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Abstract: The special affine Fourier transform (SAFT) is a useful and powerful analyzing tool in
signal processing, optics and communications. In this paper, we mainly discuss the randomized
nonuniform sampling and reconstruction for random signals bandlimited in the SAFT domain. First,
we show that the nonuniform sampling is identical to the uniform sampling after a pre-filter in the
sense of second order statistic characters. Then, we propose an approximate reconstruction based on
sinc interpolation for the nonuniform sampling of random signals bandlimited in the SAFT domain.
Finally, we give the mean square error estimate for the proposed approximate recovery approach.
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1. Introduction

The special affine Fourier transform (SAFT) was firstly proposed in [1] to model optical systems.
It offers a unified viewpoint of known signal processing transforms, such as Fourier transform (FT),
fractional Fourier transform (FrFT), linear canonical transform (LCT), Laplace transform (LT) and
so on. It can also include some optical operations on light waves, such as rotation, magnification,
hyperbolic transformation, free space propagation, Lens transformation and so on. The SAFT is a
six-parameters linear integral transform which is defined by offsetting two extra parameters on the
basis of the LCT, so SAFT is also known as the offset linear canonical transform (OLCT). It has been
proved that the SAFT is a useful tool for signal processing, communications, quantum mechanics and
optics [12,16,23,26]. Many classical results such as Zak transform, Poisson summation formula and
convolution theorems are established in the SAFT domain [6,24,33].
Let

c d| wy

be a matrix with six real parameters satisfying ad — bc = 1. The continuous-time SAFT associated with
the parameter matrix A of a signal f(t) is defined as in [1],

J2 f(OKa(tu)dt, b#0,

Fa(u) = SAFT[f](u) = Vel i d (u— ug)], b=0,

1.1)
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where the kernel function K4 (¢, ) is given by

jdu
Kalt, u) _ 271]176]%062]17 [ut2+2t(u07u)72u(du07bwo)+du2} ) 1.2)

It is noted that when b = 0, the SAFT of a signal is essentially a chirp multiplication. Therefore, we
shall confine our attention to the case of b # 0. The inverse SAFT is expressed as

+0c0
f(b) = C[m Fa(u)K 1 (1, t)du, (1.3)

i 2_ 2
where C = ez(cduo 2adu0w0+abw0) and

d —b

—C a

Ail L ba)o —L‘luo

CUp — awy

Sampling is one of the most fundamental process in digital signal processing which provides
a bridge between the continuous physical signals and the discrete digital signals. Beginning with
the Shannon’s sampling theorem of bandlimited signals [15], various sampling such as nonuniform
sampling, average sampling, dynamic sampling, random sampling, mobile sampling, timing sampling
and multi-channel sampling have been generally studied for signals bandlimited in the FT domain
[2,3,5,9]. With the appearance and developments of the more general transforms, the corresponding
sampling theories are extended to the signals bandlimited in the FrFT, LCT and SAFT domains
[6,12,14,18,19,21-23,25-27,30,32].

Signals in the real world often presents random characteristics and sampling for random signals
bandlimited in the FT domain has been generally studied [5,7,8,17]. In recent years, there have existed
many researches for sampling of random signals bandlimited in the FrFT and LCT domains [10,11,20,28,
31]. The uniform sampling theorems in [10] was extended to the SAFT domain as in [29]. Nonuniform
sampling is a more realistic sampling scheme due to the limitations of data acquisition and processing
ability. In fact, the nonuniform sampling theories including the periodic nonuniform sampling
model, N-order recurrent nonuniform sampling model, nonuniform sampling due to migration of a
finite number of uniform samples and the general nonuniform sampling have been given for signals
bandlimited in the LCT domain [31] and signals bandlimited in the SAFT domain [4,30], respectively.
In particular, the nonuniform sampling problem was also considered in [11] for random signals
bandlimited in the LCT domain, where a randomized nonuniform sampling method and a class of
approximate recovery approaches by using sinc interpolation functions were studied. In this paper,
we will further study the randomized nonuniform sampling for random signals bandlimited in the
SAFT domain and also give an approximate recovery method based on the sinc interpolation.

