
Article Not peer-reviewed version

Bayesian Framework for Acceptance

Sampling—Inspection of a Series of Lots

—Data Ageing and the Information Half-

Life Approach

Steffen Uhlig , Bertrand Colson * , Roger Kissling , Susan Morris , Sam Ellis , Mike Hicks ,

John Vandenbemden , Rainer Göb , Petra Gowik

Posted Date: 11 August 2025

doi: 10.20944/preprints202508.0614.v1

Keywords: acceptance sampling; serial lot inspection; Bayesian statistics; sample size; sampling frequency

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2238649
https://sciprofiles.com/profile/2147083
https://sciprofiles.com/profile/4451315


 

 

Article 

Bayesian Framework for Acceptance Sampling—
Inspection of a Series of Lots—Data Ageing and the 
Information Half-Life Approach 
Steffen Uhlig 1, Bertrand Colson 1,*, Roger Kissling 2, Susan Morris 3, Sam Ellis 4, Mike Hicks 5, 
John Vandenbemden 6, Rainer Göb 7 and Petra Gowik 8 

1 QuoData GmbH, Dresden, Germany 
2 National Laboratory Operations, Fonterra, Auckland, New Zealand 
3 Ministry for Primary Industries, New Zealand 
4 Ellis and Boscawen, Ripon, North Yorkshire, HG4 3EP, UK 
5 UK Ministry of Defence, London, UK 
6 Q-Met-Tech, USA 
7 Maths department, Würzburg University, Germany 
8 EU and Nationales Referenzlabor für Rückstände im Bundesamt für Verbraucherschutz und 

Lebensmittelsicherheit (BVL), Diedersdorfer Weg 1, D-12277, Berlin, Germany 
* Correspondence: colson@quodata.de 

Abstract 

The inspection of a series of lots from the same producer is a natural field of application of Bayesian 
approaches. On the one hand, it makes sense to take the posterior of the previous inspection as the 
prior of the next inspection. On the other hand, such a naive approach can quickly lead to the situation 
where the prior represents so much accumulated information that new test results from the current 
lot inspection will hardly have any effect at all on the posterior and, hence, on the calculations of 
conformance probability, specific consumer risk or expected utility. In other words, a naïve serial 
implementation of a Bayesian approach could result in such a level of information saturation that any 
further lot inspection would be meaningless. In effect, such a situation would be similar to having, 
e.g., complete trust in the producer and accepting all lots on faith. For this reason, it is important to 
carefully consider exactly how the conformance probability or the utility approach is applied in 
practice. The present paper describes a fully developed procedure for implementing these two 
approaches in connection with serial lot inspection. In this approach, a data-ageing procedure is 
described. The basic principle is to downweight older data in such way as to prevent information 
saturation in the sense of over-informative priors. Moreover, when the sample size, the expected 
value for the proportion nonconforming and the inspection frequency are constant, it is possible to 
derive closed expressions for the expected values of the hyperparameters. These, in turn, allow a 
pragmatic approach for the specification of inspection frequency or sample size. 

Keywords: acceptance sampling; serial lot inspection; Bayesian statistics; sample size; sampling 
frequency 
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1. Introduction 

An approach for designing acceptance sampling plans for the inspection by attributes of isolated 
lots on the basis of the concept of conformance probability was described in Uhlig et al. (2024) [1]. 
The calculations involve Bayesian prior and posterior distributions and this approach thus differs 
considerably from the classical approach described in the ISO 2859 series [4]. In the conformance 
probability approach, the focus is on risks, and several new definitions of risks are proposed (based 
in part on JCGM 106 [2]). This focus on risks is shared by the conformance probability and ISO 
approaches. By contrast, an approach centered on the concept of utility was described in Uhlig et al. 
(2025) [3]. In this approach, the plans are determined in order to maximize expected utility, which 
can be broadly defined as benefits minus costs. Both the conformance probability approach and the 
utility approach are Bayesian approaches to acceptance sampling. 

The question naturally arises whether these Bayesian approaches can be implemented when lots 
from the same producer are inspected one after the other—i.e., in connection with the inspection of a 
series of lots. On the one hand, it makes sense to take the posterior of the previous inspection as the 
prior of the next inspection. On the other hand, such a naive approach can quickly lead to the situation 
where the prior represents so much accumulated information that new test results from the current 
lot inspection will hardly have any effect at all on the posterior and, hence, on the calculations of 
conformance probability, specific consumer risk or expected utility. In other words, a naïve serial 
implementation of a Bayesian approach could result in such a level of information saturation that any 
further lot inspection would be meaningless. In effect, such a situation would be similar to having, 
e.g., complete trust in the producer and accepting all lots on faith. 

