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Abstract: With the improvement of software copyright protection awareness, code obfuscation 1
technology plays a crucial role in protecting key code segments. As the obfuscation technology =
becomes more and more complex and diverse, it has spawned a large number of malware variants, s
which make it easy to evade the detection of anti-virus software. Malicious code detection mainly 4
depends on binary code similarity analysis. However, the existing software analysis technologies s
are difficult to deal with the growing complex obfuscation technologies. To solve this problem, this 6
paper proposes a new obfuscation-resilient program analysis method, which is based on the data 7
flow transformation relationship of the intermediate representation and the graph network model. In
our approach, we first construct the data transformation graph based on LLVM IR. Then, we design o
a novel intermediate language representation model based on graph networks, named DFSGraph, 1o
to learn the data flow semantics from DTG. DFSGraph can detect the similarity of obfuscated code 11
by extracting the semantic information of program data flow without deobfuscation. Extensive 12
experiments prove that our approach is more accurate than existing deobfuscation tools when  1s

searching for similar functions from obfuscated code. 14
Keywords: Obfuscation; Deobfuscation; LLVM IR; Graph Network 15
1. Introduction 16

Code obfuscation is the act of converting computer programs into functionally equiva- 17
lent, but difficult to read and understand. In recent years, code obfuscation technology has s
been developed rapidly to protect software copyright from plagiarism. It can protect critical 1o
code from being cracked by attackers in commercial software. But everything has two =
sides. Obfuscation techniques have penetrated into the realm of malware. Attackers have =
used them to obfuscate malicious code for evading detection by antivirus software, leading 2=
to a proliferation of malware variants. To solve such problems, binary code similarity =s
detection technology is essential. The existing binary code deobfuscation methods are 24
mainly divided into two categories: traditional binary code analysis methods and neural =5
network-based binary code analysis methods. 26

In traditional binary code analysis methods, most researchers use symbolic execution 27
to combat code deobfuscation. For instance, Tofighi-Shirazi et al. [1] proposed DoSE, 2s
which can improve the deobfuscation technique based on dynamic symbolic execution by 2
statically eliminating obfuscation transformations, and remove two-way opaque constructs 3o
by semantic equivalence. While Xu et al. [2] adopted the multi-granularity symbolic s
execution method to simplify the trace snippets for partially virtualized binary code, and =2
achieved encouraging experimental results at that time. In the meantime, few studies use 33
search-based algorithms [3-5]. Specifically, Blazytko et al. [4] proposed a generic approach s
for automated code deobfuscation using program synthesis guided by Monte Carlo Tree s
Search. On this basis, Zhao et al. [5] used a heuristic nested Monte Carlo Search algorithm s
to locate obfuscated code fragments for improving the search efficiency. 37
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There is also some research focusing on specific obfuscators. For example, David et s
al. [6] mainly studied virtualization-based commercial obfuscators, such as VMProtect and 3¢
Themida, and achieved good results. Eyrolles et al. [7] proposed a simplified algorithm 4
based on pattern matching for MBA obfuscation technology, and proved that at leasta
subset of MBA obfuscation lacks resistance to pattern matching analysis. Whereas some 42
scholars only study the detection of obfuscated code and the classification of obfuscation 43
techniques. For obfuscated code detection, Ming et al. [8] proposed a logic-oriented opaque 44
predicate detection tool. It can construct general logical formulas representing the intrinsic s
characteristics of opaque predicates through the symbolic execution of trace, and use 4
constraint solvers to solve these formulas to determine whether they contain opaque 4
predicates. For obfuscated code classification, Kim et al. [9] directly used the histogram of s
the opcode to classify the obfuscation technology according to the frequency of different 4o
opcodes. 50

For binary code detection methods based on neural networks, many studies have s
been proposed one after another [10,11]. But most of them don’t think about obfuscated s
binaries, and only a few use the proposed method to perform simple tests on obfuscated s
code. For instance, Ding et al. [12] proposed Asm2Vec, the CFG of the assemble program s
is converted into instruction sequences by a random walk algorithm, and the adapted s
PV-DM model is used for representation learning. The authors used this method to test  se
the binary code compiled with the obfuscation options in O-LLVM, and the experimental -
results showed that Asm2Vec has a certain anti-obfuscation ability. However, this method s
only tests O-LLVM and does not involve other obfuscators. And it does not design a special  so
structure or algorithm to resist existing obfuscation techniques. In addition, FID [13] used o
machine learning to learn binary semantic information for function recognition, and tested &
it on obfuscated code, proving that it can resist commonly used obfuscation techniques. 2
Tofighi-Shirazi et al. [14] proposed a static automatic deobfuscation tool through machine s
learning and binary analysis, which can remove opaque predicate confusion, and the s
accuracy rate can reach 98%. o5

