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Abstract: In the papers [1–5] using synthetic methods and the facts from the conics theory in the
Euclidean, pseudo-Euclidean, quasi-hyperbolic and hyperbolic planes, we have studied and proved
numerous facts related to the cuspidal curves with emphasis on evolutes and Steiner’s deltoid. In
this paper, the intention is to see what can be said about the curve of centers in some special pencil of
conics and to show how, studying the center curves in the special pencil of conics a connection with
Steiner’s deltoid curve has been found.
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1. Introduction

In 1856 Jakob Steiner proved that the envelope of Wallace-Simson lines when F moves around the
circumscribed circle to a triangle ABC is a special curve of third class and fourth degree. That curve
which has the line at infinity as double ideal tangent, a curve that is tangent to the three sides and to
the three altitudes of the triangle, and has three cuspidal points and the three tangent lines on them
meet at a point is called the Steiner deltoid, see Figure 1. The following theorem is well known, [1,7]:

Theorem 1. If F is any point belonging to the circle k circumscribed to a triangle ABC, then three points Wa,
Wb, Wc obtained by orthogonally projecting F, on the three sides of the triangle are collinear. The line thus
obtained is called the Wallace-Simson line w of F, see Figure 1.

Figure 1. The envelope of the Wallace-Simson lines.
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Notice, If the pencil of parabolas is given by three lines a, b, c, and F is any point belonging to the
circle circumscribed to the triangle ABC given by the lines a, b, c, then the Wallace-Simson line w of
the point F is the vertex tangent of one parabola from the pencil, which is proved in [1], see Figure 2.

Figure 2. Lines w is the vertex tangents of the (orange) parabola, from the pencil, whose focus point if F.

2. Deltoid Curves in a Pencil of Parabolas

Analyzing Steiner’s constructions, we conclude that we can reach the deltoid by observing a pair
of lines a and b with the intersection A on the circle, instead of the triangle inscribed in the circle,
where we establish a 1–2-correspondence between two ranges of points (a) and (b) whose product
will be the required envelope.

Theorem 2. Let the pencil of parabolas touching three lines a, b, c be given. The envelope of the vertex tangents
of the parabolas from the pencil is the Steiner deltoid curve, see Figure 3.

Proof of Theorem 2. Let’s construct the vertex tangents of parabolas as follows: On the two basic
tangents of the given pencil, for example a and b, we establish a 1–2 -correspondence between two
ranges of points (a) and (b) whose product will be the required envelope.

Let X denote any point from range (a), see Figure 3. The intersections of the perpendicular to a at
the point X with the circle circumscribed to the triangle ABC are denoted by F1 and F2. These points
are the foci of the two parabolas from the pencil. Perpendicular lines to b at F1 and F2 intersect b at X1

and X2. On this way points X1 and X2 are associated to the point X. On the same way reverse any
point from b is associated to two points from the range a. Lines w1 and w2 are vertex tangents of those
two parabolas from the pencil whose foci are F1 and F2. These vertex tangents are elements of the
required envelope. According to the Chasles relations [6], we can conclude that this 1-2-correspondence
between aforementioned ranges (a) and (b) is an 4th class envelop. However, when the point X is
incident with triangle vertex A, F2 is equal as X2 and X, w2 can be any line from pencil of lines (A),
while w1 is incident with b. Therefore, an envelope of class 4 splits into the envelope of class 3 and
the pencil of lines (A). It is still necessary to prove that this envelope is a curve of the 4th order. In
this sense, it is sufficient to prove that the envelope has one double tangent. For an infinite point X on
a, perpendicular to line a will be the infinite line of the plane, and its intersections with circle k are
absolute points. Perpendiculars from absolute points on the line b coincide with the infinite line, so the
two vertex tangents associated with the absolute foci coincide with the infinite line. So infinite line is
double tangent.
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The envelope is 4th order and 3rd class so it is deltoid, see Figure 3.

Figure 3. The envelope of the vertex tangents of the parabolas

It is also interesting to show what happens in the cases when the intersection A of a pair of lines a
and b is outside or inside the circle.

In the case when A is on the circle an envelope of class 4 splits into the envelope of class 3 (Steiner
deltoid curve) and the pencil of lines (A).

In the case when A is outside or inside the circle the required envelope is an 4th class curve, see
Figure 4 left. If the lines a, b are perpendicular to each other and their intersection A is the center of the
circle, the resulting envelope is an astroid, see Figure 4 right.

Figure 4. Generalization of Steiner’s theorem

3. Curve of Centers of the Special Conic Section Pencil

A conic is uniquely determined by five of its points no three of which are collinear. Four points,
called base points determine infinitely many conics which are called an order pencil of conics, [7], (see
Definition 7.3.1). Depending on whether the base points of a pencil of conics in P2(R) are real or not,
whether they are proper (finite) or not, we see different versions of pencils of conics and we know that
the corresponding centers of conics1 are incident with hyperbola, ellipse, parabola or a circle.

