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Abstract

The inspection of a series of lots from the same producer is a natural field of application of Bayesian
approaches. On the one hand, it makes sense to take the posterior of the previous inspection as the
prior of the next inspection. On the other hand, such a naive approach can quickly lead to the situation
where the prior represents so much accumulated information that new test results from the current
lot inspection will hardly have any effect at all on the posterior and, hence, on the calculations of
conformance probability, specific consumer risk or expected utility. In other words, a naive serial
implementation of a Bayesian approach could result in such a level of information saturation that any
further lot inspection would be meaningless. In effect, such a situation would be similar to having,
e.g., complete trust in the producer and accepting all lots on faith. For this reason, it is important to
carefully consider exactly how the conformance probability or the utility approach is applied in
practice. The present paper describes a fully developed procedure for implementing these two
approaches in connection with serial lot inspection. In this approach, a data-ageing procedure is
described. The basic principle is to downweight older data in such way as to prevent information
saturation in the sense of over-informative priors. Moreover, when the sample size, the expected
value for the proportion nonconforming and the inspection frequency are constant, it is possible to
derive closed expressions for the expected values of the hyperparameters. These, in turn, allow a
pragmatic approach for the specification of inspection frequency or sample size.

Keywords: acceptance sampling; serial lot inspection; Bayesian statistics; sample size; sampling
frequency
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1. Introduction

An approach for designing acceptance sampling plans for the inspection by attributes of isolated
lots on the basis of the concept of conformance probability was described in Uhlig et al. (2024) [1].
The calculations involve Bayesian prior and posterior distributions and this approach thus differs
considerably from the classical approach described in the ISO 2859 series [4]. In the conformance
probability approach, the focus is on risks, and several new definitions of risks are proposed (based
in part on JCGM 106 [2]). This focus on risks is shared by the conformance probability and ISO
approaches. By contrast, an approach centered on the concept of utility was described in Uhlig et al.
(2025) [3]. In this approach, the plans are determined in order to maximize expected utility, which
can be broadly defined as benefits minus costs. Both the conformance probability approach and the
utility approach are Bayesian approaches to acceptance sampling.

The question naturally arises whether these Bayesian approaches can be implemented when lots
from the same producer are inspected one after the other—i.e., in connection with the inspection of a
series of lots. On the one hand, it makes sense to take the posterior of the previous inspection as the
prior of the next inspection. On the other hand, such a naive approach can quickly lead to the situation
where the prior represents so much accumulated information that new test results from the current
lot inspection will hardly have any effect at all on the posterior and, hence, on the calculations of
conformance probability, specific consumer risk or expected utility. In other words, a naive serial
implementation of a Bayesian approach could result in such a level of information saturation that any
further lot inspection would be meaningless. In effect, such a situation would be similar to having,
e.g., complete trust in the producer and accepting all lots on faith.

For this reason, it is important to carefully consider exactly how the conformance probability or
the utility approach is applied in practice. The present paper describes a fully developed procedure
for implementing these two approaches in connection with serial lot inspection.

It should be borne in mind that the procedures presented here are not suitable if the proportion
nonconforming varies randomly from lot to lot.

2. Inspection of a Series of lots —Bayesian Updating Mechanism

At the core of Bayesian statistics lies the rule for combining prior information and testing
outcomes to obtain a posterior distribution. This fusion of information from different sources
constitutes the first aspect of the Bayesian updating mechanism. However, in the context of lot
inspection, there is a second aspect: namely, taking the posterior from a previous inspection as the
prior for the next inspection. The following notation is introduced in order to conveniently take both
aspects into account. In connection with the inspection of a series of lots, the index i denotes the
current lot inspection and g, ;(x) and g;(x|y;) denote the prior and posterior distributions in lot
inspection i, respectively. Similarly, y; denotes the testing outcome in lot inspection i.

These two aspects are summarized in the Table 1.

Table 1. Two aspects of Bayesian updating in connection with the inspection of a series of lots.

