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Abstract: This article presents a review of the distribution system state estimation (DSSE) algorithms

from the model-based approach to the recent data-driven methodologies. The insufficient

measurements which result in low observability have motivated the need to shift from the

conventional algorithm to data-driven approaches that can successfully estimate states despite

the DSSE challenges. This article discusses the nonlinearity in the DSSE problem formulation and

how different model-based methods have been proposed to mitigate the problems of robustness,

ill-conditioning, and complexity. Moreover, approximate DSSE to obviate nonlinearity were

discussed: complex linearization, small angle approximation, convexification and compressed

sensing. Furthermore, probabilistic DSSE methods were also discussed in the need to quantify

the uncertainty associated with the state estimation results. Also, data-driven methods applicable

to DSSE, pseudo measurement generations, and topology identification were also discussed using

machine and deep learning methods. Lastly, a recent approach that employs a hybrid of model-based

and data-driven methods using matrix and tensor completion is surfacing because they work in a

low observable condition of the network and can estimate the states satisfactorily. With this review,

researchers can look further into developing and improving on the model-based data-driven methods

less susceptible to the barriers in conventional DSSE algorithms.

Keywords: distribution system state estimation; topology identification; pseudo-measurement;

complex linearization; matrix completion; tensor completion

1. Introduction

It is without no doubt that one of the main drivers of the next-generation smart grid will be

the huge amount of information made possible by new and legacy measurement infrastructures [1].

This necessitates that the corresponding energy management system (EMS) and control system needs

guaranteed reliability and accuracy of salient information about the operating state of the grid [2].

Moreover, this information can be acquired in different ways, and they potentially contain different

types of data. As far as the smart grid is concerned, the amount of information that emanates from the

grid is huge due to the deployment of several measurement devices at various levels and nodes in the

power system. This implies that the conventional transmission system state estimation (TSSE) and the

emerging distribution system state estimation (DSSE) need to be adapted to the changing information

exchange within and outside the smart distribution network [3].

Using data to predict or estimate the operating conditions of the grid across different operating

levels require accurate state estimation algorithms (SE) [4]. The idea of state estimation in a power

system is the recovery of the underlying state of the power system from noisy measurements. In other

words, it is a data processing procedure to transform redundant meter readings taken from virtually

all the parts of the power system of interest with other relevant information to ascertain the voltage
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profile of the network [5]. These state estimation algorithms are originally conceived for transmission

system networks and there have considerable research efforts done in this area to further development

[6]. The TSSE proceeds with the assumption of balanced positive sequence mesh operation, online tap

changer position, breakers’ state, and a host of analogue measurements that include line flows, bus

injections, voltage, and phasor measurements as potential measurements to be fed to the algorithms

and the bus voltages and phasors are considered as the state variables to the extracted for further

decision-making processes [7].

Like the TSSE, distribution system state estimation programs can be used to ascertain the state and

health of the power distribution networks. However, the wide use of state estimation in distribution

is not fully adopted, unlike the TSSE. The obvious reasons are the dissimilarities between the two

electricity value chains in terms of metering infrastructure investment, structure, operation, and

modelling [8]. Moreover, the present real-time measurement by the distribution automation systems

(DAS) positioned at the substation and some feeders can be used for estimation, however, the estimation

process becomes challenging due paucity of real-time measurements which in turn results in low

observability of the network [9,10]. Also, distribution system networks are multiphase feeders that are

mostly radial or sometimes weakly meshed. The loads connected are mostly single and V-shape rather

than a uniform three-phase load which makes the system highly unbalanced and challenging for state

estimation. In addition, due to short connecting lines and low voltage levels, the R/X ratio of the

distribution system is higher than that of the transmission network. This high R/X negatively impact

the convergence of SE algorithms like the Newton-Raphson approach [11]. Furthermore, real-valued

measurement and phasor measurements from the DAS can make the estimation measurement functions

complex or linear depending on its composition. The former consists of real and reactive power line

flow and bus voltage magnitudes. These measurements as seen in the transmission network are

non-linear functions of the state variable vectors [12]. As for the latter i.e. DSSE, the complex bus

voltages and line currents measurements from PMU or D-PMU can be represented as a linear function

of the state variables [13,14]. Another issue with DSSE is the assumption that the line parameters and

network topology remain constant and known accurately. Although, this is not always the case and

the DSSE model has large uncertainty in the estimation results.

