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I S S

Abstract: The first part of this work provides a review of recent research on generalised entropies
and their origin, as well as its application to black hole thermodynamics. To start, it is shown that the
Hawking temperature and the Bekenstein-Hawking entropy are, respectively, the only possible ther-
modynamical temperature and entropy of the Schwarzschild black hole. Moreover, it is investigated if
the other known generalised entropies, which include Rényi’s entropy, the Tsallis one, and the four-
and five-parameter generalised entropies, could correctly yield the Hawking temperature and the
ADM mass. The possibility that generalised entropies could describe hairy black hole thermodynamics
is also considered, both for the Reissner-Nordstrom black hole and for Einstein’s gravity coupled with
two scalar fields. Two possibilities are investigated, namely, the case when the ADM mass does not
yield the Bekenstein-Hawking entropy, and the case in which the effective mass expressing the energy
inside the horizon does not yield the Hawking temperature. For the model with two scalar fields, the
radii of the photon sphere and of the black hole shadow are calculated, which gives constraints on the
BH parameters. These constraints are seen to be consistent, provided the black hole is of Schwarzschild
type. Subsequently, the origin of the generalised entropies is investigated, by using their microscopic
particle descriptions in the frameworks of a microcanonical and of a canonical ensemble, respectively.
To finish, the McLaughlin expansion for the generalised entropies is used to derive, in each case, the
microscopic interpretation of the generalised entropies, via the canonical and the grand canonical
ensembles.

Keywords: generalised entropy; black hole

1. Introduction

The thermodynamical properties of gravity could prove to be most important in attempting to
construct a theory of quantum gravity. Every black hole (BH) can be regarded as a black body with
temperature given by the Hawking temperature [1,2] and an entropy given by the Bekenstein-Hawking
entropy [1,3].

In various fields of physics, statistics and informatics, there have been proposed different forms
of non-extensive entropies, with their corresponding statistics. In particular, the present authors,
with some collaborators, have explicitly proposed generalised entropies, which depend on several
parameters (see Refs. [4,5]). They generalise all previously known entropies, as Rényi entropy [6], the
Tsallis entropy [7] (see also [8,9]), the Sharma-Mittal entropy [10], Barrow’s entropy [11], the Kaniadakis
entropy [12,13], Loop Quantum Gravity’s entropy [14], etc. Such entropies have been proposed to
describe different kinds of physical, statistical, and information systems.

Note, however, that the Hawking temperature, Ty, can be obtained from the Hawking radiation,
which has a thermal distribution. This tells us that the Hawking temperature Ty is independent
of the details of the gravity theory, and it is only determined by the geometry. Furthermore, if we
consider the collapse of the dust shell that yields the black hole, and we assume energy conservation,
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the Arnowitt-Deser-Misner (ADM) mass [15] must be the thermodynamical energy of the system, at
least in the case of a Schwarzschild black hole.

Recently, a number of works have appeared where different non-extensive kinds of entropies have
been applied in the study of black hole thermodynamics (see, e.g, [16-32]). Unfortunately, the Hawking
temperature or black hole energy obtained in such non-extensive entropy black hole thermodynamics
seems to be incorrect.

One may still conjecture that, in the early universe, the non-extensive generalised entropy could be
valid. With the universe’s evolution, the form of the physical entropy might change to later acquire its
current form. Therefore, there is some good motivation for the study of different entropies, which were
applied in cosmology and BHs. In fact, various expressions of entropy lead to different holographic
cosmologies [33,34] and models of holographic dark energy [35-42]. The holographic approach can
be also applied to understand inflation at the early universe [43]. This makes it possible to describe
dark energy and inflation via holographic cosmology in a unified way. A microscopic description of
the generalised entropy has been also proposed. It might be helpful in clarifying the structure of a
quantum gravity theory, which is still to be constructed.

In this review paper, we confirm once more that the Hawking temperature and the ADM mass
may correspond to the thermodynamical temperature and energy uniquely, at least in the case of the
Schwarzschild black hole. This shows then that the Bekenstein-Hawking entropy is also a unique
BH entropy. As a follow-up, we review several approaches where the generalised entropy could be
applied for the consideration of several kinds of black holes with hair(s).

In the next section, we show that the temperature and the entropy of the Schwarzschild black hole
are given by the Hawking temperature (Section 2.1) and the Bekenstein-Hawking entropy, respectively,
by identifying the ADM mass with the thermodynamical energy (Section 2.2). In Section 3, we discuss
in more detail the question of whether the Hawking temperature and the Bekenstein-Hawking entropy
are unique, or not. To this purpose, we show that the ADM mass should be thermodynamical energy, by
using the geometry of the black hole and the energy conservation via Birkhoff’s theorem. In Section 4,
for the non-extensive entropy, we explicitly consider if it could give the Hawking temperature and
the ADM mass correctly. In especial, the Rényi entropy is discussed in Section 4.1, Tsallis entropy in
Section 4.2, and further generalised entropies, as the four- and five-parameter generalised entropies,
in Section 4.3. In Section 5, we study if it might be possible that hairy BH thermodynamics could
be described by generalised entropies, for the Reissner-Nordstrom black hole in Section 5.1, and for
Einstein’s gravity coupled to two scalar fields, in Section 5.2. In the latter case, after showing the
general formulation, in Section 5.2.1, and some examples, in Section 5.2.2, we consider two kinds of
possibilities. Namely, the case that the ADM mass does not give the Bekenstein-Hawking entropy, in
Section 5.2.3, and the case that the effective mass expressing the energy inside the horizon does not
give the Hawking temperature, in Section 5.2.4. In Section 6, for the models obtained in Section 5.2, we
get the radii of the photon sphere and of the black hole shadow. Then observations give constraints
on the BH parameters. They turn out to be consistent, if the black holes are of the Schwarzschild
type, although future observations may also give some information about BH thermodynamics. In
Section 7, for more general expressions of the generalised entropies, we propose microscopic particle
descriptions of the corresponding thermodynamical system. We investigate this problem by using a
microcanonical ensemble, in Section 7.1, and a canonical ensemble, in Section 7.2. In Section 8, by using
the expression of the McLaughlin expansion for the generalised entropies, we consider the microscopic
interpretation of the generalised entropies in the frame of a canonical ensemble, in Section 8.1, and of a
grand canonical ensemble, in Section 8.2. The last section of the paper contains a summary and final
discussion.

2. Entropy Consistent with Hawking Radiation

The Hawking radiation has a thermal distribution, from which we can find the Hawking tem-
perature Tty. The geometry with the horizon generates Hawking’s radiation. Therefore, the Hawking
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temperature, Ty, is only determined by the geometry and is independent of the details of the gravity
theory, which realises the geometry.

Let us consider a system whose size is R and the energy and the entropy inside the system are E
and S, respectively. Then Bekenstein bound is given by [44]

27RE > S. 1)

In the case of the black hole, R can be identified with the diameter of the horizon, that is, twice the
horizon radius. We also need to check if the bound (1) is satisfied for general entropy because this
bound ensures that the generalised second law of the thermodynamics is not violated.

2.1. Hawking Temperature from Geometry

First, we find the Hawking temperature. When the metric can be regarded as static, that is, the
time-dependence of the metric can be neglected, we consider the line element with a horizon at r = ry,

2
dr +r2d0%,,  dO2, = d6* + sin? 0dg? . )

2 _ _ 2
ds® = —P(r)(r — ryy)dt +P(r)(r—rH) 2) o)

Assume that P(r) is positive everywhere and sufficiently smooth in the region near the horizon r = rg.
Therefore we may approximate P(r) by a constant, P(r) ~ P(ry;). We now introduce a new coordinate

p defined by
dr
P(ru)(r —ru)
that is,
r—ryg
=2 4
By Wick-rotating the time coordinate t as ¢ — iT, we obtain the following Euclidean metric
> P(m)® 5 5 2 24002
ds” = 7P AT +dp® +r(p)"dQY,) - (5)
We avoid the conical singularity at p = 0 by imposing the periodicity on T,
p p
(FH)T ~ (rH)T+27T. (6)

2 2

In the finite temperature formalism of the path-integral, the periodicity P?g{) corresponds to the inverse
of the temperature

_P(rH)
=

7
a7’ )
which we call the Hawking temperature. In the case of the Schwarzschild spacetime,
1
P(r) = Pschw(r) = 2 TH= 2GM. (8)

Here G is Newton's gravitational constant and M is ADM BH mass.

