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Abstract: As the number of cancer cases and deaths growing around the world, fast, non-invasive, 

and inexpensive screening is paramount. We examine the feasibility of such cancer detection using 

the X-ray scattering properties of nails in the canine model. 945 samples taken from 266 dogs were 

measured, with 84 animals diagnosed with cancer. To analyze the obtained X-ray diffraction patterns 

of keratin, we propose a method based on the two-dimensional Fourier transformation of the images. 

We compare 745 combinations of data preprocessing steps and machine learning classifiers and 

determine corresponding performance metrics. Excellent classification results are demonstrated, 

with sensitivity or specificity achieving 100% and the best value for balanced accuracy being 87.5%. 

We believe that our approach can be extended to human samples to develop a non-invasive, 

convenient, and cheap method for early cancer detection. 

Keywords: X-ray diffraction; vitacrystallography; cancer detection; canine model; keratin; machine 

learning; Fourier transformation; ROC curves; principal component analysis 

 

1. Introduction 

Cancer remains one of the most serious problems of modern society, being the second-leading 

reason for mortality in the United States overall and the leading cause among people younger than 

85 years. It is estimated [1] that in 2024, there will be more than two million new cases and more than 

six hundred thousand cancer-caused deaths in the US. The mortality rate has slightly decreased over 

the last few years [1], which can be attributed, in particular, to early diagnostics. To shift cancer 

detection further to early stages and achieve effective screening of large populations, the cancer 

research community has focused on biomarkers [2–5], i.e., cancer-induced changes in biochemical or 

molecular content. The biomarker tests are non-invasive and performed ex vivo, addressing the 

convenience and comfort of patients, but they are expensive and require significant time to process 

the results. The prominent alternative is screening structural biomarkers detected by X-ray diffraction 

(XRD). 

Since its discovery [6,7], XRD has been a major tool in crystallography, uncovering the atom 

arrangements in crystalline solids. Diffraction patterns not only determine the symmetry of the 

crystal lattice but also reveal the electronic density at the lattice points, allowing the structure to be 

solved. The feasibility of enzyme crystallization [8] creates the pathway for biocrystallography. XRD 

on crystallized biological molecules deciphered the molecular content of complex structures; see [9] 

for historical overviews. Recently, it was shown that the X-ray scattering approach can be applied 

directly to biological tissues. This field of science, which we have called vitacrystallography [10], 
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studies periodic structures in the extracellular matrix and their modifications induced by various 

diseases, especially cancer. Such modifications are detectable [11–15] and can lead to effective early 

cancer diagnostics. While most of the reports of cancer-induced changes are based on the alterations 

of X-ray scattering on lipids, the possibility of cancer detection using the keratin molecules of hair 

and nails was also discussed. Modifications associated with cancer in human hair were reported 

[16,17], but these measurements and their interpretations were disputed [18,19]. However, recent 

experiments [20] exhibited a high probability of cancer detection in dogs by the XRD patterns of their 

claws. 

Studies of canine cancer are essential for two reasons. First, canines are excellent models since 

they spontaneously develop the same types of cancer as humans, leading to their use in comparative 

and translational oncology [21–23]. Second, 6 million pet dogs are estimated to be diagnosed with 

cancer in the United States [24], which puts an enormous burden on the animals and their owners. 

Early cancer detection is paramount for saving the lives of pets, and, at the same time, achievements 

in the canine model can be used to improve the treatment of human diseases.  Comprehensive data 

can be collected from millions of dogs that visit the veterinary clinic each year, dramatically 

accelerating the development of new precision therapy that will benefit both dogs and their owners 

[24]. 

