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Regular Cellulation Conjecture
Sergio De Agostino

Computer Science Department, Sapienza University of Rome, Italy; deagostino@di.uniroma1.it; Tel.: +39-06-4991-8355

Abstract

The sphere regular cellulation conjecture claims that every 2-connected graph is the 1-dimensional
skeleton of a regular cellulation of the 3-dimensional sphere. The conjecture is obviously true for planar
graphs. 2-connectivity is a necessary condition for a graph to satisfy such property. Therefore, the
question whether a graph is the 1-dimensional skeleton of a regular cellulation of the 3-dimensional
sphere would be equivalent to the 2-connectivity test if the conjecture were proved to be true. On
the contrary, it is not even clear whether such decision problem is computationally tractable. We
introduced a superclass of planar graphs, called the class of extended split graphs, and proved the
conjecture for it. This is a superclass of split graphs including also Hamiltonian and complete k-
partite graphs. In this paper, we further extend such class, keeping the validity of the conjecture,
by introducing a positive integer parameter k and the notion of orientable homotopic disjointness,
which define the class of k-extended split graphs. With this parameter, 1-extended split graphs are a
superclass of extended split graphs by means of this notion. Then, k-extended split graphs are defined
inductively. A graph is super-extended split if it is k-extended split for some k. Super-extended split
graphs are, therefore, the new state of the art for the proof of the conjecture.

Keywords: 3-Sphere; CW-Complex; regular cellulation;split graph

1. Introduction
Let X be a CW-complex [8] on the 3-sphere S3 = {x ∈ R4 : |x| = 1} with its standard topology. X

is also called a cellulation of the 3-sphere. The ascending sequence X0 ⊂ X1 ⊂ X2 ⊂ X3 = X of closed
subspaces of X satisfies the following conditions:

[1 ] X0 is a discrete set of points (0-cells)

[2 ] For 0 < k ≤ 3, Xk − Xk−1 is the disjoint union of open subspaces, called k-cells, each of which
homeomorphic to the open k-dimensional ball Uk(= {x ∈ Rk : |x| < 1}).

Xk is the k-dimensional skeleton of X and is a k-dimensional CW-complex for 0 ≤ k ≤ 3 on a
subspace of the 3-sphere. X is a regular CW-complex if the boundary of every k-cell is homeomorphic
to the k − 1-dimensional sphere Sk−1, for 1 ≤ k ≤ 3. Then, X is called a regular cellulation of S3. If X is
regular, the boundary of every 1-cell is a pair of 0-cells. It follows that the 1-dimensional skeleton of a
regular CW-complex represents a graph with no loops where the 0-cells correspond to the vertices
and the 1-cells correspond to the edges. From now on, we will consider simple graphs (no loops
and no multiple edges between two vertices). In particular we are interested in cyclic graphs, that is,
graphs which contain at least one cycle. Since the graphs are simple, the cycles must be closed paths
comprising at least three vertices.

A biconnected graph G = (V, E) is 2-connected if |V| > 2. The 3-sphere regular cellulation conjecture
claims that every 2-connected graph is the 1-dimensional skeleton of a regular cellulation of the
3-dimensional sphere [6,10]. The conjecture is trivially true for planar graphs. Indeed, the embedding
of a planar graph into the 2-dimensional sphere provides a regular cellulation of the 3-dimensional
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sphere with two 3-cells. 2-connectivity is a necessary condition for a graph to satisfy such property.
Therefore, the question whether a graph is the 1-dimensional skeleton of a regular cellulation of the
3-dimensional sphere would be equivalent to the 2-connectivity test if the conjecture were proved
to be true. On the contrary, it is not even clear whether such decision problem is computationally
tractable. In [5], we introduced the class of weakly split graphs and proved the conjecture is true
for such class. Hamiltonian, split, complete k-partite and matrogenic cyclic graphs are weakly split.
Matrogenic graphs include matroidal graphs. Split matrogenic graphs include threshold graphs.
Several characterizations of these classes are given in [9]. Hamiltonian graphs include complete
graphs. Over all the graphs with n vertices, the complete graph is an obvious case where the genus is
maximized. On the other hand, when the genus of the graph is 0 the regular cellulation of the 3-sphere
is provided by the graph embedding into the 2-sphere (planar case). This consideration suggested the
conjecture that every 2-connected graph is the 1-dimensional skeleton of a regular cellulation of the
3-sphere since this property might hold when the graph lies, as far as embeddability into surfaces is
concerned, in between a planar one and a complete one. We also want to point out that such extremal
results were obtained for k-partite graphs since complete k-partite graphs are weakly split for every k.
Finally, a superclass of planar graphs and weakly split graphs verifying the conjecture was introduced
in [7] and called the class of extended split graphs. Extended split graphs were, therefore, the state of
the art for the proof of this open problem.