BAYESIAN

INSPECTION i INSPECTION i + 1
UPDATING

The prior gy;(x) is updated to the

ASPECT 1 prior go;(x) is upda

posterior g;(x|y;)
ASPECT 2 The posterior g;(x|y;) is taken as

the prior gy,i.1(x)
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A “naive’ approach to serial lot inspection would consist in an iterative application of these two
updating mechanisms, whereby the acceptance sampling plan (n,c) for each inspection is
determined via either the conformance probability (risk-based) approach, see Uhlig et al. (2024) [1] or
the utility approach, see Uhlig et al. (2025) [3]. This is illustrated in the following Table 2, which shows
acceptance sampling plans obtained by the conformance probability approach for two different
scenarios corresponding to different initial priors. The threshold for the conformance region for
proportion nonconforming x is specified as x¢; = 10%. In scenario 1, the initial prior is Beta(1,9),
while in scenario 2, the initial prior is Beta(1,19). Measured against the x, = 10% value, the initial
prior for scenario 1 is quite conservative (bordering on pessimistic) while the initial prior for scenario
2 is more optimistic. The threshold for the specific consumer risk SCR(y) is specified as CRsayes = 5%.
For both scenarios and for all inspections, it is assumed that testing outcomes are consistently y =
¢ = 0. For each scenario, acceptance sampling plans for the first three inspections are provided.

Table 2. Naive serial lot inspection via the conformance probability approach for xe = 10% and CReayes = 5%. In
scenario 1, the initial prior is Beta(1,9) whereas, in scenario 2, the initial prior is Beta(1,19). It is assumed that

testing outcomes are consistently y = ¢ = 0.

Scenario Inspection a; Bio n c a; Bi
1 1 1 9 20 0 1 29
2 1 29 1 0 1 30
3 1 30 1 0 1 31
2 1 1 19 10 0 1 29
2 1 29 1 0 1 30
3 1 30 1 0 1 31

As can be seen, for a given inspection i, the same posterior—i.e., the same pair (a1, 8;;)—is
obtained for both scenarios. After 3 inspections, the posterior is Beta(1,31) for both scenarios and
repeated application of the conformance probability approach may result in meaningless lot
inspection insofar as testing outcomes for the current lot will have very little impact on the calculation
of the posterior.

The following Table 3 shows acceptance sampling plans obtained via a ‘naive’ serial application
of the utility approach for the same two scenarios as in Table 2. For each scenario, the lot size is N =
10 000, the damages parameteris D = 10 B (which is Jand the sampling & testing costs parameter is
T = 5 B. Moreover, in both scenarios, we assume that testing outcomes are consistently y = 0.

Table 3. Naive serial lot inspection via the utility approach for N=10000, D =10B and T=5B. It is

assumed that testing outcomes are consistently y = 0.

Scenario Inspection ;g Bio n c i Bi1
1 1 1 9 15 1 1 24
2 1 24 4 0 1 28
3 1 28 4 0 1 32
2 1 1 19 7 1 1 26
2 1 26 4 0 1 30
3 1 30 3 0 1 33

3. Data Ageing and Half-Life: Higher Weighting of Recent Information, Lower
Weighting of Old Information

As the number of inspections increases, the amount of information encoded in the prior will
increase to the point where the posterior will hardly differ from the prior no matter the testing
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outcome. For this reason, in applying the conformance probability or utility approach in serial lot
inspection, it is necessary to transform the posterior from the previous inspection before using it as
the prior for the next inspection. This transformation should ensure that lot inspection remains
meaningful in the sense that the posterior remains sensitive to the testing outcomes.

The most natural way to achieve this is to develop a procedure whereby information loses
currency as time elapses. Such an approach has the considerable advantage of reflecting the common-
sense notion that the results from a lot inspection which took place very recently can be considered a
far more reliable indicator of lot quality than results from a lot inspection which took place some time
ago. In other words: the proposed procedure is articulated around a weighting mechanism which is
inversely proportional to the “age” of the data.

Information currency loss as a function of elapsed time can be expressed mathematically in
terms of an information half-life time interval (in short: “half-life”), denoted ds,. Suffice it to say here
that the basic idea is to adjust the hyperparameters in such a way as to increase the variance of the

estimate of the proportion nonconforming as time goes by. The degree to which the variance increases

time interval since the data was obtained

is controlled via the ratio . . The increase in variance is taken
50

as the mathematical equivalent of information losing value. The specific value of ds, will depend on
the context: the type of manufacturing process, the type of QC performed by the producer, the
availability of QC data, the type of product, the property of interest, the frequency of lot inspection,
etc. Nonetheless, it can be said that, in many scenarios, a sensible value for ds, will lie somewhere

between 6 and 12 months. The procedure for adjusting the hyperparameters in relation with ds, will
now be described.

