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Abstract: Our daily activities hinge on the flexibility of our fingers, and a fractured finger can

significantly disrupt these routines. The finger bones enable us to bend and fold the fingers and thumb

to pick up or grasp objects and do all of our daily activities. A broken finger can cause adverse effects

on our daily life activities. It is important to treat broken finger as soon as possible. Swift and precise

treatment begins with capturing multiple X-rays, followed by the critical step of fracture detection in

these images. Relying on the naked eye for this task carries the risk of overlooking small fractures. To

address this issue an automated diagnoses of fractured fingers from images is required for which

the current research employs advanced deep learning models—ResNet34, ResNet50, ResNet101,

ResNet152, VGG-16, and VGG-19—to classify finger images from the Musculoskeletal Radiographs

(MURA) dataset as either fractured or non-fractured. The results emphasize the consistently strong

performance of ResNet models, attaining an impressive accuracy of 81.9%. This surpasses VGG

models by 3.4% and establishes ResNet as the new benchmark for state-of-the-art accuracy.

Keywords: classification; transfer learning; deep learning; finger fracture; X-Rays

1. Introduction

Fingers are vital for doing daily chores. One of the most often used and most sensitive appendages,

fingers are vulnerable to injury. Anyone could become slower if they suffered from finger injury.

Phalanges are the name for the bones in your fingers. All fingers have three phalanges and The

thumb consists of two phalanges, and the bones in the fingers are interconnected and held together

by ligaments. Tendons link bones and muscles.The muscles in the forearm that exert force on the

tendons of the fingers play a role in controlling the movement of the fingers. The distance between

the finger bones and the rest of the body is what distinguishes them. The proximal phalanx is the

bone that lies nearest to the palm. The middle phalanx is the next bone after the proximal phalange.

The distal phalanx is the last bone, the smallest and the furthest from the hand. There is no middle

phalanx on the thumb. When one or more of these bone breaks, it referred as broken or fractured

finger. Your knuckles, which are the joints where your finger bones converge, are another place where

fractures can happen. You’re more likely to shatter a finger if you have diseases like osteoporosis and

malnutrition. A fracture might occasionally happen because of atypical bone in the finger. A condition

that weakens the bone and makes it more susceptible to fracture results in this form of fracture, known

as a pathologic fracture. It happens frequently for someone to believe they have sprained their finger

when in fact they have a fracture that needs to be treated surgically. A delayed diagnosis can result in

a worse long-term outcome if an injury is treated as a sprain when it is actually a fracture that needs

specialist care. This frequently refers to restricted mobility or a chronically deformed finger. Because of

this, any suspicious finger injury should be examined by a doctor to see if an X-ray is necessary. Your

doctor will likely order an X-ray if you exhibit signs of a fractured finger to see if there is a fracture.
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If the diagnosis is uncertain, it might be essential to take additional X-rays in various orientations

because not all fractures will show up clearly on a single image. To determine the best course of

therapy, the wounded finger should be examined. If the digit has been rotated or shortened as a result

of the injury, this might be discovered by examination. You’ll discover that these are significant guiding

variables for treatment. To be sure there is no tendon damage or other injury that could change the

recommended course of treatment, examination can be helpful.When X-ray is done, finding fractures

with the naked eye is a laborious technique that carries a larger chance of missing small fractures.

Therefore, the goal is to design a finger fracture classification system that can be used regularly in

any busy orthopaedic clinic to detect finger fractures and to make decision taking easy on a course of

treatment, without formal criticism. In this project we were aimed to classify and detect finger fractures

using deep learning architecture. We use the dataset called MURA, and images were preprocessed

using resizing and data augmentation to address data imbalance issues. Multiple deep learning models

such as Resnet34, ResNet50, ResNet101, ResNet152, VGG-16 and VGG-19 are trained and tested for

classification and detection of finger fractures. Standard machine learning techniques are used to

optimize the model’s performance. The models are assessed using metrics including F1 score, recall,

accuracy, and precision. Lastly, a test dataset is used to evaluate the generalization capacity of the

top-performing model. The outcomes are examined in order to make judgments regarding the viability

of the suggested strategy for classification and detection of finger fractures.