The paper is organized as follows. In section 2, we give the definition of the power spectral
density in the SAFT domain. In section 3, we study the nonuniform sampling scheme and propose
an approximate recovery approach. In section 4, the mean square error estimate for the proposed
approximate recovery method is demonstrated.

2. Power Spectral Density in the SAFT Domain

Given a probability space ({2, F, p), a stochastic process x(t) is said to be wide sense stationary
if it has zero mean and its auto-correlation function

Ryx(t4 7, t) = E[x(t 4 7)x* ()] (2.1)
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is independent of t € R, i.e., Ryx(t + T,t) = Ryx(T), where E[-] denotes mathematical expectation and
the superscript * stands for the complex conjugate. Two stochastic processes x(t) and y(t) are said to
be jointly stationary, if x(¢) and y(t) are both stationary and their cross-correlation function

Ryy(t+7,t) = E[x(t+1)y* (t)] (2.2)

is independent of t € R, i.e., Ryy(t + T,t) = Ryy(7).

We next introduce the SAFT auto-correlation function, the SAFT cross-correlation function, the
SAFT auto-power spectral density and the SAFT cross-power spectral density as in [29]. For two
random signals x(t) and y(t), the SAFT auto-correlation function of x(t) is defined as

1 T .
R () = Jim L Rus(t+7,)elt 7t 2.3)

Similarly, the SAFT cross-correlation function of x(t) and y(t) is defined as

1T 0
R{,(1) = im oo /_ Ruylt+T,t)e b1 dt. (2.4)

Remark 2.1. If the random signal %(t) = x(t)e]%t2 is stationary, then x1(t) = f(t)ejuTOt is also stationary. In
fact,

jugT

Ryx (t+7,t) =et Rez(t+ 7, 1).

Moreover, one has
Rix(t+1,1) =

E[%(t+ 1)%"(t)]

E [x(t+T)ejﬁ(t”)2x*(t)e_fﬁt2}
— B [x(t+ 1) (e
Raux(t+ T,t)efmTTejﬁrz.

Therefore, Rxx(t + T, t)e% must be independent of t. In such case, we have

2

RA(T) = Ryyxy (1) THTe T, (2.5)

Define the SAFT auto-power spectral density of the random signal x(t) by

. ,duz i
PA (u) = \/ j;ﬂbe%”ze]zl?e]h(d”‘)wa)FA {R,’?x(r)} (u) (2.6)

and the SAFT cross-power spectral density of the random signals x(t) and y(t) as

1 . -d”2 U
P (u) =, | _],ane—J%uze—JTfefz<duo—bwo>FA {Rfy(r)} (1). @.7)
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It follows from (1.1) and (2.6) that
1 id,2 id 2 1
R4 =C / PA (u)1/ ol 3 el 210§ (duo—bwo) .
. . . — 2
X e ]zb(bwo_du()) e ]%uzg_]%(bw()_duO_T)e_]uToTe 2T du
400 ) . 2 . .1 i 2
=¢ / P& (u) ¢l 3513735 (bwo—dug)” o § T o= T 12T gy
—0o0
i 00 . . . . .
_ e%(cdu%72udu0wo+ubwé)/ P;gc (u) e]%uéesz’ib(bwofduo)ze]%refj%orefjﬁrzdu
—0o0
+00 . .
:/ P (u)e*]ﬁTze]%(”*”O)Tdu. (2.8)
—00

Multiplicative filtering in the SAFT domain is showed in Figure 1, which has been introduced in
[29]. More specifically, we first obtain the SAFT of the input signal f; (f) and apply the multiplicative
filter H(u) in the SAFT domain. Then the output signal f,(¢) in the time domain is obtained by the
inverse SAFT. Mathematically, the output f,(t) is given by

f(t) = F; {B(u)} () = Fy' {Fi(w)H(u)} (1), (2.9)

where Fi (1) = F4 {f1(t)} (1) and F>(u) = Fy(u)H (u).

