamine/zolazepam (Zoletil 50®, Virak Korea, Seoul,
310 Korea) and exposed to 6 Gy of IR using an X-RAD 320 system (Precision X-ray, Inc., North Branford,
311 CT, USA) at 250 kV and 10 mA with 420 mm of aluminum shielding, resulting in a dose rate of 2
312 Gy/min. Afterward, oridonin was injected daily until 14 days, when the mean tumor volume reached
313 approximately 1000 mm² in the control group. Tumor tissue was then harvested from each mouse for
314 histological analysis.

315 *4.9. Immunohistochemistry and quantification*

316 The tumor tissue was fixed in 10% formaldehyde and embedded in paraffin wax. For histological
317 experiments, the embedded tissues were sectioned at 5 μ M, mounted on slides, deparaffinized, and
318 rehydrated by graded ethanol washes. For antigen retrieval, the sections were boiled in citrate buffer
319 (pH 6.0). Immunohistochemistry was performed using a Vectastain Elite ABC Kit (Vector
320 Laboratories Inc., CA, USA) following the manufacturer's protocol. The sections were incubated with
321 anti-cleaved caspase-3 (1:100, #9661, Cell Signaling Technology, Inc.), anti- γ -H2AX (1:100, 05-636,
322 Merck KGaA), or anti-Ki-67 (1:200, DRM004, Acris Antibodies, Germany) antibodies at 4°C overnight

323 and then washed with PBS containing 0.05% Triton X-100. The sections were incubated with
324 horseradish peroxidase-conjugated secondary antibody for 30 min and counterstained with
325 hematoxylin. The percentage of Ki-67, cleaved caspase-3, and γ -H2AX positive cells were quantified
326 at five randomly selected fields at 400 \times magnification.

327 *4.10. Statistical analysis*

328 All experimental data are shown as the means \pm standard errors of the mean (SEM). The data
329 were analyzed with one-way analysis of variance (ANOVA) followed by Tukey's post hoc tests or
330 two-way ANOVA using GraphPad Prism version 7.0 software (GraphPad Software, Inc., La Jolla,
331 CA, USA). *P*-values less than 0.05 indicated statistical significance.

332

333 **Acknowledgments:** This work was supported by the Nuclear Research and Development Program (NRF-
334 2015M2B2B1068627) of the National Research Foundation of Korea (NRF) as well as a grant from the Korea
335 Institute of Radiological and Medical Sciences funded by the Korean government Ministry of Science and
336 ICT(MSIT), Republic of Korea (No.50531-2018).

337 **Author Contributions:** Conceptualization, Hyejin Park, Ye Ji Jeong and Hae-June Lee; Data curation, Hyejin
338 Park, Ye Ji Jeong and Joong Sun Kim; Formal analysis, Na-Kyung Han and Joong Sun Kim; Funding acquisition,
339 Hae-June Lee; Investigation, Hyejin Park, Ye Ji Jeong and Hae-June Lee; Methodology, Ye Ji Jeong and Joong
340 Sun Kim; Project administration, Hae-June Lee; Supervision, Hae-June Lee; Validation, Na-Kyung Han; Writing
341 – original draft, Hyejin Park and Hae-June Lee; Writing – review & editing, Na-Kyung Han and Hae-June Lee.

342 **Conflicts of Interest:** The authors declare no conflict of interest.

