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Abstract: This article presents a review of the distribution system state estimation (DSSE) algorithms
from the model-based approach to the recent data-driven methodologies. The insufficient
measurements which result in low observability have motivated the need to shift from the
conventional algorithm to data-driven approaches that can successfully estimate states despite
the DSSE challenges. This article discusses the nonlinearity in the DSSE problem formulation and
how different model-based methods have been proposed to mitigate the problems of robustness,
ill-conditioning, and complexity. Moreover, approximate DSSE to obviate nonlinearity were
discussed: complex linearization, small angle approximation, convexification and compressed
sensing. Furthermore, probabilistic DSSE methods were also discussed in the need to quantify
the uncertainty associated with the state estimation results. Also, data-driven methods applicable
to DSSE, pseudo measurement generations, and topology identification were also discussed using
machine and deep learning methods. Lastly, a recent approach that employs a hybrid of model-based
and data-driven methods using matrix and tensor completion is surfacing because they work in a
low observable condition of the network and can estimate the states satisfactorily. With this review,
researchers can look further into developing and improving on the model-based data-driven methods
less susceptible to the barriers in conventional DSSE algorithms.

Keywords: distribution system state estimation; topology identification; pseudo-measurement;
complex linearization; matrix completion; tensor completion

1. Introduction

It is without no doubt that one of the main drivers of the next-generation smart grid will be
the huge amount of information made possible by new and legacy measurement infrastructures [1].
This necessitates that the corresponding energy management system (EMS) and control system needs
guaranteed reliability and accuracy of salient information about the operating state of the grid [2].
Moreover, this information can be acquired in different ways, and they potentially contain different
types of data. As far as the smart grid is concerned, the amount of information that emanates from the
grid is huge due to the deployment of several measurement devices at various levels and nodes in the
power system. This implies that the conventional transmission system state estimation (TSSE) and the
emerging distribution system state estimation (DSSE) need to be adapted to the changing information
exchange within and outside the smart distribution network [3].

Using data to predict or estimate the operating conditions of the grid across different operating
levels require accurate state estimation algorithms (SE) [4]. The idea of state estimation in a power
system is the recovery of the underlying state of the power system from noisy measurements. In other
words, it is a data processing procedure to transform redundant meter readings taken from virtually
all the parts of the power system of interest with other relevant information to ascertain the voltage
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profile of the network [5]. These state estimation algorithms are originally conceived for transmission
system networks and there have considerable research efforts done in this area to further development
[6]. The TSSE proceeds with the assumption of balanced positive sequence mesh operation, online tap
changer position, breakers’ state, and a host of analogue measurements that include line flows, bus
injections, voltage, and phasor measurements as potential measurements to be fed to the algorithms
and the bus voltages and phasors are considered as the state variables to the extracted for further
decision-making processes [7].

Like the TSSE, distribution system state estimation programs can be used to ascertain the state and
health of the power distribution networks. However, the wide use of state estimation in distribution
is not fully adopted, unlike the TSSE. The obvious reasons are the dissimilarities between the two
electricity value chains in terms of metering infrastructure investment, structure, operation, and
modelling [8]. Moreover, the present real-time measurement by the distribution automation systems
(DAS) positioned at the substation and some feeders can be used for estimation, however, the estimation
process becomes challenging due paucity of real-time measurements which in turn results in low
observability of the network [9,10]. Also, distribution system networks are multiphase feeders that are
mostly radial or sometimes weakly meshed. The loads connected are mostly single and V-shape rather
than a uniform three-phase load which makes the system highly unbalanced and challenging for state
estimation. In addition, due to short connecting lines and low voltage levels, the R/X ratio of the
distribution system is higher than that of the transmission network. This high R/X negatively impact
the convergence of SE algorithms like the Newton-Raphson approach [11]. Furthermore, real-valued
measurement and phasor measurements from the DAS can make the estimation measurement functions
complex or linear depending on its composition. The former consists of real and reactive power line
flow and bus voltage magnitudes. These measurements as seen in the transmission network are
non-linear functions of the state variable vectors [12]. As for the latter i.e. DSSE, the complex bus
voltages and line currents measurements from PMU or D-PMU can be represented as a linear function
of the state variables [13,14]. Another issue with DSSE is the assumption that the line parameters and
network topology remain constant and known accurately. Although, this is not always the case and
the DSSE model has large uncertainty in the estimation results.

