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Abstract: With the improvement of software copyright protection awareness, code obfuscation 1

technology plays a crucial role in protecting key code segments. As the obfuscation technology 2

becomes more and more complex and diverse, it has spawned a large number of malware variants, 3

which make it easy to evade the detection of anti-virus software. Malicious code detection mainly 4

depends on binary code similarity analysis. However, the existing software analysis technologies 5

are difficult to deal with the growing complex obfuscation technologies. To solve this problem, this 6

paper proposes a new obfuscation-resilient program analysis method, which is based on the data 7

flow transformation relationship of the intermediate representation and the graph network model. In 8

our approach, we first construct the data transformation graph based on LLVM IR. Then, we design 9

a novel intermediate language representation model based on graph networks, named DFSGraph, 10

to learn the data flow semantics from DTG. DFSGraph can detect the similarity of obfuscated code 11

by extracting the semantic information of program data flow without deobfuscation. Extensive 12

experiments prove that our approach is more accurate than existing deobfuscation tools when 13

searching for similar functions from obfuscated code. 14

Keywords: Obfuscation; Deobfuscation; LLVM IR; Graph Network 15

1. Introduction 16

Code obfuscation is the act of converting computer programs into functionally equiva- 17

lent, but difficult to read and understand. In recent years, code obfuscation technology has 18

been developed rapidly to protect software copyright from plagiarism. It can protect critical 19

code from being cracked by attackers in commercial software. But everything has two 20

sides. Obfuscation techniques have penetrated into the realm of malware. Attackers have 21

used them to obfuscate malicious code for evading detection by antivirus software, leading 22

to a proliferation of malware variants. To solve such problems, binary code similarity 23

detection technology is essential. The existing binary code deobfuscation methods are 24

mainly divided into two categories: traditional binary code analysis methods and neural 25

network-based binary code analysis methods. 26

In traditional binary code analysis methods, most researchers use symbolic execution 27

to combat code deobfuscation. For instance, Tofighi-Shirazi et al. [1] proposed DoSE, 28

which can improve the deobfuscation technique based on dynamic symbolic execution by 29

statically eliminating obfuscation transformations, and remove two-way opaque constructs 30

by semantic equivalence. While Xu et al. [2] adopted the multi-granularity symbolic 31

execution method to simplify the trace snippets for partially virtualized binary code, and 32

achieved encouraging experimental results at that time. In the meantime, few studies use 33

search-based algorithms [3–5]. Specifically, Blazytko et al. [4] proposed a generic approach 34

for automated code deobfuscation using program synthesis guided by Monte Carlo Tree 35

Search. On this basis, Zhao et al. [5] used a heuristic nested Monte Carlo Search algorithm 36

to locate obfuscated code fragments for improving the search efficiency. 37
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There is also some research focusing on specific obfuscators. For example, David et 38

al. [6] mainly studied virtualization-based commercial obfuscators, such as VMProtect and 39

Themida, and achieved good results. Eyrolles et al. [7] proposed a simplified algorithm 40

based on pattern matching for MBA obfuscation technology, and proved that at least a 41

subset of MBA obfuscation lacks resistance to pattern matching analysis. Whereas some 42

scholars only study the detection of obfuscated code and the classification of obfuscation 43

techniques. For obfuscated code detection, Ming et al. [8] proposed a logic-oriented opaque 44

predicate detection tool. It can construct general logical formulas representing the intrinsic 45

characteristics of opaque predicates through the symbolic execution of trace, and use 46

constraint solvers to solve these formulas to determine whether they contain opaque 47

predicates. For obfuscated code classification, Kim et al. [9] directly used the histogram of 48

the opcode to classify the obfuscation technology according to the frequency of different 49

opcodes. 50

For binary code detection methods based on neural networks, many studies have 51

been proposed one after another [10,11]. But most of them don’t think about obfuscated 52

binaries, and only a few use the proposed method to perform simple tests on obfuscated 53

code. For instance, Ding et al. [12] proposed Asm2Vec, the CFG of the assemble program 54

is converted into instruction sequences by a random walk algorithm, and the adapted 55