343

344 **References**

- 345 [1] Maciejczyk, A.; Skrzypczyńska, I.; Janiszewska, M. Lung cancer. Radiotherapy in lung cancer:
346 Actual methods and future trends. *Rep. Pract. Oncol. Radiother.* **2014**, *19*, 353–360,
347 doi:10.1016/j.rpor.2014.04.012.
- 348 [2] Delaney, G.; Barton, M.; Jacob, S.; Jalaludin, B. A model for decision making for the use of
349 radiotherapy in lung cancer. *Lancet Oncol.* **2003**, *4*, 120–128.
- 350 [3] Tyldesley, S.; Boyd, C.; Schulze, K.; Walker, H.; Mackillop, W.J. Estimating the need for
351 radiotherapy for lung cancer: an evidence-based, epidemiologic approach. *Int. J. Radiat. Oncol. Biol.*
352 *Phys.* **2001**, *49*, 973–985.
- 353 [4] Zhang, Q.; Gao, M.; Luo, G.; Han, X.; Bao, W.; Cheng, Y.; Tian, W.; Yan, M.; Yang, G.; An, J.
354 Enhancement of Radiation Sensitivity in Lung Cancer Cells by a Novel Small Molecule Inhibitor That
355 Targets the β -Catenin/Tcf4 Interaction. *PLoS ONE.* **2016**, *11*, e0152407,
356 doi:10.1371/journal.pone.0152407.
- 357 [5] Chang, J.Y.;Cox, J.D. Improving radiation conformality in the treatment of non-small cell lung
358 cancer. *Semin. Radiat. Oncol.* **2010**, *20*, 171–177, doi:10.1016/j.semradonc.2010.01.005.
- 359 [6] Bogart, J.A. Fractionated radiotherapy for high-risk patients with early-stage non-small cell
360 lung cancer. *Semin. Thorac. Cardiovasc. Surg.* **2010**, *22*, 44–52, doi:10.1053/j.semtcvs.2010.04.006.
- 361 [7] Chougule, P.B.;Suk, S.;Chu, Q.D.;Leone, L.;Nigri, P.T.;McRae, R.; Lekas, M.; Barone, A.; Bhat,
362 D.; Bellino, J. Cisplatin as a radiation sensitizer in the treatment of advanced head and neck cancers.
363 Results of a phase II study. *Cancer.* **1994**, *74*, 1927–1932.
- 364 [8] Tishler, R.B.; Schiff, P.B.; Geard, C.R.; Hall, E.J. Taxol: a novel radiation sensitizer. *Radiat. Oncol.*
365 *Biol.* **1992**, *22*, 613–617.
- 366 [9] Yang, H.; Yoon, S.J.; Jin, J.; Choi, S.H.; Seol, H.J.; Lee, J.-I.; Nam, D.H.; Yoo, H.Y. Inhibition of
367 checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy. *Biochem. Biophys. Res.*
368 *Commun.* **2011**, *406*, 53–58, doi:10.1016/j.bbrc.2011.01.106.
- 369 [10] Nagata, Y.; Takahashi, A.; Ohnishi, K.; Ota, I.; Ohnishi, T.; Tojo, T.; Taniguchi, S. Effect of
370 rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene
371 status. *Int. J. Oncol.* **2010**, *37*, 1001–1010.

372 [11] Xu, Z.; Yan, Y.; Xiao, L.; Dai, S.; Zeng, S.; Qian, L.; Wang, L.; Yang, X.; Xiao, Y.; Gong, Z.
373 Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway.
374 *PLoS ONE*. **2017**, *12*, e0175977, doi:10.1371/journal.pone.0175977.

375 [12] Iwasa, T.; Okamoto, I.; Suzuki, M.; Nakahara, T.; Yamanaka, K.; Hatahita, E.; Yamada, Y.;
376 Fukuoka, M.; Ono, K.; Nakagawa, K. Radiosensitizing effect of YM155, a novel small-molecule
377 survivin suppressant, in non-small cell lung cancer cell lines. *Clin Cancer Res.* **2008**, *14*, 6496–6504,
378 doi:10.1158/1078-0432.CCR-08-0468.

379 [13] Sun, Y.; Giacalone, N.J.; Lu, B. Terameprocol (tetra-O-methyl nordihydroguaiaretic acid), an
380 inhibitor of Sp1-mediated survivin transcription, induces radiosensitization in non-small cell lung
381 carcinoma. *J. Thorac. Oncol.* **2011**, *6*, 8–14, doi:10.1097/JTO.0b013e3181fa646a.

382 [14] Fujita, E.; Nagao, Y.; Node, M.; Kaneko, K.; Nakazawa, S.; Kuroda, H. Antitumor activity of
383 the Isodon diterpenoids: structural requirements for the activity. *Experientia*. **1976**, *32*, 203–206.

384 [15] Fujita, T.; Takeda, Y.; Sun, H.D.; Minami, Y.; Marunaka, T.; Takeda, S.; Yamada, Y.; Togo, T.
385 Cytotoxic and antitumor activities of Rabdosia diterpenoids. *Planta Med.* **1988**, *54*, 414–417,
386 doi:10.1055/s-2006-962485.

387 [16] Shi, M.; Lu, X.-J.; Zhang, J.; Diao, H.; Li, G.; Xu, L.; Wang, T.; Wei, J.; Meng, W.; Ma, J.L.; Yu,
388 H.; Wang, Y.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and
389 induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms.
390 *Oncotarget*. **2016**, *7*, 22623–22631, doi:10.18632/oncotarget.8033.

