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Abstract: The special affine Fourier transform (SAFT) is a useful and powerful analyzing tool in

signal processing, optics and communications. In this paper, we mainly discuss the randomized

nonuniform sampling and reconstruction for random signals bandlimited in the SAFT domain. First,

we show that the nonuniform sampling is identical to the uniform sampling after a pre-filter in the

sense of second order statistic characters. Then, we propose an approximate reconstruction based on

sinc interpolation for the nonuniform sampling of random signals bandlimited in the SAFT domain.

Finally, we give the mean square error estimate for the proposed approximate recovery approach.

Keywords: special affine Fourier transform; nonuniform sampling; random signals; error estimate;

approximate recovery
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1. Introduction

The special affine Fourier transform (SAFT) was firstly proposed in [1] to model optical systems.

It offers a unified viewpoint of known signal processing transforms, such as Fourier transform (FT),

fractional Fourier transform (FrFT), linear canonical transform (LCT), Laplace transform (LT) and

so on. It can also include some optical operations on light waves, such as rotation, magnification,

hyperbolic transformation, free space propagation, Lens transformation and so on. The SAFT is a

six-parameters linear integral transform which is defined by offsetting two extra parameters on the

basis of the LCT, so SAFT is also known as the offset linear canonical transform (OLCT). It has been

proved that the SAFT is a useful tool for signal processing, communications, quantum mechanics and

optics [12,16,23,26]. Many classical results such as Zak transform, Poisson summation formula and

convolution theorems are established in the SAFT domain [6,24,33].

Let

A =


 a b u0

c d ω0




be a matrix with six real parameters satisfying ad − bc = 1. The continuous-time SAFT associated with

the parameter matrix A of a signal f (t) is defined as in [1],

FA(u) = SAFT[ f ](u) =





∫ +∞

−∞
f (t)KA(t, u)dt, b ̸= 0,

√
de

jcd(u−u0)
2

2 + jw0u f [d (u − u0)] , b = 0,
(1.1)
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where the kernel function KA(t, u) is given by

KA(t, u) =

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]. (1.2)

It is noted that when b = 0, the SAFT of a signal is essentially a chirp multiplication. Therefore, we

shall confine our attention to the case of b ̸= 0. The inverse SAFT is expressed as

f (t) = C
∫ +∞

−∞
FA(u)KA−1(u, t)du, (1.3)

where C = e
j
2 (cdu2

0−2adu0w0+abw2
0) and

A−1 :=


 d −b bω0 − du0

−c a cu0 − aω0


 .

Sampling is one of the most fundamental process in digital signal processing which provides

a bridge between the continuous physical signals and the discrete digital signals. Beginning with

the Shannon’s sampling theorem of bandlimited signals [15], various sampling such as nonuniform

sampling, average sampling, dynamic sampling, random sampling, mobile sampling, timing sampling

and multi-channel sampling have been generally studied for signals bandlimited in the FT domain

[2,3,5,9]. With the appearance and developments of the more general transforms, the corresponding

sampling theories are extended to the signals bandlimited in the FrFT, LCT and SAFT domains

[6,12,14,18,19,21–23,25–27,30,32].

Signals in the real world often presents random characteristics and sampling for random signals

bandlimited in the FT domain has been generally studied [5,7,8,17]. In recent years, there have existed

many researches for sampling of random signals bandlimited in the FrFT and LCT domains [10,11,20,28,

31]. The uniform sampling theorems in [10] was extended to the SAFT domain as in [29]. Nonuniform

sampling is a more realistic sampling scheme due to the limitations of data acquisition and processing

ability. In fact, the nonuniform sampling theories including the periodic nonuniform sampling

model, N-order recurrent nonuniform sampling model, nonuniform sampling due to migration of a

finite number of uniform samples and the general nonuniform sampling have been given for signals

bandlimited in the LCT domain [31] and signals bandlimited in the SAFT domain [4,30], respectively.

In particular, the nonuniform sampling problem was also considered in [11] for random signals

bandlimited in the LCT domain, where a randomized nonuniform sampling method and a class of

approximate recovery approaches by using sinc interpolation functions were studied. In this paper,

we will further study the randomized nonuniform sampling for random signals bandlimited in the

SAFT domain and also give an approximate recovery method based on the sinc interpolation.

The paper is organized as follows. In section 2, we give the definition of the power spectral

density in the SAFT domain. In section 3, we study the nonuniform sampling scheme and propose

an approximate recovery approach. In section 4, the mean square error estimate for the proposed

approximate recovery method is demonstrated.

2. Power Spectral Density in the SAFT Domain

Given a probability space (Ω,F , p), a stochastic process x(t) is said to be wide sense stationary

if it has zero mean and its auto-correlation function

Rxx(t + τ, t) = E [x(t + τ)x∗(t)] (2.1)
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is independent of t ∈ R, i.e., Rxx(t + τ, t) = Rxx(τ), where E[·] denotes mathematical expectation and

the superscript ∗ stands for the complex conjugate. Two stochastic processes x(t) and y(t) are said to

be jointly stationary, if x(t) and y(t) are both stationary and their cross-correlation function

Rxy(t + τ, t) = E [x(t + τ)y∗(t)] (2.2)

is independent of t ∈ R , i.e., Rxy(t + τ, t) = Rxy(τ).

