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Abstract: Recent advances in pretrained language models have reshaped multimodal learning, yet
this progress often comes with increased computational demands. In this paper, we introduce the
Enhanced Multimodal Fusion Network (EMFN), a novel architecture that integrates textual, acoustic,
and visual signals for sentiment analysis. EMFN incorporates specialized adapter modules and
cross-layer fusion strategies to effectively combine multimodal representations while preserving the
robust features of the underlying frozen language model. By decoupling the pretrained weights
from task-specific updates and utilizing lightweight, trainable fusion layers, our approach enables
rapid and data-efficient adaptation. Empirical evaluations on the CMU-MOSEI dataset reveal that
EMEN achieves a relative error reduction of 3.7% and a 2.4% improvement in seven-class classification
accuracy compared to conventional fine-tuning techniques. These insights, alongside comprehensive
experiments, attest to the robustness and adaptability of EMFN under challenging, noisy conditions.

Keywords: multimodal learning; fusion network; sentiment analysis; adapter modules; parameter
efficiency

1. Introduction

The explosion of multimedia content and rapid progress in machine learning algorithms have
jointly propelled multimodal applications into the forefront of Al research. In today’s data-rich en-
vironment, the challenge lies not only in achieving state-of-the-art performance but also in main-
taining a balance between model complexity and computational efficiency—a critical factor for
real-world deployments.

Early deep learning efforts in multimodal sentiment analysis predominantly employed Recur-
rent Neural Networks (RNNs) [13-15] and Convolutional Neural Networks (CNNs) [16] to capture
contextual and spatial features. These architectures laid the groundwork for later innovations, such
as attention mechanisms [17,18], which enabled more refined and context-aware fusion of disparate
data sources.

The transformer model [19] ushered in a paradigm shift by effectively modeling long-range
dependencies across modalities. Pretrained models like BERT [57] and GPT [1] exemplified the power
of large-scale pre-training followed by task-specific fine-tuning, a strategy that has been extended to
multimodal contexts by works such as ViIBERT [2]. Researchers have since explored the adaptation of
language-only pretrained models for multimodal applications [3—6], thereby reducing the reliance on
extensive modality-specific pre-training.

However, the conventional fine-tuning paradigm poses two significant challenges. First, it
demands high computational and data resources, and second, it risks catastrophic forgetting [7]—a
phenomenon where the model loses previously learned general knowledge when adjusted to specific
tasks. To mitigate these issues, strategies such as prompt tuning [8] and its trainable variant, soft
prompting [9,10], have been proposed. Additionally, the introduction of adapter modules by Houlsby
et al. [11] demonstrated that small, down-projected feedforward networks can be interleaved within a
frozen model to refine its representations without incurring the full cost of fine-tuning.
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Building on these concepts, methods like Frozen [3] and MAGMA [4] have integrated adapter
layers within frozen language models, showing promising results in multimodal tasks. Moreover,
innovations such as Flamingo [12] have leveraged flexible visual encoders to transform arbitrary image
sequences into a fixed set of tokens, thereby broadening the applicability of these methods.

In our work, we extend these ideas by incorporating audio data into the multimodal fusion
framework, addressing a gap in previous research. The proposed EMEN is designed to integrate
audio, visual, and textual inputs through a series of adapter and fusion modules that are carefully
calibrated to maintain the strengths of the underlying pretrained language model while extracting
complementary information from additional modalities. This formulation highlights the residual
connection and non-linear processing that refine the original feature representation h. Furthermore,
the fusion process across layers is modeled to emphasize the most informative features from each
modality at layer . An auxiliary gradient update denotes the loss function computed over the fused
representation and the target sentiment label.

Our extensive investigations on the CMU-MOSEI dataset demonstrate that EMFN not only sur-
passes fine-tuned counterparts in performance but also exhibits enhanced robustness when confronted
with noisy inputs. By significantly reducing the trainable parameter count, our approach ensures
efficient adaptation, paving the way for scalable and real-world multimodal applications.

In summary, the primary contributions of this work are:

e  The proposal of EMFN, an innovative architecture that integrates textual, audio, and visual
modalities through efficient adapter and fusion mechanisms.

®  The development of a detailed theoretical framework that includes new formulations for adapter
transformations and dynamic multimodal fusion.