Major Research Contributions:

The major research contributions of this study are given as below:

• Automated Fracture Diagnosis: The research introduces an automated approach to diagnose

fractured fingers from images, mitigating risks associated with manual examination.
• Advanced Deep Learning Models: The study employs cutting-edge models, including

ResNet34, ResNet50, ResNet101, ResNet152, VGG-16, and VGG-19, showcasing a commitment

to leveraging state-of-the-art technologies for medical image analysis.
• Comprehensive Evaluation Metrics: The research pioneers the use of accuracy, precision, recall,

and F1-score as thorough evaluation metrics, contributing to the methodology of assessing deep

learning models in the medical domain.
• Performance Comparison: The findings reveal the consistent and robust performance of ResNet

models, with a commendable test accuracy of up to 81.9%, surpassing VGG models (78.5%) in

the context of finger fracture classification.
• Insights for Future Research: The study provides valuable insights for future research in the

field of medical image analysis, particularly in optimizing deep learning models for enhanced

accuracy and efficiency in diagnosing finger fractures.

The rest of the article is organised in such a way that Section 2 provides an over view of the

existing research in the field of finger fracture classification. Methodology of the current study is

elaborated in Sections 3 while Section 4 provides statistics regarding the results of multiple experiments.

Conclusion and Future Work are provided in Section 5.

2. Literature Review

In this study, the researcher employed a multi-network model and utilized the "MURA" dataset,

achieving an accuracy of 90.77%. The model comprised three sub-networks designed to identify

distinct categories of abnormalities in radiographs. These sub-networks were dedicated to detecting

abnormalities related to bones, joints, and implants, respectively.[1]. In this study, By using the BoneNet

model and a dataset of bone X-rays, the author was able to achieve an astounding accuracy of 98.6%.

The model proved adept at identifying subtle distinctions among closely related bone categories,

surpassing the capabilities of human observation. Notably, the model showcased resilience in the

face of changes in bone positioning, angles, and image quality, highlighting its consistent accuracy

across diverse conditions. [2]. In this research, the researcher utilized a publicly accessible dataset

comprising 3000 femur X-ray images, achieving an accuracy of 93.8% through the implementation of
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the Vision Transformation (ViT) model. Scientists utilizing the ImageNet dataset’s pre-trained weights.

The training process involved a dataset consisting of approximately 3,000 femoral X-ray images. The

model strategically prioritizes regions around the fracture site and areas with distinctive bone texture,

as per the authors’ analysis of the relevance of different image regions in the classification of femur

fractures. [3]. The authors of this article personally collected the X-ray images. from 1280 patients in

an Indian hospital, utilizing a CNN to achieve an impressive accuracy of 98.31%. Through ablation

research, the authors discerned the crucial role of convolutional layers in learning valuable features for

fracture detection. This experimentation involved analyzing the contributions of different components

within the model. [4]. In this study, the author employed CNN-based models, denoted as E1 and E2,

incorporating transfer learning on the "MURA" dataset, attaining, respectively, test accuracies of 0.8455

and 0.8472. The model’s accuracy and robustness were exemplified by its proficient classification of

various shoulder X-ray abnormalities, including acromioclavicular joint separation, rotator cuff tears,

proximal humerus fractures, and glenohumeral joint osteoarthritis. The research underscores that the

model excels when transfer learning is applied, using the ImageNet dataset’s pre-trained weights. This

method allows the model to understand important features essential for the categorization of shoulder

X-ray images. [5].

In this study, the author delves into various strategies for bone fracture classification, with a focus

on X-ray images as the primary modality. Emphasizing the significance of data preprocessing and

augmentation techniques, the article highlights their role in enhancing the performance of classification

models.Deep learning techniques, especially Convolutional Neural Networks (CNNs), have become

the standard method in recent years. The author underscores the necessity for standardized

evaluation metrics and benchmark datasets to facilitate a fair comparison of diverse methods. While

acknowledging the potential applications of bone fracture classification in clinical settings, the article

acknowledges existing challenges and limitations. These include the demand for substantial amounts

of annotated data and the complexity of detecting subtle or intricate fractures. To address these

issues, the paper proposes exploring the utilization of multimodal imaging data and incorporating

explainable AI techniques, aiming to enhance both the accuracy and interpretability of classification

models.[6]. This paper highlights how deep learning can improve tasks in musculoskeletal radiology,

including bone fracture detection, disease diagnosis, and joint segmentation. Data preprocessing and

augmentation are crucial for model performance. Deep learning enhances diagnostic accuracy, reduces

variability, and automates patient screening. Lack of imaging protocol standardization is a challenge.