H(u)

Fi(u) l Fy(u)
fl(t) — SAFT —— — 3 Inverse SAFT |[—— fg(t)

Figure 1. Multiplicative filtering in the SAFT

Define normalized convolution
(fOQ)(t) = \/1271 /Rf(x)g(t — x)e T3 (72) gy (2.10)
for f,¢ € L?(R) [23]. Then we have the following conclusion.

Proposition 2.2. Let

H(u) = . / +wh(t)e*j7(u;u0)tdt (2.11)
Vo3 % . .
Then the multiplicative filter in Figure 1 is equivalent to
f2(t) = (f1®h) (t). (2.12)

Proof we only need to prove

Fo{(f1®h) (1)} (u) = Fi(u)H (u).
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It follows from the definition of the SAFT that

Fo{(f10h) (1)} ()
_ 1 de;;(Z) ZLb[at2+2t(u0—u)—Zu(duo—bw0)+du2]
R(flG)h)(t) 27'cjbe e dt
= i e ), [ ) i)
7T

1 % L[ax2+2x(u —u)— - 2 1 i - -4 -
- / T e o—u)=2u(dug—bwo)+du?] g, 1 / Bt — x)ehtmo—w) o= F[2x(uo—u)] 4
Rfl(x) anbe e x\/ZT_( A (t—x)e e

1 g & [ax? +2x(uo—u)— - 2 1 Gl
_ B 535 o—u)—2u(dug—bwg)+du ]d / h(t 5 tdt
Rfl(x) 27ije 4 x\/ziﬂf R ( )6‘

Lemma 2.3. [29] Suppose that the random signals x(t) and y(t) are the input and the output in Figure 1, then
Pg,(u) = H(u)Pfy () (2.13)

and
Py, (u) = [H(u)PPL (w). (2.14)
3. Nonuniform Sampling and Approximate Recovery
In this section, we will study the nonuniform sampling and reconstruction of random signals

which are bandlimited in the SAFT domain.

Definition 3.1. [29] We say that a random signal x(t) is bandlimited in the SAFT domain if its SAFT power
spectral density PA. (u) satisfies

Pa(u) =0, |u| > u, 3.1)
where u, is called the bandwidth of the random signal x(t) in the SAFT domain.

Lemma 3.2. Assume that a random signal x(t) is bandlimited in the SAFT domain with bandwidth u, and
(1) = x(t)e/ Ht s stationary. Then x(t) is bandlimited in the FT domain with bandwidth 4 and the power

Ur Uy

spectral density satisfies supp{ Py,x, (1)} C [—4, F].

doi:10.20944/preprints202401.1021.v1
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Proof Since xq(t) is stationary, it follows from (2.5) and (2.6) that

1
P4 (u) =

,]‘luz i & (dug—bwy) A
1) elb Fa {RE(T) ¢ (u)

Ny
N
3
@‘

— . LU
_ 1 e ]2bu26 gy Oe]h(duo wa)FA {Rx1x1 (T) 6_1%728_1701'} (u)

e
N
3
(ayl

1 42 s
e L L Ll B SV A

4
N
N
S

1 e]a;;;oez]b [aT2+27 (ug—1)— 2u(du07hwo)+du2]d
2mtjb

1 400 e
%[ Ry x (T)e/oTdT

1 u
= ﬂpxlxl(g)’ 82)

T

Note that PA (1) = 0, |u| > u,. Then the desired result is proved.
First, we will show that the nonuniform sampling is identical to uniform sampling after a pre-filter
in the sense of second order statistic characters.

x(t) — Sampling s ® ' x,(2,)

|

t,=nT+¢,

Figure 2. The nonuniform sampling process

e s o o
l 0 0] ‘ y(1) y(nT) ‘
x(7) » ® h@ — Sampling [ ® w(nT)

Figure 3. The equivalent system of the nonuniform sampling, where the filtering through filter hy (t)
means that §(t) = \/%71 Jr X(s)hq (t —s)ds