Since one of the major bottlenecks of the DSSE is the lack of sufficient measurements needed for
required observability, it is customary to include pseudo-measurements. These measurements are
estimated using historical data on energy consumption and renewable energy resources like wind
and solar to forecast demand and generations at respective points in the network. However, these
pseudo-measurements are less accurate than real-time measurements and they usually have a large
covariance. Hence, robust state estimations are usually employed to account for this significant noise
in the estimated pseudo-measurements [15,16].

This article is partitioned based on the flow in Figure 1. Section 2 gives a detailed description of
the block diagram in Figure 1 showing how different DSSE modules are related and interconnected.
Furthermore, Section 3 analyses the fundamental nonlinear power flow that characterizes a distribution
feeder and the associated load model. Also, Section 4 enumerates different types of measurements in
the distribution network and a brief emphasis on pseudo-measurement generation methods. In Section
5, DSSE algorithms were discussed based on robustness, approximations, and sparsity. Sections 6
and 7 talk about topology identification and data-driven DSSE methods based on machine and deep
learning approaches respectively. Furthermore, future research direction and conclusions are provided
in Sections 8 and 9.

2. State estimation

It is with no doubt that state estimation (SE) forms the backbone of the energy management
systems (EMS) in the distribution system. The information gathered from the SE is crucial to some
critical power system operation tasks such as optimal power flow, voltage control, contingency analysis,
congestion management, fault management etc [17]. However, the quality and accuracy of the SE
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results are affected by measurement unavailability and uncertainties. These two issues could manifest
as bad or stealthy data attacks, communication failures or telemetry errors. Therefore, the SE process
must be equipped with ad-hoc pre-processing and post-processing functional tools that clear erroneous
data, deal with measurement unavailability, and filters out any deliberate or random errors that the
system is exposed to for security and quality purpose [18].

Figure 1 depicts a typical state estimation process applicable to both TSSE and DSSE. The whole
arrangement ensures that the whole process is robust and reliable before being deployed to the EMS.
It basically starts by gathering all information related to the network and processes the topology of
the current system with information from network data and virtual measurements like the breakers
and switches. After this is achieved, another pre-processing stage is activated; observability analysis.
This state gathers all available real-time measurements and assesses the observability of the entire
network to check redundancy or deficiency. If the network is unobservable, pseudo-measurements can
be generated by classical or machine learning approach from historical data available to the operator
in the data bank. This approach can also be referred to as forecast-aided state estimation (FASE) in
dynamic state estimation (DSE) [19,20]. Next is the state estimation algorithm which is the core of
the DSSE. It harnesses the information in the data bank to provide the state of the system. The issue
of bad data detection and identification can be incorporated into the SE algorithm or implemented
as a preprocessing or post-processing process. This process rejects off-the-mark measurements or
attacks while implementing the SE or before running it [21,22]. Lastly, the SE results are further
cross-checked to analyze possible errors in the assumed network topology. These processes go on and
keep readjusting and refining until a satisfied forward pass is suitable for deployment. The results are
then further utilized by the DSM to make informed decisions and operations on the network.

[ Observability Analysis ]
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Figure 1. Typical state estimation flow process.

3. Fundamental power flow equation

Figure 2 shows a simplified model of a feeder arm of an arbitrary distribution system which can
be used to represent both low voltage (LV) and medium voltage (MV) feeders. These feeder arms
can be single, double, or three-phase lines with a neutral line in the case of LV. Also, the loads can
be connected in the same fashion which in most cases leads to unbalanced loads in the lines [23].
A more detailed model will include transformers, regulators and other essential components of the
distribution network. However, extremely detailed models render all other operational computations
on the distribution system impractical for real-time analyses. Also, the line parameters, that is the
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impedance are in a 3X3 matrix which includes self and mutual impedances or reduced form in the
case of a three-phase four-wire system [24]. Table 1 gives a quick overview of the main differences
between transmission and distribution system networks.

Figure 2. An arbitrary simplified model of a distribution system feeder.

Table 1. Principal differences between a transmission network and a distribution network.