We next introduce the SAFT auto-correlation function, the SAFT cross-correlation function, the

SAFT auto-power spectral density and the SAFT cross-power spectral density as in [29]. For two

random signals x(t) and y(t), the SAFT auto-correlation function of x(t) is defined as

RA
xx(τ) = lim

T→+∞

1

2T

∫ T

−T
Rxx(t + τ, t)ej a

b tτdt. (2.3)

Similarly, the SAFT cross-correlation function of x(t) and y(t) is defined as

RA
xy(τ) = lim

T→+∞

1

2T

∫ T

−T
Rxy(t + τ, t)ej a

b tτdt. (2.4)

Remark 2.1. If the random signal x̃(t) = x(t)ej a
2b t2

is stationary, then x1(t) = x̃(t)ej
u0
b t is also stationary. In

fact,

Rx1x1
(t + τ, t) = e

ju0τ

b Rx̃x̃(t + τ, t).

Moreover, one has
Rx̃x̃(t + τ, t) = E [x̃(t + τ)x̃∗(t)]

= E
[

x(t + τ)ej a
2b (t+τ)2

x∗(t)e−j a
2b t2
]

= E
[

x(t + τ)x∗(t)ej a
2b τ2

ej atτ
b

]

= Rxx(t + τ, t)ej atτ
b ej a

2b τ2
.

Therefore, Rxx(t + τ, t)e
jatτ

b must be independent of t. In such case, we have

RA
xx(τ) = Rx1x1

(τ)e−j a
2b τ2

e−j
u0
b τ . (2.5)

Define the SAFT auto-power spectral density of the random signal x(t) by

PA
xx(u) =

√
1

−j2πb
e−j d

2b u2
e−j

du2
0

2b ej u
b (du0−bw0)FA

{
RA

xx(τ)
}
(u) (2.6)

and the SAFT cross-power spectral density of the random signals x(t) and y(t) as

PA
xy(u) =

√
1

−j2πb
e−j d

2b u2
e−j

du2
0

2b ej u
b (du0−bw0)FA

{
RA

xy(τ)
}
(u). (2.7)
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It follows from (1.1) and (2.6) that

RA
xx(τ) = C ·

∫ +∞

−∞
PA

xx (u) 1/

√
1

−j2πb
ej d

2b u2
ej d

2b u2
0 e−j u

b (du0−bw0)

√
1

−j2πb

× e−j a
2b (bw0−du0)

2

e−j d
2b u2

e−j u
b (bw0−du0−τ)e−j

u0
b τe

−j a
2b

τ2

du

= C ·
∫ +∞

−∞
PA

xx (u) ej d
2b u2

0 e−j a
2b (bw0−du0)

2

ej u
b τe−j

u0
b τe

−j a
2b

τ2

du

= e
j
2 (cdu2

0−2adu0w0+abw2
0)
∫ +∞

−∞
PA

xx (u) ej d
2b u2

0 e−j a
2b (bw0−du0)

2

ej u
b τe−j

u0
b τe−j a

2b τ2
du

=
∫ +∞

−∞
PA

xx (u)e
−j a

2b τ2
ej 1

b (u−u0)τdu. (2.8)

Multiplicative filtering in the SAFT domain is showed in Figure 1, which has been introduced in

[29]. More specifically, we first obtain the SAFT of the input signal f1(t) and apply the multiplicative

filter H(u) in the SAFT domain. Then the output signal f2(t) in the time domain is obtained by the

inverse SAFT. Mathematically, the output f2(t) is given by

f2(t) = F−1
A {F2(u)} (t) = F−1

A {F1(u)H(u)} (t), (2.9)

where F1(u) = FA { f1(t)} (u) and F2(u) = F1(u)H(u).

Figure 1. Multiplicative filtering in the SAFT

Define normalized convolution

( f Θg)(t) =
1√
2π

∫

R

f (x)g(t − x)e−j a
2b (t2−x2)dx (2.10)

for f , g ∈ L2(R) [23]. Then we have the following conclusion.

Proposition 2.2. Let

H(u) =
1√
2π

∫ +∞

−∞
h(t)e−j

(u−u0)
b tdt. (2.11)

Then the multiplicative filter in Figure 1 is equivalent to

f2(t) = ( f1Θh) (t). (2.12)

Proof we only need to prove

FA {( f1Θh) (t)} (u) = F1(u)H(u).
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It follows from the definition of the SAFT that

FA {( f1Θh) (t)} (u)

=
∫

R

( f1Θh) (t)

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]dt

=
1√
2π

∫

R

∫

R

f1(x)h(t − x)e−j a
2b (t2−x2)

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]dxdt

=
∫

R

f1(x)

√
1

2π jb
e

jdu2
0

2b e
j

2b [ax2+2x(u0−u)−2u(du0−bw0)+du2]dx
1√
2π

∫

R

h(t − x)e
j
b t(u0−u)e−

j
2b [2x(u0−u)]dt

=
∫

R

f1(x)

√
1

2π jb
e

jdu2
0

2b e
j

2b [ax2+2x(u0−u)−2u(du0−bw0)+du2]dx
1√
2π

∫

R

h(t)e−j
(u−u0)

b tdt

= F1(u)H(u).

