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Abstract: In this article, we introduced a novel deep learning hybrid model that combines attention
transformer and gated recurrent unit architectures to improve the accuracy of cryptocurrency price
predictions. The transformer architecture is used to capture long-range dependencies in the data,
while the GRU is used to model sequential patterns and short-term fluctuations. We considered the
daily closing prices, trading volume, and Fear and Greed Index of Bitcoin from September 17, 2014
to February 28, 2025, and Ethereum from November 9, 2017 to February 28, 2025. We evaluated
the performance of our proposed model by comparing it with four other machine learning models:
two are non-sequential feedforward models: Radial Basis Function Network (RBFN) and General
Regression Neural Network (GRNN), and two are bidirectional sequential memory-based models:
Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU).
The performance evaluation is based on some performance metrics, including Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE). The results demonstrated that the hybrid Transformer + GRU model outperforms the
other models, achieving the lowest values across all performance metrics.

Keywords: Bitcoin, Cryptocurrencies, Deep learning, Ethereum, Fear & greed index, Gated recurrent
unit, General regression neural network, Long short-term memory, Radial basis function network,
Transformer model.

1. Introduction

The cryptocurrency market has grown exponentially, with Bitcoin and Ethereum standing out
as the top two dominant digital assets. Both of these account for the majority of trading activity
and significantly impact global financial trends. One of the biggest challenges in working with
cryptocurrencies is figuring out how to develop accurate models that can predict their highly volatile
prices. Numerous studies have showed that machine learning (ML) models are highly effective in
predicting cryptocurrency prices, as they can capture complex nonlinear patterns in financial time
series [1-9]. Among these, artificial neural network (ANN)-based machine learning algorithms, such
as radial basis function network (RBFN), general regression neural network (GRNN), gated recurrent
unit (GRU), and long short-term memory (LSTM), have been widely applied in this field.

Broomhead and Lowe [10,11] introduced the radial basis function networks (RBFNs) to model
complex relationships between features and target variables and to make predictions on new data.
RBFN s are a type of simple feedforward neural network that utilizes radial basis functions as their
activation functions. One of the key benefits of using radial basis functions in RBFNSs is their ability
to smooth out non-stationary time series data while effectively still modeling the underlying trends.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Alahmari [12] compared using the linear, polynomial, and radial basis function (RFB) kernels in the
support vector regression for predicting the prices of Bitcoin, XRP and Ethereum and showed that the
RFB outperforms the other kernel methods in terms of accuracy and effectiveness. Recently, Casillo
et al. [13] showed that the RRBFn models are effective in predicting Bitcoin prices from the analysis of
online discussion sentiments. More recently, Zhang [14] demonstrated that combining a radial basis
function (RBF) with a battle royale optimizer (BRO) significantly enhances the accuracy of stock price
predictions, including those for cryptocurrencies. The results of his study showed that this approach
outperformed other machine learning models like LSTM, BiLSTM-XGBoost, and CatBoost.

The general regression neural network (GRNN) is another type of feedforward neural network
was first proposed by Specht [15] designed for efficient use in regression tasks. One of the key strengths
of GRNN is its ability to model complex nonlinear relationships without the need for iterative training.
This has made it a powerful tool for applications in regression, prediction, and classification. Despite
its advantages, GRNN’s application in cryptocurrency prediction is still relatively not widely explored
[16,17]. In this article, we try to fill in the gap by assessing the performance of GRNN in predicting the
prices of Bitcoin and Ethereum.