3.1. Procedure

-t
The hyperparameters are adjusted via multiplication with the factor r = e4so where t denotes

1 and the variance

the time interval between two consecutive lot inspections. If t = ds,, then r = e~
of the beta distribution corresponding to the adjusted hyperparameters is thus increased by a factor
which—in the case of a Beta(«, §) prior—depends on the sum a + f buttendsto e ~ 2.72 as a +

increases, as shown in the Figure 1.

2.8

2.7
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2.4
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2

Factor by which variance is increased

1.9

1.8
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Sum of hyperparameters alpha and beta

Figure 1. Factor by which the variance of a beta distribution is increased by multiplying both hyperparameters

—t

by r = edso for the case t = dgq, displayed as a function of the sum a + B. Note: the factor by which the

1
variance is increased tends to — as (a + ) — oo.
r

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0614.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2025 d0i:10.20944/preprints202508.0614.v1

6 of 13

The procedure will now be described in detail. In the following, the beta distribution
hyperparameter subscripts have the following meaning;:
Qo = prior a for inspectionn
a,q = posterior a for inspectionn
The same notation is used for f.
Preliminary testing (prior to the first inspection)
ng tests are performed at time point t;, and y, nonconforming items are observed.

The preliminary estimate for the proportion nonconforming is thus x, = 22.

o
First inspection
Hyperparameters for the prior distribution:
A0 = 11 X" Mo =11 Yo
ity Bio = 11 (1= %) " ng =11 (g = ¥o)
where 1, = e @0 denotes the factor reflecting the time elapsed between preliminary testing and
the first inspection.

The acceptance sampling plan is determined e.g., via the conformance probability or utility
approach, yielding the sample size n,;. Accordingly, n; tests are performed at time point t;, and y,;
nonconforming items are observed.

Posterior distribution:

@11 = Aot
P11 = Pio+ i —y
The estimate for the proportion nonconforming after the first inspection is
a1
a1 +Bia’
We also calculate the cumulative sample size N; as
Ny = ai1 + Biy
= Qo+ Bro t My
=1 ny+tn
We can thus rewrite the posterior hyperparameters as

X =

ay; = x° Ny
B =1 —x1) N
Inspection m
Hyperparameters for the prior distribution:
Xmo = Tm " Xm—1" Nm-1 = T " Qan-1)1

Bmo=Tm (L —xpm_1)  Nyp_q =T ﬂ(m—l)l
~(tm=tm-1)
Where 7, == e 450 denotes the factor reflecting the time elapsed between inspection m —

1 and inspection m.

The acceptance sampling plan is determined e.g., via the conformance probability or utility
approach, yielding the sample size n,,. Accordingly, n,, tests are performed at time point t,,, and
Ym nonconforming items are observed.

Posterior distribution:

Am1 = Amo T Ym = T * Am-1)1 + Ym
Bm1 = Bmo + Mm = Ym = T " Ban-11 + Nim = ¥m

The estimate for the proportion nonconforming after inspection m is x,, = —=2

am1+Bmi’
We also calculate the cumulative sample size Ny, as
Ny = Qg + B
= o t Bmo + i
=T Npoq + 1
Via mathematical induction, the following closed expressions for the posterior hyperparameters
after inspection m are obtained:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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m-1

amlzrmo'xo'n0+zrmi'yi+ym

i=1
m-1

Bt = Tino* (1= %6) g + " Tong* (14 = 1) + (1 = Yo
=1
where 1,,,; denotes the decrease in information currency between time point t,, and time point t;
—(tm—ti)

Tmi =e dso

3.2. Example 1: Comparison of Three Scenarios with Constant Sample Size and Acceptance Number Specified
in Advance

In order to illustrate how this approach affects the hyperparameters, we consider the simple case
that p, = Z—O = 50%, corresponding to a Beta(l,1) prior (noninformative prior) and that for all
0
inspections i = 1,...,7 we have

n; = 10

yi=¢=0
—t
and r; =7 = edso,

where t (time interval between consecutive inspections) remains the same from inspection to
inspection.

Note: since sample size and acceptance number are specified in advance and held constant, this
example can be considered to be ‘blind” as to how the acceptance sampling plan is calculated (i.e., as
to whether the conformance probability approach of the utility approach is applied.)

