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Abstract

Community detection is a fundamental task for understanding network structures, crucial for identify-
ing groups of nodes with close connections. However, existing methods generally treat all connections
in networks as equally important, overlooking the inherent inequality of connection strengths in social
networks, and often require large amounts of labeled data. To address these challenges, we propose a
few-shot community detection framework, Strong Triadic Closure Community Detection with Prompt
(STC-CDP), which combines the Strong Triadic Closure (STC) principle, Graph Neural Networks, and
prompt learning. The STC principle, derived from social network theory, states that if two nodes share
strong connections with a third node, they are likely to be connected themselves. By incorporating
STC constraints during the pre-training phase, STC-CDP can differentiate between strong and weak
connections in networks, thereby more accurately capturing community structures. We design an
innovative prompt learning mechanism that enables the model to extract key features from a small
number of labeled communities and transfer them to the identification of unlabeled communities.
Experiments on multiple real-world datasets demonstrate that STC-CDP significantly outperforms
existing state-of-the-art methods under few-shot conditions, achieving higher F1 scores and Jaccard
similarity particularly on Facebook, Amazon, and DBLP datasets. Our approach not only improves
the precision of community detection but also provides new insights into understanding connection
inequality in social networks.

Keywords: community detection; Strong Triadic Closure; prompt learning; few-shot learning; Graph
Neural Networks

1. Introduction

The community structure within social networks is a pivotal issue in the study of network science,
referring to groups of nodes within the network that exhibit a significantly higher density of internal
connections compared to connections with external nodes. Community structures are prevalent in
real-world networks [1-3], and they hold substantial significance in uncovering network topology,
predicting node behavior, and comprehending the dissemination of information. The identification of
community structures has broad applications across various domains, ranging from market segmenta-
tion [4], recommendation systems [5], to fraud detection [6,7] and event organization [8]. Particularly in
large-scale social networks, efficient and accurate community detection can aid platforms in optimizing
content distribution, enhancing user engagement, and identifying potential malicious groups. With the
rapid expansion of online social networks, traditional community detection methods face increasingly
severe challenges. The exponential growth of network scale, dynamic changes in user behavior, and
the complexity of community structures all demand continuous innovation in community detection
techniques [9]. Especially under conditions where only limited labeled data is available, effectively
identifying and extending specific types of communities has become a key research challenge. For
instance, in security domains, identifying other potential suspicious groups in the network based on
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just a few known suspicious account clusters; or in marketing, discovering more potential customer
groups with similar characteristics based on a small number of known high-value user communities.

Despite continuous advancements in community detection techniques, existing methods still face
several key challenges. First, most algorithms treat all connections in networks as equally important,
failing to consider the inherent inequality of connection strengths in social networks [10]. In real-
world social networks, connection strengths vary significantly—some represent intimate relationships
while others merely indicate superficial intersections, and these differences have a decisive impact on
community structure formation [11,12]. Second, traditional algorithms typically require large amounts
of labeled data for training, which is difficult to obtain in practical applications [13]. Although few-shot
learning methods have been developed, they are highly sensitive to the quality of seed nodes and
often suffer from insufficient flexibility and high computational overhead [14,15]. Third, existing
methods generally lack adequate consideration of triangular structures that are common in social
networks, despite their fundamental role in community formation [16]. To address these challenges,
this paper introduces the Strong Triadic Closure (STC) principle to handle connection inequality in
community detection. STC is an important concept in social network theory, stating that if two nodes
share strong connections with a third node, they are likely to be connected themselves (either strongly
or weakly) [17]. This principle has deep roots in sociology, with research by Granovetter [18] and Burt
[19] demonstrating that triangular structures play a crucial role in social cohesion and information
propagation. By combining STC with advanced deep learning techniques, we aim to improve the
quality and accuracy of community detection, particularly under few-shot conditions.

This paper proposes a community detection framework based on Strong Triadic Closure Commu-
nity Detection with Prompt—STC-CDP, which combines Graph Neural Networks, prompt learning,
and the STC principle to achieve efficient few-shot community detection. Our main contributions
include.

1.  Innovative STC Injection Mechanism: We propose a method to organically integrate STC proper-
ties into the Graph Neural Network training process, enabling the model to learn to distinguish
between strong and weak connections, thereby more accurately characterizing community struc-
tures.

2. Prompt-based Few-Shot Learning Framework: We design a parameter-efficient prompt learn-
ing framework that enables the model to extract key features from a small number of labeled
communities and apply this knowledge to identify unlabeled similar communities.

3.  End-to-end Community Detection System: We implement a complete pipeline from pre-training
and prompt learning to final community prediction, providing a practical solution for real-world
applications.