2.2. Bekenstein-Hawking Entropy from Thermodynamics

As is well-known, the area law for the Bekenstein-Hawking entropy [3] can always be obtained if
we identify the thermodynamical energy E with the black hole mass M, E = M, and the temperature
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of the system with the Hawking temperature (7) [2], T = Ty = ﬁ. In fact, the thermodynamical
relation dE = TdS yields

s = ‘%E — 87GMdM = d(47‘cGM2> ) )

which can be integrated to be
S =4nGM?* + Sy, (10)
where S is a constant of the integration. If we assume S = 0 when M = 0, that is, when there is no

black hole, we find Sp = 0 and we obtain

2
__Ttry _A
S==-=15" (11)

Here A = 47triy? is the area of the horizon. Therefore the Bekenstein-Hawking entropy, that is, the area
law for BH entropy, can be obtained by assuming E = M and T = Ty by using the thermodynamical
relation dS = dE/T. Note that the Bekenstein-Hawking entropy S, of course, satisfies the Bekenstein
bound in (1) because 2TRE = 47ryy g =28 > S.

3. Uniqueness of Hawking Temperature and Bekenstein-Hawking Entropy

We now consider whether the Hawking temperature and the Bekenstein-Hawking entropy could
be unique or not. For this purpose, we need to consider the following two points,

1.  Can the thermodynamical energy E be identified with the black hole mass M (i.e., E = M)?
2. Is the temperature of the black hole given by the Hawking temperature, T = Tg;?

For the first point, we should be careful in the following situation, that is if BH is not the Schwarzschild
one nor isolated one, there is no Arnowitt-Deser-Misner mass. Then the mass M may be the quasilocal
mass contained in the horizon sphere or given by the “black hole part” of the spacetime. For several
quasilocal mass prescriptions, see Ref. [47] for a review.

E=M?
To consider the first point, the following ‘thought experiments’ could be useful.

1. We assume an infalling spherically symmetric shell of dust with mass M and the initial radius
sufficiently large. The Birkhoff theorem [48] tells that the spacetime outside the shell is the
Schwarzschild one (8). The mass M is nothing but the mass of the shell. Inside the shell, the
spacetime is empty and flat.

2. By the collapse of the shell, the radius becomes smaller and smaller. A black hole is formed when
the shell crosses the Schwarzschild radius ry = 2M in (8).

3.  The resulting geometry is always asymptotically flat and the shell mass M appearing in the
horizon radius is surely the energy E of the system, E = M because the energy should be
conserved during the collapse of the shell due to the Birkhoff theorem. That is, the geometry
outside of the shell does not change during the collapse. Therefore the energy of the final black
hole must be the mass of the shell. We should note that due to spherical symmetry, the quadrupole
does not appear and the gravitational waves, which might carry the energy, are not emitted
during the collapse.

One may consider other definitions of the mass or the energy of the black hole like the Misner-
Sharp-Hernandez quasilocal mass Mgy defined in any spherically symmetric spacetime by [56,57]
and the Brown-York quasilocal energy [58]. The obtained results are consistent with the above
arguments or totally unphysical (for more detailed arguments, see [46]).
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31. T = Tyy?

The second point is discussed in the previous section. As mentioned there, Hawking radiation
is obtained if the geometry with the horizon is prescribed and the standard Hawking temperature
is the parameter appearing as the temperature in the thermal distribution of the emitted Hawking
radiation. We may imagine that we put the black hole in a heat bath at temperature T. Then the
thermal equilibrium between the black hole radiation and the heat bath occurs when the radiation
temperature equals the temperature of the heat bath, T = Ty. Therefore, the heat bath can be used
as a thermometer and the temperature measured by the heat bath must be the standard Hawking
temperature of the Hawking radiation and, therefore, we find T = Tyy.

4. Consistency of General Entropies

Due to some motivations, different kinds of entropy other than the Bekenstein-Hawking one [2,3]
have been proposed like Tsallis [7], Rényi [6], Barrow [11], Sharma-Mittal [10], Kaniadakis [12] and
loop quantum gravity entropies [14]). Furthermore, generalised entropy with three, four, five and six
parameters has been proposed in [4,5,49,50]. These generalised entropies give all the aforementioned
known entropies within a certain choice of entropic parameters.

4.1. Rényi Entropy
First, we consider the Rényi entropy [51-54]

Sk = iln(l +aS). (12)

Here S is the Bekenstein-Hawking entropy (11) and « is a parameter specifying the deformation
from the Bekenstein-Hawking entropy. In the limit of & — 0, the expression (12) reduces to the
Bekenstein-Hawking entropy. By using Eq. (10) with Sy = 0, we find,

_ 1 2
Sk=- 1n(1 + 47aGM ) : (13)

Note the Rényi entropy satisfies the Bekenstein bound (1) because Sg < & < 277RE as long as Sg > 0.

4.1.1. Assumption M = E

If the mass M coincides with the energy E of the system due to the energy conservation [51-54],
the consistency of the system with the thermodynamical equation dS = dE/T requires to define the
“Rényi temperature” Tg by

1 _dSk _  87GM (14)
TR~ dM  1+4maGM?2’
that is,
1 aM o
TR = — =T _—, 15
R=gom T 2 = "M 60T, (15)

which is different from the Hawking temperature Ty; and therefore the “Rényi temperature” Ty is not
the temperature perceived by any observer detecting Hawking radiation, as we stressed. Hence the
“Rényi temperature” Tr could be physically irrelevant for black hole thermodynamics.

412. T = Tyy?

Instead of assuming that the thermodynamical energy E is identical with BH mass M, we now
assume that the thermodynamical temperature T coincides with the Hawking temperature Ty.
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By using the thermodynamical relation dE = TdS, the assumptions T = Ty and § = Sg show
that the corresponding thermodynamical energy Eg is given by
1 8mGMdM am

dEr = TudSg 8TGM 1+ 4maGM2 14 47taGM2’ (16)

which can be integrated to give,

Epm L:/?TM) - M- 74”“5 Mo (2). (17)

Here the integration constant is fixed so that Eg = 0 when M = 0. The correction — M + O(a?)
shows that the expression (17) of the thermodynamical energy Eg is different from BH mass M, Eg # E,

what looks unphysical. The more important thing is that it seems to conflict with energy conservation
when we consider the spherically symmetric dust shell collapses to a Schwarzschild black hole.

4.2. Tsallis Entropy

Let us consider Tsallis entropy [7] in BH thermodynamics as is discussed in [46].
The Tsallis entropy may be considered as an alternative to the Bekenstein-Hawking entropy [8]
(see also [9]),

A AN

Here Ay is a constant with the dimension of the area and ¢ specifying the non-extensivity. In the
limit of 6 — 1, the expression in (18) reduces to the standard Bekenstein-Hawking entropy (11). Note,
however, that the Bekenstein bound (1) is violated for the large black hole because %1 — o0 when
S > o0ifd > 1.

421. M =FE?
Again by assuming that the thermodynamical energy E is given by BH mass M, we obtain

A = 471(2GM)? = 1671G*E? and the expression in (18) has the following form,

Ag (167G2E2\’
. 0( 611G ) , (19)

ST=16 Ao
which may allow us to define “Tsallis temperature” as follows,

dE 2G A \? 2G A \?
Tr=-—— = = . (20)
dST (5A0E2‘571 161G (5A0M2‘571 161G

The Tsallis temperature is, of course, different from the Hawking temperature (7), T = Ty = ﬁ
unless 0 = 1.

422. T =Ty?
Instead of identifying the black hole mass M with the thermodynamical energy E, we now assume
that the BH temperature is the Hawking temperature. Because we have A = 47T(47TTH)_2 = 47; 7
H
we find
FRE
Sp=—20—, @
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which may lead to the “Tsallis energy” Et given by

Ao %dTy
dEr = TydSt = —%. (22)
2G(47)°T?®
By integrating (22), we obtain
1-6 1-0 251

ET . (5A0 _ §Ao (87‘[GM) ' (23)

226 —1)GAR)’Ty® 1 2(26 —1)G(4n)°

Here we have fixed the integration constant by imposing the condition that Ey = 0 when M = 0.
The standard relation Et = M is reproduced for 6 = 1 when the Tsallis entropy reduces to the
Bekenstein-Hawking entropy.

4.2.3. Bekenstein-Hawking Entropy as Tsallis Entropy

The standard thermodynamics is related to the extensive system. In the system, if we separate
the system with thermodynamical energy E into two systems with E; and E; with E = E; + Ey, the
standard entropy Sgiandard (E) is extensive, that is,

Sstandard (E 1+ EZ ) = Sstandard (E 1 ) + Sstandard ( EZ ) . (24)

On the other hand, the original Tsallis entropy St has the following properties,

Sl
Sl

($t(Er +E2)* = (Sr(En))° + (Sr(E2) 25)

As pointed in [55], the standard Bekenstein-Hawking entropy is recovered with § = 2

NI
Nl—

(S(Ev+E2))? = (S(E1))? + (Sr(E2))? - (26)

As claimed in [55], this property could be explained by the quantum process where a black hole could
split into smaller black holes.