Theorem 3.3. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth u, and
%(t) = x(t)el 5t s stationary. Then in the sense of second order statistic characters, the nonuniform sampling
of x(t) at the sampling points t, = nT + Cn (Figure 2) is identical to the uniform sampling after a SAFT filter
hy(t) as in Figure 3, where T < Ty = 2L, {&,} is a sequence of independent identically distributed random
variables with zero mean in the interval ( T /2,T/2). Moreover,

= (3) = = [

e (H;HO) Ldt
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and ¢z(u) denotes the characteristic function of .
Proof Note thaty(t) = (x®hy) (t). Then it follows from Lemma 2.3 that
Pyy () = [Hi(u) > P& (w). (33)
Moreover, one has
yi(t) = y(£)el B el 1t
= \/iine]uot/Rx(s)hl(t — s)ejﬁszds
= \/%e]uot/ﬂgf(s)hl(t—s)ds. (3.4)
Hence, we have
Rylyl(tJth)— //h* T—5" +5)hy (s') ds'ds,
which is independent of ¢ and y4 (¢) is stationary. It follows from (2.8) and (3.3) that
P y Y.
Ur o 2, i1,
R4 (KT) = /_ . PO (w)e /A 6T (1)K gy
Uy
= |Hy (u) [* PA (u)e 13 (KT 75 (u-u0)kT gy, (3.5)
—u,
This together with (2.5) obtains
Ry,y, (nT,(n —k)T) = Ry,y, (kT)
— Rﬁy(kT)efﬁ(kT)z jPKT
— o5 (kT)? 52 (kT) / | Hy (1) PA ()75 KT+ (4= 10)kT g
—u,
Uy ‘u
= |Hy () > PA (u)e/ 55T du. (3.6)

—Uy

Combining (2.5) and (2.8), we have

E [vaf] (kT+ gn - gn k)]
— E[RA (KT + &y — &,_y) o35 KT +En—Guiof B (KT 480G ]

_£| / DA ()e A5 KT o8k (4 0) KT4En i) gy . o1 85 (KT +n—Eut)? o B (KT 60 —E)
_u,

e / " pa (u)ejz(méngnk)du]
L/ —Ur

Ur U U
= PA (u)e/sKTE [8]5@"76”*")} du. (3.7)
—uy
Let Z = ¢y — &, and fz(n) be the probability density function of Z. Note that ¢, and &, _x are
independent and have identical distributions. Let fz(#7) be their common probability density function.
Then we have

fz(n) = [fe() = fe(=)] (n), (3.8)
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where * denotes the convolution operator. Moreover, one has
o +00 o
E [gfy(gn—gn—k)} :/ Fz(n)elt1dy
+o0 u
= | el fe(=)] m)evmdy
+o0 o +o0 o
= | femetldn. [ fe(=y)eltTdy
un 12
where oo
pe(u) = /_oo fe()e™dn.
Substituting (3.9) into (3.7) obtains
Uy u\ 2 ”
ERuysy (T + 80— 0-0) = [ [0 (3)| P (el #¥Tan. (3.10)

This together with Hy(u) = ¢z (%) and (3.6) proves the desired result.
In the following, we will give an approximate recovery method for bandlimited signals in the
SAFT domain based on randomized nonuniform samples.

Lemma 3.4. [13] Suppose that the random signal x(t) is bandlimited in the Fourier transform domain with
bandwidth %, {,} and {{,,} are two sequences of independent identically distributed random variables with
zero mean. Then an approximate recovery formula of nonuniform sampling for the random signal x(t) can be

represented by
—+o0

x”(t):Tl S x (b)) o (t— ), (3.11)

n—=-—oo

x 7

where hy(t) = sinc (”T’t>, sinc(x) £ 80Xt = nT + & and F, = nT + (.

Theorem 3.5. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth u, and
%(t) = x(t)e/ H1 s stationary. Then x(t) can be approximated from its nonuniform samples by utilizing the
sinc interpolation function as

T P ia = ia U ~
2(t) = T—effTOte*]Tbtz Y x(ty) e/thel T nh, (t—tn), (3.12)

N n=—o0
where t,, and t,, are as in Lemma 3.4.