Future research could explore multiple imaging modalities, integrating clinical and imaging data, and

personalized medicine in musculoskeletal radiology using deep learning. [7]. In order to investigate

the application of deep learning models for the detection and classification of fractures using diverse

imaging modalities, this paper performs a comprehensive review and meta-analysis of 14 studies. The

combined sensitivity and specificity of these models are reported as 0.91/0.95 for fracture detection

and 0.92/0.94 for fracture classification, respectively. The accuracy of these deep learning models

varies depending on the type of fracture and the imaging technique employed. The potential clinical

applications include enhancing diagnostic precision and minimizing variations between different

observers. However, to confirm that deep learning models for orthopedic fractures accurately diagnose

patients, more standardized evaluation metrics and larger studies are essential. [8]. In this article,

the author proposes the utilization of a deep learning model built upon a CNN architecture. The

model is specifically trained for the classification of hip fractures into stable or unstable categories

and the prediction of functional outcomes based on preoperative radiographs. The dataset employed

in the study comprises 374 hip fracture cases from a single institution. The model demonstrates an

overall accuracy of 87.2% for fracture identification and 71.4% for functional classification.[9]. The

author of this work presents an attention-based cascade R-CNN model intended for X-ray image

detection of sternum fractures. The model operates in two stages, focusing on Region of Interest (ROI)

detection and subsequent classification. Using a dataset comprising 380 X-ray images, the authors

attained noteworthy results, including an F1-score of 0.905 and a precision of 0.947 on the test set.
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These results outperform those of other cutting-edge models. The findings of this research suggest

promising potential for enhanced accuracy and efficiency in sternum fracture detection within clinical

practice.[10].

This study recommends using a deep learning model for the identification and categorization of

bone abnormalities that is based on the VGG-16 architecture in radiographic images, employing the

MURA dataset. High accuracy rates for binary and multi-class classification tasks are reported by the

study, distinguishing between normal and abnormal images. These findings underscore the model’s

potential utility in aiding the detection and diagnosis of bone abnormalities. However, the paper

acknowledges certain limitations, such as the necessity for larger and more diverse datasets, and the

exploration of alternative deep learning techniques.[11]. In this study, With a mean average precision of

85.6%, the author argues in favor of using the YOLOv5 model to automatically identify bone fractures

in X-ray images. This proposed approach holds promise for enhancing clinical outcomes through

the accurate and efficient identification of bone fractures in X-ray data. The authors underscore the

significance of automated fracture detection systems, particularly in regions with high incidence rates

of bone fractures, where manual interpretation of X-ray images may be prone to errors. [12]. In this

article, In order to identify arm fractures in X-rays, the author proposes an improved deep CNN that is

derived from the R-CNN model. The proposed method surpasses other state-of-the-art deep learning

approaches, attaining a notable average precision of 62.04%. The authors attribute this achievement to

various enhancements, including the implementation of a new backbone network, image preprocessing

techniques for contrast enhancement, and adjustments to the receptive field. The research showcases

the potential practical applicability of the proposed method in clinical settings, aiming to enhance the

efficiency and accuracy of detection of arm fracture in X-rays.[13]. In this research, the author proposes

the exploration of deep learning models for various musculoskeletal disease-related tasks, including

lesion detection, progression prediction, and bone age assessment. The results indicate the potential for

these models to achieve high accuracy, offering possibilities for improved clinical outcomes through

early detection and diagnosis, prediction of disease progression, and more precise assessments of bone

age. However, the author emphasizes the necessity for additional validation and testing to assess

the models’ applicability and reliability in real-world clinical scenarios. [14]. In this study, the The

author suggests and illustrates the use of CNN-based models to identify cartilage lesions in knee

MR images. The model underwent training and evaluation using a dataset from the Osteoarthritis

Initiative (OAI) database, surpassing the diagnostic performance of radiologists with an AUC-ROC

of 0.92. This suggests that deep learning methods can serve as valuable tools to assist clinicians in

accurately detecting musculoskeletal abnormalities, potentially enhancing patient outcomes. But

it’s important to remember that validation of the model’s performance is necessary. on larger and

more diverse datasets before considering its application in clinical practice. [15]. Deep learning

(DL) has emerged as a game-changing technology for medical applications in recent years, bringing

about significant changes in diagnostic and treatment approaches. With its advanced neural network

architectures, deep learning has particularly excelled in tasks like medical imaging for improved image

segmentation and disease classification. This study specifically focuses on the Alzheimer’s disease

segmentation and classification through Magnetic Resonance Imaging (MRI). The innovative approach

integrates both transfer learning and customization of Convolutional Neural Networks (CNNs). The

methodology involves the utilization of pre-segmented brain images, with a specific focus on the Gray