Recurrent neural networks (RNNs) are designed for handling sequential data because, unlike
feedforward neural networks, they have feedback loops that enable them to retain information from
previous inputs using a method called backpropagation through time (BPTT). However, when training
on long sequences, the residual error gradients that needs to be propagated back diminishes exponen-
tially due to repeated multiplication of small weight across time steps. This makes it difficult for the
network to learn long term dependencies. To address such a problem and to improve the modeling
of long term dependencies in sequential data, Hochreiter and Schmidhuber [18] proposed the long
short-term memory (LSTM) network model. LSTM model has been widely adopted in literature, as it
has proven to be highly effective in forecasting cryptocurrency prices, outperforming other machine
learning models [19-21]. Lahmiri and Bekiros [22] showed that the Bitcoin, Digital Cash, and Ripple
price predictability of LSTM is significantly higher when compared to that of GRNN. Ji et al. [23]
conducted a comparative study comparing the LSTM network model with deep learning network,
convolutional neural network, and deep residual network models for predicting the Bitcoin prices
and showed that the LSTM slightly outperformed the other models for regression problems, whereas
for classification (up and down) problems, deep learning network works the best. Uras et al. [24]
used LSTM to predict the daily closing price series of Bitcoin, Litecoin and Ethereum cryptocurrencies,
based on the prices and volumes of prior days and showed that the LSTM outperformed the traditional
linear regression models. Lahmiri and Bekiros [25] conducted a study comparing the performance
of LSTM and GRNN models in predicting Bitcoin, Digital Cash, and Ripple prices. Their findings
indicated that the LSTM model outperformed GRNN in terms of prediction accuracy.

The gated recurrent unit (GRU) neural network model, introduced by Cho et al. [26], was designed
to handle long term dependencies in sequential data, similar to the LSTM model, but with fewer
parameters, making GRU computationally less expensive and faster than LSTM [27]. Dutta et al. [28]
used GRU to predict the prices of cryptocurrencies and demonstrated that the GRU outperformed the
LSTM networks. Tanwar et al. [29] employed GRU and LSTM to predict the price of Litecoin and Zcash
cryptocurrencies, taking into account the inter-dependency of the parent coin. Their findings showed
that these models forecasted the prices with high accuracy compared to other machine learning models.
Ye et al. [30] proposed a method combining LSTM and GRU to predict the prices of Bitcoin using the
historical transaction data, sentiment trends of Twitter, and technical indicators, and showed that their
method can better assist investors in making the right investment decision. Patral and Mohanty [31]
developed a multi-layer GRU network model with multiple features to predict the prices of Bitcoin,
Ethereum, and Dogecoin, and demonstrated that their model provided a better performance compared
with the LSTM and GRU models that used a single feature.
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Several studies have shown that bidirectional long short-term memory (BiLSTM) and bidirec-
tional gated recurrent unit (BiGRU) enhance the accuracy of financial time series predictions. Unlike
traditional LSTM and GRU, these bidirectional models process data in both forward and backward
directions allowing to capture dependencies from past and future time steps. For example, Hansun
et al. [32] compared three popular deep learning architectures, LSTM, bidirectional LSTM, and GRU,
for predicting the prices of five cryptocurrencies, Bitcoin, Ethereum, Cardano, Tether, and Binance
Coin using various prediction models. Their findings indicated that BILSTM and GRU performed just
as well as LSTM, offering robust and accurate predictions of cryptocurrency prices. Ferdiansyah et al.
[33] showed that combining GRU and BiLSTM in a hybrid model increased prediction accuracy for
Bitcoin, Ethereum, Ripple, and Binance.

In this article, we propose a novel hybrid transformer + GRU model and compare its performance
with two non-sequential feedforward models (GRNN and RBFN) and two bidirectional sequential
memory-based models (BiGRU and BiLSTM) for forecasting cryptocurrency prices across two distinct
modeling scenarios. The first scenario aims to predict Bitcoin prices using historical Bitcoin price
data, its trading volume, and crypto fear and greed index (FGI). The second scenario aims to predict
Ethereum prices using historical price data for both Bitcoin and Ethereum, along with Ethereum’s
trading volume and the Fear and Greed Index (FGI). The Transformer model, introduced by Vaswani
et al. [34], revolutionized natural language processing (NLP) by using self-attention and feed-forward
networks. Since then, transformers have been adapted and extended in numerous ways and became the
foundation for Al systems like ChatGPT, DeepSeek, and others [35,36]. The application of transformer
neural networks to financial time series data is a promising area of research [37-39]. To the best of our
knowledge, this is the first study to introduce a deep learning model that combines a self-attention-
based Transformer architecture with a sequential memory-based GRU model.

The rest of this article is organized as follows: Section 2 defines the prediction models used to
predict Bitcoin and Ethereum prices. Here, we define four neural network models that we need to
compare with our proposed model. Two of these four models are classified as feedforward neural
networks and the other two are classified as memory-based models. Section 3 introduces our new
deep learning approach for cryptocurrency price prediction. Section 4 presents the data and results,
showcasing how all five models perform in this comparative study. Finally, Section 5 summarizes our
findings and draws some conclusions and recommendations.