Proof It follows from Lemma 3.2 that x; (t) is bandlimited in the FT domain with bandwidth 7.
By (3.11), we know that

1 T oo ~ T T 'Ltz »’L(]t -
xl(t):T— ) xl(tn)hz(t—tn):T— Y x(ty)ewlied vinhy (t—1,) (3.13)

n=—oo N n=—c0

is an approximation of x1 (). Note that x(t) = eI Tt i %y (t). Then £(t) in (3.12) is an approximate
recovery approach of x(t) and the proof is completed.

From Theorem 3.5, one can see that the approximate recovery approach using the sinc
interpolation for a random signal that is bandlimited in the SAFT domain can be expressed in Figure 4.

doi:10.20944/preprints202401.1021.v1
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) ——— ® —{ Synthesis

Figure 4. The approximate reconstruction with sinc interpolation function, where %(f) =

T 1 7
T~ n:);w x1(tn)ho (t — Fn)

4. Error estimate for Nonuniform Sampling

Since the reconstruction with randomized sinc interpolation is an approximate method, we
will estimate the approximation error in this section.

Lemma 4.1. Let random signals x1(t) and y1(t) be the input and output of the FT multiplicative filter as in
Figure 5. Then

Pylyl ‘h?’ ’ lexl (u)r

where i3 (1) is the FT of h3(t), that is,
Bia(u) = /]R iy (F)e T dt.

Proof Note that y;(t) = 75 x;(t — u)hz(u)du. Then

+oo
Ry (t+7,t) = E[y1(t+1)x{(t)] = i Ry x, (T —u)hz(u)du, 4.1)
which is independent of t. Moreover, one has
* oo *
Ry, (t+7,t) =E[yi(t+1)yi(t)] = . Ry x, (T + u)hz(u)du. 4.2)
Taking FT on both sides of (4.1) and (4.2) obtains
Py1x1 (u) = E3(u)P11X1 (u) (4-3)
and
Py, (u) = ék(u)Pylxl (u). (4.4)
Combining (4.3) and (4.4) gives
P]/l]/l ‘h3 ’ Py, (1)

Theorem 4.2. Suppose that the random signal x(t) is bandlimited in the SAFT domain with bandwidth u, and

(1) = x(t)el #t s stationary. Let v(t) be an additive noise with zero mean, which is stationary, uncorrelated
with x(t) and has the power spectral density

Uy u 2 u
va(u) =T Pﬁ(ul) |:1 — ‘¢C§ (?1, *Ll)‘ :| duq, |1/l| < ?r’ (4.5)

—Uy

doi:10.20944/preprints202401.1021.v1
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where ¢g; (s, t) is the joint characteristic function of the random variables ¢, and Cy. If gz (u, —u) is the

frequency response of the filter h3(t), then the model described in Figure 5 is identical to the procedure represented
in Figure 4 in the sense of second order statistic characters. Moreover, we have

E [l —x(F] = [ A1 - g (5,5 )
T i

T ) Pg (u) /ju {1 - ’4’@5 (Z—L;,lﬂz] duydu.

Proof It follows from Theorem 3.5 that

_ A b0y ja 42 ™ ia 2 Jugtn ~
x(t) = 2(t)e vleln = T Y x(ty)e e v hy(t — Ey). (4.6)
N n=—c0
Then one has
2 T 2 ug(nT+En
Rasltt =) = (1) E {( Yo 3T + E)E T (s i) ).
TN n=—oo
o i +
( Y (KT 4 e THUTH e T s (¢ o kT - Ck))]
k=—co
T 2 400  +oo
=\ 7 Z Z [Rxlxl I’lT kT +&n — gk)hZ(t*angn)hE(th kT*gk)]
In n=—00 k=—o0
Moreover, it can be represented by two terms as
T 2 +o00
Res(tt=7) = (= | Rux(0) ¥ E|ho(t—nT = gu)hi(t—7—nT —gy)]
Tn n=—o0
T\2
n () ¥ E[Rups, (0T — KT+ & — G)halt — nT = L)I3(¢ — 7 — KT — 53]
Tn n#k
AI4IL 4.7)
Note that Y- e/(2=#0"T = 271y §((uy — ug) T — 27k) and
n k
ho(t / Hy(u)elvtdu = b / Hy(ub)e™du. (4.8)
\/ V2 Jr