In this paper, we further extend such class, keeping the validity of the conjecture, by introducing a
positive integer parameter k and the notion of orientable homotopic disjointness, which define the class
of k-extended split graphs. With this parameter, 1-extended split graphs are a superclass of extended
split graphs by means of this notion. Then, k-extended split graphs are defined inductively. A graph is
super-extended split if it is k-extended split for some k. So, super-extended split graphs are the new
state of the art for the proof of the conjecture.

In Section 2 we describe the previous work on the conjecture. In section 3, we introduce the
notions of homotopic disjointness of an embedding and orientable homotopic disjointness of a graph.
Then, we show that graphs with orientable homotopic disjointness greater than 1 verify the 3-sphere
regular cellulation conjecture. Section 4 introduces the class of super-extended split graphs and proves
the conjecture for it. Conclusions and future work are given in Section 5.

2. Previous Work
The first subsection shows the proof of the conjecture for hamiltonian graphs and, therefore, for

complete graphs [2]. Then, the second subsection extends the result to complete k-partite graphs and to
split graphs. These results are a corollary to the proof of the conjecture for the class of crownless weakly
split graphs which is a superclass of all the classes previously mentioned [5]. In the third subsection
weakly split graphs are presented to include matrogenic graphs and extend further the validity of the
conjecture [5]. The theorems in [2] and [5] with their proofs are presented again to play a role as lemmas
in this paper in order to prove the theorem on extended split graphs in the fourth subsection [7]. All
these theorems and their proofs are necessary for the proof of the conjecture on super-extended split
graphs in section 4.

2.1. Hamiltonian Graphs

In [2], the 3-sphere regular cellulaton conjecture has been proved true for hamiltonian graphs as
it follows:

Theorem 1. Every hamiltonian graph G = (V, E) is the 1-dimensional skeleton of a regular cellulation of S3.

Proof. We embed V into the 3-sphere. Let v1, v2, ...vn, v1 be the sequence of vertices (0-cells) ordered
by a hamiltonian cycle h of G, where |V| = n. We embed the edges of h (1-cells) into the 3-sphere so
that we have a 1-dimensional complex X. Then, we add to X a 2-cell with boundary h. If G is a simple
cycle, another 2-cell with boundary h is added to X. At this point, by adding two 3-cells to X we obtain
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a regular cellulation of the 3-sphere. If G is not a simple cycle, let us consider any edge, say (vi, vj),
which does not belong to h, with i < j. We add to X the edge (vi, vj) as a 1-cell and two 2-cells with the
cycles v1, ..., vi, vj, ...vn, v1 and vi, vj, vj−1, ..., vi as boundaries, respectively. These 2-cells are added so
that the intersection of their closures is the edge (vi, vj) to satisfy the property of a CW-complex on
the disjointness of cells. Then, we add one 3-cell bounded by these 2-cells and by the 2-cell with h as
boundary. Since we added only one 3-cell, we can embed the remaining edges of G and, similarly, the
corresponding two 2-cells and one 3-cell for each edge. Differently from the first 3-cell we added, the
boundaries of these additional 3-cells comprise four 2-cells instead of three. Finally, we add to X one
more 3-cell to obtain the regular cellulation of the 3-sphere with G as 1-dimensional skeleton.

Since complete graphs with at least three vertices are hamiltonian, theorem 1 provides an extremal
result for the 3-sphere regular cellulation conjecture. as far as embeddability of graphs into surfaces is
concerned, as the one for planar graphs mentioned in the introduction. Such extremal results hold for
k-partite graphs as we will see in the next subsection.

2.2. Crownless Weakly Split Graphs

We define a superclass of cyclic split graphs and hamiltonian graphs which also includes complete
k-partite graphs, as shown in [5].