Matter. The researchers use a pre-trained DL model as the initial framework and then apply transfer

learning, rather than creating the model from scratch. Through assessing the model’s accuracy at

various epochs (10, 25, and 50), the study achieves an outstanding overall accuracy of 97.84%. This

demonstrates how their method of applying state-of-the-art deep learning techniques to advance the

analysis of Alzheimer’s disease is effective [16]. In this study, a computer-aided diagnosis (CAD)

system is developed using images from chest X-rays (CXRs) tailored for a specific disease. The method

entails training two deep learning networks: the Long Short-Term Memory Network (LSTM) and

the Convolutional Neural Network (CNN), in three phases. Initially, the CNN undergoes training
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with raw CXR images, subsequently pre-processed images, and lastly, using augmentation techniques,

improved CXR images. The final CNN-LSTM model achieves an impressive accuracy of 99.02%,

surpassing benchmark models. Notably, this approach enhances true positive rates, addressing the

issue of false negatives encountered when using raw CXR images [17]. Predicting road traffic is vital

for intelligent transportation systems, yet it presents challenges given diverse roads, speed fluctuations,

and interdependencies among segments. In order to handle dynamic spatial dependencies, this work

incorporates attention mechanisms into the Graph WaveNet model. When evaluated against the Graph

WaveNet for a 60-minute prediction, On the PEMS-BAY and METR-LA datasets, the improved model

showed a reduction in root-mean-square error of 3.4% and 4.76%, respectively.It is noteworthy, though,

that the additional computation of attention scores resulted in an increase in the model’s training

time[18]. Another study underscores the critical importance of early detection in Acute Pancreatitis

(AP). This research leverages advanced machine learning techniques to replace traditional scoring

methods, overcoming challenges such as small datasets and class imbalance. The incorporation of

augmented datasets from sources like MIMIC-III, MIMIC-IV, and eICU enhances the training of the

classifier. Effective handling of missing values is achieved through iterative imputation. The study

compares the performance of downsampling on small test sets, cautioning about its potential for

being misleading on larger sets. Upsampling techniques, including CTGAN, TGAN, CopulaGAN,

CTAB, TVAE, and SMOTE, were explored. Among these, Random Forest demonstrated exceptional

performance with an F-Beta of 0.702 and a recall of 0.833 in a 50-50 class split by CTGAN. Random

Forest also exhibited strong performance on the TVAE dataset with an F-Beta of 0.698. In the case of

SMOTE-based upsampling, the Deep Neural Network emerged as the top performer, achieving the

best result with an F-Beta of 0.671. [19].

3. Methodology

The steps of the methodology we applied in this study are as shown in Figure 1 take X-ray images

of finger from MURA dataset, data preprocessing and data augmentation for data imbalance of classes,

apply transfer learning based deep learning models, show the results in class 0 and class 1, where class

0 is negative and class 1 is positive.

Figure 1. Architecture Diagram of Classification and Detection of Finger Fracture by Using

Deep Learning.

3.1. Date Set

The MURA dataset, among the most extensive openly accessible radiography datasets, includes

X-rays showing the finger, elbow, wrist, hand, forearm, humerus, and shoulder bones, among other

skeletal regions. For this study, the primary focus is on utilizing finger bone X-ray images, specifically

those presented in Table 1. The MURA dataset includes a total of 2142 finger images, with 1389

identified as normal and 753 as abnormal. Radiologists themselves have labeled these images based

on their assessment of normalcy or abnormality.
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Table 1. Total Images in Finger Class.

Total Images Normal Abnormal

2142 1389 753

3.2. Data Augmentation

In this study, the MURA dataset for finger bone X-ray images was augmented to amplify the

dataset’s size. This practice is crucial in deep learning, especially for classification studies, as the

variety and volume of data the model is trained on have a significant impact on its performance.

The augmentation technique involved creating additional images by rotating the original X-ray

photographs, with rotations ranging up to a maximum of 10 degrees to both the right and left.

The objective of this procedure is to enhance the network’s training phase by incorporating a larger

collection of images, positively impacting the model’s ability to learn and generalize effectively.