The following table provides an overview of 3 scenarios.

Table 4. Overview of the three scenarios with n; = 10 for all 7 lot inspections.

Scenario 1 without taking data ageing into account
Scenario 2 for ds, =350 days and t =50 days
Scenario 3 for dsp =350 days and t =100 days

The hyperparameters for 7 consecutive inspections are as follows.

Table 5. Hyperparameters for three scenarios with constant n; = 10 (7 consecutive lot inspections per

scenario).
Prior Posterior
Scenario | Inspection
Xio Bio Xy Bi
1 1.00 1.00 1.00 11.00
(o] -
§ % 2 1.00 11.00 1.00 21.00
E %’3 § 3 1.00 21.00 1.00 31.00
E é g 4 1.00 31.00 1.00 41.00
Y = =
o B &0 5 1.00 41.00 1.00 51.00
< g
-‘é j%’o 6 1.00 51.00 1.00 61.00
7 1.00 61.00 1.00 71.00
& 1 0.87 0.87 0.87 10.87
=
[ Yo} <
o ™ g 2 0.75 9.42 0.75 19.42
g 1o
S 3% 3 0.65 16.83 0.65 26.83
5 © ©
&R 8 9 4 0.56 23.26 0.56 33.26
© 5 0.49 28.83 0.49 38.83
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6 0.42 33.66 0.42 43.66

7 0.37 37.85 0.37 47.85

1 0.75 0.75 0.75 10.75

£ 2. 2 0.56 8.08 0.56 18.08

_‘;,; E g 3 0.42 13.59 0.42 23.59
g5~ 4 0.32 17.72 0.32 27.72
8 5 - 5 0.24 20.83 0.24 30.83
8 5 6 0.18 23.17 0.18 33.17
7 0.14 24.93 0.14 34.93

Variances and mean values corresponding to the posterior hyperparameters after the seventh
inspection for the three scenarios are as follows.

Table 6. Variances and mean values corresponding to the hyperparameters after 7 inspections for the three

scenarios.

SCENARIO a p MEAN  VARIANCE SD RSD
SCENARIO 1 1 71 1.39% 0.00019 0.014 98.62%
NO DATA
AGEING
SCENARIO 2 0.37 47.85 0.76% 0.00015 0.012 162.09%
t=>50
SCENARIO 3 0.14 34.93 0.39% 0.00011 0.010 263.00%
t=100

As can be seen, across several inspections the variance does not increase (as it does after
-t
multiplying the two beta distribution parameters by the same factor r = e4so, see the discussion

above). This is due to the fact that the mean value is not constant across inspections. However, the
RSD does increase.
The following table shows the decrease in the sum of the two hyperparameters.

Table 7. Sum of hyperparameters for the three scenarios.

SCENARIO SUM a4 + 71
SCENARIO 1 .
NO DATA AGEING
SCENARIO 2
4822
t=750
SCENARIO 3
35.07
t =100

3.3. Example 2: Revisiting the Two Scenarios from Section 2

In this example, we revisit the two scenarios from Section 2 with ds, = 350 days and t = 175
days (i.e., t = 0.5 ds).

The following table shows the plans obtained via the half-life approach. Plans are calculated
with the conformance probability approach. Note the reduction of az; + f3; from 32 (in Table 2) to
slightly less than 12.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 8. Half-life approach for serial lot inspection. Plans are calculated via the conformance probability approach
with xe =10% and CRsayes = 5%. In scenario 1, the initial prior is Beta(1,9) whereas, in scenario 2, the initial prior

is Beta(1,19). It is assumed that testing outcomes are consistently y = ¢ = 0. Compare with Table 2.

Scenario Inspection o Bio n c oy Bi1

1 1 0.61 5.46 16 0 0.61 21.46
2 0.37 13.02 3 0 0.37 16.02
3 0.22 9.71 2 0 0.22 11.71

2 1 0.61 11.52 10 0 0.61 21.52
2 0.37 13.06 3 0 0.37 16.06
3 0.22 9.74 2 0 0.22 11.74

The following table shows the plans obtained via the half-life approach. Plans are calculated
with the utility approach. Note the reduction of a3z; + f3; from 33 or 34 (in Table 3) to less than 13.