391 [17] Sun, K.W.; Ma, Y.Y.; Guan, T.P.; Xia, Y.J.; Shao, C.M.; Chen, L.G.; Ren, Y.J.; Yao, H.B.; Yang, Q.;
392 He, X.J. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3
393 signaling pathway. *World J. Gastroenterol.* **2012**, *18*, 7166–7174, doi:10.3748/wjg.v18.i48.7166.

394 [18] Yao, Z.; Xie, F.; Li, M.; Liang, Z.; Xu, W.; Yang, J.; Liu, C.; Li, H.; Zhou, H.; Qu, L.H. Oridonin
395 induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. *Cell
396 Death Dis.* **2017**, *8*, e2633–e2633, doi:10.1038/cddis.2017.35.

397 [19] Wang, S.; Zhong, Z.; Wan, J.; Tan, W.; Wu, G.; Chen, M.; Wang, Y. Oridonin induces apoptosis,
398 inhibits migration and invasion on highly-metastatic human breast cancer cells, *Am. J. Chin. Med.*
399 **2013**, *41*, 177–196, doi:10.1142/S0192415X13500134.

400 [20] Huang, H.; Weng, H.; Dong, B.; Zhao, P.; Zhou, H.; Qu, L. Oridonin Triggers Chaperon-
401 mediated Proteasomal Degradation of BCR-ABL in Leukemia. *Sci. Rep.* **2017**, *7*, 1–12,
402 doi:10.1038/srep41525.

403 [21] Zhang, C.L.; Wu, L.J.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Oridonin induces apoptosis of HeLa
404 cells via altering expression of Bcl-2/Bax and activating caspase-3/ICAD pathway. *Acta Pharmacol. Sin.*
405 **2004**, *25*, 691–698.

406 [22] Ye, Y.C.; Wang, H.J.; Xu, L.; Liu, W.W.; Liu, B.B.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Oridonin
407 induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-
408 feedback loop signaling pathway. *Acta Pharmacol. Sin.* **2012**, *33*, 1055–1061, doi:10.1038/aps.2012.53.

409 [23] Ikezoe, T.; Yang, Y.; Bandobashi, K.; Saito, T.; Takemoto, S.; Machida, H.; Togitani, K.; Koeffler,
410 H.P.; Taguchi, H. Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation
411 of cells from lymphoid malignancies in association with blockade of the NF- κ B signal pathways.
412 *Mol. Cancer Ther.* **2005**, *4*, 578–586, doi:10.1158/1535-7163.MCT-04-0277.

413 [24] Cao, Y.; Wei, W.; Zhang, N.; Yu, Q.; Xu, W.B.; Yu, W.J.; Chen, G.Q.; Wu, Y.L.; Yan, H. Oridonin
414 stabilizes retinoic acid receptor alpha through ROS-activated NF- κ B signaling. *BMC Cancer*. **2015**, *15*,
415 248, doi:10.1186/s12885-015-1219-8.

416 [25] Pi, J.; Cai, H.; Jin, H.; Yang, F.; Jiang, J.; Wu, A.; Zhu, H.; Liu, J.; Su, X.; Yang, P.; Cai, J.
417 Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer
418 KYSE-150 Cell Apoptosis by Atomic Force Microscopy. *PLoS ONE*. **2015**, *10*, e0140935,
419 doi:10.1371/journal.pone.0140935.

420 [26] Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell
421 death. *Apoptosis*. **2007**, *12*, 913–922, doi:10.1007/s10495-007-0756-2.

422 [27] Kulms, D.; Zeise, E.; Pöppelmann, B.; Schwarz, T.; DNA damage, death receptor activation and
423 reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and
424 independent way. *Oncogene*. **2002**, *21*, 5844–5851, doi:10.1038/sj.onc.1205743.

425 [28] Gyori, B.M.; Venkatachalam, G.; Thiagarajan, P.S.; Hsu, D.; Clement, M.V. OpenComet: an
426 automated tool for comet assay image analysis. *Redox Biol.* **2014**, *2*, 457–465,
427 doi:10.1016/j.redox.2013.12.020.

428 [29] Luo, H.; Wang, L.; Schulte, B.A.; Yang, A.; Tang, S.; Wang, G.Y. Resveratrol enhances ionizing
429 radiation-induced premature senescence in lung cancer cells. *Int. J. Oncol.* **2013**, *43*, 1999–2006,
430 doi:10.3892/ijo.2013.2141.

