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Abstract: This paper investigates nonverbal communication in human interactions, with a specific
focus on facial expressions. Employing a Long Short-Term Memory (LSTM) architecture and a
customized facial expression framework, our approach aims to improve virtual agent interactions
by incorporating subtle nonverbal cues. The paper contributes to the emerging field of facial
expression generation, addressing gaps in current research and presenting a novel framework
within Unreal Engine 5. The model's architecture, trained on the CANDOR corpus, captures
temporal dynamics, and refines hyperparameters for optimal performance. During testing, the
trained model showed a cosine similarity of -0.95. This enables the algorithm to accurately respond
to non-verbal cues and interact with humans in a way that is comparable to human-human
interaction. Unlike other approaches in the field of facial expression generation, the presented
method is more comprehensive and enables the integration of a multi-modal approach for
generating facial expressions. Future work involves integrating blendshape generation, real-world
testing, and the inclusion of additional modalities to create a comprehensive framework for
seamless human-agent interactions beyond facial expressions.

Keywords: LSTM; facial expressions; framework; virtual agent; affective robotics

1. Introduction

Human social interactions rely heavily on the interpretation of verbal and nonverbal cues to
understand each other’s states of mind [1]. While verbal cues are more straightforward to
comprehend, nonverbal communication, encompassing facial expressions, body language, and even
voice modulation devoid of linguistic features, plays a pivotal role in conveying a wealth of
information about an individual's emotional and psychological state during interactions [1]. Micro
expressions, involuntary facial expressions that betray underlying emotions, are particularly
significant in this context. Emotions are an important ingredient of every social interaction [2]. A
person's emotions are a strong decision-making factor that shapes their reasoning process. However,
emotions are also highly subjective and can change as new information emerges. The process of
perceiving emotions in emotion-aware systems is based on various sensing modalities, including
visual, auditory, and tactile, as reported in [3]. Interestingly, research suggests that individuals tend
to overestimate their proficiency [4].

This paper delves into the realm of nonverbal interaction, specifically focusing on facial
expressions, to develop a virtual agent capable of meaningful interactions with humans. The chosen
approach employs a Long Short-Term Memory (LSTM) architecture in tandem with a custom-built
facial expression framework. This strategy leverages the established effectiveness of LSTM in
generating nonverbal responses, which are then integrated into the virtual agent to enhance
interaction quality and expedite the grounding process.

The implemented solution is rigorously tested on PLEA, an affective robot with a biomimicking
interactive robot head capable of displaying facial expressions [5], as illustrated in Figure 1.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Interactive biomimicking robot head PLEA during the ART & AI Festival 2021, Leicester,
UK.

The subsequent sections of this paper are organized as follows: Section 2 provides an overview
of the current state of the art in autonomous expression generation and facial expression recognition,
identifying similar concepts. It also explains the contributions of the proposed methodology to the
existing body of knowledge. Section 3 introduces the framework for autonomous expression
generation, while Section 4 details the datasets used, necessary adaptations, and data filtering
procedures, emphasizing simplification and normalization techniques. Section 5 delves into the
algorithm for expression generation, the implementation of the LSTM architecture, training results,
and techniques employed for hyperparameter tuning. The evaluation of the algorithm, involving
interactions with PLEA and feedback from participants through standardized questionnaires, is
discussed in Section 6. Finally, Section 7 concludes the paper by summarizing key concepts and
suggesting potential avenues for future research.

2. State of the art

Facial expressions are nonverbal signals that can be used to indicate one’s status in a
conversation, e.g., via backchannelling or rapport, as reported in [6,7]. In [8], authors presented a
chatbot conversational agent that relies on textual analysis to assist older adults' well-being. This
functionality is integrated into various similar software applications. For example, in [9] authors
provided an overview of the use of Social Robots in Mental Health and Well-Being Research. In the
field of facial expression research, while facial expression recognition has become mainstream, the
development of facial expression generation tasks is just starting to gain traction. This is fueled by
advancements in human-like 3D models such as Unreal Engine's Metahuman and Unity Reallusion.
Currently, there's a lack of established state-of-the-art algorithms for autonomous facial expression
generation, presenting a unique opportunity for researchers to contribute to this emerging area.