Lemma 2.3. [29] Suppose that the random signals x(t) and y(t) are the input and the output in Figure 1, then

PA
xy(u) = H(u)PA

xx(u) (2.13)

and

PA
yy(u) = |H(u)|2PA

xx(u). (2.14)

3. Nonuniform Sampling and Approximate Recovery

In this section, we will study the nonuniform sampling and reconstruction of random signals

which are bandlimited in the SAFT domain.

Definition 3.1. [29] We say that a random signal x(t) is bandlimited in the SAFT domain if its SAFT power

spectral density PA
xx(u) satisfies

PA
xx(u) = 0, |u| > ur, (3.1)

where ur is called the bandwidth of the random signal x(t) in the SAFT domain.

Lemma 3.2. Assume that a random signal x(t) is bandlimited in the SAFT domain with bandwidth ur and

x̃(t) = x(t)ej a
2b t2

is stationary. Then x1(t) is bandlimited in the FT domain with bandwidth ur
b and the power

spectral density satisfies supp{Px1x1
(u)} ⊆ [− ur

b , ur
b ].
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Proof Since x1(t) is stationary, it follows from (2.5) and (2.6) that

PA
xx (u) =

√
1

−j2πb
e−j d

2b u2
e
−j d

2b
u2

0
ej u

b (du0−bw0)FA

{
RA

xx(τ)
}
(u)

=

√
1

−j2πb
e−j d

2b u2
e
−j d

2b
u2

0
ej u

b (du0−bw0)FA

{
Rx1x1 (τ) e−j a

2b τ2
e−j

u0
b τ
}
(u)

=

√
1

−j2πb
e−j d

2b (u
2+u2

0)ej u
b (du0−bw0)

∫ +∞

−∞
Rx1x1 (τ) e−j a

2b τ2
e−j

u0
b τ

×
√

1

2π jb
e

jdu2
0

2b e
j

2b [aτ2+2τ(u0−u)−2u(du0−bw0)+du2]dτ

=
1

2πb

∫ +∞

−∞
Rx1x1 (τ) e−j u

b τdτ

=
1

2πb
Px1x1

(u

b

)
. (3.2)

Note that PA
xx(u) = 0, |u| > ur. Then the desired result is proved.

First, we will show that the nonuniform sampling is identical to uniform sampling after a pre-filter

in the sense of second order statistic characters.

Figure 2. The nonuniform sampling process

Figure 3. The equivalent system of the nonuniform sampling, where the filtering through filter h1(t)

means that ỹ(t) = 1√
2π

∫
R

x̃(s)h1(t − s)ds

Theorem 3.3. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth ur and

x̃(t) = x(t)ej a
2b t2

is stationary. Then in the sense of second order statistic characters, the nonuniform sampling

of x(t) at the sampling points tn = nT + ξn (Figure 2) is identical to the uniform sampling after a SAFT filter

h1(t) as in Figure 3, where T ≤ TN = πb
ur

, {ξn} is a sequence of independent identically distributed random

variables with zero mean in the interval (−T/2, T/2). Moreover,

H1(u) = φξ

(u

b

)
=

1√
2π

∫ +∞

−∞
h1(t)e

−j
(u−u0)

b tdt
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and φξ(u) denotes the characteristic function of ξn.

Proof Note that y(t) = (xΘh1) (t). Then it follows from Lemma 2.3 that

PA
yy(u) = |H1(u)|2 PA

xx(u). (3.3)

Moreover, one has

y1(t) = y(t)ej a
2b t2

ej
u0
b t

=
1√
2π

ej
u0
b t
∫

R

x(s)h1(t − s)ej a
2b s2

ds

=
1√
2π

ej
u0
b t
∫

R

x̃(s)h1(t − s)ds. (3.4)

Hence, we have

Ry1y1
(t + τ, t) =

1

2π
ej

u0
b τ
∫

R

∫

R

h∗1(s)Rx̃x̃

(
τ − s′ + s

)
h1

(
s′
)

ds′ds,

which is independent of t and y1(t) is stationary. It follows from (2.8) and (3.3) that

RA
yy(kT) =

∫ ur

−ur

PA
yy(u)e

−j a
2b (kT)2+j 1

b (u−u0)kTdu

=
∫ ur

−ur

|H1(u)|2 PA
xx(u)e

−j a
2b (kT)2+j 1

b (u−u0)kTdu. (3.5)

This together with (2.5) obtains

Ry1y1
(nT, (n − k)T) = Ry1y1

(kT)

= RA
yy(kT)ej a

2b (kT)2
ej

u0
b kT

= ej a
2b (kT)2

ej
u0
b (kT)

∫ ur

−ur

|H1(u)|2 PA
xx(u)e

−j a
2b (kT)2+j 1

b (u−u0)kTdu

=
∫ ur

−ur

|H1(u)|2 PA
xx(u)e

j u
b kTdu. (3.6)

Combining (2.5) and (2.8), we have

E [Rx1x1 (kT + ξn − ξn−k)]

= E
[

RA
xx (kT + ξn − ξn−k) ej a

2b (kT+ξn−ξn−k)
2

ej
u0
b (kT+ξn−ξn−k)

]

= E

[∫ ur

−ur

PA
xx(u)e

−j a
2b (kT+ξn−ξn−k)

2+j 1
b (u−u0)(kT+ξn−ξn−k)du · ej a

2b (kT+ξn−ξn−k)
2

ej
u0
b (kT+ξn−ξn−k)

]

= E

[∫ ur

−ur

PA
xx(u)e

j u
b (kT+ξn−ξn−k)du

]

=
∫ ur

−ur

PA
xx(u)e

j u
b kTE

[
ej u

b (ξn−ξn−k)
]

du. (3.7)

Let Z = ξn − ξn−k and fZ(η) be the probability density function of Z. Note that ξn and ξn−k are

independent and have identical distributions. Let fξ(η) be their common probability density function.