Through experiments on multiple real-world datasets, we demonstrate the superiority of STC-
CDP, particularly under few-shot conditions, where it achieves significantly higher F1 scores and
Jaccard similarity compared to existing state-of-the-art methods. Our research not only provides a new
technical path for community detection but also offers deep insights into understanding connection
inequality in social networks.

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3
introduces problem definition and fundamental concepts; Section 4 elaborates on the STC-CDP method;
Section 5 presents experimental settings and results analysis; and Section 6 concludes the paper and
discusses future research directions.

2. Related Work
2.1. Community Detection Algorithms

The development of community detection algorithms has evolved from traditional partition-based
methods to advanced deep learning approaches. Early methods such as Louvain [20] and Girvan-
Newman [21] algorithms primarily relied on modularity metrics to identify communities. With the
advancement of deep learning techniques, Graph Neural Network (GNN)-based community detection
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methods, such as [22,23], have demonstrated significant advantages in community partitioning tasks
by learning low-dimensional embedding representations of nodes.

Community detection research can be broadly categorized into unsupervised and supervised
methods. Unsupervised methods include optimization-based approaches, such as graph partition-
ing through optimizing modularity metrics [24], and matrix factorization methods that learn latent
community representations by decomposing adjacency matrices [25]. In recent years, frameworks
combining graph representation learning and community detection have made significant progress, as
seen in [26-30]. These methods have substantially improved community detection accuracy through
co-learning community membership and node representations. However, most of these methods lack
precise identification capabilities for specific types of communities and typically require large amounts
of labeled data.

Semi-supervised community detection has emerged as a recent research direction [31-33], aiming
to discover similar communities in networks using a small number of labeled communities as training
data. Zhang [34] proposed a seed expansion-based method that identifies communities by selecting
seed nodes and gradually expanding them. However, this approach is highly sensitive to seed node
quality, and inappropriate seed node selection may lead to inaccurate community partitioning. Wu et al.
[13,35] improved this issue by introducing subgraph inference, further reducing dependence on seed
node quality. Additionally, they incorporated prompt learning into community detection, significantly
reducing the need for training data. Nevertheless, these methods fail to adequately consider the
differences in connection strengths between nodes, assuming all connections have equal importance in
community partitioning, which contradicts the inequality of connection strengths in real-world social
networks [10]. This may result in insufficient accuracy in identifying certain communities.

2.2. Triadic Closure Principle and Its Applications in Network Analysis

The Triadic Closure principle is a core concept in social network analysis, describing the phe-
nomenon of "friends of friends are friends." Research by Bianconi et al. [16] and Granovetter [18]
demonstrates that this principle not only helps understand social network structures but also predicts
the formation of potential connections in networks. In graph theory, Triadic Closure is used to quan-
tify the clustering coefficient of networks, where a high clustering coefficient typically indicates the
presence of tight community structures in the network.

Kleinberg and Easley [17] further distinguished the different impacts of strong and weak ties
in Triadic Closure, introducing the concept of Strong Triadic Closure (STC). As a significant work
in this field, Sintos and Tsaparas [36] proposed the MINSTC problem, an optimization problem that
minimizes the number of weak edges while satisfying STC properties. They proved that MINSTC
is equivalent to solving the minimum vertex cover problem in the wedge graph Z(G). Tsourakakis
et al. [37] extended this work, arguing that triangles (or other higher-order subgraph structures, i.e.,
motifs) in graphs are stronger signals of community structure, and thus these motifs can be leveraged
to improve clustering effectiveness. Recent research, such as the work by Chakraborty et al. [38],
combines graph mining with the Triadic Closure principle, applying STC to dense subgraph discovery.
Shang et al. [39] proposed TriHetGCN, an extension of traditional Graph Convolutional Networks
(GCN) that incorporates explicit topological metrics—triadic closure and degree heterogeneity—to
address the issue of GCNs ignoring node attributes and intrinsic structural relationships between node
pairs.

However, research on applying methods that combine graph representation learning with the
Triadic Closure principle to targeted community detection tasks remains limited. First, existing graph
representation learning methods often lack explicit modeling of community structures during the
pre-training phase, making the generated node representations difficult to directly reflect community
information. Second, most existing prompt learning methods are designed for tasks such as node
classification or link prediction, relying on direct manipulation of node features while failing to
adequately consider structural characteristics at the community level. Therefore, there exists a gap
between these methods and the actual requirements when applied to community detection tasks.
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3. Problem Definition and Preliminaries
3.1. Community Detection

Definition 1 (Community Detection): Given a graph G, with m labeled communities ¢ =
{C ez ... ¢ "} (where v;?;lc'f C §) as training data, the goal is to find a set of other similar communi-
ties C such that |C| > |C|in G.