A significant contribution to the field of facial expression generation is the work of Yu et al. [10].
In their research, the authors propose a new approach that considers two crucial factors for realistic
facial animation: believable visual effects and valid facial movements. They mainly focus on defining
valid facial expressions and generating facial movements in a human-like manner. They achieved
this through the use of facial expression mapping based on local geometry and with the addition of
dynamic parameters based on psychophysical methods.

Another contribution is the FEXGAN-Meta dataset and model [11], specifically designed for
generating facial expressions in metahumans. The authors not only introduced a Facial Expression
Generation model but also created a substantial dataset of metahuman facial images with
corresponding expression labels. This dataset enables the trained model to generate various facial
expressions on any given face using only an input image and an array specifying the desired
expression. In contrast, our work focuses on autonomously generating facial expression vectors based
on prior knowledge.
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In contrast to other state-of-the-art approaches, Otberdout et. al. [12] presented facial expressions
generation system based on Hilbert Hypersphere and Generative Adversarial Networks. In their
work authors synthesize facial expressions from neutral facial expression images. Authors can
generate images and/or videos of six different facial expressions. In contrast, this paper uses abstract
concepts of facial expression to generate new expressions based on previous knowledge.

Within the realm of facial expression recognition, recent advancements have been driven by
deep learning approaches. Kue et al. [13] introduced a method for facial expression recognition,
rigorously evaluated across multiple image datasets. Khaireddin et al. [14] proposed a CNN-based
architecture that achieved high accuracy on the FER2013 dataset through careful parameter
optimization. Additionally, Sajjanhar et al. [15] presented and evaluated another CNN-based
architecture for facial expression recognition, leveraging a pre-trained face model [16].

In the domain of generative adversarial networks (GANSs), Deng et al. [17] developed a GAN-
based network capable of projecting images into a latent space. They then used a Generalized Linear
Model (GLM) to capture the directional aspects of various facial expressions. Expanding on GAN
architectures, Deng et al. [18] proposed a GAN architecture capable of both classifying and generating
facial expression images. Furthermore, [19] presented a disentangled GAN network-based
architecture proficient in generating images with user-specified facial expressions.

These contributions collectively highlight the growing interest and diverse approaches within
the field, shedding light on both the potential and the current gaps in the realm of facial expression
generation and recognition.

3. Framework

The facial expression generation framework comprises of dedicated modules, as depicted in
Figure 3. Module Input picture (1) grabs an image from the video stream and finds all faces on it.
Module chooses a face based on the algorithm described in Koren et.al [20], crops it and resizes it to
a predetermined size. CNN facial expression extraction (2) module takes previously created images and
with the use of the efficient residual neural network (ENet) [21] extracts seven standard expressions
in the form of an array. The algorithm was used as a standard network trained on a large dataset
AffectNet [22].

The module numbered 3 (LSTM facial expression generation) is a novel contribution of this
work. The arrows connecting the modules signify the transfer of data, with associated vector
dimensions specified.

In addition, Unreal Engine 5 (UE5) serves as a pivotal component within the framework (5).
Within the UE5 instance, facial expression visualization is achieved through the utilization of
Metahuman technology [23]. This integration allows for realistic and dynamic facial expressions,
enhancing the overall immersive experience.

Figure 2. shows the process of facial expression generation based on the presented framework.
The diagram shows how the virtual agent expresses different facial expression from real person. In
this way, virtual agent is not just mimicking facial expression of real person but generating response
based on learned interactions.
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Figure 2. Process of facial expression generation.

Modules one, two and five represent those that have already been implemented, whereas
module four is scheduled for future development.