Since one of the major bottlenecks of the DSSE is the lack of sufficient measurements needed for

required observability, it is customary to include pseudo-measurements. These measurements are

estimated using historical data on energy consumption and renewable energy resources like wind

and solar to forecast demand and generations at respective points in the network. However, these

pseudo-measurements are less accurate than real-time measurements and they usually have a large

covariance. Hence, robust state estimations are usually employed to account for this significant noise

in the estimated pseudo-measurements [15,16].

This article is partitioned based on the flow in Figure 1. Section 2 gives a detailed description of

the block diagram in Figure 1 showing how different DSSE modules are related and interconnected.

Furthermore, Section 3 analyses the fundamental nonlinear power flow that characterizes a distribution

feeder and the associated load model. Also, Section 4 enumerates different types of measurements in

the distribution network and a brief emphasis on pseudo-measurement generation methods. In Section

5, DSSE algorithms were discussed based on robustness, approximations, and sparsity. Sections 6

and 7 talk about topology identification and data-driven DSSE methods based on machine and deep

learning approaches respectively. Furthermore, future research direction and conclusions are provided

in Sections 8 and 9.

2. State estimation

It is with no doubt that state estimation (SE) forms the backbone of the energy management

systems (EMS) in the distribution system. The information gathered from the SE is crucial to some

critical power system operation tasks such as optimal power flow, voltage control, contingency analysis,

congestion management, fault management etc [17]. However, the quality and accuracy of the SE
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results are affected by measurement unavailability and uncertainties. These two issues could manifest

as bad or stealthy data attacks, communication failures or telemetry errors. Therefore, the SE process

must be equipped with ad-hoc pre-processing and post-processing functional tools that clear erroneous

data, deal with measurement unavailability, and filters out any deliberate or random errors that the

system is exposed to for security and quality purpose [18].

Figure 1 depicts a typical state estimation process applicable to both TSSE and DSSE. The whole

arrangement ensures that the whole process is robust and reliable before being deployed to the EMS.

It basically starts by gathering all information related to the network and processes the topology of

the current system with information from network data and virtual measurements like the breakers

and switches. After this is achieved, another pre-processing stage is activated; observability analysis.

This state gathers all available real-time measurements and assesses the observability of the entire

network to check redundancy or deficiency. If the network is unobservable, pseudo-measurements can

be generated by classical or machine learning approach from historical data available to the operator

in the data bank. This approach can also be referred to as forecast-aided state estimation (FASE) in

dynamic state estimation (DSE) [19,20]. Next is the state estimation algorithm which is the core of

the DSSE. It harnesses the information in the data bank to provide the state of the system. The issue

of bad data detection and identification can be incorporated into the SE algorithm or implemented

as a preprocessing or post-processing process. This process rejects off-the-mark measurements or

attacks while implementing the SE or before running it [21,22]. Lastly, the SE results are further

cross-checked to analyze possible errors in the assumed network topology. These processes go on and

keep readjusting and refining until a satisfied forward pass is suitable for deployment. The results are

then further utilized by the DSM to make informed decisions and operations on the network.

Figure 1. Typical state estimation flow process.

3. Fundamental power flow equation

Figure 2 shows a simplified model of a feeder arm of an arbitrary distribution system which can

be used to represent both low voltage (LV) and medium voltage (MV) feeders. These feeder arms

can be single, double, or three-phase lines with a neutral line in the case of LV. Also, the loads can

be connected in the same fashion which in most cases leads to unbalanced loads in the lines [23].

A more detailed model will include transformers, regulators and other essential components of the

distribution network. However, extremely detailed models render all other operational computations

on the distribution system impractical for real-time analyses. Also, the line parameters, that is the
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impedance are in a 3X3 matrix which includes self and mutual impedances or reduced form in the

case of a three-phase four-wire system [24]. Table 1 gives a quick overview of the main differences

between transmission and distribution system networks.

Figure 2. An arbitrary simplified model of a distribution system feeder.

Table 1. Principal differences between a transmission network and a distribution network.

Characteristics Transmission Network Distribution Network

Topology Meshed Radial or weakly meshed

Three-phase system Balanced Mostly unbalanced

Main measurement type Real measurements Pseudo-measurements

R/X ratio Low High

Number of nodes Medium/Low High

Monitoring Redundant measurement devices Few measurement devices

Types of load Concentrated loads Distributed loads

Before any analysis of the network, it is important to get the encoding of the whole network

into a single matrix called the incidence matrix (A). Since most of the power networks can be easily

represented as graph networks in terms of nodes (N) and edges (E), the incidence matrix is an encoding

of the connections between nodes and branches which is necessary to quickly get the admittance

matrix (Ybus) from the line impedance value. The fundamental non-linear equations that characterize

the active and reactive power flow in an AC network are expressed below

Pij = |Vi|
∣

∣Vj

∣

∣

(

Gij cos(θi − θj) + Bij sin(θi − θj)
)