We should note that the black hole is not in equilibrium with the heat bath or environment. It is
like indoor bright red charcoal. The black hole is hotter than the vacuum. The non-extensivity of the
Bekenstein-Hawking entropy in (26) could tell that the internal energy could not be extensive, either.
In the Tsallis entropy, long-range force is supposed to generate non-extensivity because the long-range
force makes the internal energy non-extensive.

4.3. Generalised Entropies

The generalised four- and six-parameter generalised entropies have the following forms [4,5],

Su(ns,8,7) = % [(1 n "‘7*5)5 ~ (1 n "‘7‘5) 1 ) 27)

and

Se(tt+,0+,7+) =

LS +o_ (5+

5y 5
(1 + ”‘*5%) - (1 + “‘SV) ] , (28)

respectively. Here S = % represents the Bekenstein-Hawking entropy (11). Both of these entropies
reduce to all the aforementioned known entropies for a suitable limit of the respective parameters,
that is, Tsallis, Rényi, Barrow, Sharma-Mittal, Kaniadakis, and loop quantum gravity entropies. For
instance, we find

e S4reduces to the Tsallis entropy in the limit of ay — oo, & = 0and v = (ay/ ,B)/5 .
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* the six parameter entropy, Sg goes to the Tsallis entropy foray =a_ — Oand y4 = y_.

In addition to the four- and six-parameter generalised entropies, a three-parameter entropy was also
proposed in [4] in the following form

Ss(a,8,7) = i[(1+§8)5—1]. (29)

S5 cannot be, however, reduced to the Kaniadakis entropy in any parameter limit. Therefore the
four-parameter entropy is the minimal generalisation because the minimum number of parameters
required in an entropy function for generalising all the known entropies is four. In S3, Sy, and Sg, the
Bekenstein bound (1) can be violated in some parameter regions because they have limits where these
entropies go to the Tsallis entropy, where the Bekenstein bound is violated for the large black hole if
o> 1.

We should also note that S3, Ss, and Sg share the following properties:

1.  They obey the third law of thermodynamics, i.e., they vanish in the limit of S — 0.
2. They are monotonically increasing functions of the variable S.
3.  They diverge in the limit S — co.

For the last point, when we consider the cosmology, A is given by the area of the apparent horizon,
A= %. Here H is the Hubble rate. Therefore S3, Sy, and Sg diverge when the Hubble rate vanishes,
H = 0 because the Bekenstein-Hawking entropy & itself diverges at H = 0. This singular behaviour
is common to all the known entropies like the Tsallis, the Rényi, the Barrow, the Kaniadakis, the
Sharma-Mittal and the loop quantum gravity entropy.

In order to solve the problem of the singularity when H — 0, a five-parameter entropy was
proposed in [49], which has the following form,

1 1 €y g 1 €n_ -0
Ss(as,0,7,€) = - {1+ etanh<58>} -~ {1+ etanh<58>} ] . (30)

Due to tanh function, the entropy (30) does not show the singularity even if S diverges or H — 0. This
entropy, therefore, admits a bouncing scenario, where H vanishes at the bouncing time.

In the following, for the generalised entropies Sy in (27) and Ss in (30), we investigate if the mass
M coincides with the thermal energy E by assuming that the temperature T is given by the Hawking
temperature Tyy, T = Ty, and also inversely, if the temperature T is given by the Hawking temperature
Ty by assuming the mass M coincides with the thermal energy E, E = M.

431. E=M?

The case of four-parameter generalised entropy Sy
By substituting S = 47GM? in (10) with Sy = 0 to the four-parameter generalised entropy in (27),
we find

dEy = TydSy = 1
v

0

4 0—1 4 B —0—1
(1+ ”“*GM2> uc++<1+ T GM2> w_|dM. 31)

Here E, is the energy defined by the first relation dE; = Ty dSy. The above expression does not give
dE4 = dM nor E4 = M in general, of course.
When M is small, Eq. (31) gives,

dE, ~ %dm, (32)
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which can be integrated to be
[V
E4 ~ Eyo) + %M, (33)
Here E () is a constant of the integration. Eq. (33) tells E4 # M in general but if we choose
[V
—t = =1, Eyp=0, (34)
i
we obtain E; = M.
On the other hand, when M is large, if we choose 6 > 0, we obtain
Eym By M (A0 0\ (35)
TR 25—\ 6 ‘

Here E, (1) is a constant of the integration. Anyway, Eq. (35) generally gives E4 # M but if we choose
&+
b=1, — =1, Ey=0, (36)

we obtain E4 = M.
Note that the condition (36) is compatible with the condition (33) if

oy =7y, a_=0, 6=1, (37)

and we obtain an expression of the entropy which realises E4 = M in both of the limits M — 0 and
M — +4o0. The condition (37), however, shows that the four-parameter generalised entropy Sy in (27)
reduces to the standard Bekenstein-Hawking entropy, Sy — S.

The case of five-parameter generalised entropy Ss
In the case of the five-parameter generalised entropy in (27), we find

dE5 = THdS5(lX:|:, 5, Y, €)

o—1
= 1 {1 + 1’car1h(47TaXJr GMZ) } s
€ g cosh? (M%GMQ
1 Amten —o-1 _
+{1 +- tanh( rew GM2> } “ dM. (38)
€ 0 cosh? (M%GMZ)
Here Es is the energy defined by dEs = Ty, dSs and the above expression tells dEs # dM nor Es #= M

in general.

When M is small, one again obtains (32) and (33). The obtained result tells E; # M again in
general but if we choose the parameters as in (34), we obtain E; = M.

When M is large, by assuming &+ > a_ > 0, we find

—0—1
dEs ~ 4"‘7* (1 n i) exp (— 8”;"‘* GMZ) M. (39)

The integration of the above equation is given by using Gauss’ error function erf, which is defined by

erf(x) = \/ZE /0 e Pt (40)
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as follows

1 1\ 7 [as |8men_G

Therefore there is no choice of the parameter which reproduces E; = M except the limit that S5 in (30)
reduces to the standard Bekenstein-Hawking entropy, S5 — S.

432. T = Tyy?

In the case of the four-parameter generalised entropy in (27), if we identify the thermodynamical
energy E with the mass M, the corresponding temperature Ty is given by
a8,  8nGM Aoy o o1 drw_ . o —o-l
=——=—1(1 GM 1 GM —. 42
aM v ( + oy + + 5 o ( )

T 5

Eq. (42) does not give the Hawking temperature Tyy, Ty # Ty = ﬁ besides the limit that S, in (27)
reduces to the standard Bekenstein-Hawking entropy, Sy — S.
On the other hand, in the case of the five-parameter generalised entropy in (30), we obtain

51
T, = 4% _ 87GM {1 + 1tanh<4"€"‘+ GM2>} -
aM v € 0 cosh? (M%GMO
1 4rren_ 2 —o-l a_
+41+ - tanh GM . (43)
€ o cosh? (M%GM2>

Eq. (43) does not give the Hawking temperature Ty, T5 # Ty = ﬁ, either.

5. More General Black Hole

The thermodynamical relation dE = TdS does not generally hold, for example, if there is a
chemical potential. The first law of thermodynamics is,

dE = dQ + dW. (44)

dQ = TdS is the heat which flows into the system and dW is the work which the system received. The
variation of the work dW can be expressed as

AW = —PdV + ) p;dN;. (45)
i

Here P and V are the pressure and the volume of the system and dN; is the number of the i-th kind of
particles which flow into the system and y; is the corresponding chemical potential.

When we discussed if the thermodynamical energy should be the ADM mass in Section 3 by
using the falling dust shell, we have assumed that the region outside the dust shell is the vacuum.
In a realistic situation, all the matter does not fall into the black hole but the matter outside the
horizon contributes to the ADM mass. In the case of the Reissner-Nordstrom black hole, the ADM
mass includes the contributions from the electromagnetic field outside the horizon. More in general,
if BH has any hair, the energy density of the hair contributes to the ADM mass and changes the
thermodynamical relation dE = TdS as in (44). In this section, we discuss the possibility that the
generalised entropies could be given by the hairy black hole. We now review the thermodynamics
of the Reissner-Nordstrom black hole, and after that, we consider the black hole with scalar hair(s).
For the construction of the black hole with scalar hair(s), we use the model where the Einstein gravity
couples with two scalar fields.
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5.1. Reissner-Nordstrém Black Hole

The metric of the Reissner-Nordstrom BH is given by the following line element,

2GM = GQ? dr?
2 _ it e 2, 4 2 12
ds® = (1 . + 2 >dt —1—1 e oo +r dQ(z). (46)
r r2

Here Q is the electric charge of the black hole and the ADM mass is given by M as in the Schwarzschild
black hole. As well-known, the Reissner-Nordstrom black hole has two horizons. The radii r+ of the
horizons are given by

ri = GM +/GIM2 — GQ2, (47)

Here r is the radius of the outer horizon and r_ is that of the inner one. Eq. (47 shows that the
Bekenstein-Hawking entropy S is given by,

a2 m(GM=/GM—GQ?)