Characteristics Transmission Network Distribution Network
Topology Meshed Radial or weakly meshed
Three-phase system Balanced Mostly unbalanced

Main measurement type Real measurements Pseudo-measurements

R/ X ratio Low High

Number of nodes Medium/Low High

Monitoring Redundant measurement devices Few measurement devices
Types of load Concentrated loads Distributed loads

Before any analysis of the network, it is important to get the encoding of the whole network
into a single matrix called the incidence matrix (A). Since most of the power networks can be easily
represented as graph networks in terms of nodes (N) and edges (E), the incidence matrix is an encoding
of the connections between nodes and branches which is necessary to quickly get the admittance
matrix (Yp,s) from the line impedance value. The fundamental non-linear equations that characterize
the active and reactive power flow in an AC network are expressed below

Py = |Vi| |Vj| (Gijcos(8; — ;) + Byjsin(6; — 6;)) — Gy |V; @
Ql] = |Vz‘ |V]| (Gl] Sll’l(Gl — 6]) — Bz] COS(GZ' — 9])) + Bl] |Vl|2 (2)

where P;; and Q;; are the line active and reactive power flows from node i to node j. Also, the voltage
magnitude and angle at each bus are denoted by [V;| and 6; respectively while G;; and B;; are line
parameters that be extracted from the bus admittance matrix.
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3.1. Load model

The nature of loads in the distribution system is quite different from that of the transmission. In
transmission system load flow, demands are usually represented as a constant power load. However,
at the distribution level, the load model usually has the constant impedance, current, and power (ZIP)
model. Therefore, it is imperative to model the load according to the type of demand specified at the
nodes to capture the power scenario [25]. The net power injection at a node with both generation and
load can be expressed in the complex domain as

(Sgk = Sar)™ = Vi ) ionVin, Yk € N 3)
meN
The relationship between the injection currents and the voltages for all nodes except the slack
node can be represented in the following ZIP model from the specified complex power as

*
Spj

ij = 5V; + ST+ o3 4)
]

4. Measurements in DSSE

In the traditional distribution system, the only available real-time measurements are the nodal
voltage at the substations, power supplied to the feeders downstream, and information about switch
status in some designated locations [26]. These limited number of measurements initially make DSSE
unattractive and impractical in power systems operations due to little or no redundancy like the
transmission network. With the concept of a smart grid being more disruptive in the distribution
system, different measurement devices are being deployed at different levels and locations to gather
information needed for the smart operation of the system. Summarily, the types of measurements
available for the DSSE utilization can be categorized into three main types: real-time measurements,
pseudo-measurements, and virtual measurements [27]. These measurements are necessary to bypass
the problem of observability in the DSSE algorithm.

4.1. Real-time data for DSSE

Real-time measurements as briefly described above can be synchronous or asynchronous
measurements. The synchronous measurements are usually the phasor measurement units
(PMU). They simultaneously sample current and voltage waveforms at different points in the
power system using the same synchronizing signal via the global positioning system (GPS) [28].
The non-synchronized measurements are the legacy measurements used by SCADA and other
measurements gathered by smart meters and they require a dedicated synchronization operator
to synchronize them to the current time reference [29].

4.1.1. PMU in DSSE

Phasor measurement units (PMUs) are gradually becoming a choice for power system estimation
and monitoring. Their deployment and applications in the transmission system network are well
studied. A power system with only PMUs makes the estimation less computationally intensive and
reflective of the real-time dynamics of the system. However, due to cost and other design issues, PMUs
have not been fully deployed for power system estimation. Instead, the measurements needed for the
estimation are usually a hybrid mixture of PMUs and other non-synchronized measurement devices
and mediums like SCADA and RTU [30]. With the constraints placed on the number of PMUs that
can be placed in the transmission network, it is often required that the PMUs are strategically placed
at locations that will ensure system observability, accuracy in state estimation results and optimal
utilization of resources [31,32]. Since present distribution systems are gradually evolving to the active
distribution network, the need for devices suitable and tailored for distribution system monitoring
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has become imperative. So, the deployment of the conventional PMU device at various nodes is not
well suited for various applications in the distribution system. Therefore, D-PMU or micro-PMUs with
other devices like smart meters are usually employed for these tasks [33].

4.1.2. Smart meters

Smart meters are a form of demand response strategy that enables the utility to provide
comprehensive details of the user’s energy usage and at the same time give them the liberty to
manage their energy consumption. That is there exists a two-way communication between the utility
and the consumers. They are essential components in the smart grid framework in the distribution
system [34]. Some of the basic information provided by smart meters include cumulative energy
(kWh) usage, peak demand active (kW) and reactive (kVar) power. Comprehensive information and
applications of smart meters in relation to DSSE are well documented in [35].

4.1.3. Pseudo meaurements

The paucity of sufficient real-time measurements in the distribution network necessitates the
inclusion of pseudo measurements to fulfil the observability criteria needed by the DSSE. That is, the
value of a node injection must be determined without it. If the lack of measurement at a particular
node is a result of telemetry failure, the operator could easily infer the injection at that node due
to knowledge of the system. This is often modelled as Gaussian distribution with mean based on
transformer ratings or typical customer load profiles and estimated standard deviation [36]. However,
the assumption of measurement distribution to Gaussian does not always hold [37].