3.3. Data Preprocessing

The study examined X-ray images that exhibit noise and a dark background, which could

potentially hinder the precision of the fracture detection and classification procedures. To address

these issues and improve the precision of classification results, Several pre-processing procedures were

used on the dataset. Following are the preprocessing steps:

1. Detection of the Corresponding Area: A significant portion of the X-ray images in the dataset

lacked sufficient size-related semantic information. To address this issue, a series of preprocessing

steps were implemented. Initially, the images were converted to grayscale and then double

thresholded. Using Otsu’s thresholding value approach, an adaptive threshold value was

found, aiming to rectify this inadequacy. This involved assessing within-class variance for the

foreground and background color classes in the grayscale pictures. The threshold value chosen

was the one that minimized this variance, utilizing Otsu’s thresholding value method. Following

this, the thresholded image underwent edge detection techniques to identify and highlight its

edges. After this, the original images underwent a cropping process to fine-tune and boost their

overall quality.
2. CLAHE Transformation: In this step, the transformation was achieved by employing

contrast-limited adaptive histogram equalization (CLAHE) with the OpenCV library. The

input image was divided into segments, each having its own histogram. Users defined limits

for histogram cropping, and based on these specifications, adjustments were applied to the

histogram of each segment, resulting in the creation of CLAHE-enhanced versions of the images.
3. Normalization and Standardization: In this final phase, ImageNet values were employed for the

normalization and standardization of the images.

3.4. Models

3.4.1. ResNet-34

It starts by loading a pre-trained ResNet-34 model, which has undergone training on an extensive

dataset.. The code then modifies the fully connected (fc) layer of the model. The original fc layer

is replaced with a new one that consists of a linear layer and a sigmoid activation function. This

modification enables the model to undergo fine-tuning specifically for a binary classification task,

where it predicts one of two classes. By replacing the fc layer, the network can be customized to suit the

specific classification problem at hand. The utilization of the sigmoid activation function guarantees

that the model produces output probabilities within the range of 0 to 1, which is commonly used in

binary classification tasks. The equations for original [1] and combined (original+modified) [2] are

given below: Where,
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• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
• σ is the sigmoid activation function.
• fResNet-34(x) represents the feature extraction process of the ResNet-34 model.

yoriginal, ResNet-34(x) = fResNet-34(x) (1)

ycombined, ResNet-34(x) = σ(W ′ fResNet-34(x) + b′) (2)

In the following diagrams, the Figure 2 meticulously captures the architecture of the original

model, depicting its intricate layers and connections. The Figure 3 serves as a visual representation

of the modified model, highlighting specific changes made to the fully connected (FC) layer. These

alterations are instrumental in adapting the model for binary classification tasks, offering a clear

comparison between the original and tailored architectures.

Figure 2. Block Diagram of ResNet-34.

Figure 3. Block Diagram of Modifications in ResNet-34.

3.4.2. ResNet-50

The model is initialized with weights learned from an extensive dataset, and the subsequent step

involves reconfiguring the model’s fully connected (fc) layer. In this adjustment, the original fc layer

is substituted with a new structure comprising a linear layer and a sigmoid activation function. The

linear layer is tailored to accept a defined number of input features and generate 2 output features,

representing the two classes in a binary classification task. Employing the sigmoid activation function

ensures that the model’s output is a probability falling within the standard 0 to 1 range, a widely

adopted approach in binary classification scenarios. This code streamlines the fine-tuning of the

ResNet-50 model for a specific binary classification task by tailoring the fc layer to suit the task’s

specific requirements. The equations for original [3] and combined (original+modified) [4] are given

below: Where’
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• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
• σ is the sigmoid activation function.
• fResNet-50(x) represents the feature extraction process of the ResNet-50 model.

yoriginal, ResNet-50(x) = fResNet-50(x) (3)

ycombined, ResNet-50(x) = σ(W ′ fResNet-50(x) + b′) (4)

In Figure 4, the intricate architecture of the original model unfolds, revealing the layers and

interconnected components. The Figure 5, in contrast, visually encapsulates the evolution of the model,

highlighting targeted modifications made to the fully connected (FC) layer. These purposeful changes

are instrumental in adapting the architecture for binary classification, providing a visual juxtaposition

of the initial and customized designs.

Figure 4. Block Diagram of ResNet-50.

Figure 5. Block Diagram of Modifications in ResNet-50.

3.4.3. ResNet-101

For image recognition, a pre-trained ResNet-101 model is utilized, benefiting from weights

learned on a comprehensive dataset to adeptly recognize diverse objects and patterns in images. The

subsequent focus in the code is on adapting the fully connected (fc) layer of the model, facilitating

fine-tuning for a binary classification task. This entails replacing the original fc layer with a novel
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configuration comprising a linear layer and a sigmoid activation function. The linear layer, tailored to

a specific number of input features, yields 2 output features representing the two classes in question.