Table 9. Half-life approach for serial lot inspection via the utility approach for N =10000, D =10B and T =

5 B. It is assumed that testing outcomes are consistently y = 0. Compare with Table 3.

Scenario Inspection Ao Bio n c oy Bi1

1 1 0.61 5.46 14 1 0.61 19.46
2 0.37 11.80 4 0 0.37 15.80
3 0.22 9.58 3 0 0.22 12.58

2 1 0.61 11.52 8 1 0.61 19.52
2 0.37 11.84 4 0 0.37 15.84
3 0.22 9.61 3 0 0.22 12.61

3.4. Closed Expressions for the Hyperparameters for Constant n, p and t

The three scenarios from Section 2 show that a ‘naive” application of Bayesian approaches in
serial lot inspection may lead to ever increasing values for a;; + f;;, and hence meaningless
inspection. The half-life approach allows the user to control the values of a;; + f;;. Indeed, applying
the half-life adjustment to the three scenarios from Section 2 allows the sum a;; + f;; to be reduced
from over 30 to around 12 or 13 (after 3 inspections). We now explain why this is the case and derive
formulas which will prove useful in the choice of the half-life ds,, of the time interval between
consecutive inspections t and of the initial sample size.

Assume that we have a constant sample size n, a constant expected value for the proportion
nonconforming p and a constant time interval t between consecutive lot inspections. In other
words, for all inspections i = 1,...,m

n;=n
Elyi/ni] = Elyi/n] =tP
and 1; = r = edso,

The requirement that the sample size be constant does not constitute a departure from what will
typically be observed in serial lot inspection. Indeed, a rigorous application of the half-life approach
will typically lead to a steep reduction in sample size until a constant low value is reached. For
example, continuing the dsy =350 days and t =175 days (i.e., t = 0.5 - dsq) Scenario 1 example from
Table 8 (conformance probability approach) the following plans are obtained for the first 10
inspections.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 10. Half-life approach for serial lot inspection. Plans are calculated via the conformance probability approach

with x¢ =10% and CRsayes = 5%. The initial prior is Beta(1,9). It is assumed that testing outcomes are consistently

y = ¢ = 0. This table continues the first three rows of Table 8.

Inspection o Bio n c apq Bi1
1 0.61 5.46 16 0 0.61 21.46
2 0.37 13.02 3 0 0.37 16.02
3 0.22 9.71 2 0 0.22 11.71
4 0.14 7.10 1 0 0.14 8.10
5 0.08 4.92 1 0 0.08 5.92
6 0.05 3.59 1 0 0.05 4.59
7 0.03 2.78 1 0 0.03 3.78
8 0.02 2.29 1 0 0.02 3.29
9 0.01 2.00 1 0 0.01 3.00
10 0.01 1.82 1 0 0.01 2.82

As can be seen, the sample size quickly drops to n = 1 and remains there (as long as testing
outcomes remain y = 0).
Under the assumption of constant n, p and t parameters, it is possible to derive! the following

closed expressions for the expected values of the posterior hyperparameters a,,; and fp;.

For m —» o we obtain

E[aml] - 1

n

-Tr

Elami] =po no-r"+p-n-

1—rm
1—r

Efmil =A—=po) ng-rm+(1-p)-n:

m

Equation 1

Equation 2

Elpm] = 7" (1~ p)

This allows us to define the r-adjusted?> sample size n, = 1nT, The following table shows the

relationship between r, n, and the asymptotic hyperparameter expected values for the simple case
n=1and p=0.

Table 11. r-adjusted sample size and asymptotic hyperparameter expected values for four different dL values
50

and for n=1 and p = 0.

t [days] dso [days] r n, lim Efam,] lim E[fm]
50 350 0.87 7.51 7.51
100 350 0.75 4.02 4.02

—(tm—t;)

! Via the expression for the n® term in a geometric series and the definition 7,,; = ¢~ %0 which

—d
simplifies to ™!, for constant r; = r = e%0.

—t
2 Recall that r = e%0 denotes the constant ratio corresponding to a constant time interval ¢ between

consecutive lot inspections.
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175 350 0.61 2.54 0 2.54
350 350 0.37 1.58 0 1.58

As can be seen, for t = 175 days the limit of the expected value of the f parameter is 2.54. This
is the value to which the f parameters are converging in Table 10.