This definition describes the few-shot community detection problem, where the objective is
to identify other communities in the graph that share similar structural characteristics based on a
small number of known community examples. This setting corresponds to real-world scenarios
where manually labeling a large number of communities is costly, while automatically discovering
communities with similar properties is highly valuable.

3.2. Strong Triadic Closure (STC)

Let G = (V, ) be an undirected graph representing a social network, where the vertex set V
corresponds to individuals and the edge set £ corresponds to connections (relationships) between
these individuals. Our goal is to label the relationships in the social network, classifying them as either
strong or weak relationships.

We represent this labeling as a function ¢ : £ — {W, S}, which maps each edge ¢ € £ to a label W
(weak relationship) or S (strong relationship). A pair of edges e; = {u,v} € £and e; = {v,w} € &
is called a wedge if {u, w} ¢ &, denoted as e1 A e, to represent the wedge between edges e1 and ey,
where u,v,w € V.

Definition 2 (Strong Triadic Closure STC): Given a graph G, if the labeling ¢ in the graph satisfies
the Strong Triadic Closure (STC) property, then there does not exist a pair of edges (1, v) and (v, w)
such that (u,v) = S and {(v,w) = S, but (1, w) & £.

The Strong Triadic Closure (STC) property reveals an important phenomenon in social networks:
if a vertex v has strong connections with vertices u and w, i.e., if £(u,v) # S and ¢(v,w) = S, then u
and w are more likely to form an edge in £, which can be either a weak or strong connection [17], as
shown in Figure 1. This property reflects the transitivity and cohesion of community structures in
social networks.

A A
s Q »—Q)

Bella Cara Bella Cara
/V\ A\/
u W u w

= Existing nodes’ relations
= Existence of a relationship

Figure 1. Strong Triadic Closure Property. The figure illustrates the STC principle with concrete examples: if Alice
has strong connections with both Bella and Cara, then Bella and Cara are likely to be connected. The bottom part
shows the abstract representation where if vertex v has strong connections with vertices # and w, then u and w
should be connected to satisfy the STC property.

Corollary 1 (Strong Triadic Closure Violation): Given a graph G and an edge labeling function
¢, if l(u,v) =S, L(v,w) = S, and (u,w) ¢ &, then the vertex triplet u,v,w € V constitutes an STC
violation. Let B(¢, G) denote the total number of violations induced by labeling ¢ on graph G.
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This corollary defines the violation of STC constraints, providing a theoretical foundation for
subsequent community detection using STC properties. The violation count B(¢,G) can be used as a
metric to evaluate the quality of strong and weak relationship labeling in the graph, and can also serve
as an optimization objective to minimize STC violations to obtain edge labeling that better conforms to
the structural characteristics of social networks.

4. STC-CDP: The Proposed Approach

The STC-CDP method consists of three main steps: edge labeling, pre-training, and fine-tuning,
aiming to perform efficient community detection by combining the Strong Triadic Closure (STC)
principle with Graph Neural Network (GNN) techniques. The framework consists of three main
components: (1) STC-based edge labeling to distinguish strong and weak connections, (2) STC-
enhanced contrastive learning pre-training to learn graph representations, and (3) prompt-based
fine-tuning for few-shot community detection.

4.1. Edge Labeling Using STC
4.1.1. Graph-Theoretic Modeling of the STC Problem

We first define a wedge as a pair of edges sharing a common vertex, formally represented as a
wedge triplet W = {(u,v), (v, w) }, where v is the shared vertex. If (u,w) ¢ &, this wedge is called an
open wedge (or open triangle). The Strong Triadic Closure (STC) property requires that at least one
edge in each open wedge must be labeled as a weak relationship.

To handle the STC problem, we transform the original graph G into a dual graph G = (Vw, Ew),
called the wedge graph:

eV = {ve|e € £}, where each edge ¢ in the original graph is mapped to a vertex v, in the wedge
graph
o Ew = {(ve, ve,)|3 Open wedge W, e1,ep € W}

Specifically, for each pair of edges e; = (1,v) and e, = (v, w) in the original graph G = (V, ), if
they form an open wedge (i.e., (1, w) ¢ £), we add an edge (v,,, ve,) to the wedge graph Gy. Through
this transformation, we can convert the STC problem into finding a minimum edge set in the wedge
graph Gy that satisfies the STC property constraints for all open wedges. This is closely related to the
minimum vertex cover problem in graph theory.