Then we have

fZ(η) =
[

fξ(·) ∗ fξ(−·)
]
(η), (3.8)
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where ∗ denotes the convolution operator. Moreover, one has

E
[
ej u

b (ξn−ξn−k)
]
=
∫ +∞

−∞
fZ(η)e

j u
b ηdη

=
∫ +∞

−∞

[
fξ(·) ∗ fξ(−·)

]
(η)ej u

b ηdη

=
∫ +∞

−∞
fξ(η)e

j u
b ηdη ·

∫ +∞

−∞
fξ(−η)ej u

b ηdη

=
∣∣∣φξ

(u

b

)∣∣∣
2

, (3.9)

where

φξ(u) =
∫ +∞

−∞
fξ(η)e

juηdη.

Substituting (3.9) into (3.7) obtains

E [Rx1x1 (kT + ξn − ξn−k)] =
∫ ur

−ur

∣∣∣φξ

(u

b

)∣∣∣
2

PA
xx(u)e

j u
b kTdu. (3.10)

This together with H1(u) = φξ

(
u
b

)
and (3.6) proves the desired result.

In the following, we will give an approximate recovery method for bandlimited signals in the

SAFT domain based on randomized nonuniform samples.

Lemma 3.4. [13] Suppose that the random signal x(t) is bandlimited in the Fourier transform domain with

bandwidth ur
b , {ξn} and {ζn} are two sequences of independent identically distributed random variables with

zero mean. Then an approximate recovery formula of nonuniform sampling for the random signal x(t) can be

represented by

x′′(t) =
T

TN

+∞

∑
n=−∞

x (tn) h2 (t − t̃n) , (3.11)

where h2(t) = sinc
(

urt
b

)
, sinc(x) ≜ sin x

x , tn = nT + ξn and t̃n = nT + ζn.

Theorem 3.5. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth ur and

x̃(t) = x(t)ej a
2b t2

is stationary. Then x(t) can be approximated from its nonuniform samples by utilizing the

sinc interpolation function as

x̂(t) =
T

TN
e−j

u0
b te−j a

2b t2
+∞

∑
n=−∞

x (tn) ej a
2b t2

n ej
u0
b tn h2 (t − t̃n) , (3.12)

where tn and t̃n are as in Lemma 3.4.

Proof It follows from Lemma 3.2 that x1(t) is bandlimited in the FT domain with bandwidth ur
b .

By (3.11), we know that

x′′1 (t) =
T

TN

+∞

∑
n=−∞

x1(tn)h2 (t − t̃n) =
T

TN

+∞

∑
n=−∞

x (tn) ej a
2b t2

n ej
u0
b tn h2 (t − t̃n) (3.13)

is an approximation of x1(t). Note that x(t) = e−j
u0
b te−j a

2b t2
x1(t). Then x̂(t) in (3.12) is an approximate

recovery approach of x(t) and the proof is completed.

From Theorem 3.5, one can see that the approximate recovery approach using the sinc

interpolation for a random signal that is bandlimited in the SAFT domain can be expressed in Figure 4.
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Figure 4. The approximate reconstruction with sinc interpolation function, where x̄(t) =

T
TN

+∞

∑
n=−∞

x1(tn)h2(t − t̃n)

4. Error estimate for Nonuniform Sampling

Since the reconstruction with randomized sinc interpolation is an approximate method, we

will estimate the approximation error in this section.

Lemma 4.1. Let random signals x1(t) and y1(t) be the input and output of the FT multiplicative filter as in

Figure 5. Then

Py1y1
(u) =

∣∣∣ĥ3(u)
∣∣∣
2
Px1x1

(u),

where ĥ3(u) is the FT of h3(t), that is,

ĥ3(u) =
∫

R

h3(t)e
−jutdt.

Proof Note that y1(t) =
∫ +∞

−∞
x1(t − u)h3(u)du. Then

Ry1x1 (t + τ, t) = E [y1(t + τ)x∗1(t)] =
∫ +∞

−∞
Rx1x1 (τ − u)h3(u)du, (4.1)

which is independent of t. Moreover, one has

Ry1y1 (t + τ, t) = E [y1(t + τ)y∗1(t)] =
∫ +∞

−∞
Ry1x1 (τ + u)h∗3(u)du. (4.2)

Taking FT on both sides of (4.1) and (4.2) obtains

Py1x1 (u) = ĥ3(u)Px1x1 (u) (4.3)

and

Py1y1 (u) = ĥ∗3(u)Py1x1 (u) . (4.4)

Combining (4.3) and (4.4) gives

Py1y1
(u) =

∣∣∣ĥ3(u)
∣∣∣
2
Px1x1

(u).