The potentially collected datasets require novel data representation and data analytics methods, 

including machine learning and artificial intelligence. Usually, for the XRD studies of biological 

tissue, the azimuthal integration is performed in the obtained two-dimensional (2D) image, and the 

data are represented in the intensity dependence on the momentum transfer q. This quantity 

corresponds to the scattering angle 2θ as q = (4π sin θ)/λ, where λ is the X-ray wavelength. This 

approach allows transparent physical interpretation of results because the momentum transfer is 

directly related to the periodicity d of molecular systems as q = 2π/d. In particular, XRD-based cancer 

detection [11–15] is related to specific features at 1.5 and 13.9 nm−1, linked to the packing of 

triglycerides and inter-fatty-acid molecular distances, respectively [25]. However, a significant 

amount of information will be lost after the azimuthal integration for materials with angular 

anisotropy, such as keratin. The main goal of our paper is to develop a data analytic approach that 

avoids azimuthal integration and accounts for all the information contained in the XRD patterns. 

In this work, we propose a method based on the 2D Fourier transformation of the XRD images 

and compare it to the previously developed 1D Fourier transformation approach [21]. We apply it to 

the dataset of 266 patients (dogs), with 104 of them diagnosed with cancer. As each dog provides 

more than one sample (cut from the claw), we have 945 XRD patterns, which we separated into the 

training (775 images) and test sets. We employ various data preprocessing steps, both standard and 

custom-developed, including Principal Component Analysis (PCA). Several machine learning 

algorithms are used to determine the performance metrics: Logistic Regression, Random Forest, 

Support Vector Machine, K-Nearest Neighbor, Naive Bayes Classifier, Light Gradient-Boosting 

Machine, and XGBoost. These first five classifiers are taken from the scikit-learn library [26,27], while 

the last two come from [28] and the XGBoost library [29,30], respectively. We obtain and compare the 

classification metrics for 745 combinations of the preprocessing steps and classifiers. These metrics 

are further improved if we group the samples from the same patient. For several combinations, either 

sensitivity or specificity reaches 1, and the balanced accuracy can be up to 0.875. 

2. Materials and Methods 

2.1. Sample Preparation 

Samples from 266 patients (dogs) were collected, with 104 of them diagnosed with cancer. The 

patients are either client-owned animals of various breeds or beagles from a laboratory colony. The 

ages of the dogs ranged from 0.5 to 17 years. Patients provided several samples each (four for most), 

prepared and measured independently. The final dataset had 945 samples. 
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The sample is a thin slice of hard outer shell tissue cut or shaved from the nail’s surface. They 

are produced by a surgical knife to cut a very thin surface layer of the nail’s outer hard shell with 

between 100 to 200 microns in thickness and an area of about 3 by 3 mm, as shown in Figure 1. It was 

shown previously that there was no visible difference between the samples obtained from dogs with 

and without cancer [20]. The samples were then placed into the specially designed holder, intended 

to hold the nail shaving under the X-ray beam, but no part of the sample holder would interact with 

the beam. 

 

Figure 1. Left: The nail before cutting. Right: The surgical knife with the sample. 

2.2. Diffraction Measurements 

The custom-developed desktop X-ray diffractometer contains the beam delivery system, the 

sample receptacle, and the X-ray detector. We use the Xenocs X-ray source, a Genix 3D Cu with Fox 

12–53 Cu Mirror, with a wavelength λ = 0.1540562 nm or energy of 8.04 keV. Xenocs also produced 

the focusing optics. The sample holder is placed on the receptacle, which includes a circular aperture 

beam collimator. The two-dimensional detector is an Advacam MiniPix SN1442 Si 500 µm with a 256-

by-256-pixel array and a 55-by-55-micron pixel size. More details about our diffractometer can be 

found in Ref. [20]. The sample-to-detector distance for all samples was 13 mm, and the exposure time 

was 2 min. The samples were measured batch by batch; all results were obtained under the same 

experimental conditions. The experimental data were stored as 256-by-256 matrices of integers 

representing the photon counts. Each batch was complemented by at least one calibration file with 

silver behenate (AgBH) XRD patterns. 

2.3. Data Analysis 

2.3.1. Image Preprocessing 

The raw XRD data were 2D images (256 × 256 pixels). Before further analysis, all images were 

preprocessed using the following steps: 

1. Raw data was calibrated using silver behenate (AgBH) to unify scales for different batches. The 

image was rescaled during calibration to adjust the q-range to the same value. The calibrated 

image is shown in Figure 2(a). 