A connected graph G = (V, E) is crownless weakly split if V is the union of two disjoint sets I and
H such that:

- I is empty or a stable set in G;

- H is non-empty and the subgraph induced by H is hamiltonian.

If the subgraph induced by H is complete, G is split. If I is empty, G is hamiltonian. Furthermore,
a complete k-partite graph Km1,m2,··· ,mk is crownless weakly split (with m1, m2 > 1 if k = 2) [4]. In [5],
the 3-sphere regular cellulaton conjecture has been proved true for crownless weakly split graphs
graphs as it follows:

Theorem 2. Every 2-connected crownless weakly split graph G = (V, E) is the 1-dimensional skeleton of a
regular cellulation of S3.

Proof. Since G is crownless weakly split, V is the union of two disjoint sets I and H such that I is stable
and the subgraph induced by H is hamiltonian. We embed H into the 3-sphere. Let w1, w2, ...wk, w1 be
the sequence of vertices ordered by the hamiltonian cycle h of the subgraph induced by H. We embed
the edges of h into the 3-sphere so that we have a one-dimesional complex X and we add to X a 2-cell
with boundary h. Then, we can apply to X the procedure of theorem 1 to produce a regular cellulation
of a proper subspace B1 of S3. B1 is a proper subspace of S3 because we do not add to X the last 3-cell
produced by the procedure of theorem 1. Therefore, B1 is homeomorphic to a closed 3-dimensional
ball while the complement B2 of B1 in S3 is an open 3-dimensional ball where we embed the vertices
u1, u2, ...ui of I. For each vertex uj, 1 ≤ j ≤ i, first we add the edges connecting uj to the adjacent
vertices in h to X. Since G is 2-connected, there are at least two such vertices for each uj. Then, for each
pair of vertices w and w′ adjacent to uj and consecutive in h, we add to X a 2-cell with boundary the
cycle defined by uj, w, w′ and the vertices in h between w and w′ (which, obviously, are not adjacent to
uj). These 2-cells can be added so that they are disjoint and a 3-cell bounded by these 2-cells and the
2-cells determined by uj−1 (if j = 1, the 2-cell with boundary h) is added as well. The homeomorphism
of such boundary to the 2-sphere follows from the disjointness of the 2-cells. Then, we add to X one
more 3-cell to obtain the regular cellulation of the 3-sphere with G as 1-dimensional skeleton.

Theorem 2 strengthens the 3-sphere regular cellulation conjecture since the extremal results of the
previous subsection are extended to k-partite graphs, for 2 ≤ k ≤ n, where n is the number of vertices.
In the next subsection, we extend the validity of the conjecture to a superclass of the crownless weakly
split graphs by adding a “crown” which is a linear forest.
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2.3. Weakly Split Graphs

A connected graph G = (V, E) is weakly split if V is the union of three disjoint sets I, H and C
such that:

- I is empty or a stable set in G;

- H is non-empty and the subgraph induced by K is hamiltonian;

- C is either empty or none of its vertices is adjacent to a vertex in I and C induces a subgraph such
that each connected component is a simple path where each vertex in it is adjacent either to at
least two vertices in H or to none.

We call the subgraph induced by C the crown of G.

Theorem 3. Every 2-connected weakly split graph G = (V, E) is the 1-dimensional skeleton of a regular
cellulation of S3.