2
G G '

St = (48)

Here S is the entropy corresponding to the outer horizon and S— to the inner one. The Hawking
temperature Ty corresponding to the outer horizon is given by

L /oW )
H — ’
27r<GM +/GEM2 = GQ2)2

Then we find
TudSy = dM — Q aQ (50)
GM+ \/G*M? — GQ?
Then there is a correction by the last term.
One may consider a possibility to define a generalised entropy Sg instead of (50),
TdSg = dM. (51)

In the case of the Reissner-Nordstrom black hole, it is generally impossible because the system depends
on two variables M and Q. Let first assume Sy, Sg = Sg(M, Q). Then Eq. (51) can be rewritten as,

oS 08
T (aN}de + andQ> =dM. (52)

Then we find % = 0 and therefore the integrablity condition requires % because % should not

depend on Q. This conflicts with the expression of the Hawking temperature in (49), which explicitly
depends on Q. A possibility is to consider a one-dimensional line in the two-dimensional M-Q as
Q = Q(M). Then Eq. (52) tells,

M
Sg(M) / T OOD) (53)

As an example, we consider the case Q = goM with a constant satisfying a condition go> < G. In this
case, Eq. (49) gives

o \/ G2 — Gq02
TH - 2 ’ (54)
2n(c +/G2= Gq02> M
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and therefore Eq. (53) can be integrated to give,

__n(c4-vaﬁi?aaﬁ)%wz

. G? — Gqo?

(55)

Here we choose the constant of the integration so that Sg vanishes when M vanishes. The obtained
expression (55) is proportional to M?, which is similar to the Bekenstein-Hawking entropy in (10) with
Sp = 0 although the coefficient is different. Other function Q = Q(M) gives more general expressions
but it depends on the physical process of the black hole creation. The case Q = g9M could correspond
to the process that BH is created only by the accretion of the charged particle whose ratio of the charge
with the mass is gg.

5.2. Gravity Coupled with Two Scalar Fields

In [45], it has been shown that arbitrarily given spherically symmetric spacetimes can be realised
within Einstein’s gravity coupled with two scalar fields even if the spacetime is time-dependent. The
original model of Ref. [45], however, includes ghosts, which make the model inconsistent. After that,
it was found that the ghosts could be excluded by imposing constraints by the Lagrange multiplier
fields [62-65].

The action in the model of Ref. [45] includes two scalar fields ¢ and x, which couple with Einstein’s
gravity,

Sarp = [ #1/73 | 35~ 3A0 002990 ~ B4 0300
_EC((PI X)auX3”X - V((P/ X) + Lmatter | - (56)

Here A(¢, x), B(¢, x), and C(¢, x) are called kinetic functions and V (¢, x) is the potential, which are
functions of the two scalar fields ¢ and ). Furthermore, Lmatter is the Lagrangian density of matter.
The gravitational coupling constant « is related to Newton’s gravitational constant G as x> = 87G. In
this section, we mainly use the geometrised unitsc = G = 1.

General spherically symmetric and time-dependent spacetime is described by the metric given by
the following line element,

ds? = —e2V(tr) g2 4 2ME) g2 4 rd0%, . (57)
We also assume,

p=t, x=r, (58)

which does not lead to any loss of generality [45].

We should note, however, that the functions A and/or C are often negative, which makes ¢
and/or x to be ghosts. The ghosts can be eliminated by imposing constraints by using the Lagrange
multiplier fields Ay and Ay and modifying the action (56) Sgrgy — Scryy + Sa, where the additional
term S, is given by

A= / dhx /=g [Ap (70T 901 + 1) + A (70 200~ 1)] . (59)

By varying S) with respect to Ay and Ay, we obtain the following constraints:

0=e 2I=0r=009, 03¢ +1, 0=e 2MI=0r=0)g, yaly —1, (60)
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which is consistent with the assumption (58). The constraints from Eq. (60) make the scalar fields ¢
and x non-dynamical, and the fluctuations of ¢ and ) around the background (58) do not propagate (
see [62-66] for detail).

We now construct a model which has a solution realising the functions e?’(*") and e?*(#) in
Eq. (57). The matter is assumed to be a perfect fluid with the energy density p and the pressure p,

Timatter tt = —8ttP, Tmatterij =P&ij- (61)
Here i,j = 1,09, ¢. For the spacetime given by Eq. (57), the Einstein equations can re rewritten as
follows,
2v . . . Y 24 _1q
A :E;z{—ez" A+ (A-v)A] +e {U_: +v"+ (V=AW + € 2 } } —e?(p+p),
2
K2

2A

_ S ) —oury A VAT L a—2A _V/+A/ " Ioan, et —1
C—KZ{e it (A—0)A] —e [7 xS

V =

e A fN —y @21 1
Kz( Tt >—Z(P—P)- (62)

This tells that we obtain a model that realises the spacetime described by the metric (57) by finding
(t,7)-dependence of p and p and by replacing (¢, 7) in Eq. (62) with (¢, x)-

5.2.1. Black Hole with Scalar Hair

We now consider the time-independent geometry, that is, static, spherical, and asymptotically flat
spacetimes,

ds? = gudxt'dx’ = =i + e dr? + 2d07), . (63)

Asymptotic flatness corresponds to lim,_, {0 A(¥) = 0 and we normalise the time coordinate ¢, to
lim, 1o v(r) = 0.

Let us now investigate the effects of the scalar hair and write the energy density of the scalar fields
by p. Then as in the standard Tolman-Oppenheimer-Volkov (TOV) equation, the time-time component
of the Einstein equations gives

—sz = rlz(re_ZA - r)/. (64)

Here a prime “’” denotes differentiation with respect to r. The mass function m(r) is defined by

e =1 72&:’1(0 , (65)

which gives 47tr2p = m'(r) and by integrating the expression, we obtain
r
m(r) = 47‘[/ 2o(r")dr' . (66)

In the case of a compact star like a neutron star, the lower limit of the integration is chosen to be r = 0.
In the case of the black hole, the boundary condition is given at the horizon r = ry so that

2Gm(ry) = ry. (67)
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If the geometry is asymptotically Schwarzschild spacetime, the ADM mass is given by
M=m(r — o) = 47r/ drr*o(r). (68)
Note that m(r = c0) is not the total mass, which should be defined by
(o] oo} 71/2
M= /d3x Vaye(r) = 47'[/ o(r)rPerVdr = 47‘[/ p(r)r? [1 - 2Gmr(r)] dr
0 0
o Gm(r) 3G*m?(r)
— 2 _ 3
_477:/0 drp(r)r {14— . 2 +(9(G ) . (69)
Here 1 is the determinant of the three-dimensional spatial metric,
Yo dx'dx™ = e dr? + rde%Z) . (70)

The second term in the last line of Eq. (69) can be interpreted as the Newtonian gravitational potential
energy

—4nG /Ooo drp(r) erSr) = —g/dV/dV’ P|(:)_P$’|) . (71)

Here dV and dV’ are three-dimensional volume elements and the general-relativistic nonlinear correc-
tions are identified by G? term and higher power terms of G.

The above arguments could tell that the contribution to the mass from the scalar hair could be
given by

Mpgaiy = m(r = o0) —m(r =ry). (72)
This term gives a correction as in the second term of Eq. (44)
dM = TydS + d My, - (73)

Then the correction of the general entropy from the Bekenstein-Hawking entropy might be interpreted
as the contribution from Mj,;,. As we can identify M = m(r = o0), however, Eq. (73) can be rewrittten
as

dm(r =ry) = TpdS . (74)

1

Because m(r = ryy) = % and the Hawking temerature is given by Ty = Trrg

Eq. (74) is approved

only if we choose S to be the Bekenstein-Hawking entropy, S = ”g{z as in the standard black hole
thermodynamics.

We should note, however, that there might be a possibility to define a generalised entropy Sg as
in (51) by using the first law in (44) as follows

TndSg = dQ +dW = dE. (75)

We investigate the possibility in the following.
Even for more general gravity theories including the modified gravities, as an analogue of (64),
we may define the effective energy density pesf by using only geometry,

1 _ /
— 12 Peff = 2 (Te 2 T) ’ (76)
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and also define the effective mass function as in (65)
e =1- 72(;"1:&(?) . (77)
Then by integrating (76), we obtain the counterpart of (66),
r
me(r) = 47 [ ar'pe(r'). 78)
0

We may interpret meg(r) as the mass acted upon by the attractive force at radius . We use this
definition later.