Aside from the basic method of generating pseudo measurements as mentioned above, other
methodical and insightful approaches have been reported in a number of literature. Since injections at
nodes in different locations in the network have different probability density functions not necessarily
normal, a Gaussian mixture model (GMM) was proposed to encompass these distributions to generate
the measurements needed for the DSSE algorithm [38]. Similarly, an artificial neural network
(ANN) capable of generating pseudo measurements with error statistics is used in conjunction
with GMM for decomposition is also proposed in [39]. Instead of GMM decomposition, ANN with
Fourier decomposition was introduced in [40]. Aside from using ANN for the pseudo measurement
production,a robust machine learning approach, gradient boosting tree (GBT), is also possible [41].
Also, a computationally efficient game-theory approach for a pseudo-measurement generator was
proposed in [42].

4.1.4. Virtual measurements

Virtual measurements are information the DMS have about the system with full certainty. They
include knowledge about closed and opened switching devices and node locations with no demand
and generation. Technically, this includes zero voltage drop, zero power flow, zero bus injections, and
even voltage information about the neutral line in a multi-phase network [43]. They are very essential
data that help in augmenting the available information for the DSSE. However, they pose the problem
of ill-conditioning in the weighted least square (WLS) algorithm if they are not treated separately in
the optimization algorithm [44]. A brief discussion of how virtual measurements can be inculcated in
the conventional DSSE algorithm is discussed in the next section.
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Table 2. Different types DSSE measurement sources.

Measurement Type Measurment Variable Reference

o Node voltage magnitude
Non-synschronized o Branch current magnitude [45]
o Complex power flow measurements

o Active power injections at the nodes
Smart meters . .
® Reactive power injections at the nodes

PMU or D-PMU o Voltage phasors at the nodes
" ® Branch current phasors

Buses with no measurement devices but
Pseudo measurements | active and reactive power estimated from | [48]
statistical assumptions and historical data

. Buses with high certainty of no active and
Virtual measurements .
reactive power

5. State estimation algorithm

The process of distribution system state estimation is quite like transmission system state
estimation. It involves the estimation of the state of the grid in terms of nodal voltages from
measurements at various point in the network. The measurements collected are vulnerable to device
errors, communication error, and deliberate attack by intruders. Therefore, it is expedient that the
estimation be robust and immune to internal and external disturbances. The measurement model,
which shows the connection between measured variables and state variables can be generically
expressed as

z="h(x)+e ©)

where z and x are the measurements and state vector respectively. The function / (-) maps the state
vector space to the measurement space. Considering the complexity of the network, it is usually a
nonlinear relationship. However, it could be reduced to a linear affine transformation if linearization is
done within the region of the solution space. The errors in the measurements are denoted as e with
the assumption that they have zero means and are uncorrelated which is not absolutely true in some
scenarios. Mathematically, this assumption can be expressed below in (6) and (7) as

Elej] =0, Vj e M (6)

Elejee] =0, Vi ke M @)

where M is the number of measurements available for the estimation. The corresponding covariance
matrix is then ultimately reduced to a diagonal matrix as

% = Elee] = diag(c7), Vj € M 8)

where ¢ is the standard deviation of the measurement variable whose value gives insight into the
accuracy of the measurement. Hence, the state estimation algorithm aims to determine the set of state
variables that uniquely minimizes the deviation between the measurements and the hypothesized
measurement models. The following subsections highlight the requirements and common methods
used for the state estimation problem applicable to the distribution system.
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5.1. DSSE Requirements

DSSE have many applications in the operations of power systems. Each application has different
specifications and requirements the DSSE must fulfil. The basic requirements are time frame,
computational efficiency, accuracy, and robustness [50].

5.1.1. Time frame

This requirement is about the validity of the estimated states in a specified time window. In other
words, how often do we need to update the estimated states? This can be further classified as offline
and online. In the offline case, the monitoring process and the state estimation process do not need
to run in tandem with real-time operations [51]. This process is sometimes referred to as static state
estimation. As for the online case, the state estimates are updated dynamically as measurements are
received synchronously or asynchronously [52]. Another issue to consider is the difference in reporting
rates and latency of measurement devices in the field for estimation. For instance, the number of
measurements collected from traditional measurement devices per second is much less than that
of phasor measurement units (PMU). Since there are different time windows, so the DSSE must be
designed in such a way that it takes account of these hybrid measurement sampling rates for accurate
estimation [53].