The inclusion of the sigmoid activation function ensures that the model’s output aligns within the

probabilistic range of 0 to 1, rendering it well-suited for binary classification tasks. The equations for

original [5] and combined (original+modified) [6] are given below: Where’

• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
• σ is the sigmoid activation function.
• fResNet-101(x) represents the feature extraction process of the ResNet-101 model.

yoriginal, ResNet-101(x) = fResNet-101(x) (5)

ycombined, ResNet-101(x) = σ(W ′ fResNet-101(x) + b′) (6)

Figure 6 thoughtfully represent nuanced details of the original model’s architecture, revealing

the intricate interplay of its various layers. In contrast, the Figure 7 visually communicates the

transformative journey of the model, emphasizing modifications to the fully connected (FC) layer.

These purposeful adjustments are essential for customizing the architecture to meet the requirements

of binary classification, providing a clear contrast between the original and adapted designs.

Figure 6. Block Diagram of ResNet-101
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Figure 7. Block Diagram of Modifications in ResNet-101

3.4.4. ResNet-152

In image recognition, we leverage a pre-trained ResNet-152 model, renowned for its exceptional

performance in visual tasks due to its deep convolutional neural network architecture. This model is

initialized with pre-trained weights, indicating prior learning from an extensive dataset. Our study

concentrates on customizing the fully connected (fc) layer of the ResNet-152 model, responsible for the

final classification of input images. By replacing the original fc layer, the model can be tailored for a

specific binary classification task. In this context, the new fc layer comprises a linear layer succeeded

by a sigmoid activation function. The linear layer accommodates a specific number of input features,

as determined by the original fc layer, and generates two output features representing the binary

classification classes. The sigmoid activation function ensures the model’s output is a probability value

ranging between 0 and 1, aligning it with the requirements of binary classification. The equations for

original [7] and combined (original+modified) [8] are given below: Where’

• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
• σ is the sigmoid activation function.
• fResNet-152(x) represents the feature extraction process of the ResNet-152 model.

yoriginal, ResNet-152(x) = fResNet-152(x) (7)

ycombined, ResNet-101(x) = σ(W ′ fResNet-101(x) + b′) (8)

The figure [8] meticulously delineates the architectural intricacies of the original model, capturing

the layered structure and intricate connections. Transitioning to the figure [9] , it visually encapsulates

the model’s transformation, emphasizing specific adjustments to the fully connected (FC) layer. These

intentional modifications are pivotal for tailoring the model to excel in binary classification scenarios,

offering a compelling visual comparison between the original and adapted architectures.
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Figure 8. Block Diagram of ResNet-152.

Figure 9. Block Diagram of Modifications in ResNet-152.

3.4.5. VGG-16

Initialized with weights from a comprehensive dataset, the primary focus is on adapting the

classifier layer of the VGG-16 model. This layer, pivotal for making final predictions based on extracted

features, undergoes customization by replacing the last fully connected layer with a new linear layer.

To determine the requisite number of input features for the new linear layer, the in-features attribute of

the original fully connected layer is accessed. This attribute value is then employed to construct the

new linear layer, specifically tailored for a binary classification task. This redesigned layer involves

a linear transformation that takes the extracted features as input and produces two output features,

representing the classes to be predicted. Through this classifier layer modification, the VGG-16 model

is finely tuned for precise performance in a binary classification context, allowing it to learn and predict

with tailored accuracy for the specific classes of interest. The equations for original [9] and combined

(original+modified) [10] are given below: Where’

• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
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• σ is the sigmoid activation function.
• fVGG-16(x) represents the feature extraction process of the VGG-16 model.

yoriginal, VGG-16(x) = fVGG-16(x) (9)

ycombined, VGG-16(x) = σ(W ′ fVGG-16(x) + b′) (10)

In the visual depictions given below, the Figure 10 intricately delineates the structure of the

original model, portraying its complex layers and interconnections in detail. The Figure 11 functions

as a graphical portrayal of the adapted model, emphasizing particular modifications introduced to

the fully connected (FC) layer. These adjustments play a crucial role in customizing the model for

binary classification assignments, providing a distinct contrast between the original and customized

architectural configurations.

Figure 10. Block Diagram of VGG-16.

Figure 11. Block Diagram of Modifications in VGG-16.

3.4.6. VGG-19

Utilizing the VGG-19 model renowned for its prowess in visual tasks, this image classification

task benefits from pre-trained weights on a comprehensive dataset. The core focus of the adaptation

lies in the classifier layer, responsible for the conclusive classification step based on extracted features.