2. Prediction Models

We consider modeling the cryptocurrency prices as a function of past feature values with a
one-time-step lag:
ye = f(xe—1) + e, 1)

where y; is the target variable represents the price of Bitcoin or Ethereum at time ¢, f(x;_1) is a function
of the features x;_1 at time t — 1 that need to be approximated, and ¢; is the error term represents the
difference between the predicted price and actual price at time ¢.

In this article, we consider the following two scenarios:

Model 1: x;_; is a three dimensional vector represents the prices of Bitcoin in US dollars, fear and
greed index (FGI), and exchange trading volume (USD) of Bitcoin at time ¢ — 1. Thus, model (1)
can be rewritten as follows:

Bt = f(Bi—1, Fi—1, Vi1) + &1, ()

where B;_1, F;_1, and V;_; are the prices (USD) of Bitcoin, fear and greed index, and exchange
trading volume of Bitcoin (USD) at time t — 1, respectively.
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Model 2: x;_; is a four dimensional vector represents the prices of Ethereum, Bitcoin in US dollars,
fear and greed index (FGI), and exchange trading volume of Ethereum (USD) at time ¢ — 1.

Er = f(Et-1,B—1, Fr1,Vi1) + &1, (3)

where E;_1 is price of Ethereum at time t — 1.

We use the following four different network along with our proposed model models to forecast
the prices Bitcoin and Ethereum based on Equations 2 and 3.

2.1. Radial Basis Function Network (RBFN)

Radial basis function network (RBEN) is a type of feedforward neural network that uses radial
basis functions as activation functions. Typically, it consists of three layers as seen in Figure 1: the
Input Layer, which receives the input data; the Hidden Layer, which applies radial basis functions,
such as Gaussian activation (kernel) functions, to transform the input data into a higher-dimensional
space; and the Output Layer, which produces the final output, often as a linear combination of the

hidden layer outputs.
Hidden Layer
Input Layer {
- Output Layer
2
X X |- | X, £y = £ +

OOE

Figure 1. Architecture of a radial basis function network (RBEN).

Mathematically, the input can be considered as a vector of k variables x = (X1, Xp,- -, Xk)T,
each with n observations. The kernel function is used as the activation function in the hidden layer.
Typically, the most common choice is the Gaussian function:

2
[x — il
X,¢) =exp| ———— 4
p(x,¢i) p ( 5 O,iz 4)
where ||x — ¢;|| is the Euclidean distance between the input vector x and the center ¢; =
(ci1,cin, - -+ ,cix), and 0; is the bandwidth or spread parameter. The output of the hidden layer is
passed to the output layer, where the final output is computed as a linear combination of the hidden
layer outputs:
m
y =Y wig(x,c;) + wo 5)
i=1
where m denotes the number of neurons in the hidden layer, ¢; is the center vector for neuron i, w; is
the weight of neuron i in the linear output neuron, wy is the bias term, and ¢ is the activation function
(radial basis function) for the i" RBF neuron.

2.2. General Regression Neural Network (GRNN) Model

The general regression neural network (GRNN), introduced by Specht [15], is another type of
feedforward neural network that is designed for regression tasks and closely related to the radial
basis function (RBF) network. Unlike traditional feedforward and deep neural networks, GRNN does
not rely on backpropagation or gradient-based optimization. Instead, it operates by minimizing the
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difference between predicted and actual target values. The model directly memorizes the training data
and leverages it for predictions.