2. The images were centered and rotated to unify the positions of essential features. The data were 

also cropped to a circular shape to make them symmetric. 

3. Hot spots and hot pixels were removed, substituting them with the average intensity value over 

the circle with a certain radius. 

4. The intensity of the diffracted beam was normalized, i.e., the total intensity of the preprocessed 

images was adjusted to 5 mln counts. The final preprocessed image is shown in Figure 2(b). 
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(a) (b) 

Figure 2. The preprocessed XRD images: (a) The image after calibration; (b) The image after centering, rotation, 

removing hot pixels, and normalization. 

2.3.2. One-Dimensional Fourier Transformation 

The azimuthal integration of the two-dimensional dataset is performed to obtain the one-

dimensional curve for subsequent determination of Fourier coefficients. We use two types of 

integration: (i) integration over 360 degrees (AI) and (ii) separate integrations over each of the four 

sectors (AIS) shown in Figure 2(b). These sectors contain either an arc or a peak (eye), corresponding 

to the pitch of chiral keratin molecules or the intermolecular distance in molecular packing [31]. The 

dependencies of the intensity on the momentum transfer q after the azimuthal integration are shown 

in Figure 3 for (a) 360 degrees, (b) sectors with eyes (horizontal, to the left and right of the primary 

beam), and (c) sectors with arcs (vertical, above and below the primary beam). Eyes and arcs produce 

characteristic features at 6.4 and 12.3 nm-1, corresponding to 0.98 and 0.51 nm periodicities, 

respectively [31]. There is also a signal at 15.3 nm-1 originating from the 0.43 nm periodicity of the 

lipid structures. Orange and blue curves are the average for cancer and non-cancer patients. It is 

evident from this Figure that the cancer and non-cancer curves are very similar, and the two-

dimensional analysis is essential for successful diagnostics. 

 

(a) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 January 2025 doi:10.20944/preprints202411.1739.v2

https://doi.org/10.20944/preprints202411.1739.v2


 5 of 12 

 

  

(b) (c) 

Figure 3. Dependence of the intensity on momentum transfer after the azimuthal integration of the XRD patterns: 

(a) 360-degree integration; (b) Integration over the horizontal sectors; (c) Integration over the vertical sectors. 

For the obtained dependencies of the intensity to the distance to the center, the regions close to 

the primary beam are cut, and the slope of the curve is removed for better Fourier series convergence 

(SR). One-dimensional Fourier coefficients are obtained via the Standard Discrete Fourier 

Transformation implemented in SciPy and NumPy libraries (1DF) or the custom procedure described 

in Ref. [20] (1DFC). We used Low Pass Fourier Filtration (LPF) to select only the most prominent low-

frequency coefficients. Specifically, 30 coefficients were taken for AI curves or each of the four AIS 

curves. 

2.3.3. Two-Dimensional Fourier Transformation 

The two-dimensional (2D) Standard Discrete Fourier Transformation, implemented in SciPy and 

NumPy libraries, calculates the 2D Fourier coefficients (2DF). We used either the complete set (256 

by 256 matrix) or 1257 complex Fourier coefficients obtained by the Low-Pass Fourier Filtering with 

the 20th-order cutoff. We tested different combinations of the Fourier coefficient components: real 

parts (Re), imaginary parts (Im), both real and imaginary parts (Re_Im), amplitudes (Am), and phases 

(Ph). 