Proof. It follows from theorem 1 that the subgraph of G induced by I ∪ H is the 1-dimensional skeleton
of a regular cellulation X of a subspace Σ3 of S3. If C is empty G is crownless weakly split and the
statement of the theorem follows from theorem 1. Otherwise, the vertices in C are embedded into
S3 −Σ3. C induces a graph with p connected components where each connected component is a simple
path. Let C1, · · ·Cp be the partition of C such that each element of the partition induces one of the
p connected components. Let t1, · · · tc be the vertices of C1 in one of the two orders induced by the
corresponding simple path. Then, for 1 ≤ j ≤ c we add to X the edges (if any) connecting tj to the
adjacent vertices in h and, for each pair of vertices w and w′ adjacent to tj and consecutive in h, we add
to X a 2-cell with boundary the cycle defined by tj, w, w′ and the vertices in h between w and w′ (which
are not adjacent to tj since w and w′ are consecutive in h). As for the vertices in I, these 2-cells can
be added so that they are disjoint. Let j1 · · · jℓ be the subsequence of 1 · · · c such that tj1 · · · tjℓ are the
vertices of C1 adjacent to at least two vertices in K. Since G is 2-connected, we have j1 = 1 and jℓ = c.
Then, for 1 ≤ r ≤ ℓ, we add to X the edges of the path from tjr to tjr+1 . It follows from the definition
of weakly split graph that we can select in h two vertices adjacent to tjr and two vertices adjacent to
tjr+1 . These selections define a set S of vertices in h of cardinality between two and four, depending
on whether two, one or none of the selected vertices adjacent to tjr coincide with the two selected
vertices adjacent to tjr+1 . Then, we add two 2-cells with boundaries the cycles defined by the vertices
of the path from tjr to tjr+1 , two vertices of S respectively adjacent to tjr and tjr+1 which are consecutive
(unless they coincide) in h with respect to S and the vertices in h (if any) between them (which do
not belong to S since the two vertices of S are consecutive). It follows that these two 2-cells can be
added to X so that they are disjoint. Therefore, two disjoint 3-cells can be added to X bounded by
these two 2-cells and complementary subsets of the 2-cells determined by tjr+1 and by tjr . Moreover,
we add one 3-cell bounded by the 2-cells determined by tj1 and the ones determined by ui, the vertex
in I on the boundary of Σ3. Again, the boundaries of these 3-cells are homeomorphic to the 2-sphere.
Such embedding procedure is repeated for each connected component C2, · · ·Cp of the crown (for
each of these components, the last 3-cell added to X is partially bounded by 2-cells of the previous
component). Finally, we add to X one more 3-cell to obtain the regular cellulation of the 3-sphere with
G as 1-dimensional skeleton.

Weakly split graphs are a superclass of cyclic matrogenic graphs [5]. Matrogenic graphs include
matroidal and threshold graphs. Differently from threshold graphs, matrogenic and matroidal graphs
are not always split. As mentioned in the introduction, several characterizations of these classes can
be found in [9]. Since a 2-connected graph is always cyclic, theorem 3 validates the 3-sphere regular
cellulation conjecture for matrogenic graphs.

Among all the classes we mentioned so far, the class of planar graphs is the only one for which
the class of weakly split graphs is not a superclass. In the next subsection, we introduce a superclass
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of planar graphs and weakly split graphs for which the 3-sphere regular cellulation conjecture is
validated [7].

2.4. Extended Split Graphs

A graph G = (V, E) is called extended split if V is the union of two disjoint sets H and C, such that:

- the subgraph induced by H is hamiltonian or H is empty;

- the subgraph induced by C is planar or C is empty;

- a connected component of the subgraph induced by C is connected to the subgraph induced by H
only if it is a single vertex, a simple path or 2-connected;

- if a connected component of the subgraph induced by C is a simple path, each vertex in it is adjacent
to at least two vertices in H or to none (first linking rule);

- if a connected component of the subgraph induced by C is hamiltonian then it is connected to
the subgraph induced by H by at most three edges with at least two disjoint edges (second
linking rule);

- if a connected component of the subgraph induced by C is non-hamiltonian 2-connected then it is
connected to the subgraph induced by H by exactly two disjoint edges (third linking rule).

The subgraphs induced by H and C are called the head and the crown, respectively. Planar graphs
are extended split since H may be empty. The class of weakly split graphs is the subclass of extended
split graphs where only the first linking rule applies. Therefore, the next theprem will prove the
conjecture when the second or third linking rule is applied since the other cases have already been
considered by the previous theorems.

Theorem 4. A 2-connected extended split graph G = (V, E) is the 1-dimensional skeleton of a regular
cellulation of S3.

Proof. Let H and C be the head and the crown of G, respectively. If H is empty, G is planar and the
statement of the theorem is trivially true. If C is empty, G is hamiltonian and the statement follows
from theorem 1. If the subgraph induced by C is a planar graph where each connected component
is either a single vertex or a simple path, G is weakly split and the statement of the theorem follows
from theorem 3. Finally, since G is 2-connected the only case left by the definition of extended split
graph is that there is a subset C′ of C such that the connected components of the subgraph induced
by C′ are 2-connected. It follows from theorem 3 that the subgraph of G induced by H ∪ (C − C′) is
the 1-dimensional skeleton of a regular cellulation X of a subspace Σ3 of S3. We know from theorem
3 that one of the 2-cells of X on the boundary of S3 − Σ3 is bounded by a hamiltonian cycle h of the
subgraph induced by H. Let C′

1, · · ·C′
q be the partition of C′ such that each element of the partition

induces one of the connected components of the subgraph induced by C′. Each of the p components is
connected to the subgraph induced by H by at least two disjoint edges. Let us consider, first, the case
of exactly two disjoint edges.