For this reason, it is important to carefully consider exactly how the conformance probability or 
the utility approach is applied in practice. The present paper describes a fully developed procedure 
for implementing these two approaches in connection with serial lot inspection. 

It should be borne in mind that the procedures presented here are not suitable if the proportion 
nonconforming varies randomly from lot to lot. 

2. Inspection of a Series of lots—Bayesian Updating Mechanism 

At the core of Bayesian statistics lies the rule for combining prior information and testing 
outcomes to obtain a posterior distribution. This fusion of information from different sources 
constitutes the first aspect of the Bayesian updating mechanism. However, in the context of lot 
inspection, there is a second aspect: namely, taking the posterior from a previous inspection as the 
prior for the next inspection. The following notation is introduced in order to conveniently take both 
aspects into account. In connection with the inspection of a series of lots, the index 𝑖 denotes the 
current lot inspection and 𝑔଴,௜ሺ𝑥ሻ and 𝑔௜ሺ𝑥|𝑦௜ሻ denote the prior and posterior distributions in lot 
inspection 𝑖, respectively. Similarly, 𝑦௜ denotes the testing outcome in lot inspection 𝑖. 

These two aspects are summarized in the Table 1. 

Table 1. Two aspects of Bayesian updating in connection with the inspection of a series of lots. 

BAYESIAN 
UPDATING 

INSPECTION 𝒊 INSPECTION 𝒊 + 𝟏 

ASPECT 1 
The prior 𝑔0,௜ሺ𝑥ሻ is updated to the 

posterior 𝑔௜ሺ𝑥|𝑦௜ሻ  

ASPECT 2  
The posterior 𝑔௜ሺ𝑥|𝑦௜ሻ is taken as 

the prior 𝑔0,௜ା1ሺ𝑥ሻ 
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A ‘naïve’ approach to serial lot inspection would consist in an iterative application of these two 
updating mechanisms, whereby the acceptance sampling plan ሺ𝑛, 𝑐ሻ  for each inspection is 
determined via either the conformance probability (risk-based) approach, see Uhlig et al. (2024) [1] or 
the utility approach, see Uhlig et al. (2025) [3]. This is illustrated in the following Table 2, which shows 
acceptance sampling plans obtained by the conformance probability approach for two different 
scenarios corresponding to different initial priors. The threshold for the conformance region for 
proportion nonconforming 𝑥 is specified as 𝑥𝒞  = 10%. In scenario 1, the initial prior is Beta(1,9), 
while in scenario 2, the initial prior is Beta(1,19). Measured against the 𝑥𝒞 = 10% value, the initial 
prior for scenario 1 is quite conservative (bordering on pessimistic) while the initial prior for scenario 
2 is more optimistic. The threshold for the specific consumer risk SCR(𝑦) is specified as CRBayes = 5%. 
For both scenarios and for all inspections, it is assumed that testing outcomes are consistently 𝑦 =𝑐 = 0. For each scenario, acceptance sampling plans for the first three inspections are provided. 

Table 2. Naïve serial lot inspection via the conformance probability approach for 𝒙𝓒 = 10% and CRBayes = 5%. In 
scenario 1, the initial prior is Beta(1,9) whereas, in scenario 2, the initial prior is Beta(1,19). It is assumed that 
testing outcomes are consistently 𝒚 = 𝒄 = 𝟎. 

Scenario Inspection 𝜶𝒊𝟎 𝜷𝒊𝟎 𝒏 𝒄 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 1 1 9 20 0 1 29 
 2 1 29 1 0 1 30 
 3 1 30 1 0 1 31 

2 1 1 19 10 0 1 29 
 2 1 29 1 0 1 30 
 3 1 30 1 0 1 31 

As can be seen, for a given inspection 𝑖, the same posterior—i.e., the same pair ൫𝛼𝑖1,𝛽𝑖1൯—is 
obtained for both scenarios. After 3 inspections, the posterior is Beta(1,31) for both scenarios and 
repeated application of the conformance probability approach may result in meaningless lot 
inspection insofar as testing outcomes for the current lot will have very little impact on the calculation 
of the posterior. 

The following Table 3 shows acceptance sampling plans obtained via a ‘naïve’ serial application 
of the utility approach for the same two scenarios as in Table 2. For each scenario, the lot size is 𝑁 =10 000, the damages parameter is 𝐷 = 10 𝐵 (which is )and the sampling & testing costs parameter is 𝑇 = 5 𝐵. Moreover, in both scenarios, we assume that testing outcomes are consistently 𝑦 = 0. 

