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Abstract: The injection molding process is a traditional technique for making products in various
industries such as electronics and automobiles via solidifying liquid resin into certain molds.
Although the process is not related to creating the main part of engines or semiconductors, this
manufacturing methodology sets the final form of the products. Recently, research has continued to
reduce the defect rate of the injection molding process. This study proposes an optimal injection
molding process control system to reduce the defect rate of injection molding products with XAI
(eXplainable Artificial Intelligence) approaches. Boosting algorithms (XGBoost and LightGBM) are
used as tree-based classifiers for predicting whether each product is normal or defective. The main
features to control the process for improving the product are extracted by SHapley Additive
exPlanations, while the individual conditional expectation analyzes the optimal control range of these
extracted features. To validate the methodology presented in this work, the actual injection molding
Al manufacturing dataset provided by KAMP (Korea Al Manufacturing Platform) is employed for
the case study. The results reveal that the defect rate decreases from 1.00% (Original defect rate) to
0.21% with XGBoost and 0.13% with LightGBM, respectively.

Keywords: XAIL; Manufacturing Process; Injection Molding; SHAP; ICE

1. Introduction

During the injection molding process, liquid raw materials are injected into a mold and
hardened to produce a product. It is widely used as an effective technique to mass-produce large core
components and small parts, such as automobiles, displays, and semiconductors. The injection
molding process maintains a relatively high quality and has been improved over time.

Injection molding manufacturers have recently employed machine learning, deep learning, and
artificial intelligence to the injection molding process [1-4]. However, machine learning and deep
learning often lack transparency and interpretability, making them unfamiliar to field operators.

The injection molding process has been continuously improved hereby reaching a high yield
rate.(over 90%) However, achieving a process yield close to 100% from an already high-yield state
requires fine-tuning of process variables. This paper aims to reduce the defect rate of injection-
molded products, by employing eXplainable Artificial Intelligence (XAI) algorithm to fine-tune the
process variables.

Traditional machine learning techniques that exhibit black-box characteristics, lack the ability to
provide explanations for their predictions, thereby demonstrating limited reliability. This
shortcoming poses significant challenges to their practical implementation in real-world processes.
However, XAI methods provide clear reasons and justifications for the model’s outcomes. This
feature makes XAl a suitable approach for fine-tuning process variables to improve the defect rate in
injection molding processes. This paper aims to enhance the reliability of the process and achieve
even higher yield rates by employing XAl. Also, XAl enables field experts to more easily understand
Al predictions by providing evidence for model learning.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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SHAP (SHapley Additive exPlanations) extracts the main features affecting product defects.
Tree-based algorithms, such as XGBoost and LightGBM, are used as training models for feature
extraction. The optimal control range of features identified through SHAP is determined using the
ICE (Individual Conditional Expectation) algorithm.

The remainder of this paper is organized as follows. Section 1 introduces the motivation and
purpose of this study. Section 2 describes previous studies. Section 3 presents a methodology that
explains the process management method presented in this paper. Section 4 presents the
experimental results using actual injection molding process data. Section 5 discusses the conclusions

and future work.

2. Related Studies

2.1. Injection Process

The injection molding process involves plastic molding. The structure of injection molding

process is shown in Figure 1.
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Figure 1. Structure of Injection Molding Process.

The injection process involves plastic molding. This process is performed by injecting a
dissolved thermoplastic resin into a mold and cooling it [5].

The injection molding process has six stages, as shown in Figure 2: plasticization, clamping,
filling, packing, cooling, demolding, and ejection [6].
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Figure 2. Injection Process.

1. Plasticization stage: The screw moves forward, and the plastic resin is dissolved by a heated
barrel.

2. Clamping stage: The oil pressure system enables the plastic resin to fit the fixed and movable
parts of the mold closely.

3. Filling stage: The mold is filled with dissolved plastic resin from the nozzle.

4. Packing stage: To prevent the volume from shrinking, pressure was applied before the plastic
resin hardens completely.

5. Cooling stage: The dissolved plastic resin is cooled and hardened.

6. Demolding and ejection stage: When the mold is opened, the resin shrinks, and the product is

ejected.
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The injection molding products are processed by repeating the clamping, demolding, and
ejection stages. Because the injection molding process produces finished products, a high quality
must be maintained. Therefore, the optimal management of variables, such as temperature and
pressure, which are the major variables that determine product quality, is very important for
improving the process product yield.