5.1.2. Accuracy and computational efficiency

Many of the power system operations dependent on state estimations require that the output of
the estimator be significantly accurate and close to the real states of the system. The accuracy of the
estimator can inherently be compromised in the algorithm, measurements, and network topology [54].
Accuracy is used to quantify how confident we are about the result of the estimator based on some
evaluation metrics. It could be point estimates with less information about the confidence level of the
result or probabilistic estimates where the information of the confidence interval of the estimate can be
inferred from the probability distribution of the result [55]. Another source of uncertainty that impacts
the DSSE is the assumption of fixed accuracy for the measurement devices and other unavailable
indirect measurements like pseudo-measurements. Moreover, the assumption that measurements are
uncorrelated is not absolutely true and in instances where we have correlated measurements from
different devices, the accuracy of the SE will be affected [56]. Moreso, the DSSE should take into
consideration the uncertainties in network parameters and sudden change in network topology as
they are very crucial in the estimation process [57,58]. Moreover, each of the power system operations
have different time of operations. Therefore, the DSSE must be fast and efficient computationally in
relation to its further application in the power system.

5.1.3. Robustness

The robustness requirement is needed to guarantee quality estimator result in the situation
of deliberate or accidental measurement data degradation. This decrease in the quality of the
estimation could be due to faulty measurement devices, stealthy attack, imperfect modelling or
network uncertainties in terms of parameters and topologies. Therefore, DSSE like the TSSE, are
usually complemented with external modules with the purpose of detecting bad data and topology
processing [21,59].

5.2. Model-based state estimation

5.2.1. Weighted Least Square (WLS)

The idea of using the weighted least square (WLS) approach was initially applied to the TSSE
problem. Moreover, the same approach can be applied to the DSSE problem with the same issues
inherent in this approach. The equation that characterize the WLS approach is


https://doi.org/10.20944/preprints202304.1203.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2023 doi:10.20944/preprints202304.1203.v1

9 of 20

%:= argmin |z - h(x)|[3y = argminJ(x) 9)

where W = £~ 1 is the inverse covariance matrix defined in (8). The objective function in (9) is nonlinear
and does not have a closed-form solution [60]. To solve this problem with the obvious nonlinearity, the
Gauss-Newton iterative approach is used to solve the optimization problem. The solution algorithm to
solve this problem is detailed explicitly in [61] and depicted pictorially in Figure 3.

@—/ Input /

Intialization
x=xYk=1

Compute
Jacobian Matrix

H(x (k) = 55

Compute Gain Matrix
G (k) = H (x (k)" WH (x (k))

Compute State Increment
Ax (k) =
G (k) H (x(k)" W(z —h(x(k)))

Update
x(k+1) = x (k) + Lx (k)
k = k+1

no

Figure 3. A simplified iterative Gauss-Newton solution algorithm for DSSE.
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5.2.2. Equality-constrained WLS

One of the issues associated with the WLS approach both for the Gauss-Newton iterative method
and the linearized counterpart is the problem of accuracy associated with the zero injection buses.
The measurements at these buses are referred to as virtual measurements and are allotted very high
accuracy weights in the W matrix and pose an ill-conditioning problem in the iterative Gauss-Newton
method. A way around this ill-conditioning issue is to set aside these virtual measurements as equality
constraints alongside (9) as follow

hy(x) =0 (10)

where hy(x) is the measurement function related to the zero-injection buses. Then (9) and (10) can
then be solved using the Lagrangian multiplier method [62,63].

5.2.3. Augmented Matrix WLS

Another approach to subdue the numerical ill-conditioning problem associated with the iterative
Gauss-Newton is to use the augmented matrix approach. Similar to the equality-constrained WLS,
the improvement is to adopt the measurement residual as an additional variable [64]. This will
eventually lead to additional equality constraints which can also be included in the Lagrangian
multiplier approach. The equality constraints can be expressed in (11) below as

r—z+h(x)=0 (11)
where r is the measurement residual vector.

5.3. State vector selection

The choice of state variables plays an important role in the complexity of the SE algorithm which
is usually determined by the type of network of interest. In the TSSE, due to its highly meshed topology
and low R/X ratio, the voltage magnitudes and angles form a natural state vector in the SE [65]. They
have fast convergence, and linear formulation possibility, and are computationally efficient when using
branch currents as measurements instead of power flow due to the constant Jacobian matrix. In the case
of DSSE, some of its demerits are restricted to only radial topology, state and impedance-dependent
Jacobian matrix, and the linear formulation is based on small angle differences. Subsequently, some of
the disadvantages of using the polar coordinate formulation can be avoided by using the voltage-based
rectangular coordinate formulation. As for the current-based rectangular coordinate formulations,
they are the most popular due to their efficiency in computation and ease of adaptability with radial
topology. A review of the benefits and demerits of different types of choice of state variables are well
documented in [66].