In general, traditional methods require specific analysis of specific obfuscation tech- s
niques, and it is difficult to automatically apply to large-scale obfuscated code detection. In &
contrast, neural networks have the advantages of scalability and easy analysis. Moreover, s
the existing binary code similarity analysis technologies are difficult to deal with the obfus- e
cated code effectively due to the interference of obfuscation techniques. Therefore, in this 7
paper, we propose a novel approach for learning the semantic representation of obfuscated =

code automatically. The main contributions of this paper are as follows: 72
*  We propose the Data Transformation Graph (DTG) for the first time, and it can express s
the data flow transformation relationships of the function completely and clearly. 7a
*  Weredesign the message aggregation algorithm and update algorithm on the basis of 7
graph network, making it can learn the semantic information from DTGs better. 76

¢  Experiments show that our proposed method can learn the semantic information of 7~
obfuscated code well and exhibits better performance than existing state-of-the-art 7
methods in downstream tasks. 70

The remaining part of this paper proceeds as follows: Section 2 mainly introduces =0
existing obfuscation technologies, the related works based on LLVM IR and graph neural &
network. Section 3 describes our proposed method in detail. Section 4 shows the results of =2
our experiments and compares them with current state-of-the-art methods. And last, we s
make a conclusion in section 5. 84
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2. Related works a5
2.1. Obfuscation Technigues 86

Existing obfuscation tools mainly include Obfuscator-LLVM!, VMProtect?, Themida®,
Tigress®, etc. The most commonly used obfuscation techniques in malware [15] cover s
encryption, dead code insertion, register reallocation, instruction reordering, instruction s
substitution, opaque predicate insertion, etc. As an exploratory work, we initially select oo
two commonly used obfuscators Obfuscator-LLVM and Tigress for experimental research. o

In Obfuscator-LLVM, there are mainly three obfuscation options: sub, fla, bef. In = o
Tigress C obfuscator, there are too many obfuscation options, we select five representative o3
options: addOpaque, EncodeLiterals, Virtualize, Flatten, EncodeArithmetic. To be representative, s
we choose 4 and 16 as the number of opaque predicates for option addOpaque, and treat s
them as two obfuscation options addOpaque4, addOpaquel6 respectively. In one obfuscator, s
multiple obfuscation options can be superimposed, and it will result in a more complex and o7
hard-to-understand binary program. Among them, there are 4 mixed obfuscation schemes s
in O-LLVM and 17 in Tigress. Together with 9 single obfuscation schemes, there are 30 o
different obfuscation techniques in total. 100

2.2. Intermediate Representation 101

The intermediate language is independent of the programming language and hard- o2
ware platform, and it is a compiler-based intermediate representation. LLVM IR’ is one 103
of them. LLVM IR is a Static Single Assignment (SSA) based representation that provides 1os
type safety, low-level operations, and flexibility. 105

At present, a lot of research work is carried out based on IR, such as code search [16], 106
code optimization [17], binary translation [18], binary recompilation [19], binary semantic 1o
understanding [20], etc. As a fundamental work, many studies analyze the semantic 10e
representation of binary code from different perspectives. Among them, Ben-Nun et 100
al. [18] provided a new concept XFG to describe the context flow information of IR, which 110
leveraged the underlying control flow and data flow information. They can match or even 11
surpass advanced methods using only simple LSTM [21] and pre-trained embeddings.
Venkatakeerthy et al. [22] provided IR2Vec, a concise and scalable encoding infrastructure 11
to represent programs as distributed embeddings in continuous space. This method takes 114
symbolic and flow-aware embeddings to construct LLVM Entities and map them to real- s
valued distributed embeddings. 116