Moreover, UE5 facilitates interaction with remote users via the Web Real-Time Communication
(WebRTC) protocol. This feature enables seamless communication and collaboration, as users can
remotely engage with the virtual entity generated by the framework. The incorporation of WebRTC
protocol ensures low latency and high-quality communication, contributing to a more natural and
engaging user experience.

Furthermore, the entire framework operates as a single instance on a central workstation. This
design choice not only optimizes computational resources but also provides the compelling effect of
a cohesive virtual entity. The consolidation of the entire framework within the UE5 instance
underscores its efficiency and cohesiveness, streamlining the generation and visualization of facial
expressions.

The key features collectively position the facial expression generation framework as an
integrated and robust system, with Unreal Engine 5 serving as the foundational platform for its
immersive and interactive capabilities.
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Figure 3. Facial expression generation framework.
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5. Facial expression generation model

The model architecture employed in this paper consists of a multi-layer Long Short-Term
Memory (LSTM) network, as seen in Figure 4. The input to the model is represented as a vector with
seven values, denoted as E:

E = [Anger, Disgust, Fear, Happiness, Neutral, Sadness, Surprise]

The model utilizes a vector representation where each element is constrained within the range
of zero to one, with the sum of all elements equating to one. This vector efficiently encapsulates
emotional states, providing a quantitative framework for processing nuanced emotional information.

For temporal analysis, a 48-array time series is employed during training, introducing a dynamic
dimension to the model. This allows for the capture of sequential dependencies and the identification
of temporal patterns within the emotional data, enhancing the model's ability to discern evolving
emotional states over consecutive data points.

To facilitate a seamless transition from the LSTM layers to the final output, a fully connected
layer is incorporated. This layer utilizes a softmax activation function, ensuring that the output
adheres to the same format as the input vector. The strategic integration of this fully connected layer
is grounded in the principles of mathematical coherence and alignment with the inherent
characteristics of the emotional state representation.

In the process of refining the model for optimal performance, an exhaustive exploration of
hyperparameter configurations is undertaken. Hyperparameters include every parameter that needs
to be defined before training has commenced [17]. The best example of this parameter is the learning
rate, without the learning rate specified training is impossible. With different combinations of these
parameters, values results can differ greatly. Figure 4 shows the architecture of the LSTM network
before hyperparameter optimization.

Istm_input | input: | [(None, 48, 7)]

InputLayer | output: | [(None, 48, 7)]

'

Istm input: | (None, 48, 7)
LSTM | tanh | output: | (None, 48, 16)

:

Istm_1 input: | (None, 48, 16)
LSTM | tanh | output: | (None, 48, 16)

:

dropout | input: | (None, 16)

Dropout | output: | (None, 16)

l

dense input: | (None, 16)

Dense | softmax | output: | (None, 7)

Figure 4. Architecture without hyperparameter optimization.
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For hyperparameter optimization, the authors used the following parameters: Learning rate,
Number of units in LSTM layer, Number of LSTM layers and Dropout rate. Hyperparameter
optimization can be done with many different algorithms [24]. For this optimization, the HyperBand
[25] algorithm was used, as is the current state-of-the-art algorithm for hyperparameter optimization.
After optimization, LSTM network parameters were as follows:

Table 1. Comparison of hyperparameters before and after optimization.

Hyperparameters Before optimization After optimization
Learning rate le-4 5e-4
Number of units in LSTM layer 16 40
Number of LSTM layers 1 2
Dropout rate 0.3 0.25

The Architecture of the LSTM network after optimization is shown in Figure 5.

Istm_mput | mput: | [(None. 48, 7))
InputLayer | output: | [(None, 48, 7)]

l

Istm mput: | (None. 48, 7)
LSTM | tanh | output: | (None, 48, 40)

'

Istm_1 mput: | (None, 48. 40)
LLSTM | tanh | output: | (None, 48, 40)

l

Istm_2 mput: | (None, 48. 40)
LSTM | tanh | output: (None. 40)

l

dropout | mput: | (None, 40)

Dropout | output: [ (None, 40)

'

dense mput: | (None, 40)

Dense | softmax | output: | (None, 7)

Figure 5. LSTM network architecture after hyperparameter optimization.