In a graph G, if the Strong Triadic Closure (STC) property is satisfied, there should be no open
triangles that violate this property. Specifically, for any open triangle ((u,v), (v, w)), edges (u,v) and
(v, w) cannot be simultaneously labeled as strong. This implies that in each open triangle, at least
one edge must be labeled as weak to cover the triangle. We assume that the goal of social network
construction is to establish strong relationships with others, therefore, our objective is to maximize
the number of strong relationships while satisfying the STC property. This is equivalent to finding
the minimum edge set to cover all open triangles in the graph and labeling these edges as weak
relationships.

Following the approach in [36], we transform the problem into a Minimum Weak Edge Cover
Problem, which aims to find the minimum edge set to cover all open triangles in the graph and label
these edges as weak relationships. To solve the Minimum Weak Edge Cover Problem, we convert
it into a Minimum Vertex Cover problem. Specifically, for a graph G = (V, ), a vertex set Vo C V
is a vertex cover of graph G if for each edge (1, v) € &, either vertex u or v belongs to the vertex set
Vc. The goal of the Minimum Vertex Cover problem is to find the vertex set V¢ with the minimum
number of vertices. By selecting these vertices, we can cover all relevant edges, thereby indirectly
covering all open triangles. This method effectively transforms the edge cover problem into a vertex
cover problem, allowing us to utilize existing minimum vertex cover algorithms for solution.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.1.2. STC Solution Based on Minimum Vertex Cover

After constructing the wedge graph Gy, the STC problem is transformed into solving the mini-
mum vertex cover problem on Gy. The minimum vertex cover C C Vyy corresponds to the minimum
edge set in the original graph G that should be labeled as weak to satisfy the STC property.

Theorem 1 (Minimum Vertex Cover): Given a graph G = (V, £) and its corresponding wedge
graph Gy = (Vw, Ew), there exists a natural correspondence between the minimum vertex cover C*
of Gy and the minimum weak edge set in G that satisfies the STC property.

Formally, given the minimum vertex cover C* of the wedge graph Gy, we define the edge labeling
function ¢ : £ — {weak, strong} for graph G as:

o) = {weak, if v, € C* 1

strong, otherwise

Since the minimum vertex cover problem is NP-hard, we employ a greedy algorithm for ap-
proximate solution. The specific steps are shown in Algorithm 1. Algorithm 1 provides a greedy
approximation with an approximation ratio of 2, meaning the number of weak edges in the resulting
solution does not exceed twice the optimal solution.

Algorithm 1 Wedge Graph-based STC Edge Labeling Algorithm

Require: Graph G = (V,€)
Ensure: Edge labeling function ¢ satisfying STC property
1: Construct wedge graph G = (Vw, Ew):
2: Vw(—{vg|86(€}
SW — @
: forall v € V and all pairs u,w € N(v) do
if (u,w) ¢ & then
Ew + Ew U {(U(u,v)’ U(v,w))}
end if
end for
: Compute approximate minimum vertex cover C of Gy :
10:. C+ @
11: while &y # @ do
12:  Select vertex vy € Vi with maximum degree
13: C <+ CU{vmax}
14:  Remove v,y and all its adjacent edges
15: end while
16: foralle € £ do
17:  if v, € C then

O 2 NG W

18: l(e) + weak
19: else

20: (e) < strong
21:  end if

22: end for

23: return labeling function ¢

4.2. STC-Enhanced Contrastive Learning Pre-training

After completing the STC edge labeling algorithm described in Section 4.1.2, we input the
labeling results as edge attributes into the Graph Neural Network (GNN) for pre-training. The
pre-training framework employs a multi-level contrastive learning strategy that fully leverages edge
label information to enhance the model’s ability to understand graph structures. The pre-training
phase is designed with three key objectives: node-level contrastive loss, subgraph-level contrastive
loss, and edge prediction loss. These objectives work together to enable the model to learn structural
features in graphs and identify potential community patterns.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Specifically, the Graph Neural Network encoder GNNg () receives the STC-labeled graph as
input, where edge labels (strong/weak) are converted into edge attributes. By learning these special
structural information, the model can more accurately capture community structures in networks.
The goal of the pre-training phase is to make the GNN model learn core features of graph structures,
particularly considering the impact of edges with different strengths on community structures. To
this end, we design a contrastive learning framework specifically for STC characteristics, enabling the
model to understand the different roles of weak and strong edges in community formation.

4.2.1. STC-Based Representation Learning Framework

Given a graph G = (V, £) with edges £ labeled by the STC algorithm, where the edge labeling is
¢ : & — {weak, strong}, our goal is to learn a graph encoder GNNg(-) that can capture community
structures.

The representation learning framework consists of two key components:

*  Node-level Contrastive Learning: Learns the consistency between node representations and their
corresponding community representations.

e  Community-level Contrastive Learning: Learns the consistency between the original community
structure and the perturbed community structure, where the perturbation retains strong edges
and preferentially removes weak edges.