Controlling the parameters of the injection molding process is important for optimization in
various fields. In the field of injection molding process control for internal combustion engines,
numerical analysis of the injection molding process is performed by modeling and computer
simulations based on multiple fuel injections[7]. The AVL Boost simulation application is used to
monitor engine functionality. However, the simulation used only three monitoring conditions. This
study uses continuous feature conditions to propose the control range of main features. In the medical
field, research on injection molding process optimization is also being conducted. A polycaprolactone
parts development system is proposed for future implants through several injection molding
parameter improvements, including the melting temperature, injection time, and injection
pressure[8]. The results of this system demonstrate the potential of using simulations as tools to
optimize the injection-molding process. However, the data used in this study are artificial data
generated from the literature. Therefore, it is necessary to consider its application in actual processes.

Injection molding process has low defect rate. Therefore, failure data is extremely lower than the
normal product data. Consequently, when applying artificial intelligence to injection molding
process data, an imbalance between normal and defective data is inherent. Various studies have been
conducted to address this issue [9-11]. SMOTE(Synthetic Minority Over-sampling TechniquE) is
appropriate for addressing data imbalance in manufacturing processes because it generates new data
points between existing variable values[9]. This study employs the SMOTE technique to augment
defective data, thereby resolving the imbalance problem.

2.2. eXplainable Artificial Intelligence(XAI)

Unlike existing Al, explainable XAl is a algorithm that increases reliability by presenting validity
and grounds for machine learning[12]. Original Al has the “black box” characteristic that does not
provide grounds for prediction results. In 2017, the Defense Advanced Research Projects Agency
suggested using XAI to address the limitations of Al, as shown in Figure 3 [13]. Because of these
characteristics of XAl field experts can easily understand the prediction results.

Original AI Task
< Decision or
o Machine Recommendation
Training . Learned _
| Learning [ : > User |
Data Function
Process
Explainable AI Task
A 4
New
Training Machine Explainable | Explainable
> . > |
Data Learning Model Interface |
Process

Figure 3. eXplainable Artificial Intelligence(XAI).

Recently, research into yield improvement processes based on these factors has progressed.
Zhang proposed a fault-diagnosis system for oil-immersed transformers [14]. The system used the
SHAP for feature selection and achieved a recall value of 0.96 for the fault samples[15]. However, no
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additional measures were conducted for the selected features. This study employs ICE algorithm to
provide the optimal control range of each selected features to the field experts.

To improve manufacturing quality, rule-based explanations are performed based on ensemble
machine learning[16]. Feature importance is used to obtain the most significant process conditions,
and PDP(Partial Dependence Plot) and ICE plots are used to provide a visual overview. However,
the feature importance does not consider the correlation of each feature. The SHAP algorithm creates
a subset of each feature to extract the main features by calculating the correlations. In addition, this
study uses the PDP and ICE plots to determine the optimal control range of the main features.

3. Methodology

The injection molding process is a traditional manufacturing method with high production yield.
This process is the final step in creating the surface of a product. Therefore, it is directly related to
product defects, and strict yield management is required. Recently, XAI has become a state-of-the-art
methodology for improving manufacturing processes. This paper presents a pilot study for
implementing XAI to increase the injection molding process yield. This study aims to improve the
injection molding process based on artificial intelligence, and the methodology of the study is shown

in Figure 4.
LightGBM
»
SMOTE » 2 .
Raw Algorithm Pro ?’l‘.;cess Modelg”l‘raining SHAP o Extracg: Main ICE o Presi:ting
Data v e dPData (Tree-based v Featufes " | Feature Control
L Classifier) Range
>
XGBoost

Figure 4. Flowchart of the Methodology.

The injection process shows a data imbalance between normal and defect data owing to the high
yield of its own nature. To resolve the data imbalance, the SMOTE technique is employed in the data
preprocessing stage. (Section 3.1) Then, the tree-based classifier (Section 3.2) trains a model for
predicting the product’s defect. The SHAP Algorithm (Section 3.3) extracts major features that
critically affect defect prediction. Finally, the control range of the major features is determined using
the ICE algorithm (Section 3.4).

3.1. Data Preprocessing for Injection Process

This study uses the injection molding process data collected by sensors from a mold and
machine[17]. The DataFrame is constructed by selecting controllable features such as temperature
and pressure. The injection molding process has a high yield; therefore, the numbers of normal data
and defect data are imbalanced, which results in a biased analysis. Therefore, oversampling is
performed to balance the data used in the study. To solve this problem, this study employs the
SMOTE algorithm for oversampling. SMOTE is a k-nearest neighbor (KNN)-based oversampling
algorithm[18]. Figure 5 shows the operating principle of SMOTE.
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Figure 5. Operating Principle of the SMOTE Algorithm.