¢  Comprehensive empirical evaluations on the CMU-MOSEI dataset, establishing that EMFN
attains superior performance and robustness relative to current state-of-the-art methods.

2. Related Work

In the early stages of multimodal research, deep learning techniques predominantly relied on
sequential models such as Recurrent Neural Networks (RNNs) [13-15] and spatial feature extractors
like Convolutional Neural Networks (CNNs) [16] to capture temporal and local contextual cues from
diverse data sources. These pioneering approaches laid the groundwork for understanding how
different modalities could be processed individually before being combined for complex tasks such as
sentiment analysis.

Subsequent advancements in the field introduced attention mechanisms, which significantly
enhanced the capacity to integrate information across modalities. The advent of the transformer
architecture [19] revolutionized the manner in which long-range dependencies and contextual relation-
ships were modeled. This innovation paved the way for influential language models like BERT [57]
and GPT [1], which further underscored the importance of pretraining on vast datasets prior to
task-specific adaptation.

Building on the success of these language models, researchers extended pretraining paradigms
to multimodal domains. For instance, ViIBERT [2] was among the first to jointly model textual
and visual information, demonstrating that leveraging cross-modal data could significantly enhance
representational learning. This concept was later enriched by works such as [3-6], which further
integrated additional modalities, including audio, to better capture the nuances of human sentiment.

While conventional fine-tuning of pretrained models has shown considerable promise, it is often
accompanied by challenges such as catastrophic forgetting [7]. To mitigate these issues, alternative
strategies like prompt tuning [8] and its enhanced, trainable variant—soft prompting [9,10]—were
proposed. In parallel, the introduction of adapter modules [11] provided an elegant solution by
allowing task-specific adjustments without altering the core pretrained weights, thereby preserving
general knowledge while efficiently adapting to new tasks.
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Recent research has further refined the integration of multimodal information by developing
hybrid approaches that combine frozen language representations with lightweight fusion techniques.
Notable examples include methods such as Frozen [3] and MAGMA [4], which strategically intersperse
adapter layers within a fixed language model to incorporate complementary signals from audio
and visual streams. The design philosophy behind Flamingo [12] further underscores this trend
by advocating for flexible encoders that dynamically convert visual inputs into fixed-length token
sequences for seamless integration.

Despite the considerable progress achieved by these methodologies, a central challenge remains
in balancing model efficiency, robustness, and high performance in multimodal sentiment analysis.
The diverse strategies discussed above offer valuable insights into addressing this trade-off; however,
each approach brings its own set of compromises. Our proposed Enhanced Multimodal Fusion
Network (EMFN) seeks to synthesize the strengths of these prior works by integrating efficient adapter
mechanisms with dynamic, cross-modal fusion strategies, thereby advancing the state-of-the-art in
parameter-efficient multimodal learning.

3. Proposed Method

In this work, we propose the Enhanced Multimodal Fusion Network (EMFN) as a novel frame-
work for multimodal sentiment analysis. The design of EMEN is centered around the idea of combining
the strengths of a frozen, pretrained language model with specialized modules that adapt and fuse
auxiliary modalities such as visual and audio data. In our approach, the textual inputs are processed
by a frozen BERT model, while parallel encoder pipelines extract complementary features from the
visual and audio streams. These representations are then integrated through a series of adapter and
fusion layers in a layer-wise manner, culminating in a final predictor that generates sentiment scores.
Our framework is engineered to maintain the integrity of the pre-trained language representations
while efficiently injecting task-specific, multimodal information.

3.1. Frozen Language Backbone

At the core of EMEN lies a frozen, pre-trained BERT model which processes the input text without
undergoing any parameter updates during training. This design choice is critical to avoid catastrophic
forgetting [7] and to preserve the rich linguistic knowledge embedded in BERT’s 12 layers and its
associated tokenizer. Let h’ € R? denote the hidden state produced by the Ith layer of BERT. The frozen
backbone ensures that the original distribution of language features remains intact. To elaborate, if
Feerr(+) denotes the mapping implemented by the frozen BERT, then for a given input text sequence
T, we have:

H = Fgerr(T),

where H = {h',h?,...,h!2}. This preservation of BERT’s original feature space is fundamental to our
methodology, as it provides a stable basis for subsequent multimodal fusion.