Table 3. Naïve serial lot inspection via the utility approach for 𝑵 = 𝟏𝟎 𝟎𝟎𝟎 , 𝑫 = 𝟏𝟎 𝑩  and 𝑻 = 𝟓 𝑩 . It is 
assumed that testing outcomes are consistently 𝒚 = 𝟎. 

Scenario Inspection 𝜶𝒊𝟎 𝜷𝒊𝟎 𝒏 𝒄 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 1 1 9 15 1 1 24 
 2 1 24 4 0 1 28 
 3 1 28 4 0 1 32 
2 1 1 19 7 1 1 26 
 2 1 26 4 0 1 30 
 3 1 30 3 0 1 33 

3. Data Ageing and Half-Life: Higher Weighting of Recent Information, Lower 
Weighting of Old Information 

As the number of inspections increases, the amount of information encoded in the prior will 
increase to the point where the posterior will hardly differ from the prior no matter the testing 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2025 doi:10.20944/preprints202508.0614.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0614.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 13 

 

outcome. For this reason, in applying the conformance probability or utility approach in serial lot 
inspection, it is necessary to transform the posterior from the previous inspection before using it as 
the prior for the next inspection. This transformation should ensure that lot inspection remains 
meaningful in the sense that the posterior remains sensitive to the testing outcomes. 

The most natural way to achieve this is to develop a procedure whereby information loses 
currency as time elapses. Such an approach has the considerable advantage of reflecting the common-
sense notion that the results from a lot inspection which took place very recently can be considered a 
far more reliable indicator of lot quality than results from a lot inspection which took place some time 
ago. In other words: the proposed procedure is articulated around a weighting mechanism which is 
inversely proportional to the “age” of the data. 

Information currency loss as a function of elapsed time can be expressed mathematically in 
terms of an information half-life time interval (in short: “half-life”), denoted 𝑑ହ଴. Suffice it to say here 
that the basic idea is to adjust the hyperparameters in such a way as to increase the variance of the 
estimate of the proportion nonconforming as time goes by. The degree to which the variance increases 

is controlled via the ratio 
time interval since the data was obtained ௗఱబ . The increase in variance is taken 

as the mathematical equivalent of information losing value. The specific value of 𝑑ହ଴ will depend on 
the context: the type of manufacturing process, the type of QC performed by the producer, the 
availability of QC data, the type of product, the property of interest, the frequency of lot inspection, 
etc. Nonetheless, it can be said that, in many scenarios, a sensible value for 𝑑ହ଴ will lie somewhere 
between 6 and 12 months. The procedure for adjusting the hyperparameters in relation with 𝑑ହ଴ will 
now be described. 

3.1. Procedure 

The hyperparameters are adjusted via multiplication with the factor 𝑟 = 𝑒 ష೟೏ఱబ where 𝑡 denotes 
the time interval between two consecutive lot inspections. If 𝑡 = 𝑑ହ଴, then 𝑟 = 𝑒ିଵ and the variance 
of the beta distribution corresponding to the adjusted hyperparameters is thus increased by a factor 
which—in the case of a Beta(𝛼,𝛽) prior—depends on the sum 𝛼 + 𝛽 but tends to 𝑒 ≈ 2.72 as 𝛼 + 𝛽 
increases, as shown in the Figure 1. 

 

Figure 1. Factor by which the variance of a beta distribution is increased by multiplying both hyperparameters 

by 𝒓 = 𝒆 ష𝒕𝒅𝟓𝟎  for the case 𝒕 = 𝒅𝟓𝟎 , displayed as a function of the sum 𝜶 + 𝜷. Note: the factor by which the 

variance is increased tends to 
ଵ௥ as ሺ𝛼 + 𝛽ሻ → ∞. 
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The procedure will now be described in detail. In the following, the beta distribution 
hyperparameter subscripts have the following meaning: 𝛼௡଴ ≔ 𝑝𝑟𝑖𝑜𝑟 𝛼 𝑓𝑜𝑟 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑛 𝛼௡ଵ ≔ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝛼 𝑓𝑜𝑟 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑛 

The same notation is used for 𝛽. 
Preliminary testing (prior to the first inspection) 𝑛଴ tests are performed at time point 𝑡଴, and 𝑦଴ nonconforming items are observed. 
The preliminary estimate for the proportion nonconforming is thus 𝑥଴ = ௬బ௡బ. 
First inspection 
Hyperparameters for the prior distribution: 𝛼ଵ଴ =  𝑟ଵ ∙ 𝑥଴ ∙ 𝑛଴ = 𝑟ଵ ∙ 𝑦଴ 𝛽ଵ଴ =  𝑟ଵ ∙ (1 − 𝑥଴) ∙ 𝑛଴ = 𝑟ଵ ∙ (𝑛଴ − 𝑦଴) 

where 𝑟ଵ ≔  𝑒ష(೟భష೟బ)೏ఱబ  denotes the factor reflecting the time elapsed between preliminary testing and 
the first inspection. 