First, one selects one of the data points of the minority class; in this case, the defect is a minority
class, such as the red squares (x;) in Figure 5. The squares represent defect data for the injection
molding process. One of the K nearest data points of the corresponding data is randomly selected,
and the difference between the two selected data points is multiplied by the weight to generate new
data, such as the green squares in Figure 5(x,,,,). In this case, the weight is randomly generated
between zero and one. The imbalance in the data is resolved by repeating this process until a
sufficient amount of data is generated. In this study, defective data are oversampled to equal the
amount of normal data. Because the injection molding process data is distributed within a similar
range owing to the characteristics of the process, the SMOTE algorithm is employed to generate
virtual defect datasets close to the original data.

3.2. Tree Based Classifier(XGBoost, LightGBM)

This study uses a tree-based classifier to learn and predict whether products are defective. The
tree-based classifiers used in this study are XGBoost and Light GBM. XGBoost is a gradient-boosting-
based algorithm that combines several weak decision trees to build a robust model[19,20]. XGBoost
is widely used in many ways because of its parallel learning, fast calculation speed, and excellent
performance. The learning process for XGBoost is shown in Table 1.

Table 1. XGBoost Algorithm.

XGBoost (eXtreme Gradient Boosting)

Input:
Instance set of current node; feature dimension;

Procedure:
J(P)=0
G = Yier 9 H = Yier hi
fork =1tondo
G,=0,H, =0
for jin sorted do
G,=G + g;,H, =H, + H
Gg=G—- G, ,Hy=H,— H
score = max (score, J(P))
end

end
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Output: Split with max score

LightGBM is a gradient-boost-based algorithm, like XGBoost[21,22]. The primary technology
used is gradient-based one-sided sampling (GOSS), which applies multiplier constants to low-weight
objects. LightGBM uses memory more efficiently by dividing the tree leafwise rather than levelwise;
therefore, it exhibits good speed and performance. A levelwise tree requires additional operations to
balance it. However, a leafwise tree is more efficient, because it divides and calculates the node with
the largest delta loss. The LightGBM learning process is shown in Table 2.

Table 2. LightGBM Algorithm.

LightGBM (Light Gradient Boosting Machine)

Input:
Training data:

D = {(xll yl)' (xZ' yZ)l ey (le yN)}J
X; Ex,x SR, y; € —=1,+1;
Loss function: L(y,0(x))

Iterations:

M; Big gradient data sampling ratio: a;

slight gradient data sampling ratio: b;
1.Combine features that are mutually
exclusive(i.e., features never simultaneously
accept nonzero values) of x;i = {1,..., N} by

the exclusice feature bundling (EFB) technique;

N
2.Set 0,(x) = argmin, z L(y;, ©);
i

3.form=1toMdo

4.Calculate gradient absolute values;

1y = [0L(y;, 6(x;)) /00 (x) |0 (x)=6,_; (x)» i={1..,N}
5.Resample data set using gradient based one

side sampling (GOSS) process;

topN = a X len(D);randN = b X len(D);

Sorted = GetSorted]ndices(abs(r));

A = sorted[1: topN];

B = RandomPick(sorted[topN: len(D)], randN);
D=A+B;

6.Calculate information gains;
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Vi@ = | Y n+@=-aym Y | /@
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2

H Donr@-a/n) ) n | /ml@ |/n

X;€Ar X;€By
7.Develop a new decision tree 0,,(x) on set D’
8.Update 0,,(x) = 0,_1(x) + 0,,(x)

9.End

Output: Return 0(x) = 0,,(x)

3.3. Shapley Additive exPlanations (SHAP)

The SHAP algorithm extracts the main features of the injection molding process by exploring
the impact of each feature on product quality. The algorithm is based on Shapley’s game theory,
which examines how individuals make decisions when faced with interdependent circumstances.
This algorithm regards each manufacturing feature as an individual in game theory. The impact on
feature i is analyzed using the process described in Figure 6.