− Gij |Vi|
2 (1)

Qij = |Vi|
∣

∣Vj

∣

∣

(

Gij sin(θi − θj)− Bij cos(θi − θj)
)

+ Bij |Vi|
2 (2)

where Pij and Qij are the line active and reactive power flows from node i to node j. Also, the voltage

magnitude and angle at each bus are denoted by |Vi| and θi respectively while Gij and Bij are line

parameters that be extracted from the bus admittance matrix.
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3.1. Load model

The nature of loads in the distribution system is quite different from that of the transmission. In

transmission system load flow, demands are usually represented as a constant power load. However,

at the distribution level, the load model usually has the constant impedance, current, and power (ZIP)

model. Therefore, it is imperative to model the load according to the type of demand specified at the

nodes to capture the power scenario [25]. The net power injection at a node with both generation and

load can be expressed in the complex domain as

(Sgk − Sdk)
∗ = V∗

k ∑
mǫN

ykmVm, ∀k ∈ N (3)

The relationship between the injection currents and the voltages for all nodes except the slack

node can be represented in the following ZIP model from the specified complex power as

ij = SzjVj + S∗
I j +

S∗
Pj

V∗
j

(4)

4. Measurements in DSSE

In the traditional distribution system, the only available real-time measurements are the nodal

voltage at the substations, power supplied to the feeders downstream, and information about switch

status in some designated locations [26]. These limited number of measurements initially make DSSE

unattractive and impractical in power systems operations due to little or no redundancy like the

transmission network. With the concept of a smart grid being more disruptive in the distribution

system, different measurement devices are being deployed at different levels and locations to gather

information needed for the smart operation of the system. Summarily, the types of measurements

available for the DSSE utilization can be categorized into three main types: real-time measurements,

pseudo-measurements, and virtual measurements [27]. These measurements are necessary to bypass

the problem of observability in the DSSE algorithm.

4.1. Real-time data for DSSE

Real-time measurements as briefly described above can be synchronous or asynchronous

measurements. The synchronous measurements are usually the phasor measurement units

(PMU). They simultaneously sample current and voltage waveforms at different points in the

power system using the same synchronizing signal via the global positioning system (GPS) [28].

The non-synchronized measurements are the legacy measurements used by SCADA and other

measurements gathered by smart meters and they require a dedicated synchronization operator

to synchronize them to the current time reference [29].

4.1.1. PMU in DSSE

Phasor measurement units (PMUs) are gradually becoming a choice for power system estimation

and monitoring. Their deployment and applications in the transmission system network are well

studied. A power system with only PMUs makes the estimation less computationally intensive and

reflective of the real-time dynamics of the system. However, due to cost and other design issues, PMUs

have not been fully deployed for power system estimation. Instead, the measurements needed for the

estimation are usually a hybrid mixture of PMUs and other non-synchronized measurement devices

and mediums like SCADA and RTU [30]. With the constraints placed on the number of PMUs that

can be placed in the transmission network, it is often required that the PMUs are strategically placed

at locations that will ensure system observability, accuracy in state estimation results and optimal

utilization of resources [31,32]. Since present distribution systems are gradually evolving to the active

distribution network, the need for devices suitable and tailored for distribution system monitoring
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has become imperative. So, the deployment of the conventional PMU device at various nodes is not

well suited for various applications in the distribution system. Therefore, D-PMU or micro-PMUs with

other devices like smart meters are usually employed for these tasks [33].

4.1.2. Smart meters

Smart meters are a form of demand response strategy that enables the utility to provide

comprehensive details of the user’s energy usage and at the same time give them the liberty to

manage their energy consumption. That is there exists a two-way communication between the utility

and the consumers. They are essential components in the smart grid framework in the distribution

system [34]. Some of the basic information provided by smart meters include cumulative energy

(kWh) usage, peak demand active (kW) and reactive (kVar) power. Comprehensive information and

applications of smart meters in relation to DSSE are well documented in [35].

4.1.3. Pseudo meaurements

The paucity of sufficient real-time measurements in the distribution network necessitates the

inclusion of pseudo measurements to fulfil the observability criteria needed by the DSSE. That is, the

value of a node injection must be determined without it. If the lack of measurement at a particular

node is a result of telemetry failure, the operator could easily infer the injection at that node due

to knowledge of the system. This is often modelled as Gaussian distribution with mean based on

transformer ratings or typical customer load profiles and estimated standard deviation [36]. However,

the assumption of measurement distribution to Gaussian does not always hold [37].