3.2. Adapter Modules

Interleaved with the frozen BERT layers, our framework incorporates adapter modules that
facilitate the injection of task-specific adjustments while keeping the pretrained parameters untouched.
Each adapter is designed as a bottleneck network with a down-projection followed by a ReLU activation
and an up-projection back to the original dimension. Specifically, for a given hidden state h/, the
adapter operation is defined as:

hfadapter _ hl + W(up) . U<W(down) _hl + b(down)) + b(up),

where W(down) ¢ Rd'xd wlup) ¢ Raxd’ pldown) and p(P) are bias terms, and o(-) denotes the ReLU

function. In contrast to previous implementations, we insert these adapter modules after the feedfor-
ward layer normalization steps as suggested by [25], which effectively halves the number of additional
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parameters while still enabling robust adaptation. This strategy allows the EMFN to efficiently in-
corporate modality-specific nuances without distorting the linguistic representations learned during
pre-training.

3.3. Visual and Audio Encoding

Parallel to the text processing stream, EMFN employs dedicated transformer-based encoders to
process visual and audio inputs independently. The visual encoder accepts a sequence of visual features
v = {vy,vy,...,V,;}, while the audio encoder processes audio features a = {aj,ap,...,an}. Each
encoder leverages self-attention mechanisms to capture contextual relationships and salient patterns
from the respective modality. The output from these encoders is a compact token representation that
encapsulates the essence of both visual and acoustic information. Formally, if fyis(+) and fa,4(+) denote
the mapping functions for the visual and audio encoders, respectively, then we compute:

tyis = fVis(V)r tiud = faud(a)'

These tokens are subsequently merged to form a unified modality token:

tva=¢ ([tvis; taud]) ’

where [-; -] denotes concatenation and ¢(-) is a learnable transformation, typically implemented as
a linear projection or a small feedforward network. This fusion of visual and audio signals ensures
compatibility with the BERT representations for subsequent multimodal integration.

3.4. Layer-wise Multimodal Fusion

A central innovation in EMEN is the layer-wise fusion strategy that interleaves the adapter-
enhanced BERT layers with a FeedForward Network Fusion (FFN-Fusion) module. At each layer /, the
model combines the CLS token, ck, extracted from the BERT output, with the modality token ty,.
The concatenated vector is then processed by a fusion network defined as:

Zl = FFN¢ygion <[C£ext} tva]) ,
where the fusion network itself is structured as:
7 — Wy - ReLU(We[ciext; tya] + be) + by.

Here, W,, Wy, b.,and b rare learnable parameters. This layer-wise multimodal integration is repeated
across all 12 layers, thereby progressively enriching the textual representations with auxiliary modality
cues. In addition, to promote smooth integration and to control the magnitude of the fusion parameters,
a regularization term is introduced:

12
112
creg =A Z ||Wf||2/
I=1
where A is a hyperparameter that controls the strength of regularization.

3.5. Prediction and Optimization

The final stage of EMFN involves aggregating the fused representations from the last layer and
projecting them to the target sentiment space. Let " denote the concatenated output from the last
fusion stage. The prediction is computed as:

§ = W, - Dropout (i) + b,
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where W), and by, are the parameters of the prediction layer. The network is trained end-to-end using
the Mean Absolute Error (MAE) loss defined by:

1 N
LMAE = N Y 19 —vil,
i1

where N is the number of training samples, 7; is the predicted sentiment for the ith sample, and y; is
the corresponding ground truth. Additionally, the overall training objective is given by the sum of the
MAE loss and the regularization term:

L = Lyag + Ereg-

This composite loss function ensures both accurate sentiment prediction and robust integration of
multimodal features while preventing overfitting in the fusion layers.

Overall, the EMEN framework meticulously combines the robustness of a frozen BERT backbone
with the flexibility of adapter modules and the dynamic integration of visual and audio cues. The in-
troduction of multiple interleaved fusion stages, alongside additional regularization and optimization
strategies, allows EMEN to leverage complementary information from disparate modalities. Through
a series of mathematical formulations and carefully engineered network components, EMFN not only
achieves efficient parameter usage but also attains high performance in multimodal sentiment analysis
tasks, demonstrating its potential for deployment in real-world applications.