Feature 1

Feature n

Subsets that does not contain a specific Feature i

\ g

Subset 1 Subset 2 Subset N — 1 Subset N

N =271

Feature 1
Feature 3

Feature 2 Feature 1 Feature 1

Featuren Featuren — 2 Featuren — 1

Feature n

l

| v(S) |

l

I ¢i: Shapley Value |

Figure 6. Procedure for Obtaining the Shapley Value.

o(S) = f Ftts s 20)dPrgs — Ex(F(X)) (1)

IS[t(n = 1S = D!
!

b:(v) = - (W(SU{i) — v(S)) )

Sci,..n{i}

¢;: Shapley Value for manufacturing feature i
n: Total number of manufacturing features
S: Subset that does not contain manufacturing feature i
v(S) : Contribution of a subset S
v(SUi): Contribution of a subset (SUi)

The SHAP algorithm generates every possible subset of each manufacturing feature. To examine
the influence of a manufacturing feature, one subtracts the algorithm subsets the contribution of a
subset which does not contain features from the contribution of a subset; the contribution of the
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subset is calculated as shown in (1). To check the importance of the feature, as shown in (2), a value
called the Shapley value is calculated. In this study, the Shapley values are used to select the main
features. The mean absolute Shapley Value is used to consider both the negative and positive
influences on the product. Figure 7 shows the Shapley Value for each instance and expresses the mean
of the absolute Shapley Value. The SHAP algorithm addresses the limitations of traditional variable
importance methods (e.g., Feature Importance) by accounting for both negative and positive
interactions between variables.

Figh
Average_Back_Pressure M average_sack_pressure [ NNNEREE
Max_Switch_Over_Pressur _:‘ - Max_switch_over_pressure [N
Barrel_Temperature_S -.-m—-- sarrel_Temperature_s || NN
Max_Screw_RPM 0“—- max_screw_rev [
Average_Screw_RPM 0—.*— Average_Screw_RPM _
Barrel_Temperature_1 e -—* % sarrel_Temperature_1 || NN
Mold_Temperature_4 —— g Mold_Temperature_s | NN
Barrel_Temperature_3 . --*— . 3 garrel_Temperature_3 [N
Hopper_Temperature ’-’.— Hopper_Temperature || NG
Barrel_Temperature_6 -—..—- sarrel_Temperature_c ||| AN ARIEIN
Barrel_Temperature_4 *— sarrel_Temperature_s || NN
Barrel_Temperature_2 *—— sarrel_Temperature_2 || N
Mold_Temperature_3 mold_Temperature_3 || NN
Max_Back_Pressure + max_Back_pressure [N
Low
-6 -4 -2 0 2 4 0.00 025 0. 075 100 125 150 175
SHAP value (impact on model output) mean(|SHAP value|) (average impact on model output magnitude)

Figure 7. Representative Plots of the SHAP Value.

The injection features are sorted in descending order of importance. The main features of the
process are selected based on the line in which the cumulative importance of the features is 70% of
the total importance.

3.4. ICE and PDP

To explore the conditions for improving the injection quality, both the ICE and PDP algorithms
are proposed to determine the control range of the main features. The ICE predicts the target value
of an instance according to the changes in the feature values of the manufacturing process. In the
injection molding process, the target value is predicted by fixing other features (temperature and
RPM) and changing a particular feature (pressure) to propose a control pressure range. The ICE
process is presented in Table 3.

Table 3. Procedure Used by the ICE Algorithm to Predict the Control Range in the Injection Process.

ICE algorithm to predict the control range in injection molding process

Input:
X; + A specific manufacturing feature for
presenting the control range

XL-' : All manufacturing features except X;

N : Number of instance
p,q : Each instance
Procedure:
1. Initialize model with a constant value
FP, XN g
2.forq=1toN:
forp= 1toN:
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XP = The value of X; in index p
X! = The value of X; in index q
Plotting f(x®, x1"

Output: ICE & PDP plot

4. Experimental Results

This paper aims to present a process yield improvement methodology using XAl-based
algorithms. The main features are derived using SHAP, and their control range is determined using
ICE.

4.1. Collection and Preprocessing for the Injection Process

This study uses automobile windshield side molding injection molding process data collected
from October 16th, 2020 to November 19th, 2020. The total number of collected data points is 7,990,
and the number of features is 45. Total dataframe is shown in Table 4. The target value is
“PassOrFail,” and it is expressed as 1 for normal products and 0 for defective products.

Table 4. Example of Injection Process Dataset.