Aside from the basic method of generating pseudo measurements as mentioned above, other

methodical and insightful approaches have been reported in a number of literature. Since injections at

nodes in different locations in the network have different probability density functions not necessarily

normal, a Gaussian mixture model (GMM) was proposed to encompass these distributions to generate

the measurements needed for the DSSE algorithm [38]. Similarly, an artificial neural network

(ANN) capable of generating pseudo measurements with error statistics is used in conjunction

with GMM for decomposition is also proposed in [39]. Instead of GMM decomposition, ANN with

Fourier decomposition was introduced in [40]. Aside from using ANN for the pseudo measurement

production,a robust machine learning approach, gradient boosting tree (GBT), is also possible [41].

Also, a computationally efficient game-theory approach for a pseudo-measurement generator was

proposed in [42].

4.1.4. Virtual measurements

Virtual measurements are information the DMS have about the system with full certainty. They

include knowledge about closed and opened switching devices and node locations with no demand

and generation. Technically, this includes zero voltage drop, zero power flow, zero bus injections, and

even voltage information about the neutral line in a multi-phase network [43]. They are very essential

data that help in augmenting the available information for the DSSE. However, they pose the problem

of ill-conditioning in the weighted least square (WLS) algorithm if they are not treated separately in

the optimization algorithm [44]. A brief discussion of how virtual measurements can be inculcated in

the conventional DSSE algorithm is discussed in the next section.
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Table 2. Different types DSSE measurement sources.

Measurement Type Measurment Variable Reference

Non-synschronized

• Node voltage magnitude

• Branch current magnitude

• Complex power flow measurements

[45]

Smart meters
• Active power injections at the nodes

• Reactive power injections at the nodes
[46]

µPMU or D-PMU
• Voltage phasors at the nodes

• Branch current phasors
[47]

Pseudo measurements

Buses with no measurement devices but

active and reactive power estimated from

statistical assumptions and historical data

[48]

Virtual measurements
Buses with high certainty of no active and

reactive power
[49]

5. State estimation algorithm

The process of distribution system state estimation is quite like transmission system state

estimation. It involves the estimation of the state of the grid in terms of nodal voltages from

measurements at various point in the network. The measurements collected are vulnerable to device

errors, communication error, and deliberate attack by intruders. Therefore, it is expedient that the

estimation be robust and immune to internal and external disturbances. The measurement model,

which shows the connection between measured variables and state variables can be generically

expressed as

z = h(x) + e (5)

where z and x are the measurements and state vector respectively. The function h (·) maps the state

vector space to the measurement space. Considering the complexity of the network, it is usually a

nonlinear relationship. However, it could be reduced to a linear affine transformation if linearization is

done within the region of the solution space. The errors in the measurements are denoted as e with

the assumption that they have zero means and are uncorrelated which is not absolutely true in some

scenarios. Mathematically, this assumption can be expressed below in (6) and (7) as

E[ej] = 0, ∀j ∈ M (6)

E[ejek] = 0, ∀j 6= k ∈ M (7)

where M is the number of measurements available for the estimation. The corresponding covariance

matrix is then ultimately reduced to a diagonal matrix as

Σ = E[eeT ] = diag(σ2
j ), ∀j ∈ M (8)

where σ is the standard deviation of the measurement variable whose value gives insight into the

accuracy of the measurement. Hence, the state estimation algorithm aims to determine the set of state

variables that uniquely minimizes the deviation between the measurements and the hypothesized

measurement models. The following subsections highlight the requirements and common methods

used for the state estimation problem applicable to the distribution system.
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5.1. DSSE Requirements

DSSE have many applications in the operations of power systems. Each application has different

specifications and requirements the DSSE must fulfil. The basic requirements are time frame,

computational efficiency, accuracy, and robustness [50].

5.1.1. Time frame

This requirement is about the validity of the estimated states in a specified time window. In other

words, how often do we need to update the estimated states? This can be further classified as offline

and online. In the offline case, the monitoring process and the state estimation process do not need

to run in tandem with real-time operations [51]. This process is sometimes referred to as static state

estimation. As for the online case, the state estimates are updated dynamically as measurements are

received synchronously or asynchronously [52]. Another issue to consider is the difference in reporting

rates and latency of measurement devices in the field for estimation. For instance, the number of

measurements collected from traditional measurement devices per second is much less than that

of phasor measurement units (PMU). Since there are different time windows, so the DSSE must be

designed in such a way that it takes account of these hybrid measurement sampling rates for accurate

estimation [53].