Without loss of generality, let C′
1, · · ·C′

q′ induce the components connected to the subgraph induced
by H by exactly two disjoint edges, with q′ ≤ q. The subgraph induced by C′

1 is embedded into a
subspace Σ2 of S3 − Σ3 homeomorphic to S2. With such embedding, we obtain a regular cellulation of
Σ2. Let (v1, w1) and (v2, w2) be the two disjoint edges connecting the subgraph induced by C′

1 to the
subgraph induced by H with v1, v2 ∈ C′

1. Since the subgraph induced by C′
1 is 2-connected, there is in

it a simple cycle including v1 and v2. Such simple cycle is the boundary of two open disks in Σ2 and
comprises two simple paths p′1 and p1” from v1 to v2. On the other hand, h comprises two simple paths
h′1 and h1” between w1 and w2. We call c′1 and c1” the simple cycles that (v1, w1) and (v2, w2) form with
p′1, h′1 and p1”, h1”, respectively. Then, we add to X two 3-cells with their boundaries. One 3-cell is
bounded by Σ2 with its regular cellulation. The other 3-cell is bounded by the 2-cells on the boundary
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of S3 − Σ3 except the one bounded by h, the 2-cells on one of the two open disks bounded by the
simple cycle including v1 and v2 plus a couple of 2-cells bounded by c′1 and c1”, respectively. It is
easy to see that this can be done preserving the property of a regular cellulation for X. The subgraphs
induced by C′

i for 2 ≤ i ≤ q′ can be embedded into S3, similarly as the one induced by C′
1, to extend

the regular cellulation X.
According to the definition of extended split graph, C′

q′+1, · · ·C′
q induce hamiltonian components.

Then, for each of these components there might be a third edge connecting it to the subgraph induced
by H besides the two disjoint edges required for 2-connected graphs by the second linking rule.
Let (v′1, w′

1) and (v′2, w′
2) be the two disjoint edges connecting the subgraph induced by C′

q′+1 to the
subgraph induced by H with v′1, v′2 ∈ C′

q′+1. Then, we can extend the regular cellulation X in a similar
way as for the components induced by C′

1, · · ·C′
q′ . Therefore, there is a simple cycle including v′1 and

v′2 in the subgraph induced by C′
q′+1 and comprising two simple paths p′q′+1 and pq′+1” from v′1 to v′2

involved with the extension of X. On the other hand, h comprises two simple paths h′q′+1 and hq′+1”
from w′

1 to w′
2. Let (v′3, w′

3) be the third edge with v′3 ∈ C′
q′+1. Without loss of generality, we assume

that h′q′+1 and p′q′+1 are the paths including w′
3 and v′3, respectively. Moreover, since vertices in H

are the only ones to which vertices in C′
q′+1 may be adjacent in V − C′

q′+1, we assume that h′q′+1 and
p′q′+1 have the same orientation. Then, the third edge can be drawn on the 2-cell with the boundary
including the two paths (obviously, dividing such cell into two cells). The subgraphs induced by
C′

i for q′ + 2 ≤ i ≤ q can be embedded into S3, similarly as the one induced by C′
q′+1, to extend the

regular cellulation X. Finally, a 3-cell covering the complement of X completes the regular cellulation
of S3.

Before defining the class of super-extended split graphs, we introduce the notion of homotopic
disjointness in the next section.

3. Homotopic Disjointnes
Given a closed surface Σ topologically distinct from the 2-sphere and a 2-cell embedding of a

graph G in Σ, a cycle in the 2-cell embedding of G is non-contractible in Σ if it cannot be shrunk to a
vertex by edge contraction. If g is the genus (orientable or non-orientable) of Σ, the fundamental group
of the surface has 2g (orientable case) or g (non-orientable case) standard generators (simple closed
curves) drawn in an obvious manner [1]. Let Γ be the set of standard generators and, for each γ ∈ Γ, let
cγ be the greatest number of disjoint cycles homotopic to it in a graph embedding. Then, the embedding
homotopic disjointness is min{cγ : γ ∈ Γ} for a given enbedding. If Σ is a 2-sphere and G is planar, the
homotopic disjointness of the embedding of G in Σ is defined to be infinity. So,an embedding is a
closed 2-cell embedding if its homotopic disjointness is strictly greater than 1.