PV-DM model is used for representation learning. The authors used this method to test 56

the binary code compiled with the obfuscation options in O-LLVM, and the experimental 57

results showed that Asm2Vec has a certain anti-obfuscation ability. However, this method 58

only tests O-LLVM and does not involve other obfuscators. And it does not design a special 59

structure or algorithm to resist existing obfuscation techniques. In addition, FID [13] used 60

machine learning to learn binary semantic information for function recognition, and tested 61

it on obfuscated code, proving that it can resist commonly used obfuscation techniques. 62

Tofighi-Shirazi et al. [14] proposed a static automatic deobfuscation tool through machine 63

learning and binary analysis, which can remove opaque predicate confusion, and the 64

accuracy rate can reach 98%. 65

In general, traditional methods require specific analysis of specific obfuscation tech- 66

niques, and it is difficult to automatically apply to large-scale obfuscated code detection. In 67

contrast, neural networks have the advantages of scalability and easy analysis. Moreover, 68

the existing binary code similarity analysis technologies are difficult to deal with the obfus- 69

cated code effectively due to the interference of obfuscation techniques. Therefore, in this 70

paper, we propose a novel approach for learning the semantic representation of obfuscated 71

code automatically. The main contributions of this paper are as follows: 72

• We propose the Data Transformation Graph (DTG) for the first time, and it can express 73

the data flow transformation relationships of the function completely and clearly. 74

• We redesign the message aggregation algorithm and update algorithm on the basis of 75

graph network, making it can learn the semantic information from DTGs better. 76

• Experiments show that our proposed method can learn the semantic information of 77

obfuscated code well and exhibits better performance than existing state-of-the-art 78

methods in downstream tasks. 79

The remaining part of this paper proceeds as follows: Section 2 mainly introduces 80

existing obfuscation technologies, the related works based on LLVM IR and graph neural 81

network. Section 3 describes our proposed method in detail. Section 4 shows the results of 82

our experiments and compares them with current state-of-the-art methods. And last, we 83

make a conclusion in section 5. 84
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2. Related works 85

2.1. Obfuscation Techniques 86

Existing obfuscation tools mainly include Obfuscator-LLVM1, VMProtect2, Themida3, 87

Tigress4, etc. The most commonly used obfuscation techniques in malware [15] cover 88

encryption, dead code insertion, register reallocation, instruction reordering, instruction 89

substitution, opaque predicate insertion, etc. As an exploratory work, we initially select 90

two commonly used obfuscators Obfuscator-LLVM and Tigress for experimental research. 91

In Obfuscator-LLVM, there are mainly three obfuscation options: sub, fla, bcf. In 92

Tigress C obfuscator, there are too many obfuscation options, we select five representative 93

options: addOpaque, EncodeLiterals, Virtualize, Flatten, EncodeArithmetic. To be representative, 94

we choose 4 and 16 as the number of opaque predicates for option addOpaque, and treat 95

them as two obfuscation options addOpaque4, addOpaque16 respectively. In one obfuscator, 96

multiple obfuscation options can be superimposed, and it will result in a more complex and 97

hard-to-understand binary program. Among them, there are 4 mixed obfuscation schemes 98

in O-LLVM and 17 in Tigress. Together with 9 single obfuscation schemes, there are 30 99

different obfuscation techniques in total. 100

2.2. Intermediate Representation 101

The intermediate language is independent of the programming language and hard- 102

ware platform, and it is a compiler-based intermediate representation. LLVM IR5 is one 103

of them. LLVM IR is a Static Single Assignment (SSA) based representation that provides 104

type safety, low-level operations, and flexibility. 105

At present, a lot of research work is carried out based on IR, such as code search [16], 106

code optimization [17], binary translation [18], binary recompilation [19], binary semantic 107

understanding [20], etc. As a fundamental work, many studies analyze the semantic 108

representation of binary code from different perspectives. Among them, Ben-Nun et 109

al. [18] provided a new concept XFG to describe the context flow information of IR, which 110

leveraged the underlying control flow and data flow information. They can match or even 111

surpass advanced methods using only simple LSTM [21] and pre-trained embeddings. 112