5.1.2. Accuracy and computational efficiency

Many of the power system operations dependent on state estimations require that the output of

the estimator be significantly accurate and close to the real states of the system. The accuracy of the

estimator can inherently be compromised in the algorithm, measurements, and network topology [54].

Accuracy is used to quantify how confident we are about the result of the estimator based on some

evaluation metrics. It could be point estimates with less information about the confidence level of the

result or probabilistic estimates where the information of the confidence interval of the estimate can be

inferred from the probability distribution of the result [55]. Another source of uncertainty that impacts

the DSSE is the assumption of fixed accuracy for the measurement devices and other unavailable

indirect measurements like pseudo-measurements. Moreover, the assumption that measurements are

uncorrelated is not absolutely true and in instances where we have correlated measurements from

different devices, the accuracy of the SE will be affected [56]. Moreso, the DSSE should take into

consideration the uncertainties in network parameters and sudden change in network topology as

they are very crucial in the estimation process [57,58]. Moreover, each of the power system operations

have different time of operations. Therefore, the DSSE must be fast and efficient computationally in

relation to its further application in the power system.

5.1.3. Robustness

The robustness requirement is needed to guarantee quality estimator result in the situation

of deliberate or accidental measurement data degradation. This decrease in the quality of the

estimation could be due to faulty measurement devices, stealthy attack, imperfect modelling or

network uncertainties in terms of parameters and topologies. Therefore, DSSE like the TSSE, are

usually complemented with external modules with the purpose of detecting bad data and topology

processing [21,59].

5.2. Model-based state estimation

5.2.1. Weighted Least Square (WLS)

The idea of using the weighted least square (WLS) approach was initially applied to the TSSE

problem. Moreover, the same approach can be applied to the DSSE problem with the same issues

inherent in this approach. The equation that characterize the WLS approach is
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x̂ := arg min
x

‖z − h(x)‖2
W = arg min

x
J(x) (9)

where W = Σ−1 is the inverse covariance matrix defined in (8). The objective function in (9) is nonlinear

and does not have a closed-form solution [60]. To solve this problem with the obvious nonlinearity, the

Gauss-Newton iterative approach is used to solve the optimization problem. The solution algorithm to

solve this problem is detailed explicitly in [61] and depicted pictorially in Figure 3.

Start

Input

Intialization
x = x0, k = 1

Compute
Jacobian Matrix

H (x (k)) = ∂J
∂x(k)

Compute Gain Matrix

G (k) = H (x (k))T WH (x (k))

Compute State Increment
△x (k) =

G (k)−1 H (x (k))T W (z − h (x (k)))

max (|△x (k)|) < ε

Output

Stop

z

Update
x (k + 1) = x (k) +△x (k)

k = k + 1

no

yes

Figure 3. A simplified iterative Gauss-Newton solution algorithm for DSSE.
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5.2.2. Equality-constrained WLS

One of the issues associated with the WLS approach both for the Gauss-Newton iterative method

and the linearized counterpart is the problem of accuracy associated with the zero injection buses.

The measurements at these buses are referred to as virtual measurements and are allotted very high

accuracy weights in the W matrix and pose an ill-conditioning problem in the iterative Gauss-Newton

method. A way around this ill-conditioning issue is to set aside these virtual measurements as equality

constraints alongside (9) as follow

hV(x) = 0 (10)

where hV(x) is the measurement function related to the zero-injection buses. Then (9) and (10) can

then be solved using the Lagrangian multiplier method [62,63].

5.2.3. Augmented Matrix WLS

Another approach to subdue the numerical ill-conditioning problem associated with the iterative

Gauss-Newton is to use the augmented matrix approach. Similar to the equality-constrained WLS,

the improvement is to adopt the measurement residual as an additional variable [64]. This will

eventually lead to additional equality constraints which can also be included in the Lagrangian

multiplier approach. The equality constraints can be expressed in (11) below as

r − z + h(x) = 0 (11)

where r is the measurement residual vector.

5.3. State vector selection

The choice of state variables plays an important role in the complexity of the SE algorithm which

is usually determined by the type of network of interest. In the TSSE, due to its highly meshed topology

and low R/X ratio, the voltage magnitudes and angles form a natural state vector in the SE [65]. They

have fast convergence, and linear formulation possibility, and are computationally efficient when using

branch currents as measurements instead of power flow due to the constant Jacobian matrix. In the case

of DSSE, some of its demerits are restricted to only radial topology, state and impedance-dependent

Jacobian matrix, and the linear formulation is based on small angle differences. Subsequently, some of

the disadvantages of using the polar coordinate formulation can be avoided by using the voltage-based

rectangular coordinate formulation. As for the current-based rectangular coordinate formulations,

they are the most popular due to their efficiency in computation and ease of adaptability with radial

topology. A review of the benefits and demerits of different types of choice of state variables are well

documented in [66].