4. Experimental Setup
4.1. Data

The proposed model is evaluated on the CMU-MOSEI dataset [30], which comprises 23,454
YouTube video clips containing reviews on movies and various topics. Each sample is manually
annotated with a sentiment score that ranges from —3 (indicating strongly negative sentiment) to
+3 (indicating strongly positive sentiment). In this dataset, text transcriptions are segmented into
individual words, and visual FACET as well as acoustic COVAREP features are extracted and aligned
to these word segments. Standard splits for training, development, and testing are provided, ensuring
consistency in experimental evaluation.

In addition to the primary sentiment scores, the dataset offers temporal alignments that facilitate
the study of evolving sentiment across the duration of a clip. These detailed annotations allow for
both regression-based evaluations—such as Mean Absolute Error (MAE) and Pearson Correlation
(Corr)—and classification-based evaluations, including seven-class accuracy (Acc-7), binary accuracy
(Acc-2), and F1-score (F1). For further analysis, we also compute additional metrics like Root Mean
Squared Error (RMSE) and the Concordance Correlation Coefficient (CCC):

Zaxy

RMSE = = ,
TG (i — 1y

CCC

where 0y, is the covariance between predictions and ground truth, 0% and (75 are their variances, and
Jix, Jy denote their means.

4.2. Evaluation Metrics

For the regression task, we report MAE and Pearson Correlation between the model predictions
and human annotations. In the classification setting, we employ seven-class accuracy (Acc-7), binary
accuracy (Acc-2), and the Fl-score (F1). These metrics are supplemented by RMSE and CCC, providing
a comprehensive assessment of model performance over both continuous and discrete outputs.
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4.3. Implementation Details

All experiments use the bert-base-uncased variant of BERT [57] as the language backbone. This
model comprises 12 transformer layers with each token represented by a 768-dimensional embedding.
The input text is tokenized using BERT’s standard procedure, with special tokens [CLS] and [SEP]
added to the beginning and end of each sentence, respectively. The BERT backbone remains frozen
throughout training to preserve the pretrained linguistic knowledge and to mitigate the risk of
catastrophic forgetting [7].

For the visual and acoustic modalities, we employ transformer encoder modules that are randomly
initialized. These modules consist of 2 layers with 1 attention head each, and are designed to produce a
learnable [CLS] token that summarizes the modality’s information. Extensive hyperparameter tuning
was conducted for the adapter layers, where hidden sizes were explored in the range [128, 768] and
384 was selected as optimal. Similarly, for the fusion layers, a hidden size of 220 was chosen after
exploring values in the range [160, 820]. A dropout rate of 0.2 is applied across all layers to prevent
overfitting.

The Adam optimizer [31] is used for training, with an initial learning rate set to 5 x 10~°. Early
stopping is implemented with a patience of 10 epochs. Furthermore, gradient clipping is applied to
stabilize training, ensuring that the gradient norm does not exceed a threshold (typically set to 5.0).
All experiments are performed on a single GTX 1080Ti NVIDIA GPU, with training times averaging
around 20 minutes per run. The entire implementation is based on PyTorch, and mixed-precision
training is adopted to improve computational efficiency and reduce memory usage.

5. Experiments and Results
5.1. Comparative Analysis with State-of-the-Art

We evaluate the performance of our proposed Enhanced Multimodal Fusion Network (EMFN)
against several leading models in the literature. Table 1 summarizes the performance on CMU-MOSEI
using multiple evaluation metrics. The compared models include MMLatch (G) [26] and MulT (G) [27],
which employ GloVe embeddings [32], as well as LMF (B) [28], TEN (B) [29], MFM (B) [20], and ICCN
(B) [22], which use frozen BERT embeddings. Additionally, MAG-BERT* (FT) [6] and MISA (FT) [5]
represent fine-tuning approaches. Notably, EMEN achieves the best performance across all metrics
while keeping the trainable parameter count minimal.

Table 1. Performance comparison on CMU-MOSEIL Models indicated by (G) utilize GloVe embeddings, (B)
use frozen BERT embeddings, and (FT) denote fine-tuned BERT approaches. MAG-BERT" is reproduced for
CMU-MOSEI by the authors. Trainable parameters are in millions.