These together with the fact that Hp(u)

2
_ L(E) R
27 TN

x171 ( //HZ bul)HZ(buz)e](ul uz)t pjuaT Z ol iz—u)nT p [e](uz Ml)gn] duyduy

n=—oo
2 ur
— (10) Ran @ [ plalbn) e
N

b \?1 iz |
} T(m 21 { -4 lexl(m)dul} / uw | Hy (bu) e/ du

71/,
T 42

= lemr?([—unur] (1) show that

r
b b

z el { 7; lexl(ul)dul} du. 4.9)

doi:10.20944/preprints202401.1021.v1
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Moreover, we have
2 Ur
11 = (2712711:1\]) [/ Py, (u)e/ (1T —KT 480 =) du/ Hy (buy )™ =T gy
/RHﬁ‘(buZ)effuz(thfkagk)duz]
bT \? _
= (rry) Ek/w/ P () i by ) 5 (b el ()t s a7
E [ej"‘:"e’]”f;ke’fulé"efuzgk] duyduydu
<27TTN) / / / Py, (1) Hp (buy ) H (bug)peg (u, —u1) ¢ (u, —up) el*2Tel (1 712)t
(Y efummnTy (Y o= =u2)kTY gy gy du — (m) /”r/ /me )Ha (buq) Hj (buy)
n k
ez (u,—u7) 4’3@ (1, —15) e/uzrei(uruz)t<Ze] Uy —uy nT)dulduzdu
n
= (b)Z/u{ Px X (u) |(P§€ (u —u)|2|H2(bu)|267“Tdu—
TN 71% 141
T b 2 Lur Ur .
3 (7 ) [ [ Pon o) g o, =) P ot P
b b
- <E) L; | (bu) el {le’fl(”)’%ﬁ (u,—u)|? zn/by Py, (u1)| gz (w1, —u)| dul}
b b
1 (% > T [% 2
= E ‘/7'% Ut |:lex1 (u)‘(])gg (u, —ll) — E /7%, lexl (ul)’(l)gg (ul,—u)‘ du1:| du. (410)
Substituting (4.9) and (4.10) into (4.7) obtains
T UTT Tr 2 juT
Rff(trt_7> = R/ ur /u lexl(ul [1— |(P[;§ (ul,—u)| }dul e/"tdu
5\’
1 (% jut 2
+ E/ TPy, (1) | Pz (u, —u)|du. (4.11)
Similarly, we can obtain
1 (7 ;
Rey, (Kt —1T) = E/ " lexl(u)eJ”T%g(u,—u)du. (4.12)
b
Therefore, we have
2 T 7 2
Prx (1) = Py (0)| e (,—)* o [ Prosy (1) [1 = e (1, =)y @19)
b
and
Pry, () = Pryx, (u)eg (u, —u). (4.14)

It follows from Lemma 4.1 that the first term Py, x, (1) |pzz (11, —u1) ‘ in (4.13) is the FT power spectral
density of y; () in Figure 5. Furthermore, since X(t) = y;(t) + v(t) and v(t) is uncorrelated with x(t),
then

Res(t+1,t) =E[(i(t+ 1) +o(t+ 7)) (1 () +0(t))"]
= Ry, (t+7,1) + Ryjo(t + 7,t) + Roy, (t + T, 1) + Ropo(t + 7, 1)
= Ry,y, (t+7,t) + Rop(t + T, 1).
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Moreover, one has
Prx () = Pyyy, (u) + Poo(ut),
which shows that the second term in (4.13) is just the power spectral density of v(t), that is,

ur

PUU(”) = %/_TW lexl (”1) [1 - |¢§€ (ul’_u)|2} duy
2

u 2
_ " pA 51 Uy
=T _ur Pxx(u1> |:1 — ‘(ng (?, —u)‘ :| dul, |u| < ?
Therefore, the model described in Figure 5 is identical to the procedure represented in Figure 4 in the
sense of second order statistic characters.