5.4. Model-based robust DSSE methodologies

The aforementioned model-based WLS algorithm and its variant do not come with the additional

benefit of robustness. Therefore, aside from the external module that performs the function of bad

data detection and recognition, it is possible to have model-based algorithms that are inherently robust

to bad data. A DSSE is statistically robust if the compromised set of redundant measurements does

not have an appreciable effect on the estimation results. One of the popular model-based robust

techniques is the least absolute value (LAV) method. These robust estimators are robust to outliers in

measurement data, however, they generally have the drawback of high computational cost [67,68].

The drawback will be more pronounced in DSSE in terms of accuracy and compute cost due to a high

number of nodes and leverage measurements. Another robust approach proposed for TSSE, however,

has not yet been applied to the DSSE to ascertain its universal robustness is the least-trimmed absolute

value estimator (LTAV) which was reported to have low computational cost compared to the LAV [69].
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In order to mitigate the high computational cost of LAV, a robust approach using weighted LAV as the

objective function and second-order cone constraints were proposed in [70]. Other robust estimators

are described in Table 3 in terms of their residual objective functions for comparative analysis.

Table 3. Robust estimators used in state estimation.

Method Objective Merits Demerits

LMR [71]
Immune to bad data Tolerance selection

min ∑
N
i ki Robust against

multiple
non-interacting bad

data

LMS [72]
Robust to bad data Slow convergence

min max1≤i≤h r2
[i] High compute cost

LTS [73,74]
Robust to bad data High compute cost

min ∑
h
i=1 r2

[i] Vulnerable to outliers

LAV [75]
Robust to bad data High compute cost

min ∑
M
i |ri| Low sensitivity to line

parameter uncertainty
Vulnerable to leverage

data

LTAV [69,73]
Robust to bad data High compute cost

min ∑
h
i=1

∣

∣

∣
r[i]

∣

∣

∣
Less vulnerable to

leverage data points

5.5. Approximated DSSE

As stated earlier, the traditional state estimation problem for DSSE are nonlinear and nonconvex

due. This nonlinearity usually emanates from the choice of state variables and the type of

measurement devices that dictates the measurement functions. To get around the nonlinearity using

the Gauss-Newton approach, many methods other methods have been proposed based on simplicity

and computational efficiency.

5.5.1. Linearized DSSE

Some applications that include DSSE in their framework can be made effective and efficient by

modelling the DSSE in a linearized form to avoid the Gauss-Newton iteration approach. A very good

example of the application of linearized DSSE is the problem of PMU placement in the distribution

network [76]. The approximation procedure has been used for TSSE with the assumption that all

the measurements are synchronized phasor measurements. However, the possibility of homogenous

measurements from PMUs alone is still not feasible yet due to the high cost of PMUs. With PMU,

the measurement function can be broken and separated into real and imaginary parts and the state

variables in the nonlinear terms can be further assumed to be constrained within a minimal range

to relax the nonlinearity . Another source of nonlinearity is the power and current injections at the

nodes or pseudo-measurements. These measurements for model-based algorithms are needed for

observability criteria. A popular way to resolve this issue to use complex linearization via Taylor’s

approximation of the nonlinear terms to eventually transform the model to a non-iterative procedure

[77,78]. For a linearized measurement function, the closed-form solution from Linear Algebra is usually

expressed below as

h(x) = Hx (12)
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x̂ =
[

HTWH
]−1

HTWz (13)

where H is the linear transformation from the state variable space to the measurement space. The

closed-form solution in (13) can be different depending on whether the H matrix is full rank or not.

Another popular approach that yields a linear measurement model is to assume a small angle deviation

while minimizing the residual objective function. With this assumption, the whole formulation renders

itself to linear manipulation. Moreover, the main merits of these linear approximation approaches are

that they require less computing effort, are applicable to meshed topologies, and overcome the problem

of ill-conditioning peculiar to the iterative approaches [79]. Furthermore, an implicit linearization

approach to the power flow problem in the distribution system that represents the power flow as

a function of the nodal voltages and the node power injections was proposed in [80]. This linear

representation is sparse, efficient computationally, and retains the power flow problem structure. This

linear representation has been applied to real-time DSSE application as proposed in [52].