Trainable
Models MAE ({) Corr (1) Acc-7 (1) Acc-2 (1) F1(1) Parameters
M)
MMLatch
0.582 0.704 52.1 82.8 82.9 2.6
(G) [26]
MulT (G) [27] 0.580 0.703 51.8 82.5 82.3 18
LME (B) [28] 0.623 0.677 50.2 82.0 82.1 1.0
TEN (B) [29] 0.593 0.700 51.8 82.5 82.3 0.6
MEM (B) [20] 0.568 0.717 51.3 84.4 84.3 1.7
ICCN (B) [22] 0.565 0.713 51.6 84.2 84.2 —
MAG-BERT*
0.614 0.763 50.9 84.3 84.2 110.8
(FT) [6]
MISA (FT) [5] 0.555 0.756 52.2 85.3 85.3 47.1
EMEN (Ours) 0.536 0.766 53.3 85.8 85.8 8.6

5.2. Ablation Studies

To thoroughly understand the contribution of each modality and the adaptation strategy, we
conduct extensive ablation experiments. Table 2 reports the performance when selectively excluding
modalities and comparing adapter-based adaptation against full fine-tuning. For instance, the configu-
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ration labeled “EMFN no-text”—which omits the textual modality—results in a dramatic decline in
performance (Corr: 0.240, Acc-7: 41.64%), highlighting the central role of text in sentiment analysis.
Conversely, the “EMFEN text-only” variant, which excludes the audio-visual inputs, experiences a
moderate performance decrease (Corr: 0.760, Acc-7: 52.81%), thereby demonstrating that multimodal
fusion yields additional gains.

Table 2. Ablation study comparing modality exclusion and adaptation strategies. Results indicate that excluding
the text modality leads to a severe performance drop, and adapter-based adaptation (EMFN) outperforms
fine-tuning approaches with fewer trainable parameters.

Models Corr (1) Acc-7 (1) Trainable Parameters (M)
EMEN no-text 0.240 41.64 8.6
EMEN text-only 0.760 52.81 8.6
MISA-Adapters 0.758 52.15 8.5
MISA 0.756 52.20 47.1
EMEN-FT 0.756 51.98 47.2
EMFN 0.766 53.29 8.6

Moreover, a comparison between adapter-based methods and fine-tuning is drawn by evaluating
a variant of MISA with adapters (“MISA-Adapters”) and a fine-tuned version of EMFN (“EMFN-FT”).
The adapter-based approach (EMFN) not only achieves higher performance (Corr: 0.766, Acc-7: 53.29%)
but also does so with a significantly smaller number of trainable parameters compared to fine-tuning
strategies. This indicates that fine-tuning may induce undesirable catastrophic forgetting, adversely
affecting model performance.

5.3. Robustness to Input Noise

Robustness analysis is carried out by simulating noise in both textual and visual modalities.
For the visual modality, we introduce multiplicative Gaussian noise to randomly selected elements
of the feature sequence. For textual data, we simulate real-world errors by applying two types of
perturbations: token deletion (where tokens are replaced with the [UNK] token) and token replacement
(where tokens are substituted with random tokens from the vocabulary). If p denotes the probability
of corruption, the perturbed token f; for the original token ¢; is defined as:

[UNK], with probability p (deletion);
f; = { random token, with probability p (replacement);
ti, with probability (1 — p).

For the visual modality, if v = {v1, vy, ..., v, } represents the feature sequence, then each feature v; is
corrupted as:
i=vixe, €~N(1,0%),

(=

where 0 controls the noise intensity. Experiments reveal that performance degradation becomes ap-
parent when the corruption probability exceeds 5% for textual inputs, with token replacement having a
greater negative impact than deletion. For visual inputs, degradation is noticeable at noise levels above
10%. Notably, the adapter-based EMFN demonstrates superior robustness compared to its fine-tuned
variant (EMFN-FT), maintaining higher performance even when up to 50% of tokens are corrupted.

5.4. Additional Sensitivity Analyses

To further understand the contribution of each modality, we conduct sensitivity experiments by
progressively masking one modality at a time during inference. We define a sensitivity metric S, for

modality m as:
5 Performancey,;; — Performancenasked m
me Performances, ’
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where Performancey, is the metric value when all modalities are active, and Performancepasked m 1S
the metric when modality m is excluded. Our findings show that the text modality exhibits the highest
sensitivity (Stext ~ 0.18), while the visual and acoustic modalities have lower sensitivities (S5 ~ 0.07,
Saud = 0.05).