Venkatakeerthy et al. [22] provided IR2Vec, a concise and scalable encoding infrastructure 113

to represent programs as distributed embeddings in continuous space. This method takes 114

symbolic and flow-aware embeddings to construct LLVM Entities and map them to real- 115

valued distributed embeddings. 116

There is also some achievements on deobfuscation techniques based on LLVM IR. For 117

instance, Garba et al. [23] provided SATURN, which is an LLVM-based software deobfusca- 118

tion framework. This method lifts binary code to LLVM IR, then uses optimization pass 119

and super optimization to simplify the intermediate representation. Experiments show that 120

SATURN is very effective for obfuscation techniques such as constant unfolding, certain 121

arithmetic-based opaque expressions, dead code insertions, bogus control flow, and integer 122

encoding. But it is difficult to deal with more sophisticated obfuscation technologies such 123

as virtualization. 124

2.3. Graph Neural Network 125

With the rapid development of deep learning, graph representation learning has 126

also made significant progress in recent years. The graph neural network models such 127

as GCN [24] and GAT [25] have shown satisfactory results in the fields of node classifi- 128

cation, graph classification, and link prediction. As a variant of GCN, GraphSAGE [26] 129

optimizes node-centered neighbor sampling instead of full-graph sampling, enabling it 130

1 https://github.com/obfuscator-llvm/obfuscator
2 https://vmpsoft.com
3 https://www.oreans.com/themida.php
4 https://tigress.wtf
5 https://llvm.org/docs/LangRef.html
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to perform inductive learning and improve the efficiency of graph convolution greatly. 131

With transformer [27] showing great potential in the field of neural networks, the attention 132

mechanism has gradually been applied to graph neural networks [28–30]. 133

In many real scenarios, the edges may contain very important information. But these 134

models fail to take full advantage of the edge information in the graph. Therefore, many 135

researchers attempt to incorporate edge information into graph neural networks. For exam- 136

ple, Schlichtkrull el al. [31] proposed Relational-GCN for aggregating node information 137

based on edge types, but this method cannot handle the multi-dimensional features on the 138

edge well. In PNAConv [32] and Crystal Graph Conv [33], the edge information in the 139

graph is also regarded as multi-dimensional features, and can be aggregated and updated 140

together with node features. In EGNN [34], each dimension of the edge feature is processed 141

separately, and the final output vector is concatenated to obtain a new edge feature. It 142

will produce long redundant vectors when the dimension becomes larger, making it less 143

scalable. In addition, there are also methods to alternately learn the embeddings of nodes 144

and edges in the graph [35–37]. These methods all achieve very good results for specific 145

tasks but are not suitable for our task. Battaglia et al. [38] made a more general summary of 146

the graph network. The proposed graph network framework not only considers the node 147

information and edge information of the graph at the same time, but also introduces the 148

global state information of the graph. The initial value of the global state can be regarded 149

as a certain inherent property of the graph or an encoding vector of prior knowledge. 150

3. Proposed Approach 151

We have conducted a detailed study of various existing obfuscation techniques and 152

found that most of them can be divided into two categories: structural obfuscation and 153

data obfuscation. In structural obfuscation, there are mainly two ways. One is to construct 154

opaque predicates to fake the control flow, and the other is to use branch instructions, 155

such as switch, to flatten the control flow. The former will greatly change the control flow 156

structure of the program, while the latter will disrupt the order of basic blocks completely. 157

These obfuscation techniques make it difficult for existing binary code analysis technologies 158

to judge similarity. 159

In structural obfuscation, no matter how the control flow changes, the semantic infor- 160

mation of the program remains unchanged, so the data flow relationship also remains the 161

same. In data obfuscation, encryption algorithms are mainly used to encrypt the original 162

code, or more complex instruction relations are used to replace simple expressions. Since 163

the functionality of the program is completely the same, its overall data flow conversion 164

relations should be equivalent. Therefore, we focus on the direction of data flow trans- 165

mission to analyze the obfuscation code. Given that the assembly contains only limited 166

registers and varies in different hardware architectures, it is difficult to extract the data 167

flow relationships. To simplify our work and make it more versatile, we perform data flow 168

analysis at the intermediate representation level. 169

In this paper, we use the intermediate representation programs compiled from the 170

source code as the dataset. After preprocessing, we can extract data flow relationships from 171

the intermediate representation programs and build data transformation graphs (DTG) as 172

our training dataset. Then, we automatically learn the dataflow semantic information of 173

the function from DTG via DFSGraph. Finally, we perform downstream tasks to test the 174

performance of our model. The overall framework is shown in figure 1. 175

3.1. Data Transformation Graph 176

According to the format specification of the LLVM IR instruction, we perform prelimi-
nary preprocessing. First, the useless characters in the IR instruction are removed. Then, we
analyze the format of the instruction according to the opcode and extract each operand and
its corresponding data type. On the basis of the functionality of operands, we divide them
into local variable, global variable, immediate value, basic block label, and use LVAR, GVAR,
IMM, and LABEL to represent it respectively. At the same time, we divide the oprands into