5.2.2. Examples

In order to consider the examples, we now assume [59],

w_ o 1 H
e =€ 7?(7‘)(1_7)’ (79)

with a constant radius of the horizon ry;. We do not include matter besides the two scalar fields ¢ and
X. Then the expressions (62) give,

1 [ ma(e)ry(¢) —21(9)° (1 ra)  rakb(e) 1/, 1
A((P)*r@hz(qb) (1 <P>{ 2hy(¢)° (1 4’) ¢2h2(¢)2+¢2(l hz((P))}'

B(¢) =0,

() {_hz@)h’z’@)2h’2(¢)2(l_m>_mh;<¢>+1<1_ ! )}

Cw):_"z(l—’?) 2y (9)° D) (9P P\ ha(9)

1) () rH 1 1
V(p) == —2 (1—>+(1—) : (80)
’ K2{4’h2(¢)2 o) " #\ o)
We should note that A, C, and V in (80) depend explicitly on the horizon radius ry, that is, the horizon
radius is fixed in this model. There could be other solutions besides Eq. (79), but it could not be easy

to find them. This problem can be bypassed by using the trick of Ref. [67]. We add a new term in
the Lagrangian density including new fields ¢ and p, as L,; = p#d,0. By the variation of £,, with
respect to p# yields constant o,

9,0 =0, (81)


https://doi.org/10.20944/preprints202501.0477.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 January 2025 d0i:10.20944/preprints202501.0477.v1

16 of 32

We now identify o with the horizon radius ryj. By replacing ri; with o in the equations in (80), ry is
given as an integration constant appearing from Eq. (81),

o _h2(4’/f7)h2,¢¢(4>/‘7)—2h2,¢(47/f7)2 T
) (1-5)

1
Mﬁﬂ_ﬂMWJx}_¢ 2hy (¢, 0)?

_(W+1(1_1)
Py (¢, 0)*  9* ha(¢,0)) |7

B(¢,0) =0,
o) = T2@.0) {_hz<¢,a)hz,¢¢<4>, o) —32hz,¢<4>, o) (1 - a>
2 (1 _ %) 2Ny (¢, 0) ¢
 Thy(¢,0) +1(1 1 ) ,
Phy(p,0)  P* ha2(¢,0)
_1 hw(""”( _‘7) 1( _1>

e =a { g2\ 9) @\ i) | o

Here hy(¢,0),p = 0ha(¢,0) /9, ha(¢,0) g9 = 0*ha(¢p, 7)/d¢*. By the choice of /1, we obtain several

examples.

5.2.3. Thermodynamics

As an example, we consider the case

h2 :1+2GM(I’H)—1’H :1+2GM(0’)—(T (83)
4 ¢
Then when r is large, Eq. (79) tells
e21/ — e72)\ ~1— ZGM(rH) ) (84)

r

Therefore M(ry) is the ADM mass.
In order to consider the possibility of (75), as an example, we consider the Rényi entropy in (12),
which has now the following form

1 e
=—-In(1 .
Sr A n( ta—s ) (85)
Because the Hawking temperature is given by Ty = ﬁ, if we assume (75), we find
1 1 Yo
M (ry)dry = dry = d<Arctan (r )) . 86
e el N T "G (%0

Therefore in (83) if we choose

1 o
M(o) = dArct A —=
() 2V taG e an(rH G >

we obtain a model whose entropy is described by the Rényi entropy Sg.
Similarly, for the generalised entropy Sy = Sg(rp), if we choose M(c) in (83) by

Sg(rn)
47’(1’H

, (87)

rq=0o

M(o) = /U dry , (88)
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a model whose entropy is Sg can be constructed.

5.2.4. Thermodynamics Based on

Here based on [59], we consider the thermodynamics by using m.g in (78). Instead of (79), we
assume,

e M) = ez"(r)hg(r) ) (89)

Here h3(r) is a positive function of r. As in (82), the geometry (89) is realised by using (62) with the
Lagrangian density L, = /9,0,

1 (o N[ ag(g0) 3h3,4(¢, o)
A49.0) - K2h( (¢ 1) [ Aphs (¢, o) +4(¢*0)h3(¢10)

¢,0)?
h3pp(9,0) 1 <h3,¢(4’/ o) > 2]

2h3(p,0) 4\ h3(¢,0)
B( ’ U) =0 P
Clg,0) = | Loeldo) | Shag(@0) _ hege(90) <h3,¢<¢, o) > ’
$,0) =73 4phs(p,0)  4(p—0)hz(p,0)  2h3(p,0) (o)) |
1 h ’
T (1-5) M’ (90)
Here o is identified with the radius of the horizon, o = ry.

2v(

One should note that e 2*(") must vanish when e€2’(") vanishes in order to avoid the curvature

2v(r)

singularity. Both e 2*(") and e vanish at the horizon, one can write the horizon radius by mg(r),

g = 2Gmeg(ra) - (91)

As we find the Hawking temperature (7), we now consider the temperature of the black hole. Near the
horizon, we write the radial coordinate as r = ryy + 7. Then we obtain,

e Cm)r—m) v Cln)(r—rn)

H h3(ru)ra ®2)

Here C(ry) =1 — m/(ry). By a Wick rotation, t — iT, the line element (2) near the horizon behaves as

LUnjor ,2  TH 2,2 2
T+ Cirar @) . 93)

By using a new radial coordinate p defined by dp = d(ér) ﬁ, which gives,

ruor C(ru)p?
pr— = 4
p=2 Clre) or Jr Ty (94)
we rewrite line element (93) as
ds? ~ LH)zpzdrz +dp* + 15d 02, . (95)
4]13 (T’H)T’IZ_I )
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In order to avoid conical singularities near p = 0 in the Euclidean space, we need to impose the
periodicity of the Euclidean time coordinate T,

C(ra)t C(ra)t

2rp/h3(ra) w2 rayv/hs(ra)

Because the period of the Euclidean time corresponds to the temperature T, we find

+2 (96)

_ C(I’H) _ C(T’H) _ C(I’H)TH (97)
drmry/ha(ru)  8Gmegi(ru)y/ha(rn)  v/ha(ru)
Here the Hawking temperature Ty is now given by,
Tu = !t (98)
1 8nGme(ri)
Clru)

Therefore we find the temperature T deviates from the Hawking temperature by the factor

Vh3(ra)’

By the analogy of the thermodynamical relation dE = TdS, we define the entropy proper to the

which cannot be absorbed by rescaling time.

black hole.
dSpn = dm%(m). (99)
H
By integrating (99), we obtain,
Son = / 7‘1’"‘&;(“). (100)

We now consider the possibility that Sy, could be different from the Bekenstein-Hawking entropy.
By solving the field equations of a certain gravitational theory, there appear several constants of
the integration, ¢; (i = 1, - - - , N). For example, in general relativity, the mass M of the Schwarzschild
black hole (8) appears as an integration constant. Both the mass M and charge Q in the Reissner-
Nordstrom black hole (46) are also constants of the integration. The horizon radius ry could be given
by a function of ¢; as in the usual Schwarzschild black hole, where. we find ry = 2GM as a function
of the integration constant M. Other quantities could be also obtained as functions of c;, such as
hs(r = ry(c;); i), etc. We may also assume that the constants c¢;’s are parametrised using a single
parameter ¢, ¢; = ¢;(¢) as mentioned before Eq. (53) in the case of the Reissner-Nordstrom black hole.
Eq. (97) can be used to rewrite Eq. (100) in the following form

47rrH ¢i(8))v/hs3(r = ru(ci(8)); ci(2) } N 9ru(c;) oc;

Sbh = E/ 1 — 9m(rei(@) zZ dc; o¢ (101)
o r=ri(ci(§))
By choosing ¢ = ry, Eq. (101) is simplified to be,
(47 /s (r = &i()) ) .
Soh = 56 / am(ric;()) ‘ (102)
o r=¢

Here the constant of the integration is fixed by using the condition Sy, = 0 at 7y = 0. In the case of
the Schwarzschild black hole, where h3(x) = 1, m = M = const., Bekenstein-Hawking entropy (11) is
reproduced. In general, however, if hi3(r — r¢p) non-trivially contribution to the entropy, Sy, may be
different from the Bekenstein-Hawking entropy Spy.
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In fact, Eq. (102) gives,
hs(r = rg;ci(r 2
sr=rwailm)) 62 [Stn(a)] " (103)
1 _ 9m(rici(ru))
or r=ryg
Therefore for certain expressions of the general entropies, we find the corresponding form of
o= hg(T:}’H;CZ‘(TH)) 5. (104)
1 — 9m(rici(ru))
or r=ryg
For example, in the case of the Rényi entropy (12), we obtain
1
O=—"—"5, (105)
(<20
and for the Tsallis entropy (18), Eq. (103) becomes
Arrred? 2(6-1)
— 52 H
0= ( yp ) . (106)
Furthermore for the three-parameter generalised entropy S in (29), we find
o2 Tory? 22
=—|1 . 107
o=l (%) o

and the six-parameter entropy Sg in (28) yields

2\ 7+-1 2y 7+ P+t
om b fen (Y (v ()
(g +a_) G p+\ G

o2\ ! AN ’
—Hx_'y_( g) <1+ﬁ< g) ) ] . (108)

Even for the four-parameter one Sy in (27), the five-parameter one Ss in (30), we can find the corre-
sponding quantity ©.
Application of the alternative entropies to the Bekenstein-Hawking entropy to black holes lead

to inconsistencies in the thermodynamics as we discussed but the inconsistencies might be avoided
for non-Schwarzschild black holes in modified gravity if the horizon radius and therefore the area
appearing in Bekenstein’s area law are modified as we have shown. Hence, the consistency of new
entropy proposals with Hawking temperature and area law could be possible for the above black holes
as it is shown in this section.