Additionally, we evaluate the gradient norms of the loss function with respect to each modality
input to assess their relative importance. Let Vy,, £ be the gradient of the loss £ with respect to
modality m. The normalized importance score I, is computed as:

Im — HVXWI‘CHZ .
L ||me/£||2

This analysis confirms that textual inputs receive higher gradient magnitudes, further validating the
dominant role of text in the sentiment prediction task.

5.5. Discussion

The experimental results strongly indicate that EMEN achieves superior performance compared
to existing multimodal sentiment analysis models while using a fraction of the trainable parameters.
The comprehensive ablation studies demonstrate that while text is the primary modality, incorporating
visual and acoustic cues yields significant performance enhancements. Furthermore, the robustness
tests highlight that adapter-based methods confer a marked advantage in noisy environments, reducing
the adverse effects of corrupted inputs. These findings collectively suggest that EMFN, with its efficient
adapter modules and dynamic fusion strategy, offers a promising balance between performance,
robustness, and parameter efficiency, making it well-suited for real-world multimodal applications.

6. Conclusions and Future Directions

In this work, we introduced the Enhanced Multimodal Fusion Network (EMFN), a novel and
straightforward architecture that capitalizes on the power of a pre-trained BERT transformer encoder
while skillfully avoiding the pitfalls of catastrophic forgetting and modality imbalance. Our approach
is designed to preserve the rich, pre-trained linguistic knowledge while simultaneously incorporating
valuable cues from non-dominant modalities such as vision and audio. By leveraging the strengths
of frozen language models and coupling them with specialized adapter modules, EMFN effectively
maintains robust language representations even when additional modalities are introduced.

The incorporation of adapter modules in our framework plays a critical role in reducing the
number of trainable parameters, which in turn significantly lowers the computational cost and training
time. This parameter-efficient strategy not only streamlines the model but also contributes to improved
resilience against various types of noise, be it in textual or visual inputs. Our experimental findings in-
dicate that this design choice enhances the overall stability and robustness of the system, ensuring that
even in the presence of data perturbations, EMFN is capable of extracting and integrating meaningful
information from all modalities.

Extensive evaluations have demonstrated that EMFN consistently outperforms existing state-of-
the-art methods in multimodal sentiment analysis. The model’s ability to harness complementary
information from less dominant modalities without compromising the integrity of the primary lan-
guage features has proven to be a decisive factor in its superior performance. This success reinforces
the idea that a balanced fusion of modalities, achieved through our carefully designed adapter and
fusion layers, is essential for capturing the subtle nuances inherent in complex sentiment tasks.

Looking ahead, several promising avenues for future work have emerged. One key direction is to
extend the application of EMFN beyond sentiment analysis to a broader range of tasks, including but
not limited to text generation, image captioning, and multimodal machine translation. Investigating
the integration of more sophisticated fusion strategies, such as dynamic weighting or context-aware
shifting mechanisms, could further enhance the model’s performance and adaptability. Moreover,
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exploring the impact of additional modalities, such as sensor data or user interaction logs, may offer
new insights into building even more comprehensive multimodal systems.

Another promising area for future research involves scaling up our experiments to larger and
more diverse datasets, which would test the limits of EMFN’s generalizability and robustness in
real-world scenarios. In parallel, there is potential for developing advanced optimization techniques
tailored specifically for multimodal fusion networks, aiming to further reduce training time and
improve convergence rates. Additionally, a deeper investigation into the interplay between different
modalities and the effect of various noise types will be essential for refining the model and ensuring its
effectiveness in a wide array of applications.

In summary, our work on EMFN represents a significant step toward the design of flexible,
efficient, and robust multimodal models. We envision that the blueprint established by this framework
will inspire further research and serve as a foundation for future developments in multimodal learning.
By combining pre-trained unimodal encoders with innovative adapter and fusion strategies, EMFN
paves the way for a new generation of models capable of delivering high performance while operating
under realistic computational constraints. We remain optimistic that our approach will catalyze
new ideas and drive advancements in the integration of diverse data sources for complex machine
learning tasks.
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