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2022                   doi:10.20944/preprints202209.0046.v2

https://doi.org/10.20944/preprints202209.0046.v2


5 of 13

Graph Network Model

DTGs Repository

Obfuscated IRs

Repository

C

Source

Code

LLVM

IR

LLVM

IR

LLVM

IR

LLVM

IR

LLVM

IR
...

Obfuscator LLVM

Tigress C Obfuscator

T
r
a
i
n
i
n
g

Data Flow Semantics

Downstream Tasks

Graph

Classification

Graph

Similarity

Figure 1. The overall framework of our approach.

i8, i16, i32, i64, i128, float depending on the varibale types. Since there are a large number of
anonymous variables in the LLVM IR instruction, most of them are numbered and do not
contain semantic information. Some variable names also contain functionality types, such
as global variables, strings or arrays, etc. In the preprocessing stage, these variable names
are standardized to keep away from the OOV issue, wipe out the obstruction brought about
by irregular variable names, and simultaneously feature the functional type and data type
of every variable. Therefore, each variable can be formally represented as:

Type # Class $ Num

Where # and $ are delimiters, Type represents the data type, such as i8, i16, i32, i64, i128, 177

float. Class refers to the functional category, such as LVAR, GVAR, IMM, LABEL. The value 178

of Num is determined by Class. When the Class is LVAR, GVAR, and LABEL respectively, 179

the value of Num is an integer greater than 0 as the variable number, and the initial variable 180

number of each function starts from 1. and when the Class category is LABEL, the Type 181

field can be omitted. When the Class category is IMM, the value of Num is the specific 182

immediate value. 183

Besides, we divide the instructions of LLVM IR into various types according to the 184

number of operands. These oprands can be divided into zero-element operators, unary 185

operators, binary operators, and multivariate operators. 186

"%6 = load i32 i32 * %1"

i32

#LVAR

$1

i32

#LVAR

$6

load

(a) The unary operator.

"%10 = add nsw i32 %9 1"

i32

#LVAR

$9 i32

#LVAR

$10

add_nsw

i32

#IMM

$1

add_nsw

(b) The binary operator.

"br i1 %4 label %5 label %11"

i1

#LVAR

$4

LABEL

$5
br

LABEL

$11

br

(c) The multivariate operator.

Figure 2. Data flow conversion relationship for different types of instructions.

For zero-element operators, such as alloca and ret, since there is no data flow infor- 187

mation transfer, they can be ignored directly. For the unary operators, we take "%6 = 188

load i32 i32 * %1" as an example, and its data flow transformation is shown in Figure 2(a). 189

For binary operators, we take "%10 = add nsw i32 %9 1" as an example, and its data flow 190

transformation is shown in Figure 2(b). For multivariate operators, we take "br i1 %4 label 191
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%5 label %11" as an example, and its data flow transformation is shown in Figure 2(c). In 192

addition, table 1 lists the corresponding categories of all operators in LLVM IR. 193

Table 1. Categories of LLVM IR operators

Categories Operators
Zero-element ret, unreachable, fence, call, landingpad, catchpad, cleanuppad

Unary resume, fneg, alloca, load, freeze

Binary

catchret, cleanupret, add, fadd, sub, fsub, mul, fmul, udiv, sdiv,
fdiv, urem, srem, frem, shl, lshr, ashr, and, or, xor, extractelement,
extractvalue, store, trunc..to, zext..to, sext..to, fptrunc..to, fpext..to,
fptoui..to, fptosi..to, uitofp..to, sitofp..to, ptrtoint..to, inttoptr..to,
bitcast..to, addrspacecast..to, icmp, fcmp, select