The acceptance sampling plan is determined e.g., via the conformance probability or utility 
approach, yielding the sample size 𝑛ଵ. Accordingly, 𝑛ଵ tests are performed at time point 𝑡ଵ, and 𝑦ଵ 
nonconforming items are observed. 

Posterior distribution: 𝛼ଵଵ =  𝛼ଵ଴ + 𝑦ଵ 𝛽ଵଵ =  𝛽ଵ଴ + 𝑛ଵ − 𝑦ଵ 
The estimate for the proportion nonconforming after the first inspection is 𝑥ଵ = ఈభభఈభభାఉభభ. 
We also calculate the cumulative sample size 𝑁ଵ as 𝑁ଵ = 𝛼ଵଵ + 𝛽ଵଵ = 𝛼ଵ଴ + 𝛽ଵ଴ + 𝑛ଵ = 𝑟ଵ ∙ 𝑛଴ + 𝑛ଵ 
We can thus rewrite the posterior hyperparameters as 𝛼ଵଵ =  𝑥ଵ ∙ 𝑁ଵ 𝛽ଵଵ = (1 − 𝑥ଵ) ∙ 𝑁ଵ 
Inspection 𝒎 
Hyperparameters for the prior distribution: 𝛼௠଴ =  𝑟௠ ∙ 𝑥௠ିଵ ∙ 𝑁௠ିଵ = 𝑟௠ ∙ 𝛼(௠ିଵ)ଵ 𝛽௠଴ = 𝑟௠ ∙ (1 − 𝑥௠ିଵ) ∙ 𝑁௠ିଵ = 𝑟௠ ∙ 𝛽(௠ିଵ)ଵ 

Where 𝑟௠ ≔  𝑒ష(೟೘ష೟೘షభ)೏ఱబ  denotes the factor reflecting the time elapsed between inspection 𝑚 −1 and inspection 𝑚. 
The acceptance sampling plan is determined e.g., via the conformance probability or utility 

approach, yielding the sample size 𝑛௠. Accordingly, 𝑛௠ tests are performed at time point 𝑡௠, and 𝑦௠ nonconforming items are observed. 
Posterior distribution: 𝛼௠ଵ =  𝛼௠଴ + 𝑦௠ = 𝑟௠ ∙ 𝛼(௠ିଵ)ଵ + 𝑦௠ 𝛽௠ଵ =  𝛽௠଴ + 𝑛௠ − 𝑦௠ = 𝑟௠ ∙ 𝛽(௠ିଵ)ଵ + 𝑛௠ − 𝑦௠ 
The estimate for the proportion nonconforming after inspection 𝑚 is 𝑥௠ = ఈ೘భఈ೘భାఉ೘భ. 
We also calculate the cumulative sample size 𝑁௠ as 𝑁௠ = 𝛼௠ଵ + 𝛽௠ଵ = 𝛼௠଴ + 𝛽௠଴ + 𝑛௠ = 𝑟௠ ∙ 𝑁௠ିଵ + 𝑛௠ 
Via mathematical induction, the following closed expressions for the posterior hyperparameters 

after inspection 𝑚 are obtained: 
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𝛼௠ଵ = 𝑟௠଴ ∙ 𝑥଴ ∙ 𝑛଴ + ෍ 𝑟௠௜ ∙ 𝑦௜௠ିଵ
௜ୀଵ + 𝑦௠ 

𝛽௠ଵ = 𝑟௠଴ ∙ (1 − 𝑥଴) ∙ 𝑛଴ + ෍ 𝑟௠௜ ∙ (𝑛௜ − 𝑦௜௠ିଵ
௜ୀଵ ) + (𝑛௠ − 𝑦௠) 

where 𝑟௠௜ denotes the decrease in information currency between time point 𝑡௠ and time point 𝑡௜ 𝑟௠௜ = 𝑒ି(௧೘ି௧೔)ௗఱబ  

3.2. Example 1: Comparison of Three Scenarios with Constant Sample Size and Acceptance Number Specified 
in Advance 

In order to illustrate how this approach affects the hyperparameters, we consider the simple case 
that 𝑝଴ = ௬బ௡బ =  50%, corresponding to a Beta(1,1) prior (noninformative prior) and that for all 

inspections 𝑖 = 1, … ,7 we have 𝑛௜ = 10 𝑦௜ = 𝑐௜ = 0 

and 𝑟௜ = 𝑟 = 𝑒 ష೟೏ఱబ , 
where 𝑡  (time interval between consecutive inspections) remains the same from inspection to 
inspection. 