There are two obvious applications of Equations (1) and Equation (2): deriving the sampling
frequency and deriving the sample size.

Deriving the sampling frequency

If the sample size for all inspections is specified in advance and if it is known in advance what
value for a + f the serial inspections should converge to (thus capping the level of accumulated
information incapsulated in the prior), suitable values for dLso can be derived. For example, say that
it is deemed desirable for a + § to converge to 12, that the half-life value should be about one year

(i.e., the choice ds, = 350 days is appropriate) and that a value for p close to zero is expected (i.e.,
a + f simplifies to ). For n =1, f will converge to 12.2 for the choice t = 30 days.

Table 12. r-adjusted sample size and limits for the expected value of the hyperparameters for t = 30, dsg =
350, n=1 and p=0.

t ds, r n, lim Efay,] lim E[f ]
30 350 0.92 12.17 0 12.17

Deriving the sample size

Conversely, if a desired limit for a + f has been specified and the inspection frequency has been
prescribed, then it is possible to derive a suitable sample size. Say the time interval between
consecutive lot inspections has been specified as t = 100 days and that a + f should converge to
12, then the choice n = 3 is appropriate. The following table provides the hyperparameters for such
a serial sampling scheme —whereby the sample size values for the first 3 lot inspections are 12, 9 and
6, respectively, before reaching the desired sample size of n = 3 (this is done in order to build in an
initial check regarding p).

Table 13. Serial sampling scheme with d5¢=350 days and t =100 days. As can be seen, for the sample size n; =
3 , the posterior f;;parameter tends to 12, as desired.

Inspection Sample size n; Prior Posterior
Xig Bio Xy Bi1
1 12 0.75 0.75 0.75 12.75
2 9 0.56 9.58 0.56 18.58
3 6 0.42 13.96 0.42 19.96
4 3 0.32 15.00 0.32 18.00
5 3 0.24 13.53 0.24 16.53
(-.2)
19 3 0.00 9.15 0.00 12.15
20 3 0.00 9.13 0.00 12.13
21 3 0.00 9.12 0.00 12.12
22 3 0.00 9.11 0.00 12.11
23 3 0.00 9.10 0.00 12.10
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Another possibility to derive the sample size is to start from a range considered acceptable for
n, (say between 20 and 100), and then to calculate the equivalent range for n. In order to simplify
the calculation, we introduce the notation

mso =number of lot inspections per half-life = %

We thus have
t 1

d_so B Mso
and it follows that

—d -1
n=(1—r)-nr=<1—ed_50)-nr=(1—em_m)-nr

The following table provides an overview of sample size values for different values of msy.

Table 14. Range for the sample size as a function of mg, corresponding to the range 20-100 for the r-adjusted

sample size n,.

. Npin Ninax
so — 67;—510 (corresponding to a lower limit of 20 (corresponding to an upper limit of 100
for n,) for n,)
1 063 13 63
2 039 8 39
3 028 6 28
4 022 4 22
5 018 4 18
6 015 3 15
7 013 3 13
8 012 2 12
9 011 2 11
10 0.10 2 10
11 0.09 2
12 0.08 2

As can be seen: if only one inspection is performed within a half-life period ds,, the sample size
should lie between n = 13 and n = 63. However, if inspections are performed once a month, a
sample size lying between n = 2 and n = 8 is sufficient.

4. Conclusions

In serial lot inspection, a naive application of Bayesian methods in acceptance sampling can lead
to the situation where the prior represents so much accumulated information that test results from
the current lot inspection will hardly have any effect at all on the calculations of conformance
probability, specific consumer risk or expected utility. In such a case, lot inspection would be
meaningless. In addition, it is common sense that data loses currency as time goes by, and that more
recent data should be given more weight than older data. For this reason, a procedure for serial
Bayesian lot inspection is proposed with an appropriate weight function of time, where the time is
standardized in terms of a reference half-life time interval.

This procedure can be used to ensure that current testing outcomes always have the desired
degree of influence on the calculations. Moreover, when the sample size, the expected value for the
proportion nonconforming and the inspection frequency are constant, it is possible to derive closed
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expressions for the expected values of the beta distribution hyperparameters. These, in turn, allow a
pragmatic approach for the specification of inspection frequency or sample size.

More generally, the data ageing principle can be applied in many contexts where iterative
Bayesian calculations are performed.
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