Theorem 4.2. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth ur and

x̃(t) = x(t)ej a
2b t2

is stationary. Let v(t) be an additive noise with zero mean, which is stationary, uncorrelated

with x(t) and has the power spectral density

Pvv(u) = T
∫ ur

−ur

PA
xx(u1)

[
1 −

∣∣∣φξζ

(u1

b
,−u

)∣∣∣
2
]

du1, |u| ≤ ur

b
, (4.5)
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where φξζ(s, t) is the joint characteristic function of the random variables ξn and ζn. If φξζ(u,−u) is the

frequency response of the filter h3(t), then the model described in Figure 5 is identical to the procedure represented

in Figure 4 in the sense of second order statistic characters. Moreover, we have

E
[
|x̂(t)− x(t)|2

]
=
∫ ur

−ur

PA
xx(u)

∣∣∣1 − φξζ

(u

b
,−u

b

)∣∣∣
2
du

+
T

2πb

∫ ur

−ur

PA
xx (u)

∫ ur

−ur

[
1 −

∣∣∣φξζ

(u

b
,−u1

b

)∣∣∣
2
]

du1du.

Proof It follows from Theorem 3.5 that

x̄(t) = x̂(t)ej
u0
b tej a

2b t2
=

T

TN

+∞

∑
n=−∞

x(tn)e
j a

2b t2
n e

ju0tn
b h2(t − t̃n). (4.6)

Then one has

Rx̄x̄(t, t − τ) =

(
T

TN

)2

E

[( +∞

∑
n=−∞

x(nT + ξn)e
j a

2b (nT+ξn)
2

e
ju0(nT+ξn )

b h2(t − nT − ζn)

)
·

( +∞

∑
k=−∞

x∗(kT + ξk)e
−j a

2b (kT+ξk)
2

e
−ju0(kT+ξk )

b h∗2(t − τ − kT − ζk)

)]

=

(
T

TN

)2 +∞

∑
n=−∞

+∞

∑
k=−∞

E
[

Rx1x1 (nT − kT + ξn − ξk)h2(t − nT − ζn)h
∗
2(t − τ − kT − ζk)

]
.

Moreover, it can be represented by two terms as

Rx̄x̄(t, t − τ) =

(
T

TN

)2

Rx1x1
(0)

+∞

∑
n=−∞

E
[

h2(t − nT − ζn)h
∗
2(t − τ − nT − ζn)

]

+

(
T

TN

)2

∑
n ̸=k

E
[

Rx1x1
(nT − kT + ξn − ξk)h2(t − nT − ζn)h

∗
2(t − τ − kT − ζk)

]

∆
= I + I I. (4.7)

Note that ∑
n

ej(u2−u1)nT = 2π ∑
k

δ
(
(u2 − u1)T − 2πk

)
and

h2(t) =
1√
2π

∫

R

H2(u)e
j u

b tdu =
b√
2π

∫

R

H2(ub)ejutdu. (4.8)

These together with the fact that H2(u) =
π√

2πur
χ[−ur ,ur ](u) show that

I =
1

2π

(
Tb

TN

)2

Rx1x1 (0)
∫

R

∫

R

H2(bu1)H∗
2 (bu2)e

j(u1−u2)teju2τ
+∞

∑
n=−∞

ej(u2−u1)nT E
[
ej(u2−u1)ζn

]
du1du2

=

(
Tb

TN

)2

Rx1x1 (0)
∫ ur

b

− ur
b

1

T
|H2(bu)|2ejuτdu

= T

(
b

TN

)2 1

2π

[∫ ur
b

− ur
b

Px1x1 (u1)du1

] ∫ ur
b

− ur
b

|H2(bu)|2ejuτdu

=
T

4π2

∫ ur
b

− ur
b

ejuτ

[∫ ur
b

− ur
b

Px1x1 (u1)du1

]
du. (4.9)
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Moreover, we have

I I =

(
bT

2πTN

)2

∑
n ̸=k

E

[∫ ur
b

− ur
b

Px1x1 (u)e
ju(nT−kT+ξn−ξk)du

∫

R

H2(bu1)e
ju1(t−nT−ζn)du1·

∫

R

H∗
2 (bu2)e

−ju2(t−τ−kT−ζk)du2

]

=

(
bT

2πTN

)2

∑
n ̸=k

∫ ur
b

− ur
b

∫

R

∫

R

Px1x1 (u)H2(bu1)H∗
2 (bu2)e

ju2τej(u1−u2)tej(u−u1)nTe−j(u−u2)kT

· E
[
ejuξn e−juξk e−ju1ζn eju2ζk

]
du1du2du

=

(
bT

2πTN

)2 ∫ ur
b

− ur
b

∫

R

∫

R

Px1x1 (u)H2(bu1)H∗
2 (bu2)φξζ (u,−u1) φ∗

ξζ (u,−u2) eju2τej(u1−u2)t

·
(
∑
n

ej(u−u1)nT
)(

∑
k

e−j(u−u2)kT
)
du1du2du −

(
bT

2πTN

)2 ∫ ur
b

− ur
b

∫

R

∫

R

Px1x1 (u)H2(bu1)H∗
2 (bu2)

· φξζ (u,−u1) φ∗
ξζ (u,−u2) eju2τej(u1−u2)t

(
∑
n

ej(u2−u1)nT
)
du1du2du

=

(
b

TN

)2∫ ur
b

− ur
b

Px1x1 (u)
∣∣φξζ (u,−u)

∣∣2|H2(bu)|2ejuτdu−

T

2π

(
b

TN

)2∫ ur
b

− ur
b

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣φξζ (u1,−u)