4. Dataset

The dataset utilized in this study is derived from the CANDOR corpus [26], encompassing 1656
English conversations conducted through video chat, with a cumulative video duration of
approximately 850 hours. Notably, the video conversations were meticulously synchronized between
the speakers' cameras.

The preprocessing of the dataset involved extracting video files and converting them into frames
while maintaining synchronization. The OpenFACE library [27] facilitated the extraction and
alignment of faces from each frame, ensuring synchronization throughout the process.
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The subsequent phase focused on leveraging the extracted and aligned faces to discern facial
expressions. The HSEmotion model [28], utilizing the ENet architecture, was applied for the
extraction of facial expressions, capturing nuanced emotional expressions from the facial features in
the frames.

To structure the dataset for analysis, the input data underwent segmentation into batches, each
containing 48 timeframes, with each batch shifted forward by one timeframe. This meticulous
segmentation and shifting strategy ensured comprehensive coverage of temporal dynamics within
the dataset. The output data, representing the target variable, was configured to correspond to the
timeframe situated one step into the future from the last input data timeframe in each batch.

The methodology encompassed the extraction and alignment of faces from synchronized video
frames using the OpenFACE library. The HSEmotion model, specifically utilizing the ENet
architecture, was then employed to extract facial expressions. The resultant dataset was
systematically formatted, with input data organized into batches with forward shifts, facilitating
subsequent predictive modelling, as illustrated in Figure 6. This systematic approach ensures a robust
foundation for analyzing temporal patterns in facial expressions within the context of video
conversations, contributing valuable insights to the study of interpersonal communication.

Speaker 1 Video ‘ Speaker 2 Video

I

Temporal
Synchronization

y - = ‘\. /‘ \‘
Facial Faces from

Expression Frames Frames

Extraction Extraction Extraction

. ENet | |OpenFace,
E Speaker Single Fgcnal E
' : Expression | .
: Expressions —Speaker 2 Ry |
E Splitter [N+49] E
Speikem ‘ Output Data E
T T Training Set
| Setof48 :
) Facial ( InputData
. — o '
'| Expressions Training Set !
| [N :N+48] ;

]

........................................

Figure 6. Flow chart of data preprocessing.
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E2.1
R Es1l1|551‘2| |E51,6|E51.7‘
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E49.
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Figure 7. Graphical representation of training dataset.
6. Results

The training process consists of 60 epochs, employing a cosine similarity loss function and the
Adam optimizer. Early stopping and model checkpoint callbacks are incorporated for enhanced
efficiency. Early stopping prevents overfitting by terminating training when the model's validation
set performance plateaus, while model checkpointing ensures the preservation of the best-
performing model.

Figure 8. shows the validation and training loss of the model without hyperparameter
optimization while Figure 9. shows the same data for a model with hyperparameter optimization.

Loss (Cosine Similarity)

~0.80 - —— Training loss
- \/alidation loss
-0.82 1
-0.84 1
—0.86
—0.88 -
—0.90 -
_———— <

L) Ll L] L] T L) A} L]

0 5 10 15 20 2D 30 35

Figure 8. Training and validation loss without hyperparameter optimization.
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Figure 9. Training and validation loss with hyperparameter optimization.

The hyperparameter optimization model had better performance in terms of final loss, but due
to the smaller learning rate model needed more epochs to achieve this performance. While Early
stopping callback was implemented in both runs from graphs can be seen that for the second one
early stopping was not employed (training stopped at 60 epochs) while at first one loss stopped
improving at the 32nd epoch and callback stopped training at 35th epoch. In this way, overtraining
was prevented with the additional benefit of saving computational power.

The cosine similarity loss utilized quantifies the similarity between two vectors, with 1
indicating greater dissimilarity and -1 indicating greater similarity. Notably, the model's loss
approaches -1, suggesting that its predicted values closely align with the ground truth.