Note: since sample size and acceptance number are specified in advance and held constant, this 
example can be considered to be ‘blind’ as to how the acceptance sampling plan is calculated (i.e., as 
to whether the conformance probability approach of the utility approach is applied.) 

The following table provides an overview of 3 scenarios. 

Table 4. Overview of the three scenarios with 𝒏𝒊 = 𝟏𝟎 for all 7 lot inspections. 

Scenario 1 without taking data ageing into account  

Scenario 2 for 𝑑50 = 350 days and 𝑡 = 50 days 

Scenario 3 for 𝑑50 = 350 days and 𝑡 = 100 days 

The hyperparameters for 7 consecutive inspections are as follows. 

Table 5. Hyperparameters for three scenarios with constant 𝒏𝒊 = 𝟏𝟎 (7 consecutive lot inspections per 
scenario). 

Scenario Inspection 
Prior Posterior 𝜶𝒊𝟎 𝜷𝒊𝟎 𝜶𝒊𝟏 𝜷𝒊𝟏 

Sc
en

ar
io

 1
 

w
ith

ou
t t

ak
in

g 
da

ta
 

ag
ei

ng
 in

to
 a

cc
ou

nt
 1 1.00 1.00 1.00 11.00 

2 1.00 11.00 1.00 21.00 
3 1.00 21.00 1.00 31.00 

4 1.00 31.00 1.00 41.00 
5 1.00 41.00 1.00 51.00 

6 1.00 51.00 1.00 61.00 
7 1.00 61.00 1.00 71.00 

Sc
en

ar
io

 2
 

fo
r 
𝑑 50 = 35

0 
da

ys
 

an
d 
𝑡 = 50 

da
ys

 1 0.87 0.87 0.87 10.87 
2 0.75 9.42 0.75 19.42 

3 0.65 16.83 0.65 26.83 
4 0.56 23.26 0.56 33.26 
5 0.49 28.83 0.49 38.83 
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6 0.42 33.66 0.42 43.66 
7 0.37 37.85 0.37 47.85 

Sc
en

ar
io

 3
 

fo
r 
𝑑 50 = 35

0 
da

ys
 

an
d 
𝑡 = 100

 d
ay

s 

1 0.75 0.75 0.75 10.75 
2 0.56 8.08 0.56 18.08 

3 0.42 13.59 0.42 23.59 
4 0.32 17.72 0.32 27.72 
5 0.24 20.83 0.24 30.83 

6 0.18 23.17 0.18 33.17 
7 0.14 24.93 0.14 34.93 

Variances and mean values corresponding to the posterior hyperparameters after the seventh 
inspection for the three scenarios are as follows. 

Table 6. Variances and mean values corresponding to the hyperparameters after 7 inspections for the three 
scenarios. 

SCENARIO 𝜶 𝜷 MEAN VARIANCE SD RSD 

SCENARIO 1 
NO DATA 
AGEING 

1 71 1.39% 0.00019 0.014 98.62% 

SCENARIO 2 𝒕 = 𝟓𝟎 
0.37 47.85 0.76% 0.00015 0.012 162.09% 

SCENARIO 3 𝒕 = 𝟏𝟎𝟎 
0.14 34.93 0.39% 0.00011 0.010 263.00% 

As can be seen, across several inspections the variance does not increase (as it does after 

multiplying the two beta distribution parameters by the same factor 𝑟 = 𝑒 ష೟೏ఱబ , see the discussion 
above). This is due to the fact that the mean value is not constant across inspections. However, the 
RSD does increase. 

The following table shows the decrease in the sum of the two hyperparameters. 

Table 7. Sum of hyperparameters for the three scenarios. 

SCENARIO SUM 𝜶𝟕𝟏 + 𝜷𝟕𝟏 

SCENARIO 1 
NO DATA AGEING 

72 

SCENARIO 2 𝒕 = 𝟓𝟎 
48.22 

SCENARIO 3 𝒕 = 𝟏𝟎𝟎 
35.07 

3.3. Example 2: Revisiting the Two Scenarios from Section 2 

In this example, we revisit the two scenarios from Section 2 with 𝑑ହ଴ = 350 days and 𝑡 = 175 
days (i.e., 𝑡 = 0.5 ∙ 𝑑ହ଴). 