∣∣2|H2(bu)|2ejuτdu1du

=

(
b

TN

)2 ∫ ur
b

− ur
b

|H2(bu)|2ejuτ

[
Px1x1 (u)

∣∣φξζ (u,−u)
∣∣2 − T

2π

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣φξζ (u1,−u)

∣∣2du1

]
du

=
1

2π

∫ ur
b

− ur
b

ejuτ

[
Px1x1 (u)

∣∣φξζ (u,−u)
∣∣2 − T

2π

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣φξζ (u1,−u)

∣∣2du1

]
du. (4.10)

Substituting (4.9) and (4.10) into (4.7) obtains

Rx̄x̄(t, t − τ) =
T

4π2

∫ ur
b

− ur
b

(∫ ur
b

− ur
b

Px1x1
(u1)

[
1 −

∣∣φξζ (u1,−u)
∣∣2
]
du1

)
ejuτdu

+
1

2π

∫ ur
b

− ur
b

ejuτ Px1x1
(u)

∣∣φξζ (u,−u)
∣∣2du. (4.11)

Similarly, we can obtain

Rx̄x1
(t, t − τ) =

1

2π

∫ ur
b

− ur
b

Px1x1
(u)ejuτφξζ(u,−u)du. (4.12)

Therefore, we have

Px̄x̄(u) = Px1x1
(u)
∣∣φξζ (u,−u)

∣∣2 + T

2π

∫ ur
b

− ur
b

Px1x1
(u1)

[
1 −

∣∣φξζ (u1,−u)
∣∣2
]

du1 (4.13)

and

Px̄x1
(u) = Px1x1

(u)φξζ(u,−u). (4.14)

It follows from Lemma 4.1 that the first term Px1x1
(u)
∣∣φξζ (u,−u)

∣∣2 in (4.13) is the FT power spectral

density of y1(t) in Figure 5. Furthermore, since x̄(t) = y1(t) + v(t) and v(t) is uncorrelated with x(t),

then

Rx̄x̄(t + τ, t) = E
[
(y1(t + τ) + v(t + τ)) (y1(t) + v(t))∗

]

= Ry1y1
(t + τ, t) + Ry1v(t + τ, t) + Rvy1

(t + τ, t) + Rvv(t + τ, t)

= Ry1y1
(t + τ, t) + Rvv(t + τ, t).
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Moreover, one has

Px̄x̄(u) = Py1y1
(u) + Pvv(u),

which shows that the second term in (4.13) is just the power spectral density of v(t), that is,

Pvv(u) =
T

2π

∫ ur
b

− ur
b

Px1x1
(u1)

[
1 −

∣∣φξζ (u1,−u)
∣∣2
]

du1

= T
∫ ur

−ur

PA
xx(u1)

[
1 −

∣∣∣φξζ

(u1

b
,−u

)∣∣∣
2
]

du1, |u| ≤ ur

b
.

Therefore, the model described in Figure 5 is identical to the procedure represented in Figure 4 in the

sense of second order statistic characters.

Next, we will estimate the error E
[
|x̂(t)− x(t)|2

]
. Let ε(t) = x̂(t)− x(t). Combining (3.2) and

(4.13), we get

PA
x̂x̂ (u) =

1

2πb
Px̄x̄(

u

b
)

=
1

2πb
Px1x1

(
u

b
)
∣∣∣φξζ

(u

b
,−u

b

)∣∣∣
2
+

T

4π2b

∫ ur
b

− ur
b

Px1x1
(u1)

[
1 −

∣∣∣φξζ

(
u1,−u

b

)∣∣∣
2
]

du1

= PA
xx (u)

∣∣∣φξζ

(u

b
,−u

b

)∣∣∣
2
+

T

2πb

∫ ur

−ur

PA
xx (u1)

[
1 −

∣∣∣φξζ

(u1

b
,−u

b

)∣∣∣
2
]

du1. (4.15)

Similarly, we can obtain

PA
x̂x (u) = PA

xx (u) φξζ

(u

b
,−u

b

)
. (4.16)

In fact, it is easy to see that

Rx̄x1 (t + τ, t) = E
[

x̂(t + τ)ej
u0
b (t+τ)ej a

2b (t+τ)2

x∗(t)e−j
u0
b te−j a

2b t2
]

= Rx̂x (t + τ, t) ej
u0
b τej a

b tτej a
2b τ2

.

Therefore, Rx̂x (t + τ, t) ej a
b tτ is independent of t due to (4.12). Then

RA
x̂x (τ) =Rx̂x (t + τ, t) ej a

b tτ

=Rx̄x1 (t + τ, t) e−j
u0
b τe−j a

2b τ2
.