Formally, for a node v € V, its representation is defined as:

z(v) = GNNg(X, &)[v] ()

where X € RIVI*4 is the node feature matrix, £ € R?*I¢| is the edge index matrix, ® denotes the pa-
rameters of the GNN, and d is the dimension of node features. GNNg (X, £)[v] denotes the embedding
of node v produced by the GNN, with dimension R”, where / is the hidden layer dimension.

For a subgraph Gs = (Vs, &s), its representation is defined as:

2(Gs) = READOUT ({z(v)|v € Vs}) 3)

where Vs C V is the set of nodes in the subgraph, £ C £ is the set of edges in the subgraph, and
READOUT : RYsI*" — R" is a pooling function that aggregates the set of node representations
{z(v)|v € Vs} into a subgraph representation vector. Common pooling functions include mean
pooling, max pooling, or attention pooling.

4.2.2. STC-Guided Contrastive Learning

Our contrastive learning framework leverages the STC property and learns representations
through the following two key loss functions:

Node-Community Contrastive Loss: Encourages the alignment between node representations
and their corresponding community representations

_ exp(z(v) - 2(G0) / T)
£roae(®) = - vgB log Yoenexp(z(v) -z(G')/T)

4)

where Vp is the set of nodes in the batch, G, is the subgraph containing node v, B is the set of subgraphs
in the batch, and 7 is the temperature parameter.

STC-Guided Community Contrastive Loss: Encourages the alignment between the original
community representation and the perturbed community representation that retains strong edges

Lopg(©) =— ) log exp(z(Gs) - z(Gs) /1) 5

dos  Loepexp(z(Fs) -z(G')/T)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where G5 is the perturbed version of G, and the perturbation strategy is based on STC labeling,
retaining edges with higher strength.

Formal Definition of the Perturbation Strategy: Given a subgraph Gs = (Vs, &) and its STC edge
labeling, the perturbation operation P is defined as:

P(Gs) = (Vs,Es) (6)
where £ C &g, and

Pstrong, if £ (e) = strong
Pweak, if £(e) = weak

Ple€ Elle € &) = { (7)
Typically, pstrong > Pweak 1S set to ensure that strong edges are preferentially retained, which is
consistent with the STC assumption that strong edges are more important for community structure.

4.2.3. Edge Prediction Auxiliary Task

To further leverage the edge labeling information provided by STC, we introduce edge prediction
as an auxiliary task. This task requires the model to predict the type of each edge (no edge, weak edge,
or strong edge), which is formalized as:

Laage(®) =~ ¥ logPo((u,0)lz(u),2(0) ®
(u,0)€€p
where &g is the set of edges in the batch, Pg denotes the probability distribution for predicting the
edge label based on the node representations, and ¢(u, v) is the ground-truth label of edge (u,v) (0
for weak edge, 1 for strong edge), while z(u) and z(v) are the representation vectors of nodes u and v,
respectively.
The final training objective is a weighted combination of these losses:

‘C(@) = AnodeLnode (®) + Asubgﬁsubg((a) + Aedgeﬁedge((a) )

where Apode, Asubg, and Aegge are hyperparameters that balance the contributions of each loss term.
In this way, the learned representations not only capture the relationships between nodes and
their communities but also encode the edge strength information provided by STC, thereby enabling a
better understanding of community structures.
The detailed workflow of the pre-training process is summarized in Algorithm 2.

Algorithm 2 STC-based Graph Pre-training Algorithm

Require: Graph G = (V, £, A) with STC edge labels, where A denotes edge attributes
Ensure: Pre-trained GNN model
1: Initialize GNN parameters @
2: for epoch =1 to epochs do
3:  Randomly sample a batch of nodes B C V
for eachnode v € B do
Extract the k-hop subgraph A,
end for
for each subgraph NV, do
Create a perturbed version N\,
end for
10:  Use the GNN to process subgraphs and obtain node embeddings z; and summary vectors s;
11:  Compute Lyode, Lsubg, and Legge
12 Calculate the total loss Liotal = @Lnode + BLsubg + 7 Ledge
13:  Update parameters © to minimize Ly,
14: end for
15: return the trained GNN model

Y X N T e
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4.3. Prompt Learning and Knowledge Transfer

After the pre-training phase, the GNN encoder has acquired an understanding of the underlying
community structures in the network. To apply this knowledge to downstream tasks, we adopt a
prompt learning framework, using a small number of labeled samples to guide the model in community
discovery.

4.3.1. Prompt Function Design

We design a simple yet efficient prompt function PT¢ (-), which takes node embeddings as input
and predicts, via a multi-layer perceptron (MLP), whether nodes belong to the same community:

Co = PTo (M) (10)

where C, denotes the candidate community centered at node v, and N, represents its k-hop neighbor-
hood (K-EGO network).