This systematic approach to hyperparameter tuning and the implementation of strategies like
early stopping and model checkpointing contribute to the model's efficacy, reflected in the nearly -1
cosine similarity loss. The chosen hyperparameters and training strategies collectively establish a
model that accurately and reliably aligns its predictions with the ground truth for the given task.

7. Future work

The presented model constitutes a fundamental component within a comprehensive facial
expression generation framework. The subsequent phase involves the development of a dedicated
model for the generation of blendshapes, serving as controls for the expressions exhibited by the
virtual agent. Furthermore, the entire framework is slated for integration into the PLEA virtual agent,
as briefly introduced earlier.

Following implementation, rigorous testing of the framework is planned, incorporating real
human subjects across a spectrum of scenarios. Each scenario will be meticulously crafted to
systematically assess specific facets of the framework's capacity to convey non-verbal communication
to humans effectively. The evaluation of the interactions' quality will be conducted through the
administration of standardized questionnaires.

As an integral part of the evaluation process, the framework's efficacy will be gauged by its
performance in diverse real-world scenarios, ensuring its adaptability and reliability. This empirical
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approach aims to validate the framework's practical utility in facilitating seamless human-agent
interactions.

To enhance the overall interaction quality and expedite the grounding process between the
interacting human and virtual agent, additional modalities will be incorporated into the framework.
The integration of these modalities is informed by the work of Koren et al. [29], providing a theoretical
foundation for the augmentation of interaction modalities. The objective is to leverage supplementary
channels of communication beyond facial expressions, thus fortifying the agent's ability to convey
nuanced information and respond dynamically to human cues.

The ensuing phases of this research endeavor will center on a meticulous analysis of the
introduced modalities and their impact on the overall interaction quality. This iterative process aligns
with a commitment to continual improvement and refinement, aiming to establish a robust
framework for human-agent interactions that extends beyond facial expressions to encompass a
multi-modal communication paradigm.

8. Conclusion

In conclusion, this paper introduces a practical and technically grounded facial expression
generation framework with significant implications for human-agent interaction. The utilization of
an LSTM architecture, coupled with Unreal Engine 5 and the Web Real-Time Communication
protocol, facilitates a tangible improvement in the virtual agent's capacity to engage with users
through nuanced nonverbal cues. The model, meticulously trained on the CANDOR corpus, emerges
as a robust tool with high accuracy and temporal sensitivity, showcasing its ability to capture the
nuanced evolution of emotional states during interactions.

The systematic approach employed in hyperparameter tuning and model training, including the
implementation of early stopping and model checkpointing, ensures the reliability and stability of
the model. The achieved nearly perfect cosine similarity loss underscores the model's proficiency in
aligning its predictions closely with the ground truth, further validating its effectiveness in
generating facial expressions that mirror genuine human emotional responses.

Looking forward, the outlined roadmap for future work is geared towards enhancing the
framework's versatility and real-world applicability. The integration of blendshape generation,
planned real-world testing involving human subjects across diverse scenarios, and the incorporation
of additional communication modalities mark the next steps. This evolution aims to establish a
comprehensive and adaptive framework for human-agent interactions, transcending the realm of
facial expressions to embrace a multi-modal communication paradigm. The use of a multimodal
approach can enhance situational embodiment, self-explanatory nature, and context-driven
interaction to increase interactivity [30].

The iterative and empirical nature of this research underscores a commitment to continuous
improvement, with a focus on refining the framework to meet the demands of varied scenarios and
interactions. By addressing existing gaps in facial expression research and pushing the boundaries of
virtual interaction, this work contributes to the ongoing evolution of human-computer interaction.
The potential impact extends beyond the realm of virtual agents, fostering advancements in fields
where nuanced nonverbal communication plays a pivotal role. This research lays the foundation for
a more nuanced, effective, and adaptable approach to human-agent collaboration, with practical
applications in diverse settings.
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