There is also some achievements on deobfuscation techniques based on LLVM IR. For 117
instance, Garba et al. [23] provided SATURN, which is an LLVM-based software deobfusca- 11s
tion framework. This method lifts binary code to LLVM IR, then uses optimization pass 11
and super optimization to simplify the intermediate representation. Experiments show that 120
SATURN is very effective for obfuscation techniques such as constant unfolding, certain 121
arithmetic-based opaque expressions, dead code insertions, bogus control flow, and integer 122
encoding. But it is difficult to deal with more sophisticated obfuscation technologies such 123
as virtualization. 124

2.3. Graph Neural Network 125

With the rapid development of deep learning, graph representation learning has 12
also made significant progress in recent years. The graph neural network models such 127
as GCN [24] and GAT [25] have shown satisfactory results in the fields of node classifi- 12s
cation, graph classification, and link prediction. As a variant of GCN, GraphSAGE [26] -
optimizes node-centered neighbor sampling instead of full-graph sampling, enabling it 130

N
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to perform inductive learning and improve the efficiency of graph convolution greatly. 1s
With transformer [27] showing great potential in the field of neural networks, the attention 132
mechanism has gradually been applied to graph neural networks [28-30]. 133

In many real scenarios, the edges may contain very important information. But these 134
models fail to take full advantage of the edge information in the graph. Therefore, many 1ss
researchers attempt to incorporate edge information into graph neural networks. For exam- 136
ple, Schlichtkrull el al. [31] proposed Relational-GCN for aggregating node information 1s-
based on edge types, but this method cannot handle the multi-dimensional features on the 1ss
edge well. In PNAConv [32] and Crystal Graph Conv [33], the edge information in the 130
graph is also regarded as multi-dimensional features, and can be aggregated and updated 140
together with node features. In EGNN [34], each dimension of the edge feature is processed 1
separately, and the final output vector is concatenated to obtain a new edge feature. It 1s
will produce long redundant vectors when the dimension becomes larger, making it less 143
scalable. In addition, there are also methods to alternately learn the embeddings of nodes  14a
and edges in the graph [35-37]. These methods all achieve very good results for specific 1as
tasks but are not suitable for our task. Battaglia et al. [38] made a more general summary of 146
the graph network. The proposed graph network framework not only considers the node 17
information and edge information of the graph at the same time, but also introduces the 14
global state information of the graph. The initial value of the global state can be regarded 14
as a certain inherent property of the graph or an encoding vector of prior knowledge. 150

3. Proposed Approach 151

We have conducted a detailed study of various existing obfuscation techniques and sz
found that most of them can be divided into two categories: structural obfuscation and s
data obfuscation. In structural obfuscation, there are mainly two ways. One is to construct s
opaque predicates to fake the control flow, and the other is to use branch instructions, 1ss
such as switch, to flatten the control flow. The former will greatly change the control flow 1se
structure of the program, while the latter will disrupt the order of basic blocks completely. sz
These obfuscation techniques make it difficult for existing binary code analysis technologies 1ss
to judge similarity. 159

In structural obfuscation, no matter how the control flow changes, the semantic infor- 1eo
mation of the program remains unchanged, so the data flow relationship also remains the 16
same. In data obfuscation, encryption algorithms are mainly used to encrypt the original e
code, or more complex instruction relations are used to replace simple expressions. Since 1es
the functionality of the program is completely the same, its overall data flow conversion ies
relations should be equivalent. Therefore, we focus on the direction of data flow trans- es
mission to analyze the obfuscation code. Given that the assembly contains only limited 166
registers and varies in different hardware architectures, it is difficult to extract the data 167
flow relationships. To simplify our work and make it more versatile, we perform data flow 1es
analysis at the intermediate representation level. 169

In this paper, we use the intermediate representation programs compiled from the 17
source code as the dataset. After preprocessing, we can extract data flow relationships from 17
the intermediate representation programs and build data transformation graphs (DTG) as 172
our training dataset. Then, we automatically learn the dataflow semantic information of 173
the function from DTG via DFSGraph. Finally, we perform downstream tasks to test the 17
performance of our model. The overall framework is shown in figure 1. 175