Multivariate
br, switch, indirectbr, invoke, callbr, catchswitch, insertelement,
shufflevector, insertvalue, cmpxchg, atomicrmw, getelementptr,
phi, va_arg

To simplify the parsing complexity, we use %opcode to replace nested instructions. For 194

example, for nested instructions "call @func ( i8 * getelement ...)", we denote it as: "call @func 195

%opcode". Although this process will lose part of the data flow relationship, it is a trade-off 196

between accuracy and complexity. Figure 3 is an example of the construction of a data 197

transformation graph.

i32

#LVAR

$6

i32

#LVAR

$35

load

i32

#LVAR

$36

i64

#LVAR

$37

i32

#LVAR

$9

i64

#IMM$

0

i32

#LVAR

$38

i32

#LVAR

$39

i1

#LVAR

$40

LABEL$

41

LABEL$

66

load

sext

getelementptr getelementptr

getelementptr

load

icmp_sleicmp_sle

br br

34

<i32#LVAR$6, i32#LVAR$35, load>

<i32#LVAR$5, i32#LVAR$36, load>

<i32#LVAR$36, i64#LVAR$37, sext>

<i32#LVAR$9, i32#LVAR$38, getelementptr>

<i64#IMM$0, i32#LVAR$38, getelementptr>

<i64#LVAR$37, i32#LVAR$38, getelementptr>

<i32#LVAR$38, i32#LVAR$39, load>

<i32#LVAR$35, i32#LVAR$40, load>

<i32#LVAR$39, i32#LVAR$40, load>

<i1#LVAR$40, LABEL$41, br>

<i1#LVAR$40, LABEL$66, br>

    "34": [

"%35 = load i32 i32 * %6",

"%36 = load i32 i32 * %5",

"%37 = sext i32 %36 to i64",

"%38 = getelementptr inbounds [ 1000 x i32 ]  

[ 1000 x i32 ] * %9 i64 0 i64 %37",

"%39 = load i32 i32 * %38",

"%40 = icmp sle i32 %35 %39",

"br i1 %40 label %41 label %66"

    ],

D
ataflo

w
 R

elatio
n

sh
ip

s

LLVM IR instructions

Data Transformation Graph

Figure 3. An example of DTG.
198

3.2. Graph Network 199

Inspired by the Graph Network [38], we redesign the message passing function and 200

aggregation function to make it more suitable for DTGs, which can efficiently extract data 201

flow semantic information of intermediate representation programs while resisting existing 202

obfuscation techniques. 203

In our proposed graph network model, the main update steps are shown in Figure 4. 204

The whole update process is mainly divided into three parts. 205
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Figure 4. The update process of the DFSGraph.

Firstly, we update the edge features based on the features of the nodes of this edge
and the current state information of the entire graph, which can be formally described as
follows:

el+1
ij = Φe(el

ij, hl
i , hl

j, ul)

where el
ij represents the feature of directed edge eij from node i to node j in the lth layer. hl

i

represents the current feature of node i. ul
i represents the global state information of the

graph. Φe is the update function of the edge. In DFSGraph, Φe is defined as:

Φe = el
ij ∗ (hi∥hj) ∗ Wh + ul ∗ Wu

where, ∥ represents the concatenation operation of the vector, Wh ∈ R2D∗M and Wu ∈ 206

R(D+M)∗M are the parameter matrixes. 207

Next, the state update process of the node is performed. We update the state of the
current node by aggregating the feature vectors of all incoming edges of the current node,
combined with the current global state information of the graph. The state update process
of a node is formally described as:

el+1
i = ρe→h([el+1

ij , ∀vj ∈ N (Vi)])

hl+1
i = Φh(el+1

i , hl
i , ul)

where N (Vi) represents all predecessors of node i. ρe→h is the aggregation function of the
edge. In this paper, we find that max-pooling works best through repeated experimental
verification, which is defined as follows:

ρe→h = maxpooling(el+1
ij )

Φh is the update function of the node, which is defined as follows:

Φh = Dropout(el+1
i ∗ We ∗ hl

i) + ul ∗ Wu

where We ∈ RM∗D is the parameter matrix that maps edge features to node features. 208