PassOFail Average_ Max_ Barrel _ Max_
Screw_RPM  Screw_RPM Temperature_1 Injection_Pressure
1 292.5 30.7 276.5 141.8
1 292.4 30.8 276.2 141.7
1 292.5 30.8 276.2 141.7
1 292.6 31.0 276.5 141.5
1 292.6 30.8 276.8 142.5
0 292.5 30.9 276.3 142.6
1 292.5 31.0 275.5 142.5
0 290.5 30.9 286.1 142.6

The preprocessing is performed in three steps. A dataframe is constructed by selecting 16
controllable features such as temperature, pressure, and RPM from the collected process features.
Time features such as ‘Filling_Time’, 'Ejection_Time’ and position features are excluded due to
uncontrollability. Also, products with different process indices are excluded as they violate the
control variables. Subsequently, a process is conducted to check for missing values or outliers. An
example of the selected process features is presented in Table 5.

Table 5. Independent Variables of the Injection Molding Process Data.

Independent Variable Description
(Unit) P
Max_S RPM
AX_OCTEW_ Maximum speed of screw for injection
(mm/s)
A RPM
verage_Screw._ Average speed of screw for injection
(mm/s)

Max_Injection_Pressure  Maximum pressure applied to the molten resin flowing into
(MPa) the mold
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Max_Switch_Over_Pressure . .
Pressure converted from injection to packing pressure

(MPa)
Average_Back Pressure = Average pressure to prevent the screw from being pushed
(MPa) out
Barrel T 1~7
arrel- er;gé;rature_ Temperature of the barrel
Hopper_;l;eé:n)lperature Temperature of the hopper
Mold_Terrgfg)r ature_3, 4 Temperature of the mold

Training and validation are performed using train—test splits. The training and test datasets are
split in a 5:5 ratio, and each split dataset is listed in Table 6.

Table 6. Result of the Train-Test Split.

Normal Defective
Train Dataset 3,964 31
Test Dataset 3,955 40

The SMOTE algorithm is used to balance the ratios of normal and defective data. The results of
the oversampling are listed in Table 7.

Table 7. Oversampling Results.

Normal Defective
Train Dataset 3,964 3,964
Test Dataset 3,955 40

4.2. Model Training for Injection Process

This study uses a tree-based classifier, XGBoost, and LightGBM to train and predict whether
injection molding process products are defective. The training dataset (Normal Data: 3964 / Defective
Data: 3964) is used for training, and the Test Dataset (Normal Data: 3955 / Defective Data: 40) is used
to check the accuracy of the model. Additionally, cross-validation is performed to check the model’s
performance. During the cross-validation process, the number of subsets is set to three. For XGBoost,
the accuracy of each cross-validation is 0.9947, 0.9977, and 0.9981, with a CV average accuracy of
0.9968. For LightGBM, the respective accuracies are 0.9924, 0.9955, and 0.9977, with a CV average
accuracy of 0.9952. The results of XGBoost and LightGBM are presented in Table 8.

Table 8. Model Training Results.

Actual Actue}l CV Average
Defective Accuracy
Normal Data Accuracy
Data

——

XGBoost 5 99.02 0.9968
Predicted 14 15

Defective Data

NomaiDaa B

LightGBM - 99.02 0.9952
Predicted 14 15

Defective Data
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4.3. SHAP(Shapley Additive exPlanations)

To verify the importance of features in the injection molding process, the main features are
extracted by using the SHAP algorithm. Figure 8 shows the mean absolute Shapley value of each
manufacturing feature for XGBoost and LightGBM.
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047 43 20% 050
0.31 28
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v e
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Figure 8. Shapley Value of Manufacturing Features (Left: XGBoost, Right: LightGBM).

Each graph shows the importance of manufacturing features in descending order. Features with
cumulative importance corresponding to 70% of the total are selected as the main features. In the case

7

of XGBoost, the main features are “Max Injection Pressure,” "Average Back Pressure,” “Max Switch
Over Pressure,” “Barrel Temperature 5,” “Max Screw RPM,” “Average Screw RPM,” and “Barrel
Temperature 1.”

In the case of LightGBM, the main features are “Max Injection Pressure,” “Max Switch Over
Pressure,” “Barrel Temperature 5,” “Average Back Pressure,” “Barrel Temperature 3,” and “Mold

Temperature 4.” The selected main features and mean absolute Shapley values are listed in Table 9.

Table 9. Selected Main Features and Mean of the Absolute Shapley Value.