5.5.2. Convexified DSSE

A more insightful approximation approach to solve the nonlinear state estimation problem is to

adopt the convex optimization approach. The power flow equations and optimal flow are nonlinear

and a lot of work has been done to convexify these NP-hard problems [81,82]. Similarly, this approach

has also been extended to the nonconvex state estimation problem especially in the transmission system

network [83]. One approach to the convex optimization is the second-order cone approximation. This

involves transforming the nonlinear state estimation problem to a second-order cone program, that

is, a linear objective or regularizers with conic and linear constraints. These approach have been

proven to be better than the conventional WLS DSSE problem in terms convergence and efficiency

[84]. Another method of convex optimization is the semi-definite program (SDP) relaxation [85]. It

involves formulating the DSSE as SDP having a rank-contrained positive semi-definite matrix as a

decision variable. The main drawback of this approach is that the constrained matrix should have

be rank-one for optimality to be reached. In order to achieve the rank-one contraint, [86] proposed a

two-step approach involving rank-reduction alongside convex iteration. A scalable approach to the

previously mentioned is also proposed in [87].

5.6. Probabilistic DSSE

The idea of probabilistic DSSE was to avoid the main problems associated with model-based WLS

algorithms which are not usually valid in distribution system networks: convergence issues, Gaussian

error assumptions, and pseudo-measurements usage [88]. Moreover, the WLS approach is a specific

form of the maximum likelihood estimator (MLE) where the measurement distributions are drawn

from a Gaussian probability density function. The MLE can be succinctly expressed in (14) below as

maximize ∏
j∈M

pj(zj) (14)

where pj(zj) is the pdf of the ith measurement in the set of all the possible M measurements including

real and pseudo-measurements. The MLE can then be solved with an appropriate pdf that captures

the reality of both the real and pseudo-measurements. There is no best non-gaussian distribution

for this particular task. However, there are some non-gaussian pdfs that have been successfully

employed for this task and have proven to be more accurate than the traditional WLS with Gaussian

distributions. However, the price to pay is the higher computational effort. Nevertheless, these

methods still have reasonable computational time acceptable for practical implementation. Some of

these distributions are beta, polynomial, GMM, Gaussian equivalent (GE), and Gaussian approximation

(GA) as comprehensively reported and demonstrated in [89].
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5.7. Compressive sensing DSSE

The unobservable property associated with the distribution network has motivated the search for

applicable novel methods outside the domain of the power system. One such method is the idea of

compressive sensing (CS) in the area of signal processing [90,91]. The idea of CS is the effort of finding

the sparsest solution to the set of under-determined linear equations [92]. Since this goal is similar

to the problem of unobservable DSSE, CS fits in naturally among the possible solution to the DSSE.

It uses the correlation between states and measurements to form a sparsified relationship which can

then be further exploited to estimate the states. The particular CS method to be employed depends

on whether the correlation is temporal or spatiotemporal. The spatial approaches, 1-D and Matrix

completion (MC) perform the DSSE at a given time instant [93,94]. As for the spatial-temporal methods,

2D-CS and Tensor completion (TC) are exploited both in time and space [95,96]. Comparatively, the

spatial domain, the 1-D CS performs better than the MC while in the spatial-temporal domain, the TC

approach performs better in accuracy and complexity as detailed in [97].

6. Topology and parameter estimation

DSSE can be guaranteed to be accurate for some provided the information about the topology and

the network parameters are accurate and do not change significantly with time. This assumption about

the immutability of the topology and parameters could have adverse effect on the state estimation

result if eventually the topology and parameters are changed due to some unavoidable reasons. These

errors in the topology and parameters can affect other important distribution system operations that

depends on the accuracy of the DSSE and sometimes correct measurements could be identified as bad

data [4]. Many researchers are expending effort to address the issue of topological change and network

parameter errors in DSSE. In [98], without information of voltage angles from PMUs, a data-driven

regression approach in a two-step procedure: a preliminary topology and line parameter estimation

and a correction step to recover the voltage angle and the correct topology. Conversely, exploiting

available measurements from smart meters, a multiple regression data driven-approach was used to

estimate the topology and line parameters of the distribution network of interest [99]. Addressing

the issue of ignoring measurement error state change in historical measurements, [100] proposed a

joint topology and line parameter estimation using the expectation maximization (EM) algorithm for

hidden states in measurement recovery. Similarly, an online learning approach based on recursive

identification algorithm was proposed to estimate topology and line parameters as captured by the

estimated network admittance matrix [101].