The prompt function is implemented by comparing the embedding relationships between the
central node and each node in its K-EGO network, performing a binary classification prediction:

Co={ueN, | o(PTo(z(u),z(v))) > 1} (11)

where z(u) and z(v) are node embeddings provided by the pre-trained GNN, PTg is the parameterized
prompt function, ¢ is the sigmoid function that converts the output to a probability between 0 and 1,
and T is the threshold parameter (default value is 0.2).

4.3.2. Edge Weight-Aware K-EGO Network Construction

During the prompt learning phase, we introduce an edge weight-based K-EGO network construc-
tion strategy. Given a graph G = (V, £, A), where A is the set of edge attributes, each edgee;; € £ is
assigned a weight according to its attribute 4, ; € A:

Wstrong,  if a;; = 1 (strong edge)

w(ei,) (12)

Wyeak,  if a;; = 0 (weak edge)
where Wstrong > Wyyeak (typically, Wstrong = 5.0, Wyear = 1.0).
When constructing the K-EGO network for node v, the probability of selecting an edge is propor-
tional to its weight:

P((i‘i,]' S Ny) x w(ei,j) (13)

In this way, strong edges are more likely to be retained, thereby better preserving community
structure information in the K-EGO network.

4.3.3. Training Strategy with Positive-Negative Sample Balancing

During the training of the prompt function, the selection of positive and negative samples is
crucial for model performance. Given a node v in community C;, the nodes in its K-EGO network N,
can be divided into two categories:

e DPositive samples: P, = {u € Ny|u € C;}
e Negative samples: Ny \ Py

Since negative samples usually far outnumber positive samples, we adopt a weighted sampling
strategy to balance the ratio of positive and negative samples. For each negative sample u, its
probability of being selected is:

P(u € NP o (14)

w(eyu)
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This means that negative samples connected by weak edges are more likely to be selected, while
those connected by strong edges are less likely to be chosen. The intuition behind this strategy is
that nodes connected by strong edges are more likely to belong to the same community and thus are
less reliable as negative samples, while nodes connected by weak edges are more likely to belong to
different communities and thus are more reliable as negative samples.

Finally, the prompt function is trained by optimizing the following loss function:

Ler(®)= ), ) ( Y. Lece(o(PTo(z(u),z(v))), 1)

C; €Crain vEC; \UEPy
+ Z Lpce(0(PTe(z(u),z(v))),0) (15)
MEN;amPIEd

4.3.4. Community Prediction Process

Based on the pre-trained GNN and prompt function, we achieve large-scale community dis-
covery from a small number of labeled communities through knowledge transfer. Specifically, for
each node v € V, we generate a candidate community C, = {u € N¥|o(PTo(z(u),z(v))) > T}
based on its weighted K-EGO network A’. By computing the community embedding z(C,) =
READOUT({z(u)|u € Cy}) and z(C;) = READOUT({z(u)|u € C;}), and using the Euclidean distance
d(Cy,C;) = ||2(Cp) — z(C;)| |2 to evaluate similarity, we select the k most similar candidate communities
for each training community. This enables knowledge transfer from training communities to target
communities, ultimately yielding the predicted community set Cpreq = Ul.C:‘Ti“‘ Si.

5. Experiments

In this section, we conduct a comprehensive evaluation of the STC-CDP method to verify the
effectiveness of combining the Strong Triadic Closure (STC) principle with prompt learning for few-
shot community detection. All experiments are conducted on an NVIDIA 3090 GPU, implemented
using PyTorch and PyTorch-Geometric frameworks. We adopt widely recognized community detection
evaluation metrics and report the average results and standard deviations over multiple runs to ensure
the reliability and stability of the experimental results.

Our experimental design aims to answer the following key research questions:

RQ1 (Overall Performance): How does STC-CDP perform on few-shot community detection
tasks compared to existing state-of-the-art methods?

RQ2 (Ablation Study): What are the specific contributions of the STC module and the prompt
learning mechanism to the performance of STC-CDP?

RQ3 (Parameter Sensitivity): How do key hyperparameters (such as STC weight and the number
of labeled communities) affect the performance of STC-CDP?

RQ4 (Computational Efficiency): How does the computational efficiency and resource consump-
tion of STC-CDP compare to baseline methods?

5.1. Experimental Setup
5.1.1. Datasets

We use five widely adopted real-world social network datasets, each containing overlapping
communities of different scales and characteristics: Facebook, Amazon, DBLP, Livejournal, and Twitter.
Table 1 presents the basic statistics of these datasets.
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Table 1. Dataset Statistics.