1 The center of the conic is the pole of the ideal line with respect to the conic.
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The question is how to set the base points of a pencil of conics so that curve of centers would be a
hyperbole, an ellipse, or a parabola, and how to make it a circle?

The answer is in the involution on the line at infinity. The double points of the involution that
given pencil of conics cut on the line at infinity are centers of two parabolas from the pencil, if there
are some. We learn that there are at most two parabolas in a generic pencil of conics in P2(R), [7].We
can distinguish the following particular cases.

If there are two parabolas in the pencil, the curve of centers is a hyperbola, which is equilateral if
the given pencil contains a circle.

If there is one parabola in the pencil, the curve of centers is a parabola.
If there are no parabolas in the pencil, (only hyperbolas) the curve of centers is an ellipse. Therefore,

we conclude, if the involution generated on the line at infinity is circular then the curve of centers is a
circle 2.

Theorem 3. Curve of centers in the pencil of equilateral hyperbolas is a circle, see Figure 5.

We assume that the four base points of a pencil of the first kind are the vertices 1,3, 4 of a triangle
△ in the Euclidean plane together with △’s orthocenter 2. As a matter of fact, the three singular conics
in this pencil are the three pairs of lines i.e., any side line of △ together with the altitude through the
opposite vertex. Any of these pairs can be viewed as a limiting case of an equilateral hyperbola with
principal axis equal to zero. Any regular conic in this pencil is an equilateral hyperbola.

Proof of Theorem 3. Without loss of generality, let the pencil of equilateral hyperbolas be set with
two degenerate equilateral hyperbolas that intersects at points 1, 2, 3, 4, i.e., two pairs of orthogonal
lines (a,b) and (c,d). The involution that given pencil of conics cut on the line at infinity is circular. The
double points of the involution that given pencil of conics cut on the line at infinity are the absolute
points. Therefore the curve of centers is a circle.

Figure 5. Curve of centers in the pencil of equilateral hyperbolas

A short analytical presentation of the statement from the previous theorem is given in the
Appendix A.

Notice that in the pencil of equilateral hyperbola, curve of centers is equal to Feuerbach circle.
Also, in [8] it is proved that the curve of the butterfly points coincides with the curve of the centers for
the same quadrilateral of base points.
Furthermore, from the construction of the butterfly line in [9] it is concluded that the butterfly line
coincides with an asymptote of that hyperbola from the pencil that touches another conic from the
given pencil at the butterfly point. Therefore, we conclude that the proof of the following theorem is
shown in [9].

2 Any non-degenerate conic that passes through the absolute points of Euclidean geometry is a Euclidean circle.
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Theorem 4. Asymptotes of hyperbolas in a generic pencil of conics envelope a curve of order four and class
three.

Remark 1. Each asymptotes in the pencil of equilateral hyperbolas envelope Steiner deltoid curve, see Figure 6.

The centers of all conics from the pencil of equilateral hyperbolas lie on the circle so each infinite
point is associated to one hyperbola from the pencil, which is associated to one point of a curve of
centers. And reverse each point on the curve of centers is associated to one infinite point. We can
conclude that this 1–1 correspondence between aforementioned ranges of first and second class is an
3th class envelop. The line at infinity is the double line on an envelope.

Figure 6. Envelope of an asymptotes in the pencil of equilateral hyperbolas.
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Appendix A

The equation of the curve of centers in the pencil of conic can be found as follows:
Let the pencil of conics

H(x, y) = F(x, y) + µG(x, y) (A1)

be determined with two conics

F(x, y) = a1x2 + 2b1xy + c1y2 + 2d1x + 2e1y + f1 = 0 (A2)

G(x, y) = a2x2 + 2b2xy + c2y2 + 2d2x + 2e2y + f2 = 0. (A3)

The center (xS, yS) of any conic from the pencil fulfilling the equation

G(x, y) = aSx2
S + 2bSxSyS + cSy2

S + 2dSxS + 2eSyS + fS = 0. (A4)

where

aS = a1b2 − b1a2, 2bS = a1c2 − c1a2, cS = b1c2 − c1b2,
2dS = a1e2 − b1d2 + d1b2 − e1a2, 2eS = b1e2 − c1d2 + d1c2 − e1b2, fS = d1e2 − e1d2.

(A5)
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For example, for the pencil of equilateral hyperbolas set as

x2 − y2 + 2y + µ(xy + x − 2) = 0,

curve of centers is a circle
x2 + y2 = 1,

where
aS = 0, 5, 2bS = 0, cS = 0, 5, 2dS = 0, 2eS = 0, fS = −0, 5.
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3. I. Božić Dragun. Wallace-Simson Line in Four Cayley-Klein Planes. In ICGG Pro-ceedings of the 18th

International Conference on Geometry and Graphics, 2018, 2167-2170.
4. I. Božić Dragn, H. Koncul. Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane. Journal of

geometry, 114 2023.
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