3.1. Data Transformation Graph 176

According to the format specification of the LLVM IR instruction, we perform prelimi-
nary preprocessing. First, the useless characters in the IR instruction are removed. Then, we
analyze the format of the instruction according to the opcode and extract each operand and
its corresponding data type. On the basis of the functionality of operands, we divide them
into local variable, global variable, immediate value, basic block label, and use LVAR, GVAR,
IMM, and LABEL to represent it respectively. At the same time, we divide the oprands into
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Figure 1. The overall framework of our approach.

i8, 16,132, i64, i128, float depending on the varibale types. Since there are a large number of
anonymous variables in the LLVM IR instruction, most of them are numbered and do not
contain semantic information. Some variable names also contain functionality types, such
as global variables, strings or arrays, etc. In the preprocessing stage, these variable names
are standardized to keep away from the OOV issue, wipe out the obstruction brought about
by irregular variable names, and simultaneously feature the functional type and data type
of every variable. Therefore, each variable can be formally represented as:

Type #Class $ Num

Where # and $ are delimiters, Type represents the data type, such as i8, i16, i32, 164, 1128, 17
float. Class refers to the functional category, such as LVAR, GVAR, IMM, LABEL. The value 17
of Num is determined by Class. When the Class is LVAR, GVAR, and LABEL respectively, 17
the value of Num is an integer greater than 0 as the variable number, and the initial variable 1s0
number of each function starts from 1. and when the Class category is LABEL, the Type 1e
field can be omitted. When the Class category is IMM, the value of Num is the specific s
immediate value. 183

Besides, we divide the instructions of LLVM IR into various types according to the 1se
number of operands. These oprands can be divided into zero-element operators, unary s
operators, binary operators, and multivariate operators. 186

\ "%6 = load i32 i32 * %1" \ "%10 = add nsw i32 %9 1" "br i1 %4 label %5 label %11"

$ & 4 o
/ /

| #LVAR —__ B - \
/BN a8 s mn s b N
| HLVAR |——load——+{ #LVAR | _AEVAR | EVAR <
$1/ \56/ y B2 add_nsw 107 N\ %4 S /LABEL
(#Mm $11
st/ NG /
(a) The unary operator. (b) The binary operator. (c) The multivariate operator.

Figure 2. Data flow conversion relationship for different types of instructions.

For zero-element operators, such as alloca and ret, since there is no data flow infor- 1er
mation transfer, they can be ignored directly. For the unary operators, we take "%6 = 1ss
load i32 i32 * %1" as an example, and its data flow transformation is shown in Figure 2(a). 1eo
For binary operators, we take "%10 = add nsw i32 %9 1" as an example, and its data flow 100
transformation is shown in Figure 2(b). For multivariate operators, we take "br i1 %4 label 101
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%D label %11" as an example, and its data flow transformation is shown in Figure 2(c). In 102
addition, table 1 lists the corresponding categories of all operators in LLVM IR. 193

Table 1. Categories of LLVM IR operators

Categories | Operators
Zero-element | ret, unreachable, fence, call, landingpad, catchpad, cleanuppad
Unary resume, fneg, alloca, load, freeze
catchret, cleanupret, add, fadd, sub, fsub, mul, fmul, udiv, sdiv,
fdiv, urem, srem, frem, shl, Ishr, ashr, and, or, xor, extractelement,
Binary extractvalue, store, trunc..to, zext..to, sext..to, fptrunc..to, fpext..to,
fptoui..to, fptosi..to, uitofp..to, sitofp..to, ptrtoint..to, inttoptr..to,
bitcast..to, addrspacecast..to, icmp, fcmp, select
br, switch, indirectbr, invoke, callbr, catchswitch, insertelement,
Multivariate | shufflevector, insertvalue, cmpxchg, atomicrmw, getelementptr,
phi, va_arg

To simplify the parsing complexity, we use %opcode to replace nested instructions. For 104
example, for nested instructions "call @func ( i8 * getelement ...)", we denote it as: "call @func 105
%opcode". Although this process will lose part of the data flow relationship, it is a trade-off 106
between accuracy and complexity. Figure 3 is an example of the construction of a data 17
transformation graph.