6. Photon Sphere and Black Hole Shadow

Recently, there has been much interest in BH shadow. Let us briefly discuss this topic here in
relation to different BH thermodynamics. A photon sphere is the set of the circular orbit of the photon.
The radius rpy, of the photon sphere gives the radius g, of the black hole shadow as follows,

rep = re V() . (109)

r:rph
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The orbit of the photon is governed by the following Lagrangian,
E—l g L wi2 | G202 242 L2 G2 002 110
= 58" _E(_e 2+ 272 4 1207 + 2 sin 07 ) . (110)

Here the “dot” or “*” expresses the derivative with respect to the affine parameter. The fact that the
geodesic of the photon is null tells £ = 0. We find the conserved quantities corresponding to energy E
and angular momentum L because there are no the explicit dependences on t and ¢ in the Lagrangian
L,

i L= g‘; = 2 sin? ¢ (111)

The total energy £ of the system should be also conserved and given by,

0L  dL 0L oL
— b = — 0 — P = 112
E=L ot or L ¢a¢ £ (112)
We should note that £ = £ vanishes identically £ = £ = 0 for the null geodesic.
Without any loss of generality, we can choose the coordinate system where the orbit of the photon
is on the equatorial plane with § = 7. For the coordinate choice, the condition £ = £ = 0 can be
written as

0— EZe 2v4+) + 2 N L2e72/\
2 2 2r2

(113)

We write this system in an analogous way to the classical dynamical system with potential W(r),

1 [2e—2A E2
> P+W(r), W)= S T en2vHd)

0=
2r2 2

(114)
Because the radius of the circular orbit is defined by # = 0, the radius is given by solving W(r) =
W'(r) = 0 by using the analogy with classical mechanics. For the Schwarzschild spacetime, we find
rph =3Mand rg, = 3v3M.
In the model (79) with (83), we find
L%(r —ry) E?

Wir) = 2r2(r+2GM(rg) — ru) 27 (115)

which gives

212 (r2 + GM(ry)r — 2rgr — 2GM(ry)ry + er)
2r3(r +2GM(ry) — ru)?

, (116)

which gives

r=rph == |—GM(rg) +2rg + \/G2M(1’H)2 +4GM(ryg)ru | - (117)

In the Schwarzschild black hole case, 2GM(ryy) = ry, the above expression gives r = 0, 3GM(ryy).
The case of r = 0 is unphysical because the origin is inside the horizon. The second case r = 3GM(ryy)
gives the standard result. In general, the minus signature in the front of the square root in (117) gives
the radius smaller than the horizon radius and therefore we choose the plus signature in (117).

Then Eq. (109) gives the radius rg, of the black hole shadow,

Nl—

rsh_ZGM i) (HW) ( 1+m) (118)
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Here

— "H
T=26M(r) (119)

which is a unity for the Schwarzschild black hole.
We now compare the obtained result with the observation. For M87*, the constraint for the radius
is given by 2 ~ 11.0 + 1.5 [68] or &y ~ 5.5+ 0.8 and For Sgr A*, we have 4.21 < &b < 5.56 [69].
By using the parameter 7 (119), the constraint from M87* is rewritten as 0.86 < 1 < 1.33 and Sgr A* as
0.73 < 1 < 1.11. Therefore, the results are consistent with the Schwarzschild black hole, where 7 = 1.
If by future observations, we find # could not be unity, the black hole is different from the

Schwarzschild one and thermodynamics could be different from that of the Schwarzschild black hole.
If we also obtain more information like the ADM mass of the black hole, we may obtain some clues to
consider what kind of thermodynamics the black hole obeys. Especially if we obtain the information
from several black holes, we may find more universal thermodynamics which governs the black holes.

7. Microcanonical and Canonical Description for Generalised Entropy

From the viewpoint of quantum gravity, the microscopic understanding of generalised entropy
could be important and suggestive. In this section, based on [70], we consider the origins of various
entropies in microscopic particle descriptions of the thermodynamical system. Note that basically,
microscopic description gives some particle system which obeys the corresponding statistics (entropy).
As we have entropy which depends on several parameters, we can eventually propose novel, not yet
discovered information and statistical systems which obey these entropies.

7.1. Microcanonical Description

In this subsection, by using the microcanonical ensemble in thermodynamics, we consider how
various generalised entropies appear in the isolated system with fixed energy E.
The standard Gibbs entropy is expressed as,

W(E)
S(E)=— Y. P(E)InP(E). (120)

i=1

We choose the Boltzmann constant to be unity. Under the assumption the number of states with a
fixed energy E is W(E) and a probability realising the i-th state with the energy E is denoted by P;(E).
Therefore we obtain,

W(E)
Y P(E)=1. (121)
A generalization of the entropy with a parameter ¢ is proposed in [7] by Tsallis,

1 — yW(E) P(E)° WE P
Sg(E)E Z1:1 ( ( )) _ Z
i=1

(E) (1= (R(E))
6—1 '

6—1

(122)

In the limit of § — 1, Ss(E) reduces to the standard expression in (120).
A further generalisation is given by the following expression,

S(E) = 2 si(B(E)). (123)
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We may regard S(E) as a function of P; and consider the maximum of S(E) in (123) under the constraint
(121), which is nothing but the thermal equilibrium. Then we obtain an expression of the generalised
entropy in the thermal equilibrium in the following form (see [70] for more detailed calculations),

1
S(E) = W(E)S<W(E)> . (124)
In the microcanonical approach, we define the temperature T by
1 _ dS(E)
T=—F (125)

This expression corresponds to (120).

We may consider the continuous phase space of N particles (¢',p;) (i = 1,2,- -+, N) instead of
considering the discrete states, which may be regarded with the limit of W(E) — co. In this limit,
Eq. (123) has the following forms,

S = Aﬁ(%)s(qk, pk,P<qk, Pk E)) (126)

We should note that s may generally depend on g and p; explicitly. In (126),
& Ty, (%) - -+ expresses the integration of the phase space for fixed energy E.

In general, the function s includes a finite or infinite number of parameters, {a,}, n =1,2,---,
s=s ({an 445, pr, P (qk, Pk E) ), In a limit of the parameters, {«, }, s may reduce to that in the Gibbs
entropy (120). As mentioned in Subsection 4.3, we impose the following conditions for s with the
parameters {a, },

1.  Generalised third law: The generalised entropy vanishes when temperature T vanishes as in the
case of the Gibbs entropy (120). Note, however, Bekenstein-Hawking entropy S (11) for black
hole diverges when Hawking temperature Ty vanishes and S vanishes when Ty — 0.

2. Monotonicity: The generalised entropy is a monotonically increasing function of Gibbs entropy
(120).

3. Positivity: The generalised entropy should be positive, as the number of states is greater than
unity.

4.  Gibbs entropy limit: The generalised entropy reduces to the Gibbs entropy (120) in an appropriate
limit of the parameters {a, }.

In standard thermodynamics, the following zeroth law must be also imposed,

¢  When two systems denoted by A and B are in thermal equilibrium with a third system denoted
by C, the system A is also in equilibrium with the system B.

The zeroth law does not hold in the case of non-extensive entropies like the Tsallis entropy [71]. This
tells the generalised entropies do not always satisfy the zeroth law.
As we obtain (124) (see [70] for more detailed calculations), we find

1
S =VoaeS| —— | . (127)
phase (Vphase>

Here Vphase is the volume of the phase space, which can be finite because the energy E is fixed. By the
choice of s, we obtain several kinds of entropy.

Just for a simple example, we may consider one non-relativistic particle with mass m moving on
the two-dimensional space with the area A. Because the energy L is fixed and given by

_ P+ py?