The following table shows the plans obtained via the half-life approach. Plans are calculated 
with the conformance probability approach. Note the reduction of 𝛼ଷଵ + 𝛽ଷଵ from 32 (in Table 2) to 
slightly less than 12. 
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Table 8. Half-life approach for serial lot inspection. Plans are calculated via the conformance probability approach 
with 𝒙𝓒 = 10% and CRBayes = 5%. In scenario 1, the initial prior is Beta(1,9) whereas, in scenario 2, the initial prior 
is Beta(1,19). It is assumed that testing outcomes are consistently 𝒚 = 𝒄 = 𝟎. Compare with Table 2. 

Scenario Inspection 𝜶𝒊𝟎 𝜷𝒊𝟎 𝒏 𝒄 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 1 0.61 5.46 16 0 0.61 21.46 
 2 0.37 13.02 3 0 0.37 16.02 
 3 0.22 9.71 2 0 0.22 11.71 
2 1 0.61 11.52 10 0 0.61 21.52 
 2 0.37 13.06 3 0 0.37 16.06 
 3 0.22 9.74 2 0 0.22 11.74 

The following table shows the plans obtained via the half-life approach. Plans are calculated 
with the utility approach. Note the reduction of 𝛼ଷଵ + 𝛽ଷଵ from 33 or 34 (in Table 3) to less than 13. 

Table 9. Half-life approach for serial lot inspection via the utility approach for 𝑵 = 𝟏𝟎 𝟎𝟎𝟎, 𝑫 = 𝟏𝟎 𝑩 and 𝑻 =𝟓 𝑩. It is assumed that testing outcomes are consistently 𝒚 = 𝟎. Compare with Table 3. 

Scenario Inspection 𝜶𝒊𝟎 𝜷𝒊𝟎 𝒏 𝒄 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 1 0.61 5.46 14 1 0.61 19.46 
 2 0.37 11.80 4 0 0.37 15.80 
 3 0.22 9.58 3 0 0.22 12.58 

2 1 0.61 11.52 8 1 0.61 19.52 
 2 0.37 11.84 4 0 0.37 15.84 
 3 0.22 9.61 3 0 0.22 12.61 

3.4. Closed Expressions for the Hyperparameters for Constant 𝑛, 𝑝 and 𝑡 
The three scenarios from Section 2 show that a ‘naïve’ application of Bayesian approaches in 

serial lot inspection may lead to ever increasing values for 𝛼௜ଵ + 𝛽௜ଵ , and hence meaningless 
inspection. The half-life approach allows the user to control the values of 𝛼௜ଵ + 𝛽௜ଵ. Indeed, applying 
the half-life adjustment to the three scenarios from Section 2 allows the sum 𝛼௜ଵ + 𝛽௜ଵ to be reduced 
from over 30 to around 12 or 13 (after 3 inspections). We now explain why this is the case and derive 
formulas which will prove useful in the choice of the half-life 𝑑ହ଴ , of the time interval between 
consecutive inspections 𝑡 and of the initial sample size. 

Assume that we have a constant sample size 𝑛, a constant expected value for the proportion 
nonconforming 𝑝  and a constant time interval 𝑡  between consecutive lot inspections. In other 
words, for all inspections 𝑖 = 1, … ,𝑚 𝑛௜ = 𝑛 𝐸ሾ𝑦௜ 𝑛௜⁄ ሿ = 𝐸ሾ𝑦௜ 𝑛⁄ ሿ = 𝑝 

and 𝑟௜ = 𝑟 = 𝑒 ష೟೏ఱబ . 
The requirement that the sample size be constant does not constitute a departure from what will 

typically be observed in serial lot inspection. Indeed, a rigorous application of the half-life approach 
will typically lead to a steep reduction in sample size until a constant low value is reached. For 
example, continuing the 𝑑ହ଴ = 350 days and 𝑡 = 175 days (i.e., 𝑡 = 0.5 ∙ 𝑑ହ଴) Scenario 1 example from 
Table 8 (conformance probability approach) the following plans are obtained for the first 10 
inspections. 
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Table 10. Half-life approach for serial lot inspection. Plans are calculated via the conformance probability approach 
with 𝒙𝓒 = 10% and CRBayes = 5%. The initial prior is Beta(1,9). It is assumed that testing outcomes are consistently 𝒚 = 𝒄 = 𝟎. This table continues the first three rows of Table 8. 