Moreover, it follows from (2.7) that

PA
x̂x (u) =

√
1

−j2πb
e−j d

2b u2
e
−j d

2b
u2

0
ej u

b (du0−bw0)FA

{
Rx̄x1 (τ) e−j

u0
b τe−j a

2b τ2
}
(u)

=

√
1

−j2πb
e−j d

2b (u
2+u2

0)ej u
b (du0−bw0)

∫ +∞

−∞
Rx̄x1 (τ) e−j

u0
b τe−j a

2b τ2

√
1

2π jb
e

jdu2
0

2b

· e
j

2b [aτ2+2τ(u0−u)−2u(du0−bw0)+du2]dτ

=
1

2πb

∫ +∞

−∞
Rx̄x1 (τ)e

−j u
b τdτ

=
1

2πb
Px̄x1

(u

b

)

=
1

2πb
Px1x1

(u

b

)
φξζ

(u

b
,−u

b

)

= PA
xx (u) φξζ

(u

b
,−u

b

)
. (4.17)
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Hence, the SAFT auto-power spectral density of the reconstruction error ε(t) is

PA
εε (u) = PA

x̂x̂ (u)− PA
x̂x (u)− PA

xx̂ (u) + PA
xx (u)

= PA
xx (u)

∣∣∣φξζ

(u

b
,−u

b

)∣∣∣
2
+

T

2πb

∫ ur

−ur

PA
xx (u1)

[
1 −

∣∣∣φξζ

(u1

b
,−u

b

)∣∣∣
2
]

du1

− PA
xx (u) φξζ

(u

b
,−u

b

)
−
[

PA
xx (u) φξζ

(u

b
,−u

b

)]∗
+ PA

xx (u)

= PA
xx (u)

∣∣∣1 − φξζ

(u

b
,−u

b

)∣∣∣
2
+

T

2πb

∫ ur

−ur

PA
xx (u1)

[
1 −

∣∣∣φξζ

(u1

b
,−u

b

)∣∣∣
2
]

du1, (4.18)

where we have used the fact that PA
xx (u) is real due to (3.2). Note that

ε1(t) = ε(t)ej
u0
b tej a

2b t2
= (x̂(t)− x(t))ej

u0
b tej a

2b t2
= x̄(t)− x1(t).

Then ε1(t) is stationary. Moreover, it follows from (2.5) and (2.8) that

E
[
|ε(t)|2

]
= Rε1ε1

(0) = RA
εε(0) =

∫ ur

−ur

PA
εε (u) du

=
∫ ur

−ur

PA
xx (u)

∣∣∣1 − φξζ

(u

b
,−u

b

)∣∣∣
2
du +

T

2πb

∫ ur

−ur

PA
xx (u)

∫ ur

−ur

[
1 −

∣∣∣φξζ

(u

b
,−u1

b

)∣∣∣
2
]

du1du.

This completes the proof.

Figure 5. An equivalent nonuniform sampling and reconstruction system to Figure 4, where v(t) is an

additive noise with zero mean which is uncorrelated with x(t) and has power spectral density as (4.5)

Remark 4.3. If ξn and ζn equal to zero, then the nonuniform sampling studied in this paper reduces to the

uniform sampling. In such case, φξζ(s, t) ≡ 1. Then it follows from Theorem 4.2 that

E
[
|x̂(t)− x(t)|2

]
=
∫ ur

−ur

PA
xx(u)

∣∣∣1 − φξζ

(u

b
,−u

b

)∣∣∣
2

du

+
T

2πb

∫ ur

−ur

PA
xx(u)

∫ ur

−ur

[
1 −

∣∣∣φξζ

(u

b
,−u1

b

)∣∣∣
2
]

du1du

= 0.

That is to say, x(t) is equal to its approximation x̂(t) in the mean square sense. From Theorem 3.5, one can see

that for T = TN = πb
ur

, the approximation of x(t) obtained in (3.12) becomes

x̂(t) = e−j a
2b t2

+∞

∑
n=−∞

x(nT)ej a
2b (nT)2

ej
u0
b (nT−t)sinc

(
ur(t − nT)

b

)
, (4.19)
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which coincides with Theorem 3 in [29]. Therefore, the result of uniform sampling proposed in [29] is a special

case of Theorems 3.5 and 4.2 in this paper.

Acknowledgments: The project is partially supported by the National Natural Science Foundation of China
(No.12261025), Center for Applied Mathematics of Guangxi (No. AD23023002), Guangxi Colleges and Universities
Key Laboratory of Data Analysis and Computation.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. S. Abe, J. T. Sheridan. Optical operations on wave functions as the Abelian subgroups of the special affine

Fourier transformation. Optics Letters, 1994, 19: 1801–1803.

2. K. Adam, A. Scholefield, M. Vetterli. Sampling and reconstruction of bandlimited signals with multi-channel

time encoding. IEEE Transactions on Signal Processing, 2020, 69: 1105-1119.

3. A. Aldroubi, J. Davis, I. Krishtal. Dynamic sampling: Time-space trade-off. Appl. Comput. Harmon. Anal.,

2013, 34: 495–503.

4. Y. Bao, Y. Zhang, Y. Song, B. Li, P. Dang. Nonuniform sampling theorems for random signals in the offset

linear canonical transform domain. Proceedings of APSIPA Annual Summit and Conference, 2017, Kuala

Lumpur, Malaysia, 94–99.

5. R. F. Bass, K. Gröchenig. Random sampling of bandlimited functions. Isral J. Math., 2010, 177(1): 1-28.

6. A. Bhandari, A. I. Zayed. Shift-invariant and sampling spaces associated with the special affine Fourier

transform. Applied and Computational Harmonic Analysis, 2019, 47: 30–52.

7. H. Boche, U. J. Mönich. Approximation of wide-sense stationary stochastic processes by Shannon sampling

series. IEEE Transactions on Information Theory, 2010, 56(12): 6459–6469.

8. F. Gilles, K. Sinuk. Average sampling of band-limited stochastic processes. Applied and Computational

Harmonic Analysis, 2013, 35(3): 527–534.