E
2m

, (128)
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the volume of the momentum space is equal to the area of a two-dimensional sphere with the radius

2
v2mE, 4 (\/ ZmE) = 8tmE. Therefore we obtain

8mtmEA

- (129)

Vphase =

By the choice of s(¢) = —¢ In ¢, the standard expression of the Gibbs entropy, denoted by Sy is obtained,
which we now denote Sy,

So = In Vipase = k1n<8m:f‘4> : (130)
On the other hand, if s(¢) is given by
S O
s§)="* (1 E1ng) 1|, (131)

with positive dimensionless parameters («, 7y, §), we obtain an expression similar to the three-parameter
entropy (29) in [4]. On the other hand, if s(¢) is given by

s(g):ﬂ@"‘;lng)&(1"‘51ng)_5], (132)

we obtain an expression corresponding to a four-parameters generalised entropy (27) proposed in [5].
It is straightforward to find s(¢) corresponding to other versions of generalised entropy.

In the case of non-extensive systems, such as gravitational or electromagnetic ones, the standard
Gibbs additive entropy (120) should be replaced by the non-extensive Tsallis entropy [7]. The non-
extensive entropy tells that the numbers of the states show the running behaviour by the change
of the energy scale, as in the renormalisation group of quantum field theory. Because the entropy
corresponds to the physical degrees of freedom of a system, the renormalisation group of a quantum
theory implies that the degrees of freedom depend on the energy scale. In the low-energy regime,
massive modes decouple, and therefore the degrees of freedom decrease. In the case of gravity, if the
space-time fluctuations become large in the ultraviolet regime, the degrees of freedom might increase.
On the other hand, if gravity becomes topological, the degrees of freedom decrease. The latter situation
is consistent with holography. This could suggest that the generalised entropy might also appear by
reflecting the quantum structure of gravity.

7.2. Canonical Description

We now consider the canonical ensemble in thermodynamics, where the system is in equilibrium
with the heat bath with temperature T. Even for the canonical ensemble, various versions of entropy
appear to originate from the integration measure in the phase space.

The partition function of N particles is defined by

zp = | ﬁ(@)e_mm) : (133)

Here g and p; are the coordinates of the position and the momenta for the i-th particle, respectively, as
in the last subsection. We define § as susual, = % The reason why we use the measure Hf»\il (%
is because it is invariant under the canonical transformation in classical mechanics. We should note,

however, that in quantum mechanics, only the cartesian coordinates have a special meaning,.
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i . . _ i idp.:
More in general, instead of [T dqrfl b ), we may consider measure given by e ) Iy, (%)

and we may define the partition function as follows,

26)= [T1

i=1

<d61 hdrh> ~BH(q\p;)~M(d'p:) (134)

In the situation that we confine the particles in the box with edge length L, M(q', p;) is given by

N

6(q)e(L—7q'), or M=-Y (mo(q)+mo(L-q)). (135)

i=1

-M(q'pi1) —

—.

I
—

Here 6(¢) is the usual Heaviside step function,

] 1 when¢ >0
6(¢) = { 0 whené<0 ° (136)

We may consider the following model as an example,

, 1
i\ _ _ 2, .2, 2

(¢) = (w2, H= 7 (P+p+r2),

e M :4nR2(5(R2 22— yz -~ Zz)e—x(4n(x2+y2+z2)) . (137)

Here X is an adequate function. After the integration in the phase space, we obtain,

o BR® (2mm )\ _yiynpey
2(h) = T () , (139)

which gives the following free energy F(j),

F(B) = _/1§an<5) = —é(h(%jfs <2’Z”>2> —X(4nR2)>. (139)

This expression give the following thermodynamical energy E (),

a2 FB) 3
= 140
B = F(D) +F755" = 35 (140)
and the entropy S
S=BE-F)=1{34m SR (2mm\ P X(477R2) (141)
= ﬁ =13 h3 E .
If we assume X (¢) is given by X(§) = —% with Newton’s gravitational constant G, the last term in

(141) may dominate for large R, which results in Bekenstein-Hawking entropy,

S = %, A =4nR?. (142)

On the other hand, if we choose X (&) by X(¢) = —0 o) , Tsallis entropy in (18) can be obtained,
y G \ 4, Py

(:) . (143)

a2

S%
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The function M (g, p;) appearing in the measure should be given by the properties of the corresponding
physical system but we can find the measure which gives the corresponding kind of (generalised)
entropy.

In the case of Rényi entropy in (12), we find X({) = —% In (1 + %). For the three-parameter
entropy (29), we obtain

1 al 0
X(C)f—; <1+4G(5> —1], (144)
Further, a four-parameters generalised entropy (27) is given by
1 a &)’ a g\
X(¢) = -~ (1+4G5) (1+4G5 : (145)
Thus we have shown that the function X(x) corresponding to the generalised entropy can be always

found.

The general measure may originate from the modification of the commutation relation [¢’, pj| =
iho! j- We consider the following commutation relation (here we write the reduced Planck constant or
Dirac’s constant 7 explicitly),

9] = i), (146)

which induces the metric in the phase space as follows,

N . - ,,
it = Y gdgdp;, &= (1) pi=eM0, (147)
=1

Here (L’l)ji is the inverse matrix of Li]- when Lij is regarded as N x N matrix, Y ; L{ (L71)" = 4" .

The metric gj ; gives the following volume form,

av = det(gé)

(dqidpi) . (148)

N
i=1

H i (qk
Due to the symplectic structure of the phase space, det ( g i) is a Pfaffian. In the case that e/ P i

i ok 1 i\ . .
proportional to the unit matrix, M) — o wM(dpi) i j» dV reduces to the previous expression of the

general measure,

. N i
4V = pNe=M(7'pi) H<‘“’;pl> . (149)
i=1

We should note that we cannot rewrite the metric in (147) and the commutation relations in (146) in a
diagonal form like [Qi, P = ih(Sij by any redefinition of the variables Q' = Q(g/, Pj)/ P = P(q/, p]-) if
there is a non-trivial curvature given by the metric in (147).

For the three-parameter entropy (29), by using (137) with (144), we find Eq. (146) has the following

form,
D(C37T x2+y2+22 IS
~1y|:<1+(hc/5)> -1
ihe

i) i
{q,p;} 47tR26(R? — x2 — y2 — 22) %

(150)


https://doi.org/10.20944/preprints202501.0477.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 January 2025 d0i:10.20944/preprints202501.0477.v1

26 of 32

Here the inverse power of the delta function does not have a physical meaning but the delta function
J(x) can be defined by,

A 2
6(x) = lim 4/ —e M. 151
() = fim /7 as)
This suggests that instead of (150), by choosing the parameter A sufficiently large, we replace the
commutation relation in (150) by,

B
e [ e,
[q’p]}:mRZ iy i’

ne o
Lji=xyz (@9.9°)=(xyz), (152)

which might be the origin of the three-parameter entropy (29).

It is known that due to the generalised uncertainty principle based on the introduction of the
minimal length [72], the modification of the canonical commutation relations could be generated.
The motivation of the minimal length comes from string theory where the minimum size of the
fundamental string is finite.

8. Microscopic Interpretation of Generalised Entropy

Except the analogy of the Tsallis entropy in (18) and the Barrow entropy [11], the generalised
entropies Sg, which are functions of the Bekenstein-Hawking entropy S, coincide with S in the limit
of § — 0 and they have the McLaughlin expansion with respect to S,

© f(")
S, ZO %S” : (153)
n=

Here ;" is defined by f{") = 53|

0 and the functions of the parameters specifying the generalsed

entropy Sg. The explicit forms of fg(") for Sz in (29), the four-parameter one Sy in (27), the five-
parameter one S5 in (30), and the six-parameter entropy Sg in (28), see [73]. In this section, based on
[73], we consider the generalised entropies in the microscopic viewpoint of the canonical and grand
canonical ensembles.