431 [30] Hall, E.J.; Wuu, C.S. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. *Int.*
432 *J. Radiat. Oncol. Biol.* **2003**, *56*, 83–88, doi:10.1016/S0360-3016(03)00073-7.

433 [31] Kim, M.Y.; PARK, S.J.; SHIM, J.W.; Yang, K.; Kang, H.S.; Heo, K. Naphthazarin enhances
434 ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells. *Int. J. Oncol.*
435 **2015**, *46*, 1659–1666, doi:10.3892/ijo.2015.2857.

436 [32] Srivastava, V.; Negi, A.S.; Kumar, J.K.; Gupta, M.M.; Khanuja, S.P.S. Plant-based anticancer
437 molecules: a chemical and biological profile of some important leads. *Bioorg. Med. Chem.* **2005**, *13*,
438 5892–5908, doi:10.1016/j.bmc.2005.05.066.

439 [33] Malik, A.; Sultana, M.; Qazi, A.; Qazi, M.H.; Parveen, G.; Waquar, G.S.; Ashraf, A.B.; Rasool,
440 M. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update. *Anal. Cell Pathol.*
441 (*Amst.*) **2016**, *2016*, 6146595, doi:10.1155/2016/6146595.

442 [34] Li, X.; Li, X.; Li, X.; Wang, J.; Ye, Z.; Li, J.C. Oridonin Up-regulates Expression of P21 and
443 Induces Autophagy and Apoptosis in Human Prostate Cancer Cells. *Int. J. Biol. Sci.* **2012**, *8*, 901–912,
444 doi:10.7150/ijbs.4554.

445 [35] Wang, Y.Y.; Lv, Y.F.; Lu, L.; Cai, L. Oridonin inhibits mTOR signaling and the growth of lung
446 cancer tumors. *Anticancer Drugs*. **2014**, *25*, 1192–1200, doi:10.1097/CAD.0000000000000154.

447 [36] Liu, Y.; Liu, J.H.; Chai, K.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Inhibition of c-Met promoted
448 apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced
449 A549 lung cancer cells. *J. Pharm. Pharmacol.* **2013**, *65*, 1622–1642, doi:10.1111/jphp.12140.

450 [37] Guo, Y.; Shan, Q.; Gong, Y.; Lin, J.; Yang, X.; Zhou, R. Oridonin in combination with imatinib
451 exerts synergistic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting
452 activation of LYN/mTOR signaling pathway. *Cancer Biol. Ther.* **2012**, *13*, 1244–1254,
453 doi:10.4161/cbt.21460.

454 [38] Zhang, Y.; Wang, L.; Zi, Y.; Zhang, L.; Guo, Y.; Huang, Y. Oridonin effectively reverses the drug
455 resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in
456 human acute myeloid leukemia cells. *Saudi J. Biol. Sci.* **2017**, *24*, 678–686, doi:10.1016/j.sjbs.2017.01.042.

457 [39] Wu, J.; Ding, Y.; Chen, C.H.; Zhou, Z.; Ding, C.; Chen, H.; Zhou, J.; Chen, C. A new oridonin
458 analog suppresses triple-negative breast cancer cells and tumor growth via the induction of death
459 receptor 5. *Cancer Lett.* **2016**, *380*, 393–402, doi:10.1016/j.canlet.2016.06.024.

460 [40] Citrin, D.E.; Mitchell, J.B. Altering the response to radiation: sensitizers and protectors. *Semin.*
461 *Oncol.* **2014**, *41*, 848–859, doi:10.1053/j.seminoncol.2014.09.013.

462 [41] Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts
463 anticancer effect on osteosarcoma by activating PPAR- γ and inhibiting Nrf2 pathway. *Cell Death Dis.*
464 **2018**, *9*, 15, doi:10.1038/s41419-017-0031-6.

465 [42] Liu, H.; Qian, C.; Shen, Z. Anti-tumor activity of oridonin on SNU-5 subcutaneous xenograft
466 model via regulation of c-Met pathway. *Tumor Biol.* **2014**, *35*, 9139–9146, doi:10.1007/s13277-014-2178-
467 4.

468 [43] Bu, H.Q.; Luo, J.; Chen, H.; Zhang, J.H.; Li, H.H.; Guo, H.C.; Wang, Z.H.; Lin, S.Z. Oridonin
469 enhances antitumor activity of gemcitabine in pancreatic cancer through MAPK-p38 signaling
470 pathway. *Int. J. Oncol.* **2012**, *41*, 949–958, doi:10.3892/ijo.2012.1519.

471

472