9. K. Gröchenig, J. L. Romero, J. Unnikrishnan, M. Vetterli. On minimal trajectories for mobile sampling of

bandlimited fields. Appl. Comput. Harmon. Anal., 2015, 39: 487–510.

10. H. Huo, W. Sun. Sampling theorems and error estimates for random signals in the linear canonical transform

domain. Signal Processing, 2015, 111: 31–38.

11. H. Huo, W. Sun. Nonuniform sampling for random signals bandlimited in the linear canonical transform

domain. Multidimensional Systems and Signal Processing, 2020, 31: 927–950.

12. X. Liu, J. Shi, W. Xiang, Q. Zhang, N. Zhang. Sampling expansion for irregularly sampled signals in fractional

Fourier transform domain. Digital Signal Processing, 2014, 34: 74–81.

13. S. Maymon, A. V. Oppenheim. Sinc interpolation of nonuniform samples. IEEE Trans. Signal Process., 2011,

59 (10): 4745–4758.

14. F. Oktem, H. Ozaktas. Exact relation between continuous and discrete linear canonical transforms. IEEE

Signal Processing Letters, 2009, 16(8): 727–730.

15. C. E. Shannon. Communication in the presence of noise. Proc. IRE, 1949, 37: 10–12.

16. K. Sharma, S. Joshi. Signal separation using linear canonical and fractional Fourier transforms. Optics

Communications, 2006, 265(2): 454–460.

17. Z. Song, W. Sun, X. Zhou, Z. Hou. An average sampling theorem for bandlimited stochastic processes. IEEE

Transactions on Information Theory, 2007, 53(12): 4798–4800.

18. A. Stern. Sampling of compact signals in the offset linear canonical transform domains. Signal, Image and

Video Processing, 2007, 1(4): 359–367.

19. R. Tao, B. Li, Y. Wang, G. Aggrey. On sampling of band-limited signals associated with the linear canonical

transform. IEEE Transactions on Signal Processing, 2008, 56(11): 5454–5464.

20. R. Tao, F. Zhang, Y. Wang. Sampling random signals in a fractional Fourier domain. Signal Processing, 2011,

91(6): 1394–1400.

21. D. Wei, Q. Ran, Y. Li. Multichannel sampling and reconstruction of bandlimited signals in the linear canonical

transform domain. IET Signal Processing, 2011, 5(8): 717–727.

22. H. Zhao, R. Wang, D. Song. Recovery of bandlimited signals in linear canonical transform domain from

noisy samples. Circuits Systems and Signal Processing, 2014, 33(6): 1997–2008.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2024                   doi:10.20944/preprints202401.1021.v1

https://doi.org/10.20944/preprints202401.1021.v1


15 of 15

23. H. Zhao, R. Wang, D. Song, T. Zhang, D. Wu. Extrapolation of discrete bandlimited signals in linear canonical

transform domain. Signal Processing, 2014, 94: 212–218.

24. Q. Xiang, K. Qin. Convolution, correlation, and sampling theorems for the offset linear canonical transform.

Signal, Image and Video Processing, 2014, 8(3): 433–442.

25. Q. Xiang, K. Qin, Q. Huang. Multichannel sampling of signals band-limited in offset linear canonical

transform domains. Circuits Systems and Signal Processing, 2013, 32(5): 2385–2406.

26. S. Xu, Y. Chai, Y. Hu. Spectral analysis of sampled band-limited signals in the offset linear canonical

transform domain. Circuits Systems and Signal Processing, 2015, 34(12): 3979–3997.

27. S. Xu, Y. Chai, Y. Hu, C. Jiang, Y. Li. Reconstruction of digital spectrum from periodic nonuniformly sampled

signals in offset linear canonical transform domain. Optics Communications, 2015, 348: 59–65.

28. S. Xu, L. Feng, Y. Chai, Y. He. Analysis of A-stationary random signals in the linear canonical transform

domain. Signal Processing, 2018, 146: 126–132.

29. S. Xu, L. Feng, Y. Chai, Y. Hu, L. Huang. Sampling theorems for bandlimited random signals in the offset

linear canonical transform domain. AEU-International Journal of Electronics and Communications, 2017, 81:

114–119.

30. S. Xu, L. Huang, Y. Chai, Y. He. Nonuniform sampling theorems for bandlimited signals in the offset linear

canonical transform. Circuits Systems and Signal Processing, 2018, 37: 3227–3244.

31. S. Xu, C. Jiang, Y. Chai, Y. Hu, L. Huang. Nonuniform sampling theorems for random signals in the linear

canonical transform domain. International Journal of Electronics, 2018, 105(6): 1051–1062.

32. L. Xu, F. Zhang, R. Tao. Randomized nonuniform sampling and reconstruction in fractional Fourier domain.

Signal Processing, 2016, 120: 311–322.

33. X. Zhi, D. Wei, W. Zhang. A generalized convolution theorem for the special affine Fourier transform and its

application to filtering. Optik, 2016, 127: 2613–2616.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2024                   doi:10.20944/preprints202401.1021.v1

https://doi.org/10.20944/preprints202401.1021.v1

	Introduction 
	 Power Spectral Density in the SAFT Domain
	 Nonuniform Sampling and Approximate Recovery 
	Error estimate for Nonuniform Sampling
	References