Datasets Nodes Edges #C  |C]

Amazon 13,178 33,767 4,517 931
DBLP 114,095 466,761 4,559 8.4
Twitter 87,760 1,293,985 2,838 10.88

Youtube 216,544 1,393,206 2,865  7.67
Livejournal 316,606 4,945,140 4,510 17.65

5.1.2. Baseline Methods
We compare STC-CDP with the following representative methods:

e SEAL [34]: A method that learns heuristic rules for target communities based on generative
adversarial networks.

e CLARE [35]: Proposes a subgraph-based inference framework, including a locator and a rewriter.

¢  ProCom [13]: A few-shot community detection method that adopts a prompt learning strategy.

5.1.3. Evaluation Metrics

We use bidirectional matching F1 score and Jaccard similarity as the main evaluation metrics,
which are widely recognized standard measures in the field of community detection. Given M
ground-truth communities C(¥) and N predicted communities C(/), the score is calculated as follows:

1/ 1 5(1) A(i 1 A1) Al
2<N;m{3x5<c(])rc()> +M12mf1xé(c(]),c())> (16)

where ¢ can be either the F1 function or the Jaccard function.

5.1.4. Implementation Details

The hyperparameter settings for STC-CDP are shown in Table 2.

Table 2. Hyper-parameters in STC-CDP.

Component Hyper-parameter Value
Batch size 256
Number of epochs 30
Learning rate le-3
Implementation of GNNg(-) 2 layers GCN
Encoding k-ego subgraph 2
Embedding dimension 128
Temperature T 0.1
Ratio p for corruption 0.85
Loss weight A 1
Batch size 32
Number of epochs 100
Embedding dimension 64
Sampling MLP layers 3
LGPNs layers 3
Learning rate le-2
Discount factor 1
Implementation of PFg(+) 2 layers MLP
Number of epochs 30
Fine-tuning Learning rate le-3
k-ego subgraph 3
Number of prompts m 20
Threshold value « 0.2
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Table 3 presents the overall performance comparison of STC-CDP and baseline methods on five

datasets. Most of the comparative results are sourced from [13].

Table 3. Performance Comparison of Different Methods on Five Datasets (F1 Score / Jaccard Similarity).

Method Facebook Amazon DBLP Livejournal Twitter

SEAL 31.104384/23.024298 82.261:404/7544 1469 41.741635/33.254705 42.851260/35.034705 16.971132/10.55+098
CLARE 28.531126/19.641116 78.894910/68.50.000 48.751251/38.304001 45.384407/3638:560 20.05:088/12.525063
ProCom 38.571202/28.051185 84.36+023/75.841004 50.961157/3947 1164 54.351304/44.934206 31.09+035/20.78£0.29

STC-CDP (Ours)

39.5110.85/29.1510.65

85.05. 015/76.54..0.20

57.35..0,07/46.33 10,08

55.01.1139/44.6611 3

31.8710,04/21.45.10,03

It is evident from Table 3 that STC-CDP achieves the best performance across all datasets. This
demonstrates the effectiveness of combining the STC principle with prompt learning in capturing
community structures. The results clearly show the consistent superiority of our proposed method
across different evaluation metrics and datasets.

5.2.2. Ablation Study (RQ2)

To verify the contribution of each component in STC-CDP, we conducted a detailed ablation study,
and the results are shown in Table 4.

Table 4. Ablation Study Results of STC-CDP.

Variant Facebook Amazon DBLP Livejournal Twitter

F1 Jaccard F1 Jaccard F1 Jaccard F1 Jaccard F1  Jaccard
Basic GNN 33.8 241 83.3 74.8 45.7 35.3 415 33.6 27.0 18.0
GNN+STC 34.3 24.7 83.5 74.9 47.3 36.8 47.0 38.6 29.5 19.7
GNN + Prompt Learning  38.8 28.2 84.3 75.9 514 40.2 54.0 44.6 31.1 20.8
STC-CDP (Full Model)  39.5 29.1 85.1 76.5 57.4 46.3 55.0 44.7 31.9 21.5

The study shows that both the STC principle and the prompt learning mechanism significantly
improve model performance. Specifically, adding only the STC principle increases the average F1 score
by 2.07

5.2.3. Parameter Sensitivity Analysis (RQ3)

To gain deeper insight into the robustness and performance characteristics of the STC-CDP model,
we conducted a sensitivity analysis of key hyperparameters, focusing on the STC loss weight and
the number of labeled communities. Using the Facebook dataset as a benchmark, we systematically
tuned these parameters to investigate their impact on model performance. The results are shown in
Figures 2 and 3.
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Figure 2. Impact of Edge Prediction Loss Weight on Model Performance. The F1 score initially increases with
higher weight values, reaching peak performance at 0.3, then gradually decreases when the weight exceeds this
optimal value.
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Figure 3. Impact of Number of Prompts on Model Performance. The model achieves optimal performance with 2
prompts, with diminishing returns when using more prompts, demonstrating the efficiency of few-shot learning.