2.3.4. Additional Data Preprocessing Steps 

Several optional steps can be taken for the data preprocessing. We can use the Standard Scaling 

procedure from the scikit-learn library [27] (STD) to standardize the contribution of features to the 

analysis and perform the Principal Component Analysis to reduce the number of variables. We 

exploit the following numbers of principal components: 3 (PCA_3), 50 (PCA_50), 100 (PCA_100), and 

750 (PCA_750). We chose these values for the following reasons: 3 PCs can be visualized, 750 is close 

to the maximum possible number, 775 (the number of the samples in the training set), and 50 and 100 

are the random numbers in between. The optimal number can be obtained via hyperparameter 

optimization, but it becomes increasingly computationally expensive for all the preprocessing steps 

and classifier combinations. As seen below, some classifiers perform better for 50 PCs, while others 

perform better at 100. Correspondingly, we have not performed further optimization and present 

only the results for these numbers. 

Another optional step is the removal of the primary beam. It can be removed from the original 

images before the Fourier transformations (BR) or in the reciprocal space (BRF). For the latter, we 

introduced the following procedure. The auxiliary matrices are constructed with zeroes everywhere 

except the locations of the bright circles at the center. 2D Fourier transformations of these matrices 

contain the Fourier coefficients of the primary beam images. The differences between Fourier 

coefficients of original and auxiliary matrices are the coefficients of the beam-less XRD signal. 
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The next step for all tasks is the preparation of the matrices for the machine-learning classifiers. 

These matrices have the dimensionality MxN, where M is the number of elements and N is the 

number of samples in the training set. For 2D cases where the Fourier coefficients are the matrices 

themselves, they are flattened, i.e., all the matrix elements are converted in a single row. In our 

studies, N = 775, while M changes from 30 for 1DF to 1257 for the LPF and to 131,072 for Re_Im of the 

complete set of 2D Fourier coefficients. 

2.3.5. Machine-Learning Classifiers 

The classification algorithms applied in this work are related to supervised learning tasks [32]. 

One of the purposes of this work is to determine the most efficient classifiers for cancer diagnostics. 

Many different classification algorithms were used by research groups for medical diagnostics during 

the last decade [33,34], and it is still challenging to decide in advance which classifier will be most 

successful for experimental data. Here, we use the advantage of code organized through pipelines to 

compare various most popular classifiers. All applied classifiers form three main groups: simple and 

robust (Logistic Regression (LR), Support Vector Machine (SVM), K-nearest Neighbors (KNN), 

Gaussian Naïve Bayes (GNB)), bagging based algorithms (Random Forest Classifier (RF)) and 

boosting based algorithms (Extreme Gradient Boosting (XGB) and Light Gradient Boosting Machine 

(LGBM)). LR classifier fits training data by logistic function, which is then used for testing unseen 

data. SVM searches for optimal hyperplane, which separates classes in the space of features most 

efficiently. KNN utilizes the training dataset to make decisions on new unseen samples by assigning 

them to the most frequent class among k neighbors determined by distance metrics. GNB is based on 

Bayesian statistics and utilizes two main assumptions: independence of features and their Gaussian 

distribution. Random Forest classifier is one of the most popular and efficient machine learning 

methods [35]. It is an ensemble technique that creates a model by combining individual decision trees. 

Different decision trees are built using bagging, also called bootstrap aggregation. Only part of the 

data is used for single tree formation, providing a large variety of solutions. Then, the final decision 

is performed by voting, which improves the stability of the model with respect to random noise and 

overfitting. XGB and LGBM are ensemble machine learning techniques that will enhance model 

performance by ensemble weak prediction models [36]. Both gradient-boosting classifiers used in this 

work are decision-tree-based. The main difference between RF and gradient-boosting learners is that 

the latter connects trees in series and improves performance by reducing prediction errors of the 

previous iteration. 

All classifiers used in this work have their advantages and limitations. For example, tree-based 

algorithms, KNN and SVM, are less influenced by outliers, and simple methods like SVM or LR are 

more interpretable. GNB is fast and efficient in classification, but the estimated cancer probability is 

unreliable. LGBM is faster and often more efficient than XGB due to different ways of tree 

construction (leaf-wise instead of level-wise used in XGB). We apply them to the same preprocessing 

steps to ensure an efficient comparison. 