At Last, we update the global state information of the graph, which needs to depend
on the features of all edges and nodes. All edges and nodes are aggregated separately,
then the global feature is updated using the state update function of the graph. Its formal
description is as follows:

el+1 = ρe→u([el+1
ij , ∀eij ∈ E])

h
l+1

= ρh→u([hl+1
i , ∀vi ∈ V])

ul+1 = Φu(el+1, h
l+1

, ul)
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In this paper, we define the edge aggregation function ρe→u, node aggregation function
ρh→u, and global state update Φu as follows:

ρe→u = meanpooling(el+1
ij )

ρh→u = meanpooling(hl+1
ij )

Φu = α ∗ Dropout(el+1∥h
l+1

) + (1 − α) ∗ ul

where α is the forgetting coefficient. We set the initial value of the global state u to zero, 209

that is: u0 = 0⃗. Then, we can embed DTGs using the current graph network model. 210

3.3. Model Training 211

During model training, we employ triplet loss for training. The input form of each
triple is < a, p, n >, where a is the anchor sample refering to the unonbfuscated function, p
is the positive sample refering to the homologous function through specified obfuscation
technique, and n is the negative sample, which is the non-homologous function that has
undergone the same obfuscation technique. Assuming that the obtained semantic vector of
a through DFSGraph model is x = (x1, x2, x3, ..., xn), and the semantic vector corresponding
to p is y = (y1, y2, y3, ..., yn). The the Euclidean distance between sample a and p is as
follows:

d(a, p) =

√
n

∑
i=1

(xi − yi)2

For the triplet < a, p, n >, the triplet loss can be formally described as:

L = max{d(a, p)− d(a, n) + margin, 0}

The margin represents the difference between the distance between d(a, p) and d(a, n). 212

The larger the difference is, the more clearly the model can distinguish the positive and the 213

negative samples. However, if the margin is too large, the model training process may be 214

unstable. In the experiments in this section, it has been verified by experiments that when 215

the value of margin is set to 50, it can increase the stability of the model training process 216

while ensuring the accuracy of the model, so that the loss value of the model continues to 217

decrease steadily. 218

In our implementation, we split the dataset into the training set and testing set at a 219

rate of 4:1. Since we are using a graph network, our batch size can only be set to 1. In 220

DFSGraph, we set the dimension of the edges and nodes to be 128, and the output graph 221

global state vector is 256. The graph network is set to 3 layers. During the training phase, 222

AdamW is used as an optimizer. The learning rate is set to 0.00005, making the step size of 223

gradient descent smaller to prevent model oscillation or gradient explosion. 224

4. Experiments 225

In this section, we apply the obfuscated code similarity comparison task and the 226

obfuscated technique classification task to evaluate the effectiveness of our proposed 227

method respectively. 228

4.1. Dataset 229

At present, we take C programs collected from Google Code Jam from 2008 to 2020 230

as the original dataset, which contains 25,000 functions. And then we compiled them 231

separately using the obfuscation options and their combinations in obfuscators O-LLVM 232

and Tigress. All obfuscation technologies are shown in table 2. 233

We should note that in the compound obfuscation options, A+V means that the 234

addOpaque16 option is used first, and then the Virtualize option is used at compile time, 235

which is different from V+A. 236
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Table 2. All obfuscation options in O-LLVM and Tigress. (Note: A is short for addOpaque16, V is short
for Virtualize, EA is short for EncodeArithmetic, EL is short for EncodeLiterals and F is short for Flatten.
A+V represents a composite option of addOpaque16 and Virtualize, and others are the same.)

Obfuscator Options Composite Options
O-LLVM sub, fla, bcf sub+fla, sub+bcf, fla+bcf, sub+fla+bcf

Tigress addOpaque4,
A, V, EA, EL, F

A+V, A+EA, A+EL, A+F, A+V, EA+A,
EA+V, EA+F, EL+A, EL+EA, EL+F,
EL+V, F+A, F+EA, F+EL, F+V, V+A,
V+EA, V+EL, V+F

4.2. Similarity Analysis of Obfuscated Code 237

In this experiment, we use P@N (precision at N) to evaluate the accuracy of the model. 238