We can define the graph homotopic disjointness of a graph G as the greatest homotopic disjointness
over all the possible 2-cell embeddings of G. Analogously, we can define the orientable homotopic
disjointness of G as the greatest homotopic disjointness over all possible 2-cell embeddings of G into
orientable closed surfaces. 2-connectivity is implied if homotopic disjointness (orientable or not) is
finite and greater than 1. We prove the following theorem:

Theorem 5. Every graph G with finite orientable homotopic disjointness greater than 1 is the 1-dimensional
skeleton of a regular cellulation of S3.

Proof. If G has finite orientable homotopic dijointness strictly greater than 1, there is an orientable
closed surface Σ where G has a closed 2-cell embedding. The orientable homotopic dijointness
strictly greater than 1 implies, for each of the standard generators of the fundamental group of Σ, the
existence of two disjoint simple cycles of G homotopic to it. If we embed Σ into S3, S3 − Σ comprises
two connected components which are not homeomorphic to the open 3-ball. We extend Σ by adding,
for each of the standard generators of the fundamental group, a pair of disjoint 2-cells so that each
one is bounded by one of the two homotopic simple cycles. The self intersecting surface Ψ, obtained

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2286.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2286.v1
http://creativecommons.org/licenses/by/4.0/


7 of 9

by adding 4g pairwise disjoint 2-cells in such a way, is such that S3 − Ψ comprises 2g + 2 connected
components homeomorphic to the open 3-ball with boundary homeomorphic to the bidimensional
sphere. Therefore, we can add 2g + 2 3-cells to obtain a regular cellulation of the 3-sphere.

We are, now, ready to show the new results on classes related to split graphs in the next sevtion.

4. Super-Extended Split Graphs
A graph G = (V, E) is called 1-extended split if V is the union of two disjoint sets H (the head) and

C (the crown), such that:

- H is empty or the subgraph induced by H is hamiltonian;

- C is empty or a connected component of the subgraph induced by C is either hamiltonian or with
orientable homotopic disjointness greater than 1;

- a connected component of the subgraph induced by C is connected to the subgraph induced by H
only if it is a single vertex, a simple path or 2-connected;

- if a connected component of the subgraph induced by C is a simple path, each vertex in it is adjacent
to at least two vertices in H or to none (first linking rule);

- if a connected component of the subgraph induced by C is hamiltonian then it is connected to
the subgraph induced by H by at most three edges with at least two disjoint edges (second
linking rule);

- if a connected component of the subgraph induced by C has orientable homotopic disjointness
greater than 1 and is 2-connected non-hamiltonian then it is connected to the subgraph induced
by H by exactly two disjoint edges (third linking rule).

Observe that the 2-connectivity requirement in the third linking rule is needed only when the
orientable homotopic disjointness is infinity (the planar case) since finite orientable homotopic dis-
jointness greater than 1 implies 2-connectivity.1-extended split graphs are, obviously, a superclass of
extended split graphs. From theorem 4, we derive the following theorem:

Theorem 6. Every 2-connected 1-extended split graph G = (V, E) is the 1-dimensional skeleton of a regular
cellulation of S3.

Proof. As far as the subgraph induced by H and the single vertex connected components of C are
concerned, the proof of the theorem is exactly the same as the one of theorem 4. This is true for the
first linking rule as well, when we add the simple path connected components of the crown. As far as
the second linking rule is concerned,it is enough to observe that planarity is not a requirement in the
proof of theorem 4. Therefore, such proof works when we add the hamiltonian connected components
of C. For the third linking rule, the proof of theorem 4 works for connected components with finite
orientable homotopic disjointness greater than 1 as it does for the planar case. Therefore, the statement
of the theorem follows.