2.3.6. Pipeline Implementation 

We use Visual Studio and Jupiter Notebook as the primary coding platforms. Our codes were 

written in Python using the machine learning library SciKitLearn [27], from which most classifiers 

were adopted, except gradient-boosting algorithms [28,30]. We have not performed the 

hyperparameter optimization in our code because it is computationally expensive for all the 

preprocessing steps and classifier combinations. However, the rough estimation of optimal 

hyperparameters for some models was performed manually and using the GridSearchCV function 

from the SciKitLearn library before final calculations. Some pipelines with too many features used in 

modeling require the Stochastic Gradient Descent (SGD) method [27] for reasonable computation 

time. 

The main hyperparameters for classifiers were: maximal depth of trees max_depth for RF was 

not limited, and for XGB it was 3; the number of estimators for both RF and XGB was 15; and the 
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number of neighbors k = 5 in KNN. The learning rate ’optimal’ was used for LR and SVM with SGD 

training. The modeling process was implemented as a pipeline, where different preprocessing steps 

and classifiers were called in various combinations to determine the best algorithm for diagnostics. 

3. Results 

The measured XRD patterns were randomly separated into the training and testing datasets. The 

training dataset contains 132 non-cancerous and 84 cancerous patients (775 samples). The testing 

dataset has 30 non-cancerous and 20 cancerous patients. Both training and testing data were 

preprocessed using the same procedure. The training dataset optimized the model, and then the 

optimized estimator classified the testing dataset. 

We used sensitivity (Sen_S), specificity (Spec_S), and balanced accuracy (BA_S) as performance 

metrics. Sensitivity is the proportion of the cancerous samples that were correctly identified. 

Similarly, specificity measures the proportion of non-cancerous samples that were correctly 

identified. Balanced accuracy = (specificity + sensitivity)/2. We also determine the receiver operating 

characteristics (ROC) curve and use the area under the ROC curve (AUC_S) as a metric. The results 

from the samples belonging to the same patient were averaged, and all performance metrics (Sen_P, 

Spec_P, BA_P, and AUC_P) were also calculated for the patients. 

The best (in terms of BA_P) 10 combinations of the preprocessing steps and classifiers are shown 

in Table 1. The best results from the other approaches are presented in Table 2. The first column 

provides the total ranking. The second column describes the preprocessing steps and the classifier 

used, with the nomenclature taken from Section 2. Columns 3-6 show the metrics for the samples, 

and columns 7-10 demonstrate the metrics for patients. 

Table 1. 10 best metrics for various preprocessing steps and classifiers. 

 Steps and 

Classifiers 
Sen_S Spec_S AUC_S 

BA_S Sen_P Spec_P AUC_P BA_P 

1 2DF, BRF, LPF, STD, 

Im, PCA_100, RF 
0.61 0.95 0.85 0.78 0.75 1 0.93 0.875 

2 2DF, BRF, LPF, Am, 

LBGM 

0.63 0.96 0.82 0.79 0.85 0.9 0.92 0.875 

3 2DF, Re_Im, SVM 0.72 0.88 0.86 0.8 0.8 0.93 0.91 0.865 

4 2DF, LPF, STD, Ph, 

PCA_50, SVM 

0.75 0.84 0.81 0.795 0.8 0.93 0.88 0.865 

5 2DF, LPF, Ph, SVM 0.63 0.86 0.8 0.745 0.9 0.83 0.9 0.865 

6 2DF, BRF, LPF, STD, 

Re_Im, PCA_50, XGB 

0.6 0.88 0.81 0.74 0.85 0.87 0.89 0.86 

7 2DF, LPF, Ph, GNB 0.72 0.86 0.78 0.79 0.75 0.97 0.86 0.86 

8 2DF, Ph, GNB 0.73 0.82 0.78 0.775 0.7 1 0.88 0.85 

9 2DF, BRF, LPF, STD, 

Im, PCA_100, KNN 

0.58 0.98 0.79 0.78 0.7 1 0.84 0.85 

10 2DF, BRF, LPF, STD, 

Im, PCA_50, KNN 

0.58 0.98 0.79 0.78 0.7 1 0.84 0.85 

Table 2. The best metrics for various preprocessing steps and classifiers not included in Table 1. 