34:
<i32#LVAR$6, i32#LVAR$35, load> v
<i32#LVAR$5, i32#LVAR$36, load> 2
<i32#LVAR$36, i64#LVAR$37, sext> %
<i32#LVAR$9, 132#LVAR$38, getelementptr> Q
<i64#IMM$0, i32#LVAR$38, getelementptr> €
<i64#LVAR$37, i32#LVAR$38, getelementptr> ?
<i32#LVAR$38, i32#LVAR$39, load> QT
"34": [ <i32#LVAR$35, i32#LVAR$40, load> [=o
"%35 = load i32 i32 * %6", <i32#LVAR$39, i32#LVAR$48, load> S
"%36 = load 132 132 * %5", <i1#LVAR$40, LABEL$41, br> S_.
"%37 = sext 132 %36 to i64", <i1#LVAR$40, LABEL$66, br> ,.a
"%38 = getelementptr inbounds [ 1000 x i32 ] w
[ 1800 x i32 ] * %9 i64 © i64 %37",
"%39 = load i32 i32 * %38",
"%40 = icmp sle i32 %35 %39",
"br il %40 label %41 label %66" i32 i32 i64 i32
1, #LVAR H#LVAR |—»{ #LVAR #LVAR
$36 $37
getelementptr  getelementptr
LLVM IR instructions e~
i32 i32 i32
#LVAR #LVAR |€—loas—| #LVAR
$35 $39 $38
icmp_sle  icmp_sle getelementptr
. i1
Data Transformation Graph HLVAR i64
$40 #IMMS$
‘br br\‘ )
LABEL$ LABEL$
41 66
Figure 3. An example of DTG.
108
3.2. Graph Network 100

Inspired by the Graph Network [38], we redesign the message passing function and 200
aggregation function to make it more suitable for DTGs, which can efficiently extract data 201
flow semantic information of intermediate representation programs while resisting existing  zo2
obfuscation techniques. 203

In our proposed graph network model, the main update steps are shown in Figure 4. 204
The whole update process is mainly divided into three parts. 205
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Figure 4. The update process of the DFSGraph.

Firstly, we update the edge features based on the features of the nodes of this edge
and the current state information of the entire graph, which can be formally described as
follows:

l+1 e [
e; = (el],hl, h], )
where efj represents the feature of directed edge ¢;; from node i to node j in the /th layer. hf

represents the current feature of node . uf represents the global state information of the
graph. @ is the update function of the edge. In DFSGraph, ®° is defined as:

P = ei] * (I/ll”h]) * Wh -+ Lll * Wy,

where, || represents the concatenation operation of the vector, W;, € R?P*M and W, € 206
R(P+M)*M are the parameter matrixes. 207
Next, the state update process of the node is performed. We update the state of the
current node by aggregating the feature vectors of all incoming edges of the current node,
combined with the current global state information of the graph. The state update process

of a node is formally described as:

et = p (e, Yoy € N (V)

1

1+1 hsl+1 1l
h = oMe by uy)
where N (V;) represents all predecessors of node i. p°~*" is the aggregation function of the
edge. In this paper, we find that max-pooling works best through repeated experimental
verification, which is defined as follows:

e—h

07" = maxpooling (e l“)

@' is the update function of the node, which is defined as follows:
®" = Dropout (e x W, * hl) + u! x W,

where W, € RM*D is the parameter matrix that maps edge features to node features. 208
At Last, we update the global state information of the graph, which needs to depend
on the features of all edges and nodes. All edges and nodes are aggregated separately,
then the global feature is updated using the state update function of the graph. Its formal
description is as follows:
2+l — pe—m([ I+1 Vel] c E])

B = g Yoy € V)
I+1

uw)

1_ P (ElJrl,E
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In this paper, we define the edge aggregation function p**

e, and global state update ®* as follows:

, hode aggregation function

e—

P = meanpooling(elF1)

i
o=t = meanpooling(hﬁfl)

®" = a * Dropout (! HEZH) +(1—a)*u

where « is the forgetting coefficient. We set the initial value of the global state u to zero, 20
thatis: u® = 0. Then, we can embed DTGs using the current graph network model. 210

3.3. Model Training 211

During model training, we employ triplet loss for training. The input form of each
triple is < a, p, n >, where a is the anchor sample refering to the unonbfuscated function, p
is the positive sample refering to the homologous function through specified obfuscation
technique, and n is the negative sample, which is the non-homologous function that has
undergone the same obfuscation technique. Assuming that the obtained semantic vector of
a through DFSGraph model is x = (x1, X2, X3, ..., X5 ), and the semantic vector corresponding
topisy = (y1,Y2,¥3, - Yn). The the Euclidean distance between sample a and p is as
follows:

=

d(a,p) = (xi —yi)?

i=1

For the triplet < a, p,n >, the triplet loss can be formally described as:
L = max{d(a, p) — d(a,n) + margin,0}

The margin represents the difference between the distance between d(a, p) and d(a, n). =12
The larger the difference is, the more clearly the model can distinguish the positive and the 21
negative samples. However, if the margin is too large, the model training process may be 214
unstable. In the experiments in this section, it has been verified by experiments that when 215
the value of margin is set to 50, it can increase the stability of the model training process =1
while ensuring the accuracy of the model, so that the loss value of the model continues to 217
decrease steadily. 218

In our implementation, we split the dataset into the training set and testing setata 210
rate of 4:1. Since we are using a graph network, our batch size can only be set to 1. In 220
DFSGraph, we set the dimension of the edges and nodes to be 128, and the output graph = 221
global state vector is 256. The graph network is set to 3 layers. During the training phase, 222
AdamW is used as an optimizer. The learning rate is set to 0.00005, making the step size of 22
gradient descent smaller to prevent model oscillation or gradient explosion. 224

4. Experiments 225

In this section, we apply the obfuscated code similarity comparison task and the 226
obfuscated technique classification task to evaluate the effectiveness of our proposed a7
method respectively. 228

4.1. Dataset 220

At present, we take C programs collected from Google Code Jam from 2008 to 2020 230
as the original dataset, which contains 25,000 functions. And then we compiled them 23
separately using the obfuscation options and their combinations in obfuscators O-LLVM 232
and Tigress. All obfuscation technologies are shown in table 2. 233

We should note that in the compound obfuscation options, A+V means that the =234
addOpaquel6 option is used first, and then the Virtualize option is used at compile time, 235
which is different from V+A. 236
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Table 2. All obfuscation options in O-LLVM and Tigress. (Note: A is short for addOpaquel6, V is short
for Virtualize, EA is short for EncodeArithmetic, EL is short for EncodeLiterals and F is short for Flatten.
A+V represents a composite option of addOpaquel6 and Virtualize, and others are the same.)

Obfuscator Options Composite Options

O-LLVM sub, fla, bef sub-+fla, sub+bcf, fla+bcf, sub+fla+bcf
A+V, A+EA, A+EL, A+F, A+V, EA+A,

addOpaque4, EA+V, EA+F, EL+A, EL+EA, EL+F,

A,V,EA,EL,F EL+V,F+A, F+EA,F+EL, F+V, V+A,
V+EA, V+EL, V+F

Tigress

4.2. Similarity Analysis of Obfuscated Code 237

In this experiment, we use P@N (precision at N) to evaluate the accuracy of the model. 238
The P@N is often used in information retrieval systems, which reflects the probability of -
correct sample ranking at top N. So we use this metric to reflect the anti-obfuscation ability 240
of the proposed model in the obfuscated code similarity comparison task. 241

For each obfuscation technique, we first randomly select 100 functions as the search  ze2
set I'. Then, we compile each function in I" using a specific obfuscation technique. At the 243
same time, we randomly select one function from I', compile it normally, and treat it as the 24s
function 7 to be retrieved. At last, we calculate the Euclidean distance between function 2as
7 and each function in I' one by one and sort them. Then we are able to get the rank of 246
the obfuscation function corresponding to the function <. Each experiment is repeated 100 247
times and we are able to get the probability of P@N. 248

The final results are shown in table 3. From the experimental results, we can find 24
that, for all obfuscation options, P@10 can achieve an accuracy of more than 98% in =2so
the test results, and for most obfuscation options, P@1 can also reach 80%. In addition, =2s:
we can clearly see that our model is able to achieve quite high accuracy for structural 2s
obfuscation, such as bcf, fla in O-LLVM and Flatten in Tigress. This proves our dataflow- s
based method is robust to structural obfuscation. For slight data obfuscation techniques  zsa
such as sub in O-LLVM and EncodeLiterals in Tigress, our model is still able to maintain high  2ss
accuracy. However, for obfuscation techniques with heavy data flow transformations, such  2se
as Virtualize, addOpaquel6, EncodeArithmetic in Tigress, the accuracy is relatively low. This sz
may be because we are analyzing from the perspective of data flow relationship, so the =zss
proposed method is more sensitive to data flow confusion. Furthermore, it may be difficult 2s
to detect the equivalence of complex data flow transformation relationships only by relying -
on neural networks, so the accuracy drops slightly. 261