Specifically, the final fully connected layer in the classifier undergoes transformation, being replaced

with a novel linear layer. The determination of input features for this new linear layer is guided

by accessing the in-features attribute of the original fully connected layer. Tailored for a binary

classification task with two classes to predict, this new linear layer acts as the conclusive layer,

mapping extracted features to the specified classes. Through this meticulous adjustment of the
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classifier layer, the VGG-19 model is finely tuned for the nuances of a specific binary classification

problem. This refinement allows the model to adeptly learn and tailor predictions to the classes of

interest, elevating its performance in the designated task. The equations for original [11] and combined

(original+modified) [12] are given below: Where’

• W ′ is the weight matrix for the new linear layer.
• b′ is the bias vector for the new linear layer.
• x is the input.
• σ is the sigmoid activation function.
• fVGG-19(x) represents the feature extraction process of the VGG-19 model.

yoriginal, VGG-19(x) = fVGG-19(x) (11)

ycombined, VGG-19(x) = σ(W ′ fVGG-19(x) + b′) (12)

The Figure 12 intricately delineates the nuanced architecture of the original model, elucidating its

intricate layers and connections. The Figure 13 functions as a visual portrayal of the adjusted model,

accentuating specific modifications made to the fully connected (FC) layer. These changes are pivotal

in tailoring the model for binary classification tasks, presenting a distinct comparison between the

initial and customized architectural configurations.

Figure 12. Block Diagram of VGG-19.

Figure 13. Block Diagram of Modifications in VGG-19.
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4. Results

The categorization of X-rays of the finger bones in this study was made easier by online servers

serving as the hardware infrastructure. The ResNet and VGG deep learning models, alongside

packages such as torchvision, seaborn, scikit-learn, matplotlib, and torch, were instrumental in

executing the classification procedures. The cross-entropy loss function, the Adam optimizer, and a

fixed learning rate of 0.0001 were employed in the procedure, spanning across 40 epochs. Notably, the

initial learning rate was dynamic, undergoing a reduction by a factor of 10 every 10 epochs to enhance

the learning success of the network.

4.1. Evaluation Metrics

In the domain of machine learning, the efficacy of classification models is commonly appraised

using a suite of metrics derived from a confusion matrix. This matrix encompasses pivotal elements

like True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). The

training/testing accuracy acts as a thorough indicator of a model’s accuracy, representing the

proportion of correctly predicted cases to the total dataset. By highlighting the proportion of true

positives to all positive predictions, precision provides insight into the accuracy of positive predictions.

Recall, which is a measure of the model’s ability to capture all real positive instances, is also referred to

as sensitivity or the true positive rate. The F1-score provides a balanced metric that takes into account

both false positives and false negatives. It is a harmonic mean of precision and recall. Collectively, these

metrics provide varied perspectives on a classification model’s performance, enabling practitioners to

comprehensively evaluate its capabilities from diverse angles. By inputting specific values into these

formulas derived from a confusion matrix, one can derive precise assessments of accuracy, precision,

recall, and F1-score, customized to the distinct qualities of the model’s predictions. Formulae of these

evaluation metrics are the following:

1. Training/Testing Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

2. Precision:

Precision =
TP

TP + FP
(14)

3. Recall (Sensitivity or True Positive Rate):

Recall =
TP

TP + FN
(15)

4. F1-score:

F1-score =
2 × TP

2 × TP + FP + FN
(16)

4.2. Classification Results of Our Models

The outcomes of the classification, including training accuracy, test accuracy, precision, recall,

F1-score, and Cohen’s kappa scores for each model, are illustrated in Figure 14 and detailed in Table 2.

Table 2. Classification Results.

Models Accuracy Precision Recall F1-Score

ResNet34 0.8190 0.8246 0.8146 0.82
ResNet50 0.8188 0.8146 0.820 0.8149

ResNet101 0.8171 0.8152 0.8152 0.82
ResNet152 0.8117 0.815 0.81 0.81

VGG16 0.7851 0.79 0.7849 0.7849
VGG19 0.7851 0.7849 0.7849 0.7849
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Figure 14. Results Visualization after testing.

The evaluation results indicate that the ResNet models, including ResNet34, ResNet50, ResNet101,

and ResNet152, exhibit similar and strong performance across Test Accuracy, Precision, Recall, and

F1-Score metrics. With accuracy ranging from approximately 81.1% to 81.9%, these models consistently

achieve high precision (81.5% to 82.5%), recall (81.0% to 82.0%), and F1-Score (81.0% to 82.0%).

In comparison, the VGG models (VGG16 and VGG19) demonstrate slightly lower but consistent

performance, with accuracy, precision, recall, and F1-Score values around 78.5%. Overall, the ResNet

models provide reliable and accurate results, making them strong choices for the given task, while the

VGG models offer a computationally efficient alternative with slightly lower accuracy.