5.4. Model-based robust DSSE methodologies

The aforementioned model-based WLS algorithm and its variant do not come with the additional
benefit of robustness. Therefore, aside from the external module that performs the function of bad
data detection and recognition, it is possible to have model-based algorithms that are inherently robust
to bad data. A DSSE is statistically robust if the compromised set of redundant measurements does
not have an appreciable effect on the estimation results. One of the popular model-based robust
techniques is the least absolute value (LAV) method. These robust estimators are robust to outliers in
measurement data, however, they generally have the drawback of high computational cost [67,68].
The drawback will be more pronounced in DSSE in terms of accuracy and compute cost due to a high
number of nodes and leverage measurements. Another robust approach proposed for TSSE, however,
has not yet been applied to the DSSE to ascertain its universal robustness is the least-trimmed absolute
value estimator (LTAV) which was reported to have low computational cost compared to the LAV [69].
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In order to mitigate the high computational cost of LAV, a robust approach using weighted LAV as the
objective function and second-order cone constraints were proposed in [70]. Other robust estimators
are described in Table 3 in terms of their residual objective functions for comparative analysis.

Table 3. Robust estimators used in state estimation.

Method Objective Merits Demerits
Immune to bad data Tolerance selection
LMR [71] min Zf\] k; Robust against
multiple
non-interacting bad
data
Robust to bad data Slow convergence
LMS [72] min maxj<i<y rﬁ] High compute cost
Robust to bad data High compute cost
LTS [73,74] min Y, r[zi] Vulnerable to outliers
Robust to bad data High compute cost
LAV [75] min Y"M|r;| Low sensitivity to line Vulnerable to leverage
parameter uncertainty data
Robust to bad data High compute cost
LTAV [69,75] min Z?:l ‘r[i] Less vulnerable to

leverage data points

5.5. Approximated DSSE

As stated earlier, the traditional state estimation problem for DSSE are nonlinear and nonconvex
due. This nonlinearity usually emanates from the choice of state variables and the type of
measurement devices that dictates the measurement functions. To get around the nonlinearity using
the Gauss-Newton approach, many methods other methods have been proposed based on simplicity
and computational efficiency.

5.5.1. Linearized DSSE

Some applications that include DSSE in their framework can be made effective and efficient by
modelling the DSSE in a linearized form to avoid the Gauss-Newton iteration approach. A very good
example of the application of linearized DSSE is the problem of PMU placement in the distribution
network [76]. The approximation procedure has been used for TSSE with the assumption that all
the measurements are synchronized phasor measurements. However, the possibility of homogenous
measurements from PMUs alone is still not feasible yet due to the high cost of PMUs. With PMU,
the measurement function can be broken and separated into real and imaginary parts and the state
variables in the nonlinear terms can be further assumed to be constrained within a minimal range
to relax the nonlinearity . Another source of nonlinearity is the power and current injections at the
nodes or pseudo-measurements. These measurements for model-based algorithms are needed for
observability criteria. A popular way to resolve this issue to use complex linearization via Taylor’s
approximation of the nonlinear terms to eventually transform the model to a non-iterative procedure
[77,78]. For a linearized measurement function, the closed-form solution from Linear Algebra is usually

expressed below as
h(x) = Hx (12)
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&= {HTWH] T HTWe (13)

where H is the linear transformation from the state variable space to the measurement space. The
closed-form solution in (13) can be different depending on whether the H matrix is full rank or not.
Another popular approach that yields a linear measurement model is to assume a small angle deviation
while minimizing the residual objective function. With this assumption, the whole formulation renders
itself to linear manipulation. Moreover, the main merits of these linear approximation approaches are
that they require less computing effort, are applicable to meshed topologies, and overcome the problem
of ill-conditioning peculiar to the iterative approaches [79]. Furthermore, an implicit linearization
approach to the power flow problem in the distribution system that represents the power flow as
a function of the nodal voltages and the node power injections was proposed in [80]. This linear
representation is sparse, efficient computationally, and retains the power flow problem structure. This
linear representation has been applied to real-time DSSE application as proposed in [52].