For the O-LLVM obfuscator, we conducted a comparative experiment with Asm2Vec [12], ze2
and the results are shown in Table 4. We can see that our method outperforms Asm2Vecin 263
most cases. However, for the sub option, it may be because this option adds some complex  zes
data flow relationships, and DFSGraph does not perform well in detecting them, so the zes
accuracy is slightly lower. The above results show that our method is partially resistant to  zes
data obfuscation and still needs to be further improved. 267

w

9

-3
o

4.3. Identification of Obfuscated Techniques 268

In this section, we add a simple linear layer to the original model for making it
suitable for the obfuscation technique classification task. For O-LLVM and Tigress, multiple
obfuscation options within the same obfuscator can be arbitrarily matched. In addition, it
is only necessary to judge whether the specific option is used, no matter the combination
order of the options. Therefore, we adopt the idea of multi-label classification and treat
each label as a binary classification task. So we replace triplet loss with binary cross-entropy
loss (BCELoss). The formula for BCELoss is as follows:

1

loss = N Iy

1=z

n=1
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Table 3. Experimental results of obfuscated code similarity detection.
Obfuscator Options p@l | p@2 | p@3 | p@5 | p@10
sub 0.909 | 0.970 | 0.993 | 0.997 | 1.000
fla 0.910 | 0.975 | 0.992 | 0.997 | 1.000
bcf 0.903 | 0.974 | 0.986 | 0.995 | 0.999
O-LLVM sub-+bcf 0.899 | 0.972 | 0.991 | 0.995 | 0.999
sub+fla 0.913 | 0.978 | 0.989 | 0.994 | 0.999
bcf+fla 0.872 | 0.962 | 0.985 | 0.993 | 0.997
sub+bcf+fla | 0.870 | 0.948 | 0.977 | 0.992 | 0.998
addOpaque4 | 0.818 | 0.921 | 0.964 | 0.989 | 0.998
A 0.809 | 0.928 | 0.963 | 0.992 | 1.000
EA 0.797 | 0.935 | 0.966 | 0.989 | 0.997
EL 0.892 | 0.972 | 0.987 | 0.995 | 0.998
F 0.893 | 0.965 | 0.988 | 0.993 | 0.999
\% 0.761 | 0.901 | 0.945 | 0.983 | 0.996
A+EL 0.735 | 0.878 | 0.927 | 0.966 | 0.991
A+V 0.528 | 0.703 | 0.793 | 0.892 | 0.974
EA+A 0.722 | 0.876 | 0.932 | 0.974 | 0.997
EA+F 0.824 | 0.944 | 0.980 | 0.994 | 1.000
EA+V 0.641 | 0.809 | 0.892 | 0.957 | 0.993
Tigress EL+EA 0.821 | 0.937 | 0.978 | 0.993 | 0.999
EL+F 0.897 | 0.978 | 0.995 | 0.998 | 1.000
EL+V 0.718 | 0.862 | 0.935 | 0.978 | 0.997
F+A 0.817 | 0.917 | 0.963 | 0.987 | 0.997
F+EA 0.813 | 0.924 | 0.969 | 0.994 | 0.999
F+EL 0.903 | 0.980 | 0.993 | 0.999 | 1.000
F+V 0.749 | 0.885 | 0.938 | 0.982 | 0.998
V+A 0.630 | 0.795 | 0.885 | 0.953 | 0.991
V+EL 0.760 | 0.894 | 0.951 | 0.986 | 0.996
V+F 0.725 | 0.885 | 0.947 | 0.989 | 0.987
V+V 0.654 | 0.800 | 0.877 | 0.948 | 0.987
V+EA 0.591 | 0.771 | 0.862 | 0.952 | 0.995
Table 4. Comparative experimental results between Asm2Vec and DFSGraph.
sub fla bcf  sub+bcf sub+fla  bcf+fla  sub+fla+bcf
Asm2Vec 0921 0.871 0.856 0.820 0.782 0.729 0.653
DFSGraph 0909 0.910 0.903 0.899 0.913 0.872 0.870
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where I, represents the loss value for the nth label, which can be described as:
ln = —wlyn -logxy + (1 —yu) -log(1 — xy)]