Impact of Edge Prediction Loss Weight: As shown in Figure 2, the edge prediction loss weight
has a significant impact on model performance. As the weight increases from 0 to 0.3, the model
performance exhibits a clear upward trend, which fully validates the effectiveness of the STC principle
in community detection tasks. However, when the weight exceeds 0.3, model performance begins to
decline. This phenomenon may be attributed to two factors: first, an excessively high STC constraint
may cause the model to focus too much on triadic closure structures, thereby neglecting other important
community features; second, overly strong constraints may introduce additional noise, affecting the
model’s generalization ability. This finding provides important guidance for model tuning, suggesting
that the edge prediction loss weight should be set at around 0.3 to achieve optimal performance.

Impact of the Number of Prompts: As demonstrated in Figure 3, the number of prompts sig-
nificantly affects model performance. We observed that model performance initially increases and
then plateaus as the number of prompts changes. Specifically, when the number of prompts increases
from 1 to 2, the model performance reaches its peak at approximately 0.3951, and as the number
continues to increase (up to 8 prompts), the performance improvement gradually levels off. This
phenomenon has important practical implications: first, it confirms that STC-CDP can effectively learn
from a small number of labeled samples, which is highly consistent with our original intention in
designing a few-shot learning framework; second, the results indicate that only 2 prompts are required
to achieve near-optimal performance, greatly reducing the annotation cost in real-world applications.
This finding not only validates the efficiency of the model but also provides important guidance for
parameter configuration in practical deployment.

Overall, the parameter sensitivity analysis reveals the response characteristics of the STC-CDP
model to key hyperparameters, providing reliable recommendations for parameter configuration
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in real-world applications. At the same time, these findings further confirm the rationality and
effectiveness of the model design.

5.2.4. Computational Efficiency Analysis (RQ4)

Table 5 compares the computational efficiency of different methods across multiple datasets. The
results show that STC-CDP achieves significantly better training times than mainstream methods
such as SEAL and CLARE on most datasets. For example, on the Amazon dataset, the training time
of STC-CDP is 275 seconds, which is much lower than SEAL (1 hour 3 minutes) and CLARE (529
seconds), but slightly higher than ProCom (144 seconds). On datasets such as DBLP, Livejournal, and
Twitter, STC-CDP also demonstrates high efficiency, with training times only slightly higher than
ProCom but significantly better than SEAL and CLARE. The efficiency of STC-CDP mainly benefits
from the parameter efficiency of the prompt learning framework and the effective design of the STC
module. Although its training time is slightly longer than ProCom, STC-CDP offers advantages
in model expressiveness and scalability, enabling efficient training while maintaining accuracy. In
summary, STC-CDP outperforms most mainstream methods in computational efficiency and can
efficiently handle large-scale social networks under limited resource conditions, making it suitable for
real-world applications.

Table 5. Efficiency Study in Terms of Total Running Time.

Method Facebook Amazon DBLP Livejournal Twitter
SEAL 2h27m 1h3m 50m 3h35m 2h28m
CLARE 275s 529s 22m 832s 36m
ProCom 30s 144s 367s 260s 446s
STC-CDP (Ours) 82s 275s 706s 818s 635s

6. Conclusions

This study proposes STC-CDP, a few-shot community detection framework integrating Strong
Triadic Closure (STC) with prompt learning. The main contributions are: First, we introduce the STC
principle to community detection, addressing limitations in handling connection strength inequality.
STC provides theoretical foundation for distinguishing strong and weak ties, enabling more accurate
identification of community structures. Experiments show STC-based modeling significantly improves
detection accuracy across real-world datasets.

Second, we design a parameter-efficient prompt learning framework that alleviates few-shot
detection challenges. By combining pre-training with prompt adaptation, STC-CDP extracts key
features from limited labeled communities and transfers knowledge to unlabeled ones, reducing data
dependency and computational costs.

Third, ablation studies verify the synergistic effect between STC and prompt learning. STC
enhances network structure understanding while prompt learning improves few-shot generalization.
Their combination outperforms individual methods, demonstrating framework effectiveness.

Despite these advances, limitations remain. Future directions include extending to dynamic
networks, exploring continuous connection strength representations, and improving theoretical frame-
works. STC-CDP provides new theoretical perspectives for community detection, advancing social
network analysis with broad applications in social media analysis, market segmentation, public health,
and information dissemination.
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