5.5.2. Convexified DSSE

A more insightful approximation approach to solve the nonlinear state estimation problem is to
adopt the convex optimization approach. The power flow equations and optimal flow are nonlinear
and a lot of work has been done to convexify these NP-hard problems [81,82]. Similarly, this approach
has also been extended to the nonconvex state estimation problem especially in the transmission system
network [83]. One approach to the convex optimization is the second-order cone approximation. This
involves transforming the nonlinear state estimation problem to a second-order cone program, that
is, a linear objective or regularizers with conic and linear constraints. These approach have been
proven to be better than the conventional WLS DSSE problem in terms convergence and efficiency
[84]. Another method of convex optimization is the semi-definite program (SDP) relaxation [85]. It
involves formulating the DSSE as SDP having a rank-contrained positive semi-definite matrix as a
decision variable. The main drawback of this approach is that the constrained matrix should have
be rank-one for optimality to be reached. In order to achieve the rank-one contraint, [86] proposed a
two-step approach involving rank-reduction alongside convex iteration. A scalable approach to the
previously mentioned is also proposed in [87].

5.6. Probabilistic DSSE

The idea of probabilistic DSSE was to avoid the main problems associated with model-based WLS
algorithms which are not usually valid in distribution system networks: convergence issues, Gaussian
error assumptions, and pseudo-measurements usage [88]. Moreover, the WLS approach is a specific
form of the maximum likelihood estimator (MLE) where the measurement distributions are drawn
from a Gaussian probability density function. The MLE can be succinctly expressed in (14) below as

maximize [] pj(z) (14)
jEM

where p;(z;) is the pdf of the i measurement in the set of all the possible M measurements including
real and pseudo-measurements. The MLE can then be solved with an appropriate pdf that captures
the reality of both the real and pseudo-measurements. There is no best non-gaussian distribution
for this particular task. However, there are some non-gaussian pdfs that have been successfully
employed for this task and have proven to be more accurate than the traditional WLS with Gaussian
distributions. However, the price to pay is the higher computational effort. Nevertheless, these
methods still have reasonable computational time acceptable for practical implementation. Some of
these distributions are beta, polynomial, GMM, Gaussian equivalent (GE), and Gaussian approximation
(GA) as comprehensively reported and demonstrated in [89].
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5.7. Compressive sensing DSSE

The unobservable property associated with the distribution network has motivated the search for
applicable novel methods outside the domain of the power system. One such method is the idea of
compressive sensing (CS) in the area of signal processing [90,91]. The idea of CS is the effort of finding
the sparsest solution to the set of under-determined linear equations [92]. Since this goal is similar
to the problem of unobservable DSSE, CS fits in naturally among the possible solution to the DSSE.
It uses the correlation between states and measurements to form a sparsified relationship which can
then be further exploited to estimate the states. The particular CS method to be employed depends
on whether the correlation is temporal or spatiotemporal. The spatial approaches, 1-D and Matrix
completion (MC) perform the DSSE at a given time instant [93,94]. As for the spatial-temporal methods,
2D-CS and Tensor completion (TC) are exploited both in time and space [95,96]. Comparatively, the
spatial domain, the 1-D CS performs better than the MC while in the spatial-temporal domain, the TC
approach performs better in accuracy and complexity as detailed in [97].

6. Topology and parameter estimation

DSSE can be guaranteed to be accurate for some provided the information about the topology and
the network parameters are accurate and do not change significantly with time. This assumption about
the immutability of the topology and parameters could have adverse effect on the state estimation
result if eventually the topology and parameters are changed due to some unavoidable reasons. These
errors in the topology and parameters can affect other important distribution system operations that
depends on the accuracy of the DSSE and sometimes correct measurements could be identified as bad
data [4]. Many researchers are expending effort to address the issue of topological change and network
parameter errors in DSSE. In [98], without information of voltage angles from PMUs, a data-driven
regression approach in a two-step procedure: a preliminary topology and line parameter estimation
and a correction step to recover the voltage angle and the correct topology. Conversely, exploiting
available measurements from smart meters, a multiple regression data driven-approach was used to
estimate the topology and line parameters of the distribution network of interest [99]. Addressing
the issue of ignoring measurement error state change in historical measurements, [100] proposed a
joint topology and line parameter estimation using the expectation maximization (EM) algorithm for
hidden states in measurement recovery. Similarly, an online learning approach based on recursive
identification algorithm was proposed to estimate topology and line parameters as captured by the
estimated network admittance matrix [101].