Next, we will estimate the error E [|9€(t) — x(t)ﬂ . Let¢(t) = %(t) — x(t). Combining (3.2) and

(4.13), we get
PA (1) = 5 Pee(})
= P (D)o (=Y + g Puys (1) |1 oz (1~ ) [ o
= P{ () ‘4’&@ (% —%) ‘2 + 27];1, _L:r Pf (u1) {1 - ‘4’@ (% —%) ﬂ duy. (4.15)
Similarly, we can obtain
P{ (u) = PY (u) g (%—%) . (4.16)

In fact, it is easy to see that
Rex, (t+7,t) = E [ae(t + r)ef”%@”)ef%b(f”)zx*(t)e—f%“fe—f%tz}
=Ry (t+ 1T, 1) ejuTOTej%tTejﬁTz.
Therefore, Ry, (t + T,t) ¢/57 is independent of ¢ due to (4.12). Then

RA (7) =Ry (t+7,) /BT

M0y a2
=Rgy, (t+T,t)e /T 7e i,

Moreover, it follows from (2.7) that

A () — 1 i % j4 (dug—bwo) g, [ R P Teig T
o (1) = —j27rbe ¢ ‘ A Re (D¢ ‘ "
. . oo i / jduz
_ 1 e_]zib(ueru%)e]%(dug—wa) / fol (T) e_]uTOTe_]zisz L'e 2b0
—j2mb —o 2mjb

. e2]7 [m’z +2"L’(u0—u)—Zu(duo—bzuo)+du2] dr

1+ g
= 727'[17/ Rgx, (T)e /v TdT
—0
1

= 5P (5)
1

= 3P () 9 (5 7)

= Pl () ez () @17)
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Hence, the SAFT auto-power spectral density of the reconstruction error ¢(f) is
P (1) = Pf (u) — P& (1) — Peg (u) + Py (u)
- o (5 4) g o o ()
— P& () deg (% —%) - [Pﬁ (1) deg (% —%)} T+ P ()

= PA () [1- g (%—%) ‘2 + 2—; " PA (1) [1 ~ |z (%—%) ﬂ diy,  (4.18)

—1Uy

where we have used the fact that P2, (u) is real due to (3.2). Note that
ei(t) = e(Del Tt B = (2(t) — x(1))e/ Pl 5 = (1) — x1(1).

Then ¢ (t) is stationary. Moreover, it follows from (2.5) and (2.8) that

E[Ie()P] = Ree, (0) = RA©) = [ P2 (u)

—uy

= [ - en (55 ) [t g [ P [ [0 [ (5[] dunn

—uy —uy —uy

This completes the proof.

jLe jhy, S e =
e 2b e b e 2b e b

J %,(0) o @) l

x() —— Q) —— () [—— P —— Q) —— i)

V(1)

Figure 5. An equivalent nonuniform sampling and reconstruction system to Figure 4, where v(t) is an
additive noise with zero mean which is uncorrelated with x(t) and has power spectral density as (4.5)

Remark 4.3. If ¢, and {,, equal to zero, then the nonuniform sampling studied in this paper reduces to the
uniform sampling. In such case, g (s, t) = 1. Then it follows from Theorem 4.2 that

E[Ie() - x(0)P] = / PAW) [1 - gy (%,—%)‘zdu

—u,
o , PL () /f [1 ~loee (5.-5) ﬂ duydu

=0.

That is to say, x(t) is equal to its approximation %(t) in the mean square sense. From Theorem 3.5, one can see
that for T = Ty = 7;—5’, the approximation of x(t) obtained in (3.12) becomes

. too . 1 —
2(t) = et ) x(nT)e]ﬁ(”T)ze]TO(”T_t)sinc (ur(tbnT)) , (4.19)

n=-—oo

doi:10.20944/preprints202401.1021.v1
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which coincides with Theorem 3 in [29]. Therefore, the result of uniform sampling proposed in [29] is a special
case of Theorems 3.5 and 4.2 in this paper.
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