Now, we can define inductively the class of k-extended split graphs for any positive integer k. A
graph G = (V, E) is k-extended split, for k > 1, if V is the union of two disjoint non-empty sets T and S,
such that:

- the subgraph induced by T is k − 1-extended split;

- the subgraph induced by S is 1-extended split;

- the head of the subgraph induced by S is a head of the k-extended split graph and it is connected
to one of the k − 1 heads of the subgraph induced by T by at most three edges with at least
two disjoint edges.
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A graph G = (V, E) is called super-extended split if it is k-extended split for some positive integer k.
We prove the following theorem.

Theorem 7. Every 2-connected super-extended split graph is the 1-dimensional skeleton of a regular cellulation
of S3.

Proof. Since a super-extended split graph is k-extended split for some positive integer k, we prove the
theorem by induction on k. The statement follows from the previous theorem for k = 1. Moreover,
we know there is a 2-cell of the regular cellulation whose boundary is a hamiltonian cycle of the head
of its 1-dimensional skeleton. Therefore, we make the induction hypothesis that every 2-connected
k-extended split graph is the 1-dimensional skeleton of a regular cellulation of S3, with k 2-cells whose
boundaries are hamiltonian cycles of the k graph heads, and prove it for k + 1.

So, let G = (V, E) be a 2-connected k + 1-extended split graph where V is the union of two disjoint
non-empty sets T and S, such that the subgraph induced by T is k-extended split and the subgraph
induced by S is 1-extended split. Then, in virtue of the induction hypothesis we can assume that the
subgraph of G induced by T is the 1-dimensional skeleton of a regular cellulation X of a subspace Σ3

of S3, such that one of the 2-cells of X on the boundary of S3 − Σ3 is bounded by a hamiltonian cycle
h of one of the k subgraph heads. Let χ be a hamiltonian cycle of the k + 1-th head of G, that is, the
head of the subgraph induced by S. Assume, without loss of generality, that χ is connected to h. Then,
if h and χ are connected by exactly two disjoint edges we add to X a 3-cell bounded by four 2-cells
in an obvious way. If there is a third edge, the 2-cell bounded by χ is added to X and is connected to
the 2-cell bounded by h so that the third edge can be drawn on one of the other 2-cells of the 3-cell
boundary. So, the boundary of the new 3-cell comprises five 2-cells in this case and, in both cases, we
have a 2-cell bounded by χ while the other k heads have still hamiltonian cycles which are boundaries
of 2-cells. From theorem 4, we know how to extend X to provide a regular cellulation of the space
covered by this 3-cell with the subgraph induced by S as one-dimensional skeleton. Finally, a 3-cell
covering the complement of X completes the regular cellulation of S3 and proves the hypothesis for
k + 1.

We wish to point out that the definition of a k-extended split graph was given by connecting
heads of a k − 1-extended split graph and a 1-extended split graph in order to have it independent
from its representation as a complex skeleton.

5. Conclusions
A fundamental question for 2-connected graphs has been faced, that is: is a 2-connected graph

always the 1-dimensional skeleton of a regular cellulation of the 3-dimensional sphere? We presented
the partial positive results and argued there is enough evidence to conjecture an affirmative answer to
the question. Super-extended split graphs are the new state of the art for the proof of the conjecture and
their definition suggests further extensions. However, it might be more interesting to search for other
properties besides planarity, hamiltonicity and splittability that could provide more positive results.

The 3-sphere regular cellulation conjecture, as it was called in [6] was given for graphs with
at least two cycles in [4] because we assumed that two 2-cells cannot share the same boundary in
order to relate it to the concept of spatiality degree. The spatiality degree of a connected graph G is
the maximum number of 3-cells that the cellulation of a 3-sphere can have with G as a 1-dimensional
skeleton, assuming that two distinct 2-cells of the complex cannot share the same boundary and the
2-dimensional skeleton is regular. In [2,3], it is shown that the 3-sphere regular cellulation conjecture is
true if and only if the spatiality degree of a 2-connected graph G = (V, E) with at least two cycles is
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equal to 2(|E| − |V|). We denote the spatiality degree of a connected graph G with s(G). In [2], it is
also shown that for any connected graph G

s(G) =
k

∑
i=1

s(Bi)− k + 1

where B1 · · · Bk are the biconnected components of G. It follows that computing the spatiality degree
of a connected graph could be an interesting combinatorial optimization problem only if the conjecture
were proved to be false.
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