4.3. Discussion

The proposed study classifies finger bone X-ray images using deep learning models ResNet,

VGG-16, and VGG-19. To thoroughly assess the models’ performance, key evaluation metrics such

as accuracy percentage, confusion matrix, precision, recall, and F1-score are employed. Notably,

the ResNet models consistently demonstrate robust results, achieving accuracy levels ranging from

81.1% to 81.9%, accompanied by high precision, recall, and F1-Score values. In comparison, the VGG

models exhibit slightly lower but consistently strong performance, with accuracy, precision, recall,

and F1-Score hovering around 78.5%. The ResNet models are affirmed as reliable and accurate, while

the VGG models present a computationally efficient alternative. Overall, the study highlights the

commendable performance of ResNet models, encompassing ResNet34, ResNet50, ResNet101, and

ResNet152, in the classification of X-ray images of finger bones. These models consistently deliver

reliable and accurate results. On the other hand, VGG models, although exhibiting slightly lower

accuracy, present a computationally efficient alternative for the same task. The decision between these

Models should follow certain guidelines while taking trade-offs into account, between the pursuit of

high accuracy and the consideration of computational efficiency.

In comparing the results of the present study with prior investigations on the MURA dataset,

notable distinctions emerge, particularly concerning the scope of image classification. A study,

which conducted binary classification on the entire MURA dataset utilizing VGG16 and RESNET50

architectures, yielded a commendable 78% accuracy [20] Subsequently, a study focused exclusively on

finger classification achieved a higher accuracy of 81%, underscoring the significance of specialization

within the dataset [21]. Furthermore, a study narrowed its scope to finger fracture classification,

reporting accuracy of 71.4% for VGG19 and 70.1% for RESNET. Notably, this study highlighted the

challenges associated with the nuanced task of distinguishing specific pathologies within the MURA

dataset [22]. In contrast, a study demonstrated an 81% accuracy for the complete MURA dataset,

emphasizing the robustness of models when confronted with a diverse range of musculoskeletal

conditions [23]. The current investigation delved into finger fracture classification, yielding an accuracy

of 78.5% for VGG models and 81.9% for RESNET models. The outcomes underscore the nuanced
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nature of classifying finger fractures within the broader MURA dataset, demonstrating competitive

accuracy rates in comparison to studies with a more extensive focus. The following Table 3 highlights

each study’s major conclusions:

Table 3. Comparative Analysis of Musculoskeletal Image Classification Studies on MURA Dataset.

Architecture Dataset Scope Accuracy

VGG-16 Whole MURA 78
ResNet50 Whole MURA 78
MSFMR50 Finger Fracture 81

VGG-19 Finger Fracture 71.4
ResNet Finger Fracture 70.1

Naive DL network Whole MURA 81
VGG(ours) Finger Fracture 78.5

ResNet(ours) Finger Fracture 81.9

5. Conclusion and Future Work

The ResNet architectures, in particular ResNet34, ResNet50, ResNet101, and ResNet152,

outperform VGG models in terms of test accuracy, precision, recall, and F1-Score when evaluating deep

learning models for finger fracture classification. ResNet models’ reliable and powerful performance

indicates their applicability for using X-ray images to automatically diagnose finger fractures. These

findings can direct the choice of optimal models for practical implementation in computer aided

diagnosis, highlighting the importance of model selection that prioritize both accuracy and reliability

in healthcare applications. The research concludes the following findings:

• ResNet Model Consistency: ResNet models (ResNet34, ResNet50, ResNet101, ResNet152)

exhibit consistent and robust performance across all evaluation metrics. The minimal variation

in results indicates the reliability of ResNet architectures for the specific task of finger fracture

classification.
• High Accuracy: All ResNet models achieve test accuracies above 81%, showcasing their

effectiveness in distinguishing between fractured and non-fractured finger images. This high

level of accuracy is crucial for reliable medical diagnoses.
• Balanced Precision and Recall: The ResNet models maintain a balance between precision and

recall, with values ranging from 81.0% to 82.5%. This equilibrium shows how well the models

can distinguish between positive (fractured) and negative (non-fractured) cases.
• Comparable VGG Model Performance: VGG16 and VGG19 models demonstrate comparable

but slightly lower performance compared to ResNet models. The test accuracy of approximately

78.5% suggests a slightly reduced ability to correctly classify fractured and non-fractured finger

images.

In future, the focus can be on improving the accuracy of finger fracture classification by

fine-tuning ResNet architectures and employing auto-encoders, ensemble learning approaches,

data augmentation, transfer learning with pre-trained Models and Continuous Model Monitoring

and Updation.
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