Inspection 𝜶𝒊𝟎 𝜷𝒊𝟎 𝒏 𝒄 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 0.61 5.46 16 0 0.61 21.46 
2 0.37 13.02 3 0 0.37 16.02 
3 0.22 9.71 2 0 0.22 11.71 
4 0.14 7.10 1 0 0.14 8.10 
5 0.08 4.92 1 0 0.08 5.92 
6 0.05 3.59 1 0 0.05 4.59 
7 0.03 2.78 1 0 0.03 3.78 
8 0.02 2.29 1 0 0.02 3.29 
9 0.01 2.00 1 0 0.01 3.00 
10 0.01 1.82 1 0 0.01 2.82 

As can be seen, the sample size quickly drops to 𝑛 = 1 and remains there (as long as testing 
outcomes remain 𝑦 = 0). 

Under the assumption of constant 𝑛, 𝑝 and 𝑡 parameters, it is possible to derive1 the following 
closed expressions for the expected values of the posterior hyperparameters 𝛼௠ଵ and 𝛽௠ଵ. 𝐸ሾ𝛼௠ଵሿ = 𝑝଴ ∙ 𝑛଴ ∙ 𝑟௠ + 𝑝 ∙ 𝑛 ∙ 1 − 𝑟௠1 − 𝑟  𝐸ሾ𝛽௠ଵሿ = (1 − 𝑝଴) ∙ 𝑛଴ ∙ 𝑟௠ + (1 − 𝑝) ∙ 𝑛 ∙ 1 − 𝑟௠1 − 𝑟  

For 𝑚 → ∞ we obtain 𝐸ሾ𝛼௠1ሿ ⟶ 𝑛
1 − 𝑟 ∙ 𝑝 Equation 1 

𝐸ሾ𝛽௠1ሿ ⟶ 𝑛
1 − 𝑟 ∙ (1 − 𝑝) Equation 2 

This allows us to define the 𝑟-adjusted2 sample size 𝑛௥ = ௡ଵି௥. The following table shows the 
relationship between 𝑟, 𝑛௥ and the asymptotic hyperparameter expected values for the simple case 𝑛 = 1 and 𝑝 = 0. 

Table 11. r-adjusted sample size and asymptotic hyperparameter expected values for four different 𝒕𝒅𝟓𝟎 values 

and for 𝒏 = 𝟏 and 𝒑 = 𝟎. 𝒕 [days] 𝒅𝟓𝟎 [days] 𝒓 𝒏𝒓 𝐥𝐢𝐦 𝒎→∞𝑬ሾ𝜶𝒎𝟏ሿ 𝐥𝐢𝐦 𝒎→∞𝑬ሾ𝜷𝒎𝟏ሿ 
50 350 0.87 7.51 0 7.51 

100 350 0.75 4.02 0 4.02 

 

1 Via the expression for the 𝑛th term in a geometric series and the definition 𝑟௠௜ = 𝑒ష(೟೘ష೟೔)೏50  which 

simplifies to 𝑟௠ି௜, for constant 𝑟௜ = 𝑟 = 𝑒 ష೏೏50. 

2 Recall that 𝑟 = 𝑒 ష೟೏50 denotes the constant ratio corresponding to a constant time interval 𝑡 between 

consecutive lot inspections. 
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175 350 0.61 2.54 0 2.54 
350 350 0.37 1.58 0 1.58 

As can be seen, for 𝑡 = 175 days the limit of the expected value of the 𝛽 parameter is 2.54. This 
is the value to which the 𝛽 parameters are converging in Table 10. 

There are two obvious applications of Equations (1) and Equation (2): deriving the sampling 
frequency and deriving the sample size. 

Deriving the sampling frequency 
If the sample size for all inspections is specified in advance and if it is known in advance what 

value for 𝛼 + 𝛽 the serial inspections should converge to (thus capping the level of accumulated 
information incapsulated in the prior), suitable values for 𝒕𝒅𝟓𝟎 can be derived. For example, say that 

it is deemed desirable for 𝛼 + 𝛽 to converge to 12, that the half-life value should be about one year 
(i.e., the choice 𝑑ହ଴ = 350 days is appropriate) and that a value for 𝑝 close to zero is expected (i.e., 𝛼 + 𝛽 simplifies to 𝛽). For 𝑛 = 1, 𝛽 will converge to 12.2 for the choice 𝑡 = 30 days. 