7. Data-driven state estimation

The peculiarities and structure of the distribution system network make distribution state
estimation difficult. With many node points of, under-determinate nature due to very low
measurements, line parameter uncertainties, and load imbalance the DSSE becomes computationally
intensive. However, with the advent of potential distribution system measurements devices like PMU,
AMI, and smart meters, researchers are leveraging on a huge amount of data from these variant devices
to overcome the issues associated with DSSE using innovative machine and deep learning techniques
[102].

To overcome some of the aforementioned problems with DSSE, [103] proposed a data-driven DSSE
capable of real-time monitoring, and distributed computing based on artificial neural network (ANN)
and measurement sparsity to provide an accurate estimate even with the presence of non-Gaussian
noise. To address the issue of convergence due to the non-convex nature of the DSSE optimization
formulation, a hybrid machine learning and conventional optimization approach was used to address
the issue initialization of the state variables which is very crucial to the accuracy of the algorithm
[104,105]. Apart from the data-driven approach to DSSE, physics-aware deep learning networks are
now being applied with data-driven model to learn complex functions associated with the structure of
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the network [106]. In [107], a recurrent neural network (RNN) and prox-linear net-based estimator was
proposed for real-time state estimation base on pseudo-measurements. Focusing on the observability
issue in distribution systems, a Bayesian deep neural network DSSE capable of bad data detection
and noise filtering was proposed in [15] for an unobservable distribution system network. Similarly, a
Bayesian approach to DSSE that takes into account the possible non-Gaussian nature and uncertainties
of pseudo-measurements was proposed in [55]. A fully data-driven approach using generative
adversarial networks (GAN) that addresses the issue of missing data without dependency on PMU
observability and network topologies was introduced in [108] with the merit of low computational
complexity. A diagrammatic illustration of how data-driven methods fit in the concept of DSSE is

depicted in Figure 4.
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8. Recommendtion and future work

With the rising penetration of distributed energy resources, state estimation has become an integral
and essential tool in the monitoring and control operations of distribution systems. Moreover, the
deployment of different heterogeneous measurement devices in the field has further accentuated the
focus and innovative improvement in the DSSE. However, conventional state estimation methods have
difficulty fulfilling the observability conditions often associated with distribution systems because of a
lack of sufficient metering devices. To address these DSSE limitations, researchers are now developing
DSSE methods that are based on a data-driven matrix and tensor completion supplemented with power
flow constraints to determine the operating states of the whole system. These techniques are well suited
to distribution systems that exhibit unobservability and where standard weighted least-squares-based
methods fail to operate and can easily accommodate any network variables measured across the
network. Additionally, these approaches can be deterministic or probabilistic as the case may be
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[109,110]. While implementing these methods, the issue of accuracy, time complexity, and robustness
must be satisfied to be adopted for practical purposes.

Grid conditions vary both spatially and temporally due to the variability of renewable generation.
To address the issue of high penetrations of renewables especially in the distribution network, state
forecasting is essential for grid operators and utilities to dispatch controllable energy resources, prepare
for changing network conditions, and ultimately minimize operating costs. Another interesting
area of research in this regard is to develop machine and deep learning-based techniques capable of
short-term forecasting of system states by using decision tree-based approaches, ensemble learning, and
specialized neural networks. The grid operators can use the forecasted states for control coordination
and prioritization. Therefore, the resilience, reliability, and economic efficiency of the grid can be
improved and enhanced.

9. Conclusions

In this work, we have explored the overview of the critical aspects of DSSE ranging from
the conventional model-based approaches to the data-driven methods. We highlighted the main
requirement any DSSE algorithm must have in terms of time, accuracy, and robustness. Due to
the lack of sufficient measurements to guarantee observability in the DSSE, the model-based DSSE
usually have their accuracy compromised except complemented with pseudo-measurements extracted
from historical records. Another point of interest is how these pseudo-measurements are generated
which is still an area of active research. Furthermore, the complexity of the DSSE models in terms of
non-linearity can be relaxed in various ways: using phasor measurements, choice of the state vector,
linearization, and convexification. Another area gaining traction is the application of compressive
sensing to DSSE. This naturally has the advantage of working with sparse measurements which is
typical of distribution systems. Finally, with low observability and few measurements, the area of
matrix and tensor completion is being employed as a data-driven model-based approach to look into
the challenges of DSSE. Finally, since the distribution system states are envisaged to be changing
dynamically due to the presence of renewable energy resources, the idea of data-driven state forecasting
based on machine and deep learning methods is being explored for quick decision-making for critical
operations in the distribution system.
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