GRNN comprises three layers: the input layer, hidden layer, and output layer. The set of n training
data {x;, y;}!_; enters the input layer as a set of k features x and their associated target y. Then the
hidden layer uses a kernel function to compute the similarity between a new input feature x and each
training sample x;. The Gaussian kernel is commonly used:

2
X — X;
K(x,x;) = exp <_”2¢7.2H>' (6)

where x,x;, and o; are the new input vector, the training sample, and the smoothing parameter
respectively. Then it gives a set of weights associated with the closeness distance:

el
P\ T 22
1

w; = ~ @)
" _ Ix=xi|
i=1 €Xp 201.2
Finally, the output layer computes the prediction value of y as a weighted average of nearby observa-
tions:
n
§=)_ wiyi ®)

i=1

2.3. Long Short-Term Memory (LSTM) Model

Long short-term memory (LSTM) is a specialized type of recurrent neural network (RNN) devel-
oped to solve the vanishing gradient problem that standard RNNs often faced. This problem makes
it challenging for the model to capture long term dependencies when dealing with long sequences.
To overcome this limitation, LSTM uses a memory cell designed to store information over extended
periods while discarding irrelevant details. Figure 2 illustrates the structure of the LSTM.

e 0

:

g

Figure 2. Architecture of long short-term memory (LSTM) network contains four interacting layers.

The first step of the LSTM network is to decide what information will be discarded from the
memory cell state ¢;_;. The sigmoid activation function in the forget gate is applied to the current
input, X;, and the output from the previous hidden state, /;_1, and produces values between 0 and
1 for each element in the cell state. A value of 1 indicates "keep this information", while a value of 0
means "omit this information":

Forget gate: f; = (T(foXt + Wephi—1 + bf) )
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where Wy, and Wg, represent the weight matrices for the input and recurrent connections, respectively,
and by denotes the bias vector parameters.

The next step decides what new information will be stored in the cell state. The input gate first
applies the sigmoid layer to the input from the previous hidden state and the input from the current
state to determine which parts of the information should be updated. Then, a tanh layer generates a
new candidate value, &, that could potentially be added to the cell state:

Input gate: iy = o(Wixx; + Wiphy_1 + b;) (10)
Intermediate cell state: ¢; = tanh(Weyxt + Wl 1 + bc) (11)

where W and b are weight matrices and bias vector parameters. Following this, the previous cell state
¢—1 is updated by a new cell state c;:

New cell state: ¢; = fyf ©cy—1 +1ir O G (12)

where © denotes the Hadamard product (element-wise product).

Lastly, the model determines the final output which is derived from the updated cell state after
applying a filtering process: First, a sigmoid layer decides which portions of the cell state will be
included in the output. Next, the cell state is passed through a tanh activation function to scale its
values between —1 and 1, and the result is multiplied by the output gate to produce the final output.

Output gate: 0 = 0(Woxxt + Wophi—1 + bo) (13)
New state: hy = oy © tanh(cy) (14)

2.4. Gated Recurrent Unit (GRU) Model

The Gated Recurrent Unit (GRU) has a simpler design than the LSTM network while still being
effective at capturing long term dependencies and handling the vanishing gradient problem we face in
using RNN Cho et al. [26]. It uses two gates: the reset gate and update gate. The reset gate determines
how much of the previous hidden state /1;_; should be discarded when computing the new candidate
hidden state /#;_;. The update gate controls how much of the new candidate hidden state, f;_1, should
be used to update the current hidden state.

Figure 3 illustrates the structure of the GRU, while Equations 15—18 explain its functionality
mathematically as follows:

Ry S\

>
>

i ; ] Sigmoid >( e
Sigmoid

(]

J
: Ak 5-®
Wi Wex

s s, ] &

Figure 3. Architecture of gated recurrent unit (GRU) network.
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Reset gate : 1y = o(Wpexy + Wy hp—1 + by) (15)
Update gate :  zy = o(Wayxy + Wyphe—q + by) (16)
Cell state : /1y = tanh(Wyx; + Wy, (s ® hy_1) + b) (17)
New state : hp =z © Iy + (1—z¢) @y (18)

where, x; denotes the input at the current state, /1;_; represents the hidden state at the previous state, 7;
signifies the output of the reset gate, and z; corresponds to the output of the update gate. The symbol
® stands for the Hadamard product, which is an element-wise multiplication operation and /1; denotes
the candidate hidden state. Additionally, Wy and Wj, refer to the feedforward and recurrent weight
matrices, respectively, while b represents the bias parameters.