Table 12. r-adjusted sample size and limits for the expected value of the hyperparameters for 𝒕 = 𝟑𝟎, 𝒅𝟓𝟎 =𝟑𝟓𝟎, 𝒏 = 𝟏 and 𝒑 = 𝟎. 𝒕 𝒅𝟓𝟎 𝒓 𝒏𝒓 𝐥𝐢𝐦 𝒎→∞𝑬ሾ𝜶𝒎𝟏ሿ 𝐥𝐢𝐦 𝒎→∞𝑬ሾ𝜷𝒎𝟏ሿ 
30 350 0.92 12.17 0 12.17 

Deriving the sample size 
Conversely, if a desired limit for 𝛼 + 𝛽 has been specified and the inspection frequency has been 

prescribed, then it is possible to derive a suitable sample size. Say the time interval between 
consecutive lot inspections has been specified as 𝑡 = 100 days and that 𝛼 + 𝛽 should converge to 
12, then the choice 𝑛 = 3 is appropriate. The following table provides the hyperparameters for such 
a serial sampling scheme—whereby the sample size values for the first 3 lot inspections are 12, 9 and 
6, respectively, before reaching the desired sample size of 𝑛 = 3 (this is done in order to build in an 
initial check regarding 𝑝). 

Table 13. Serial sampling scheme with 𝒅𝟓𝟎=350 days and 𝒕 =100 days. As can be seen, for the sample size 𝒏𝒊 =𝟑 , the posterior 𝜷𝒊𝟏parameter tends to 12, as desired. 

Inspection Sample size 𝒏𝒊 Prior Posterior 𝜶𝒊𝟎 𝜷𝒊𝟎 𝜶𝒊𝟏 𝜷𝒊𝟏 

1 12 0.75 0.75 0.75 12.75 

2 9 0.56 9.58 0.56 18.58 
3 6 0.42 13.96 0.42 19.96 
4 3 0.32 15.00 0.32 18.00 

5 3 0.24 13.53 0.24 16.53 
(…) 

19 3 0.00 9.15 0.00 12.15 
20 3 0.00 9.13 0.00 12.13 

21 3 0.00 9.12 0.00 12.12 
22 3 0.00 9.11 0.00 12.11 
23 3 0.00 9.10 0.00 12.10 
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Another possibility to derive the sample size is to start from a range considered acceptable for 𝑛௥ (say between 20 and 100), and then to calculate the equivalent range for 𝑛. In order to simplify 
the calculation, we introduce the notation 𝑚ହ଴ = number of lot inspections per half-life = ௗఱబ௧  

We thus have 𝑡𝑑ହ଴ = 1𝑚ହ଴ 

and it follows that 𝑛 = (1 − 𝑟) ∙ 𝑛௥ = ቆ1 − 𝑒ିௗௗఱబቇ ∙ 𝑛௥ = ൬1 − 𝑒 ିଵ௠ఱబ൰ ∙ 𝑛௥ 

The following table provides an overview of sample size values for different values of 𝑚ହ଴. 

Table 14. Range for the sample size as a function of 𝒎𝟓𝟎 corresponding to the range 20-100 for the r-adjusted 
sample size 𝒏𝒓. 
𝒎𝟓𝟎 

1

− 𝑒 ି1௠50 

𝒏𝒎𝒊𝒏 
 

(corresponding to a lower limit of 20 
for 𝑛௥) 

𝒏𝒎𝒂𝒙 
 

(corresponding to an upper limit of 100 
for 𝑛௥) 

1 0.63 13 63 
2 0.39 8 39 
3 0.28 6 28 
4 0.22 4 22 
5 0.18 4 18 
6 0.15 3 15 
7 0.13 3 13 
8 0.12 2 12 
9 0.11 2 11 
10 0.10 2 10 
11 0.09 2 9 
12 0.08 2 8 

As can be seen: if only one inspection is performed within a half-life period 𝑑ହ଴, the sample size 
should lie between 𝑛 = 13 and 𝑛 = 63. However, if inspections are performed once a month, a 
sample size lying between 𝑛 = 2 and 𝑛 = 8 is sufficient. 

4. Conclusions 

In serial lot inspection, a naïve application of Bayesian methods in acceptance sampling can lead 
to the situation where the prior represents so much accumulated information that test results from 
the current lot inspection will hardly have any effect at all on the calculations of conformance 
probability, specific consumer risk or expected utility. In such a case, lot inspection would be 
meaningless. In addition, it is common sense that data loses currency as time goes by, and that more 
recent data should be given more weight than older data. For this reason, a procedure for serial 
Bayesian lot inspection is proposed with an appropriate weight function of time, where the time is 
standardized in terms of a reference half-life time interval. 

This procedure can be used to ensure that current testing outcomes always have the desired 
degree of influence on the calculations. Moreover, when the sample size, the expected value for the 
proportion nonconforming and the inspection frequency are constant, it is possible to derive closed 
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expressions for the expected values of the beta distribution hyperparameters. These, in turn, allow a 
pragmatic approach for the specification of inspection frequency or sample size. 

More generally, the data ageing principle can be applied in many contexts where iterative 
Bayesian calculations are performed. 
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