7. Data-driven state estimation

The peculiarities and structure of the distribution system network make distribution state

estimation difficult. With many node points of, under-determinate nature due to very low

measurements, line parameter uncertainties, and load imbalance the DSSE becomes computationally

intensive. However, with the advent of potential distribution system measurements devices like PMU,

AMI, and smart meters, researchers are leveraging on a huge amount of data from these variant devices

to overcome the issues associated with DSSE using innovative machine and deep learning techniques

[102].

To overcome some of the aforementioned problems with DSSE, [103] proposed a data-driven DSSE

capable of real-time monitoring, and distributed computing based on artificial neural network (ANN)

and measurement sparsity to provide an accurate estimate even with the presence of non-Gaussian

noise. To address the issue of convergence due to the non-convex nature of the DSSE optimization

formulation, a hybrid machine learning and conventional optimization approach was used to address

the issue initialization of the state variables which is very crucial to the accuracy of the algorithm

[104,105]. Apart from the data-driven approach to DSSE, physics-aware deep learning networks are

now being applied with data-driven model to learn complex functions associated with the structure of
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the network [106]. In [107], a recurrent neural network (RNN) and prox-linear net-based estimator was

proposed for real-time state estimation base on pseudo-measurements. Focusing on the observability

issue in distribution systems, a Bayesian deep neural network DSSE capable of bad data detection

and noise filtering was proposed in [15] for an unobservable distribution system network. Similarly, a

Bayesian approach to DSSE that takes into account the possible non-Gaussian nature and uncertainties

of pseudo-measurements was proposed in [55]. A fully data-driven approach using generative

adversarial networks (GAN) that addresses the issue of missing data without dependency on PMU

observability and network topologies was introduced in [108] with the merit of low computational

complexity. A diagrammatic illustration of how data-driven methods fit in the concept of DSSE is

depicted in Figure 4.

Figure 4. Distribution system estimation algorithm overview.

8. Recommendtion and future work

With the rising penetration of distributed energy resources, state estimation has become an integral

and essential tool in the monitoring and control operations of distribution systems. Moreover, the

deployment of different heterogeneous measurement devices in the field has further accentuated the

focus and innovative improvement in the DSSE. However, conventional state estimation methods have

difficulty fulfilling the observability conditions often associated with distribution systems because of a

lack of sufficient metering devices. To address these DSSE limitations, researchers are now developing

DSSE methods that are based on a data-driven matrix and tensor completion supplemented with power

flow constraints to determine the operating states of the whole system. These techniques are well suited

to distribution systems that exhibit unobservability and where standard weighted least-squares-based

methods fail to operate and can easily accommodate any network variables measured across the

network. Additionally, these approaches can be deterministic or probabilistic as the case may be
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[109,110]. While implementing these methods, the issue of accuracy, time complexity, and robustness

must be satisfied to be adopted for practical purposes.

Grid conditions vary both spatially and temporally due to the variability of renewable generation.

To address the issue of high penetrations of renewables especially in the distribution network, state

forecasting is essential for grid operators and utilities to dispatch controllable energy resources, prepare

for changing network conditions, and ultimately minimize operating costs. Another interesting

area of research in this regard is to develop machine and deep learning-based techniques capable of

short-term forecasting of system states by using decision tree-based approaches, ensemble learning, and

specialized neural networks. The grid operators can use the forecasted states for control coordination

and prioritization. Therefore, the resilience, reliability, and economic efficiency of the grid can be

improved and enhanced.

9. Conclusions

In this work, we have explored the overview of the critical aspects of DSSE ranging from

the conventional model-based approaches to the data-driven methods. We highlighted the main

requirement any DSSE algorithm must have in terms of time, accuracy, and robustness. Due to

the lack of sufficient measurements to guarantee observability in the DSSE, the model-based DSSE

usually have their accuracy compromised except complemented with pseudo-measurements extracted

from historical records. Another point of interest is how these pseudo-measurements are generated

which is still an area of active research. Furthermore, the complexity of the DSSE models in terms of

non-linearity can be relaxed in various ways: using phasor measurements, choice of the state vector,

linearization, and convexification. Another area gaining traction is the application of compressive

sensing to DSSE. This naturally has the advantage of working with sparse measurements which is

typical of distribution systems. Finally, with low observability and few measurements, the area of

matrix and tensor completion is being employed as a data-driven model-based approach to look into

the challenges of DSSE. Finally, since the distribution system states are envisaged to be changing

dynamically due to the presence of renewable energy resources, the idea of data-driven state forecasting

based on machine and deep learning methods is being explored for quick decision-making for critical

operations in the distribution system.
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