As shown in Figure 3 and Equations 15—18, the reset gate applies the sigmoid activation function
to a linear combination of the current state, the output from the previous state, and a bias term. This
helps determine how much information should be discarded. Similarly, the update gate uses the
sigmoid function on a different linear combination of the current state, the previous output, and a bias
term to decide how much information should be updated. The tanh activation function is then used
to generate a new candidate value, /z;. This candidate is multiplied (using the Hadamard product)
by the output from the update gate. Meanwhile, the difference value of the update state from 1 is
multiplied by the previous output (again using the Hadamard product), and this result is added to the
first product to produce the final output.

Research has demonstrated that processing the input sequences in both forward and backward
directions can improved the accuracy of time series predictions. In our analysis, we will consider the
two bidirectional models: the bidirectional long short-term memory (BiLSTM) and the bidirectional
gated recurrent unit (BiGRU). Figure 4 shows the architecture of BiGRU. The BiLSTM follows the same

Output Layer Y;_, Vi Ve+1

K K K
Bidirectional <—| GRU --<¢— GRU --<4—{ GRU |<—

A A

h h

3
Input Layer ( x4 @J @_/

Figure 4. Architecture of bidirectional gated recurrent unit (BiGRU).

architecture as the BiGRU shown in Figure 4, replacing the word "GRU" by "LSTM". The forward
pass in BiLSTM and BiGRU processes the sequence from t = 1 to f = n, while the backward pass
processes the sequence from ¢t = n to t = 1. This bidirectional architecture allow these models to
capture dependencies from past and future time steps, leading to improved prediction performance.

3. Hybrid Transformer + GRU Architecture

Transformer neural networks, introduced by Vaswani et al. [34] in their seminal 2017 paper
"Attention is All You Need", have revolutionized the field of natural language processing (NLP).
Unlike traditional sequential models like LSTM and GRU, transformers use self-attention to model
relationships between all elements in a parallel sequence simultaneously, rather than processing them
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step by step. This architecture allows transformers to handle both local and global dependencies
without the need for recurrent connections more efficiently. The transformers follow an encoder-
decoder architecture, where both consist of multiple identical layers. The encoder processes the input,
and the decoder produces the output. By leveraging the strengths of transformer and gated recurrent
unit deep learning models, we propose a new hybrid Transformer 4+ GRU model for cryptocurrency
price prediction. Figure 5 illustrates the structure of this model. The main idea of our proposed model
is to treat the historical cryptocurrency prices, trading volumes, and the Fear and Greed Index as a
sequence of tokens, leveraging the self-attention mechanism to capture long-range dependencies while
using GRU to detect sequential patterns and short-term fluctuations across different time steps. As

_——
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Figure 5. Architecture of hybrid Transformer + GRU model.

shown in Figure 5, the historical data is first encoded as input tokens, then it goes through embedding
and positional encoding before entering the Transformer layers. The encoder outputs are fed into the
GRU decoder, which applies attention over the encoder’s memory to make predictions.

4. Exploratory Data Analysis

In our analysis, we consider the top two prominent cryptocurrencies with the highest cryptocur-
rency market capitalization: Bitcoin and Ethereum. The daily data was downloaded from the website
https://coinmarketcap.com (last accessed on 4 April 2025), where we consider the daily closing prices
and the trading exchange volume in USD for both digital assets. Table 1 provides a detailed summary
of the respective cryptocurrency price datasets analyzed in this study. The table includes information
on the start date, end date, and the total number of records for each dataset, offering a comprehensive
overview of the temporal coverage and dataset size for Bitcoin and Ethereum. These details are crucial
for understanding the scope and reliability of the data utilized in subsequent analyses.

Table 1. Historical data of Bitcoin and Ethereum prices.

Cryptocurrency Start Date End Date Number of Records
Bitcoin September 17, 2014 February 28, 2025 3818
Ethereum November 9, 2017 February 28, 2025 2669

Several studies have utilized the fear and greed index (FGI), Google search index (GSI), and Twitter
data to explore how sentiment influences cryptocurrency prices [40-42]. The crypto fear and greed
index (FGI) was introduced by Alternative.me, https://alternative.me/crypto/fear-and-greed-index
(last accessed on 4 April 2025), on February 1, 2018, so there is no official FGI data available before
this date. In order to study the impact of the FGI on cryptocurrency prices prior to February 2018,
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we propose the following proxy measures using the social media sentiment and Google trends data
related to cryptocurrency, specifically for Bitcoin and Ethereum:

FGI = w; Social Media Sentiment + w, Google Trends

In our research we assign equal weights (w; = wy = 0.5) to both indicators.