The P@N is often used in information retrieval systems, which reflects the probability of 239

correct sample ranking at top N. So we use this metric to reflect the anti-obfuscation ability 240

of the proposed model in the obfuscated code similarity comparison task. 241

For each obfuscation technique, we first randomly select 100 functions as the search 242

set Γ. Then, we compile each function in Γ using a specific obfuscation technique. At the 243

same time, we randomly select one function from Γ, compile it normally, and treat it as the 244

function γ to be retrieved. At last, we calculate the Euclidean distance between function 245

γ and each function in Γ one by one and sort them. Then we are able to get the rank of 246

the obfuscation function corresponding to the function γ. Each experiment is repeated 100 247

times and we are able to get the probability of P@N. 248

The final results are shown in table 3. From the experimental results, we can find 249

that, for all obfuscation options, P@10 can achieve an accuracy of more than 98% in 250

the test results, and for most obfuscation options, P@1 can also reach 80%. In addition, 251

we can clearly see that our model is able to achieve quite high accuracy for structural 252

obfuscation, such as bcf, fla in O-LLVM and Flatten in Tigress. This proves our dataflow- 253

based method is robust to structural obfuscation. For slight data obfuscation techniques 254

such as sub in O-LLVM and EncodeLiterals in Tigress, our model is still able to maintain high 255

accuracy. However, for obfuscation techniques with heavy data flow transformations, such 256

as Virtualize, addOpaque16, EncodeArithmetic in Tigress, the accuracy is relatively low. This 257

may be because we are analyzing from the perspective of data flow relationship, so the 258

proposed method is more sensitive to data flow confusion. Furthermore, it may be difficult 259

to detect the equivalence of complex data flow transformation relationships only by relying 260

on neural networks, so the accuracy drops slightly. 261

For the O-LLVM obfuscator, we conducted a comparative experiment with Asm2Vec [12], 262

and the results are shown in Table 4. We can see that our method outperforms Asm2Vec in 263

most cases. However, for the sub option, it may be because this option adds some complex 264

data flow relationships, and DFSGraph does not perform well in detecting them, so the 265

accuracy is slightly lower. The above results show that our method is partially resistant to 266

data obfuscation and still needs to be further improved. 267

4.3. Identification of Obfuscated Techniques 268

In this section, we add a simple linear layer to the original model for making it
suitable for the obfuscation technique classification task. For O-LLVM and Tigress, multiple
obfuscation options within the same obfuscator can be arbitrarily matched. In addition, it
is only necessary to judge whether the specific option is used, no matter the combination
order of the options. Therefore, we adopt the idea of multi-label classification and treat
each label as a binary classification task. So we replace triplet loss with binary cross-entropy
loss (BCELoss). The formula for BCELoss is as follows:

loss =
1
N

N

∑
n=1

ln
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Table 3. Experimental results of obfuscated code similarity detection.

Obfuscator Options p@1 p@2 p@3 p@5 p@10

O-LLVM

sub 0.909 0.970 0.993 0.997 1.000
fla 0.910 0.975 0.992 0.997 1.000
bcf 0.903 0.974 0.986 0.995 0.999

sub+bcf 0.899 0.972 0.991 0.995 0.999
sub+fla 0.913 0.978 0.989 0.994 0.999
bcf+fla 0.872 0.962 0.985 0.993 0.997

sub+bcf+fla 0.870 0.948 0.977 0.992 0.998

Tigress

addOpaque4 0.818 0.921 0.964 0.989 0.998
A 0.809 0.928 0.963 0.992 1.000

EA 0.797 0.935 0.966 0.989 0.997
EL 0.892 0.972 0.987 0.995 0.998
F 0.893 0.965 0.988 0.993 0.999
V 0.761 0.901 0.945 0.983 0.996

A+EL 0.735 0.878 0.927 0.966 0.991
A+V 0.528 0.703 0.793 0.892 0.974

EA+A 0.722 0.876 0.932 0.974 0.997
EA+F 0.824 0.944 0.980 0.994 1.000
EA+V 0.641 0.809 0.892 0.957 0.993
EL+EA 0.821 0.937 0.978 0.993 0.999
EL+F 0.897 0.978 0.995 0.998 1.000
EL+V 0.718 0.862 0.935 0.978 0.997
F+A 0.817 0.917 0.963 0.987 0.997