 Steps and 

Classifiers 
Sen_S Spec_S AUC_S 

BA_S Sen_P Spec_P AUC_P BA_P 

13 2DF, Am, LOG 0.64 0.97 0.81 0.81 0.75 0.93 0.86 0.84 

41 AI, SR, 1DFC, RF 0.94 0.43 0.75 0.685 1 0.63 0.87 0.815 

42 AIS, SR, 1DFC, RF 0.79 0.69 0.8 0.74 0.9 0.73 0.88 0.815 

53 2DF, BRF, STD, Re, 

PCA_3, RF 
0.73 0.74 0.75 0.735 0.75 0.87 0.84 0.81 
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118 2DF, BRF, LPF, STD, 

Re_Im, PCA_750, RF 

0.69 0.6 0.68 0.645 0.85 0.73 0.8 0.79 

One can see from these tables that the best diagnosis is obtained in two cases. The first is the 

Random Forest model based on imaginary parts of low-pass-filtered 2D Fourier coefficients with 

standard scaling and 100 principal components. The second is the Light Gradient Boosting Machine 

model based on amplitudes of low-pass-filtered 2D Fourier coefficients without PCA. The primary 

beam was removed in the reciprocal space for both cases. The proposed approach allows us to impose 

additional conditions on the search. Tables 3 and 4 show the best results with the conditions of 

specificity or sensitivity greater than 0.9. It should be noted that the same Random Forest model 

provided the best metrics in both cases. 

Table 3. The best metrics for various preprocessing steps and classifiers with the additional condition that the 

sensitivity is greater than 0.9. 

 Steps and 

Classifiers 
Sen_S Spec_S AUC_S 

BA_S Sen_P Spec_P AUC_P BA_P 

1 2DF, BRF, LPF, STD, 

Im, PCA_100, RF 
0.94 0.34 0.85 0.64 0.9 0.83 0.93 0.865 

2 2DF, LPF, Ph, SVM 0.91 0.28 0.8 0.595 0.9 0.83 0.9 0.865 

3 2DF, Re_Im, SVM 0.91 0.39 0.86 0.65 0.9 0.8 0.91 0.85 

4 2DF, BRF, LPF, Am, 

LBGM 0.93 0.33 0.82 0.63 0.9 0.8 0.92 0.85 

5 2DF, BRF, LPF, STD, 

Im, PCA_100, XGB 

0.91 0.41 0.83 0.66 0.9 0.77 0.87 0.835 

Table 4. The best metrics for various preprocessing steps and classifiers with the additional condition that the 

specificity is greater than 0.9. 

 Steps and 

Classifiers 
Sen_S Spec_S AUC_S 

BA_S Sen_P Spec_P AUC_P BA_P 

1 2DF, BRF, LPF, STD, 

Im, PCA_100, RF 
0.61 0.95 0.85 0.78 0.75 1 0.93 0.875 

2 2DF, BRF, LPF, Am, 

LBGM 

0.63 0.96 0.82 0.79 0.85 0.9 0.92 0.875 

3 2DF, Re_Im, SVM 0.72 0.88 0.86 0.8 0.8 0.93 0.91 0.865 

4 2DF, LPF, STD, Ph, 

PCA_50, SVM 

0.75 0.84 0.81 0.795 0.8 0.93 0.88 0.865 

5 2DF, LPF, Ph, GNB 0.72 0.86 0.78 0.79 0.75 0.97 0.86 0.86 

Comparing the ROC curves can provide additional information. In Figure 4, we present four 

characteristic curves for patients. 
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(a) (b) 

Figure 4. ROC curves for various preprocessing steps and machine learning algorithms (the terminology is 

described in Section 2): (a) 2DF, LPF, BRF, Im, and RF (STD and PCA_100 for the red curve, no STD and PCA_100 

for the blue curve); (b) 2DF and Am (LOG for the blue curve and RF for the red curve). 