Next, we can retrain the parameters of our model. We evaluate our model using common  zes

performance metrics: accuracy, precision, recall, and F1-score. 270
— train —— train
0.088 — test 0.088 — test
0.986 4 0.986 4
> c
§ 0.984 4 § 0.984
g 4
E 2
0.982 1 0.982 1
0.980 1 0.980 1
0 5 1‘0 1‘5 2‘0 2‘5 Bb 3‘5 6 é lb 1‘5 2‘0 2‘5 3‘0 3‘5
Epoch Epoch
(a) Accuracy. (b) Precision.
0.941 — train —— train
—— test —— test
0.93 0.92
0929 0 091
= 5
3 3
= 0,91 ind
0.90
0.90 1
0.89
0.89 1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Epoch Epoch
(c) Recall. (d) Fl-score.

Figure 5. Metric changes during the training phase of the classification model.

Since we are a multiple-binary classification problem, we average the individual =27
metrics across all classes for simplicity. Figure 5 shows the changes of each indicator during 272
the training process of the classification model. From figure 5, we can see that the accuracy 27
and precision can be stabilized at about 98.6%, indicating that our model can predict the =27
obfuscation technology correctly with high probability. Meanwhile, we see that the recall  2rs
and f1 values, although not very stable, are still able to stay above 90% after 10 epochs. 276
These four indicators show that our proposed model can achieve a good classification effect 27
after only a small amount of training (about 10 rounds), which reflects the effectiveness of 27s
our method. 279

For carrying out a comparative experiment with the method described in the litera- 2eo
ture [14] (denoted by DefeatOP), we first build the test dataset, which mainly consists of two  2e
parts. One half is unobfuscated functions and the others are generated by the obfuscation 2.
techniques that contain opaque predicates in Tigress. Then we use DefeatOP and DFSGraph  zss
to detect whether one function contains opaque predicates. The comparison experiment zss
results are shown in Table 5. It can be seen from the results that the accuracy of our model  zss
for most obfuscation techniques is higher than DefeatOP. But for the addOpaquel6 option, 2ss
the accuracy of our model is slightly lower, which may also be due to too many opaque  =ze
predicates, resulting in too complex data flow transformation relationships, which are diffi- 2ss
cult for our model to identify. Overall, this comparative experiment proves that DFSGraph  2ee
can better identify obfuscated code containing opaque predicates in most cases. 200
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Table 5. Comparative experimental results between DefeatOP and DFSGraph.

addOpaque4 addOpaquel6 EncodeArithmetic EncodeLiterals
DefeatOP 98.2% 96.3% 95.8% 94.7%
DFSGraph 99.2% 95.8% 97.2% 98.1%

The above experiments show that our model can achieve satisfactory results, but it 202
is still far from practical application. In our experiments, the intermediate representation 202
program is compiled directly from the source code. However, it is almost impossible for 2.
us to obtain the source code corresponding to the binaries in the wild code. We have 204
to disassemble the binaries into intermediate representation programs through tools like  zes
RetDec®. Tt will cause some information loss inevitably, making it difficult to recover the ass
complete data flow information of the binaries completely. 207

5. Conclusion 208

In this paper, we propose the data transformation graph based on LLVM IR for the 200
first time. Then, we redesign the message passing algorithm and update algorithm based 00
on the graph network model, and define it as DFSGraph. We build the obfuscated code 0
dataset with the obfuscation options in the O-LLVM and Tigress, and use it to train our 3oz
model. The experimental results prove that our model is quite resistant to most obfuscation  sos
techniques. Especially for structural obfuscation, our model has higher accuracy than sos
the existing state-of-the-art methods in the binary code similarity comparison task. For sos
the obfuscation technologies with obvious data flow changes such as virtualization and o
encryption, the accuracy is relatively low. 307

In the future, we can deeply study how to use RetDec to disassemble binaries into  sos
intermediate representation programs, preserving data flow information as much as possi- soe
ble. We can also look for other alternatives to make up for the missing information and s

minimize the impact of the information loss. 11
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