F+EA 0.813 0.924 0.969 0.994 0.999
F+EL 0.903 0.980 0.993 0.999 1.000
F+V 0.749 0.885 0.938 0.982 0.998
V+A 0.630 0.795 0.885 0.953 0.991
V+EL 0.760 0.894 0.951 0.986 0.996
V+F 0.725 0.885 0.947 0.989 0.987
V+V 0.654 0.800 0.877 0.948 0.987

V+EA 0.591 0.771 0.862 0.952 0.995

Table 4. Comparative experimental results between Asm2Vec and DFSGraph.

sub fla bcf sub+bcf sub+fla bcf+fla sub+fla+bcf
Asm2Vec 0.921 0.871 0.856 0.820 0.782 0.729 0.653

DFSGraph 0.909 0.910 0.903 0.899 0.913 0.872 0.870
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where ln represents the loss value for the nth label, which can be described as:

ln = −w[yn · log xn + (1 − yn) · log(1 − xn)]

Next, we can retrain the parameters of our model. We evaluate our model using common 269

performance metrics: accuracy, precision, recall, and F1-score. 270
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Figure 5. Metric changes during the training phase of the classification model.

Since we are a multiple-binary classification problem, we average the individual 271

metrics across all classes for simplicity. Figure 5 shows the changes of each indicator during 272

the training process of the classification model. From figure 5, we can see that the accuracy 273

and precision can be stabilized at about 98.6%, indicating that our model can predict the 274

obfuscation technology correctly with high probability. Meanwhile, we see that the recall 275

and f1 values, although not very stable, are still able to stay above 90% after 10 epochs. 276

These four indicators show that our proposed model can achieve a good classification effect 277

after only a small amount of training (about 10 rounds), which reflects the effectiveness of 278

our method. 279

For carrying out a comparative experiment with the method described in the litera- 280

ture [14] (denoted by DefeatOP), we first build the test dataset, which mainly consists of two 281

parts. One half is unobfuscated functions and the others are generated by the obfuscation 282

techniques that contain opaque predicates in Tigress. Then we use DefeatOP and DFSGraph 283

to detect whether one function contains opaque predicates. The comparison experiment 284

results are shown in Table 5. It can be seen from the results that the accuracy of our model 285

for most obfuscation techniques is higher than DefeatOP. But for the addOpaque16 option, 286

the accuracy of our model is slightly lower, which may also be due to too many opaque 287

predicates, resulting in too complex data flow transformation relationships, which are diffi- 288

cult for our model to identify. Overall, this comparative experiment proves that DFSGraph 289

can better identify obfuscated code containing opaque predicates in most cases. 290
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Table 5. Comparative experimental results between DefeatOP and DFSGraph.

addOpaque4 addOpaque16 EncodeArithmetic EncodeLiterals
DefeatOP 98.2% 96.3% 95.8% 94.7%
DFSGraph 99.2% 95.8% 97.2% 98.1%

The above experiments show that our model can achieve satisfactory results, but it 291

is still far from practical application. In our experiments, the intermediate representation 292

program is compiled directly from the source code. However, it is almost impossible for 293

us to obtain the source code corresponding to the binaries in the wild code. We have 294

to disassemble the binaries into intermediate representation programs through tools like 295

RetDec6. It will cause some information loss inevitably, making it difficult to recover the 296

complete data flow information of the binaries completely. 297

5. Conclusion 298

In this paper, we propose the data transformation graph based on LLVM IR for the 299

first time. Then, we redesign the message passing algorithm and update algorithm based 300

on the graph network model, and define it as DFSGraph. We build the obfuscated code 301

dataset with the obfuscation options in the O-LLVM and Tigress, and use it to train our 302

model. The experimental results prove that our model is quite resistant to most obfuscation 303

techniques. Especially for structural obfuscation, our model has higher accuracy than 304

the existing state-of-the-art methods in the binary code similarity comparison task. For 305

the obfuscation technologies with obvious data flow changes such as virtualization and 306

encryption, the accuracy is relatively low. 307

In the future, we can deeply study how to use RetDec to disassemble binaries into 308

intermediate representation programs, preserving data flow information as much as possi- 309

ble. We can also look for other alternatives to make up for the missing information and 310

minimize the impact of the information loss. 311
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