We utilized the Twitter Intelligence Tool (Twint) and Twitter’s API to collect historical social
media data from Twitter (now X) before February 1, 2018 using the following keywords with hashtags,
#, and Dollar signs, $: Crypto, Cryptocurrency, digital currency, Bitcoin, Ethereum, BTC,
ETH. Then we used the open source Python library Valence Aware Dictionary and Sentiment Reasoner
(VADER) to classify the input statement social media sentiment according to a score ranged from
—1 to 1, where a score from 1 to —0.05 stands for Negative sentiment, —0.05 to 0.05 stands for
Neutral sentiment, and 0.05 to 1 stands for Positive sentiment. To collect the historical Google
Trends data before February 2018, we enter the aforementioned keywords in the search bar of https:
//trends.google.com/trends (last accessed on 4 April 2025) and calculate the average score to get the
daily search interest values, which range from 0 to 100.

After that, we calculate the FGI score using the formula:

1 [ Score from VADER + 1

FGI = 5 5 x 100 + Score Google Trends (19)

The FGI ranges from 0 to 100, where 0 — 24 represents extreme market fear, 25 — 49 means market fear,
50 — 74 indicates market greed, and 75 — 100 represents extreme market greed.

Figures 6 shows the daily prices of Bitcoin from September 17, 2014 to February 28, 2025 and
Ethereum from November 9, 2017 to February 28, 2025. It can be seen that the prices of both currencies
have increased exponentially over time, showing a strong cyclic pattern in relation to FGI. Although the
long term trend remains upward, the prices of Bitcoin and Ethereum often decline during fear/extreme
fear periods followed by recoveries during greed/extreme greed times. The boxplots in Figure 7
show the distribution of cryptocurrency prices for categories of FGI sentiments. When fear sentiment
dominates, prices tend to cluster at lower values (right-skewed), suggesting most trades happen at
depressed levels. Extreme fear shows a more balanced distribution (symmetric) but with slightly
higher prices, hinting at potential stabilization or cautious buying. Neutral sentiment shifts prices
upward (left-skewed), reflecting modest optimism. Greed pushes prices higher (left-skewed), with
more trades concentrated at premium values. Finally, extreme greed results in a right-skewed pattern
indicating speculative spikes and increase volatility, likely from FOMO-driven buying.

Fear & Greed Index Categories
Fear

@ Exireme Fear » Neutral === Greed Extreme Greed
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Figure 6. Bitcoin daily prices (left) and Ethereum prices (right), with trends color-coded according to fear and
greed index (FGI) categories.
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Figure 7. Box-plots of Bitcoin daily prices (left) and Ethereum prices (right) categorized by the fear and greed
index (FGI).

We began our analysis by splitting the dataset into an 80-20 train-test split. Then, we normalize
both datasets using the Min-Max normalizing:
x* = X — Xmin (20)
Xmax — X¥min
After that, we fit the models 2 and 3 using the five neural networks (RBFN, GRNN, BiGRU, BiLSTM,
Hybrid transformer + GRU) on the training data and predict the prices of Bitcoin and Ethereum
using the testing data. Figures 8 and 9 show the prediction results along with their corresponding
95% prediction interval compared with the actual prices of Bitcoin and Ethereum, respectively. As
evident from these figures, we observe that our proposed model outperforms the other approaches in
capturing price movements.
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In order to measure the prediction accuracy of the five models using the testing data, we calculate
the mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE). The smaller the value the metric, the better the prediction
neural network model. These metrics can be expressed mathematically as follows:

1 n
MSE = = Y (y: — 1)? (21)
ni3
1 n
t=1
1 )
MAEZEZU%—%D (23)
t=1
MAPE = 1 y ('y*_yf'> % 100% (24)
3 Yt

where y; and jJ; are the actual price and predicted price of cryptocurrency at time ¢. Tables 2—3 present
the comparison of performance metrics results for the proposed hybrid transformer + GRU network
and the other four neural networks for predicting the prices of Bitcoin and Ethereum respectively.
From these two tables, it is seen that the proposed model substantially superior its compositors
achieving more precise predictions as it always gives small predictions errors. For example, as shown
in Table 2, when comparing the four compositors machine learning models, the BIGRU network
achieves the smallest MSE value of 4, 358,457 for Bitcoin price prediction. Whereas, the MSE value
for the proposed hybrid transformer + GRU model, 3,818, 128. For Ethereum price prediction, as
shown in Table 3, the proposed model demonstrates excellent performance with an MSE of 11, 344.686.
This is approximately 18 times smaller than the RBNF model’s MSE (203, 541.169), 17 times smaller
than GRNN's (194, 985.943), 60 times smaller than BiGRU’s (687,799.984), and 80 times smaller than
BiLSTM’s (907, 844.180). From the results in both tables, we can see that the feedforward neural
networks (RBFN and GRNN) struggled to accurately predict Bitcoin prices. On the other hand, both
bidirectional models (BiGRU and BiLSTM) didn’t perform as well when it came to predicting Ethereum
prices.

Table 2. Performance metrics (MSE, RMSE, MAE, and MAPE) for predicting the prices of Bitcoin using different
models.

Model MSE RMSE MAE MAPE
RBFN 1.731258e+08 13157.727 6928.640 9.479
GRNN 1.875502e+08 13694.897 9179.342 15.857
BiGRU 4.358457e+06 2087.692 1559.954 3.271
BiLSTM 8.184621e+07 9046.889 5877.042 9.600

Hybrid Transformer + GRU 3.818128e+06 1954.003 1419.972 2.825
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Table 3. Performance metrics (MSE, RMSE, MAE, and MAPE) for predicting the prices of Ethereum using different

models.
Model MSE RMSE MAE MAPE
RBEN 203541.169 451.155 288.453 9.362
GRNN 194985.943 441.572 345.963 11.901
BiGRU 687799.984 829.337 608.416 20.735
BiLSTM 907844.180 952.809 675.427 22.640
Hybrid Transformer + GRU 11344.686 106.511 78.809 2.755

5. Conclusions and Recommendation

The results obtained in this study show better performance of a novel attention-based hybrid
Transformer model in predicting cryptocurrency prices compared with two feedforward neural net-
works (radial basis function, RBFN, and general regression neural network, GRNN) and two deep
learning models (bidirectional gated recurrent unit, BIGRU, and bidirectional long short-term memory,
BiLSTM). Our proposed model builds on the same Transformer architecture, the foundation behind Al
systems like ChatGPT and DeepSeek. We combined the Transformer’s ability to capture long-range
patterns with the GRU’s strength in learning temporal relationships to improve the accuracy of cryp-
tocurrency price predictions. We conducted the comparison study using the two leading digital assets,
Bitcoin and Ethereum based on historical data with a one-time-step lag. When predicting Bitcoin
prices, the proposed model achieves 6 — 7 times lower RMSE, 4 — 6 times lower MAE, and 3 — 6 times
lower MAPE compared to the RBFN and GRNN models. For Ethereum, our model reduces RMSE by
about 4 times, MAE by 3 — 4 times, and MAPE by 3 — 4 times compared to RBFN and GRNN. On the
other hand, when we predict the Bitcoin prices, the proposed model achieves 1 — 5 times lower RMSE,
1 — 4 times lower MAE, and 1 — 3 times lower MAPE compared to the BIGRU and BiLSTM models.
Moreover for Ethereum, our model reduces RMSE, MAE, and MAPE by approximately 8 — 9 times
compared to BiGRU and BiLSTM models. This paper opens up several promising directions for future
work. For example, our model could be extended to predict the prices of univariate and multivariate
other digital assets based on historical data with different time lags. Another potential research topic is
to adopt a hybrid Transformer + LSTM model comparing its performance with our proposed Trans-
former + GRU approach for predicting time series data. Furthermore, future research could explore
whether a hybrid Transformer + BiLSTM or Transformer + BiGRU model could enhance time series
prediction compared to other deep learning models, including the one proposed in this study. Finally,
a crucial future endeavor involves developing a software package in R and a Python library that embed
our models, enabling other researchers to utilize them in their studies. These implementations will
undoubtedly facilitate the expansion of research in cryptocurrency price prediction.
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