In Figure 4(a), we present the red ROC curve for the best-performing combination of the data 

preprocessing steps and machine learning algorithms: Random Forest model based on imaginary 

parts of low-pass-filtered 2D Fourier coefficients with standard scaling, 100 principal components, 

and the primary beam removed in the reciprocal space. Almost the same combination but without 

standard scaling and principal components produces the blue ROC curve of this figure, with much 

worse metrics. Figure 4(b) compares the results of two different classifiers for the amplitudes of the 

complete set of 2D Fourier coefficients without beam removal, standard scaling, and principal 

component analysis. The Logistic Regression (in blue) produces a larger AUC than the Random 

Forest (in red). The balanced accuracy for LOG is also larger (0.84 vs. 0.78), although the results are 

the opposite for the specificity (0.93 vs. 0.97). It should be noted that this is the only case where the 

results of the Logistic Regression are comparable to those of other classifiers. Usually, they are much 

worse. 

Another type of visualization is representing data in the space of principal components. We use 

it in Figure 5 to compare two approaches to primary beam elimination. This figure shows the data 

corresponding to the amplitudes of low-pass-filtered 2D Fourier coefficients after the standard 

scaling, but for Figure 5(a), the beam was removed in the reciprocal space, while for Figure 5(b), it 

was done in the real space. 

  

(a) (b) 

Figure 5. PCA-transformed data in 3 dimensions for 2DF, LPF, STD, and Am with (a) BRF and (b) BR. 
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In both figures, there is a well-pronounced cluster of cancerous samples. However, in Figure 

5(a), the points outside this cluster also exhibit a separation. It manifests itself in the metrics. XGBoost 

provides the AUC of 0.82 and the BA of 0.78 for BRF, while these values are 0.75 and 0.7 for BR. 

4. Discussion 

Comparing the results obtained by different data preprocessing steps and machine-learning 

algorithms, we can reveal general trends and make several conclusions: 

1. Data representations based on 2D Fourier transformation are vastly superior to their 1D 

counterparts. This was expected because azimuthal integration eliminates anisotropy, which 

leads to the loss of information for anisotropic structures, such as keratin. 

2. All the classifiers except the Logistic Regression provide similar metrics. We can attribute it to 

the fact that when there are pronounced clusters, all searching methods would determine them. 

3. Reducing the number of Fourier coefficients using the Low-Pass Filter improves diagnostics. 

Eliminating unimportant features provides a better focus for machine learning algorithms. 

4. Removing the area near the primary beam leads to better results. Our custom-developed 

approach to removing it in the reciprocal space works better than direct removal in the real space. 

5. Principal Component Analysis improves the results only with a proper choice of the number of 

principal components involved. If this number is too small (n = 3) or too large (n = 750), the 

diagnostics are worse than when n = 50 or 100. 

6. All the metrics for patients are much better than those for the samples. This can be expected 

because averaging the samples belonging to the same patient eliminates the outliers. 

7. Our custom procedure to determine 1D Fourier coefficients [20] works better than the standard 

one. 

8. The KNN classifier results are the same for 50 and 100 PCs; see lines 9 and 10 of Table 1. In general, 

the dependence on the PC number is much weaker for KNN than for other classifiers. 

5. Conclusions 

In this paper, we have shown that the data analysis approaches based on Fourier coefficients are 

beneficial for analyzing anisotropic XRD patterns, especially with 2D transformation. We obtained 

excellent performance metrics, as for several combinations of the data preprocessing steps and 

machine learning algorithms, the sensitivity or specificity can reach 1. The best results are achieved 

by the Random Forest model based on imaginary parts of low-pass-filtered 2D Fourier coefficients 

with standard scaling, 100 principal components, and the primary beam removed in the reciprocal 

space. Our methods can be used for canine cancer detection based on the X-ray scans of dog’s nails 

and, in the future, extended to human cancer diagnostics. 
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