8.1. Canonical Description

In the canonical prescription, the phase space density of a thermodynamical system composed of
N particles is expressed as

; exp(—BH
Pec (q],m) = Z(T(VNgl (154)
where = % Here T is the temperature as before and we choose the Boltzmann constant as unity. The
index j runs from j = 1 to j = 3N and {qf , pj} are generalised coordinates and generalised momenta
of the system, respectively. We denote the Hamiltonian of the system by H(g/, pj) and

3N , 43N .
Z(T,V,N) = / d}g#e—w , (155)
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is the partition function which depends on temperature (T), volume (V) and number of particles (N)
of the system. In (155), h is the Planck constant. The expression of the partition function Z(T,V,N)
(155) tells that the total probability is surely unity,

dSN d3N .
[ Lo ) =1, (156)

which allows us to define the ensemble average of a general microscopic quantity v(qj , p]-) by,
dBN d3N
(0(g.p) = | —T—Lolap)ec(a p). (157)
h
The Gibbs entropy which we denote by Sy corresponding to (9) is defined by
d3N

So = (—Inpc) = — / %pclnpc =pB(H)+InZ. (158)

Here we have used Egs. (155), (156), and (157). Similarly we obtain the ensemble average of (— In p.)?
as follows,

3N ;13N
<(—lnpc)2> - /d:?’#pc(lnpc)z = BZ<H2> +2B(H)InZ + (InZ)?, (159)
which is rewritten as,
((~Inpo)?) = So* + Bo (H) (160)

Here e define 02 (H) = (H?) — (H)?. Therefore we obtain,
S0 = {(~1npo)*) - BPa(H), (161)

that is, Sy? is the sum of the ensemble average of (—Inp.)* and a term including o»(H). In the

(H)

standard extensive thermodynamical system, U%H> is proportional to ﬁ, which goes to vanish in the

thermodynamic limit, N — o, and Eq. (161) reduces to the form Sy? = <(— In pc)2>. However for

non-extensive systems, U% I(-I};) does not vanish even in the thermodynamic limit and So? includes the

extra term as in the second term of Eq. (161).
By the similar procedure, we obtain Sy" for general positive integer 1 as follows,

" = ((~Inpc)" zl,n;l (B)'ar(H)(in2)" ", (162)

Here 0;(H) = <Hl> —(H )l. Because 01 (H) = 0, we can take sum in the second term of (162) from

I=1Y = X
By using

dSN d3N
= / Z3N Pe-PHE! (163)

we can express 0;(H) in terms of the partition function Z, as follows,

oufrdz ez
oj(H) = (-1) {Zaﬁl - (Zaﬁ) } (164)
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By using the expression of Sp" in (162) with (164), we define an entropy similar to the form of
generalised entropy, as follows,

Seas = Zf,gl. S
n=0
3 fign) n—I
:Z_:O ! {< —Inpo)”) — Zl.n_l (B)'or(H)(inZ) } (165)

Especially in the cases of the three-parameter entropy S3 in (29) and the four-parameter one Sy in (27),
we obtain

Cana—sz ”“”){« inpd") = X i B’oz<H><1nz>”"}
:}Y[(HSO) —1], (166)

(ax,0,7 -
Scan4 = Z'f‘}){< 1r1pc > Zl' n—l ( ) (H)(an)n l}
! 1 S 1+ — & - 167
Aets) (%)) "
In this way, we may consider the cases of the five-parameter one S5 in (30), and the six-parameter
entropy Sg in (28).

8.2. Grand Canonical Description

The grand canonical phase space density with chemical potential u in addition to Hamiltonian H
is defined by,

) B exp{—/;(H — ‘“N)}
Pge (q’/l’j/ N) = Z(T,V,n)

(168)
Again, j runs from j = 1 to j = 3N. Because the particle number N in a grand canonical ensemble

fluctuates, a single microstate is characterised by {qf PN }.In (168), Z is a grand canonical partition
function given by,

d3N d3
Z(T,V,u) = 2/ thN Po~B(H-pN) (169)

Then the ensemble average of a microscopic quantity v(g/, pj, N) in grand canonical description is
given by,

d3qu3N
v(q,p, N Z / —an 0, . N)pge(q,p,N). (170)

For grand canonical ensemble, the Gibbs entropy symbolized by S is defined by,

d3N 3N 5
So = (—Inpg) = Z/ 13N chlnpgc = B(H) —u(N) +InZ. (171)

In general, we obtain,

So" = ((~npge)") — Zl'n—l 'j(H — uN)(In 2)"~ (172)
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Here 0;(H — uN) = <(H - yN)l> — (H— uN)'. Because
d3N 43N
((H-pN)') = Z [ R PN (1 (173)

the following expression can be obtained,

19z (192\
‘TI(H_VN)—(_l)l{Za’Bl_ (Zaﬁ) } (174)

We now define the following entropy in the grand canonical ensemble,

n=0

Sgr—can = Z fg. {<(_1npgc > Z l' 1’l —l (H VN)(an) } (175)

Then we also obtain the expressions corresponding to (166).

In the grand canonical description, chemical potential corresponds to the work necessary to add a
particle to the system by maintaining the equilibrium of the system. For the system to maintain the
equilibrium, the particle must have a certain energy that is comparable to the mean energy of all the
other particles.

9. Summary and Discussion

In this review paper, we have first discussed if the Hawking temperature [1,2] in (7) (in the
case of the Schwarzschild spacetime, we use (8)) and the ADM mass [15] could actually provide the
thermodynamical temperature and energy uniquely.

We have considered these problems in Section 2. The Hawking temperature is given by the
thermal distribution of the Hawking radiation, which is generated only by the geometry of the object
but does not depend on the details of the gravity theory. In this sense, the Hawking temperature is a
unique possibility of the thermal temperature. About the ADM mass, if we consider the fall of the
dust shell as a “thought experiment”, as described in Section 3, by using energy conservation and
Birkhoff’s theorem [48], the thermodynamical energy must be given by the ADM mass. Then the
thermodynamical relation dE = TdS tells us that the entropy of the system should be the Bekenstein-
Hawking entropy [1,3].

After that, in Section 4, we have explicitly checked if the generalised entropies could yield both
the Hawking temperature and the ADM mass correctly. In particular, we have considered the Rényi
entropy (12) [51-54], in Section 4.1, and the Tsallis entropy (18) [7], in Section 4.2. We have further
investigated generalised entropies, like the four- and five-parameter generalised entropies, in (27) and
(30) [4,5,49,50] in Section 4.3.

Despite the uniqueness of the Bekenstein-Hawking entropy, we consider the possibility that
the generalised entropies could become true thermodynamical entropies. One possibility, which we
discussed in Section 5, is given by hairy black holes because the energy density of the hair contributes
non-trivially to the ADM mass. We have considered the case of the Reissner-Nordstrom black hole
with the hair of the electric field, in Section 5.1, and the case of Einstein’s gravity coupled with two
scalar fields, in Section 5.2. By using the case of two scalar fields, we could realise an arbitrarily given
spherically symmetric spacetime, which can be time-dependent in general [45]. The ghosts in the
original model [45] can be eliminated via some constraints [62-65]. After providing some examples,
in Section 5.2.2, in the framework of the model with the two scalar fields, we have proposed two
mechanisms to produce the generalised entropies in BH thermodynamics. In one case, Section 5.2.3,
we have investigated the possibility that, as in Reissner-Nordstrdom black hole, the horizon radius is
not given only by the ADM mass and, therefore, the entropy becomes a non-trivial function of the
Bekenstein-Hawking entropy, as shown for the Rényi entropy in (87) and for arbitrary generalised
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entropies in (88). We have also considered the case where the effective mass expressing the energy
inside the horizon does not give the naive Hawking temperature, as in (97) of Section 5.2.4. We have
shown how the Rényi entropy (12), the Tsallis entropy (18), the three-parameter generalised entropy
S3 (29), and the six-parameter entropy S (28) are generated in Egs. (105), (106), (107), and (108),
respectively. Therefore, the inconsistency of new entropy proposals, with a Hawking temperature
between the area law, could be avoided for the above black holes with one or more hair types.

The radii of the photon sphere and of the black hole shadow have been calculated, for the models
found in Section 5.2, in (117) and (118) and we obtained observational constraints on the parameters of
the models in Section 6. The parameters are consistent provided the BH is of the Schwarzschild kind.
However, there is no direct relation between shadow and BH thermodynamics.

After that, we reviewed the generalised entropy description in the microcanonical, canonical, and
grand canonical ensembles. The origins of the generalised entropies were discussed in Section 7 in the
formulations of a microcanonical ensemble, in Section 7.1, and of a canonical ensemble, in Section 7.2.
After that, we used the McLaughlin expansion for the generalised entropies in Section 8 and possible
interpretations were given.

So far no observations exist to indicate the possibility that the BH entropy should be given by
any of the non-extensive ones. But, eventually, future observations of black hole shadows, primordial
gravitational waves from primordial black holes, as well as cosmological ones, might reveal significant
discrepancies with Einsteinian gravity predictions. That would open the window for modified gravity
theories and generalised entropies, which could correspond to the ones considered here. Until such
observational results are obtained, it is important to be ready and to consider what kind of novel
physical effects could appear thanks to the generalised entropies. In parallel, we need to consider how
a generalised entropy may follow from a more fundamental, possibly quantum, theory of gravity, like
superstring theory. Finally, generalised statistics/entropy may provide new connections between BH
thermodynamics, cosmology and information theory, for instance, via the Landauer principle [74,75].
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