XGBoost Cumulative Ratio
Feature Name Value
1 Max_Injection_Pressure 1.74 0.15
2 Average_Back_Pressure 1.52 0.28
3 Max_Switch_Over_Pressure 1.21 0.38
4 Barrel_Temperature_5 0.93 0.46
5 Max_Screw_RPM 0.80 0.53
6 Average_Screw_RPM 0.77 0.59
7 Barrel Temperature_1 0.75 0.66
LightGBM ; .
Feature Nai;ne Value Cumulative Ratio
1 Max_Injection_Pressure 2.05 0.17
2 Max_Switch_Over_Pressure 1.92 0.34
3 Barrel_Temperature_5 1.06 0.43
4 Average_Back_Pressure 1.04 0.51
5 Barrel_Temperature_3 0.94 0.59
6 Mold_Temperature_4 0.87 0.67

4.4. ICE and PDP
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The ICE algorithm extracts the control range of the main features to reduce the process-defect
rate. The ICE plots of the main features selected in Section 4.3 by each XGBoost and LightGBM, are
given in Figure 9 and 10, respectively.
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Figure 9. ICE Plots of XGBoost.
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Figure 10. ICE Plots of LightGBM.

Each control range of the main features is presented according to the algorithm described in
Section 3.4. The PDP is the average of the ICE experimental results, which are represented by orange
dotted lines in Figures 9 and 10. The minimum and maximum PDP values of each main feature are
indicated by red lines in Figures 9 and 10.

For example, in the case of Figure 10 (b), the maximum PDP value is 0.73, and the minimum
value is 0.26. Both values are calculated according to the change in the x value
Max_Switch_Over_Pressure. Tables 10 and 11 show the control ranges of the main features for alpha
values of 0.05, 0.1, and 0.2 based on the y-axis maximum values.

Table 10. Control Range of the Main Features for Three Alpha Values (XGBoost Results).

(04

Variable 0.05 0.1 0.2
Max_Injection_Pressure [141.60, 142.40] [141.20, 183.20] [141.20, 183.20]
Average_Back_Pressure [13.30, 90.80] [13.30, 90.80] [13.30, 90.80]

Max_Switch_Over_Pressure  [115.60, 136.50] [115.60, 136.52] [115.60, 136.52]
Barrel_Temperature_5 [236.30, 255.00] [236.30, 266.40] [236.30, 266.40]
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Max_Screw_RPM [30.30, 31.20] [30.30, 31.20] [30.30, 31.20]
Average_Screw_RPM [29.00, 293.40] [29.00, 293.40] [29.00, 293.40]
Barrel_Temperature_1 [244.70,287.10]  [244.70,287.10]  [244.70, 287.10]

Table 11. Control Range of the Main Features for Three Alpha Values (Light GBM Results).

lod
0.05 0.1 0.2
Variable

Max_Injection_Pressure ~ [141.50,142.20]  [141.20,183.20]  [141.20, 183.20]

Max_Switch_Over_Pressure  [115.60, 119.00] [115.60, 119.55] [115.60, 136.80]
Barrel_Temperature_5 [236.30, 254.90] [236.30, 255.00] [236.30, 266.40]

Average_Back_Pressure [13.30, 60.00] [13.30, 60.00] [13.30, 60.00]
Barrel_Temperature_3 [285.50, 285.80] [245.00, 285.40] [245.00, 285.40]
Barrel_Temperature_4 [20.60, 22.60] [20.60, 22.69] [20.60, 27.70]

To validate the methodology, the test dataset presented in Table 12 is utilized. The test dataset
is not oversampled to reflect the low defect rate of the actual process. Subsequently, the optimal
control range specified in Tables 10 and 11 is applied, and only the products produced within this
range are selected. The defect rate from the test data set is compared with the original defect rate to
determine whether the process has improved. The validation results are presented in Table 12.

Table 12. Validation Results.

Normal XGBoost Defect Defect rate (%)
a =0.05 969 2 0.21
a =01 2284 20 0.88
a =02 2284 20 0.88
Original Data 3995 40 1.00
Normal LightGBM Defect Defect rate (%)
a =0.05 N/A N/A N/A
a =01 N/A N/A N/A
a =02 2314 3 0.13
Original Data 3995 40 1.00

When the alpha value decreases, the defect rate also decreases because of the tight control range
of the process features. In the case of LightGBM, for alpha values of 0.05 and 0.1, the defect rate cannot
be calculated because no data exist in this range. This also indicates that defective products are not
produced. For all six experiments, the defect rate was lower than the original defect rate of 1.00%.
Based on the validation, LightGBM is better for controlling the injection molding process than
XGBoost. However, both algorithms requires less than a minute to process the data.

5. Conclusion

This paper proposes an optimal injection molding process control model to minimize the defect
rate during the injection molding process. The methodology proposed in this study selects the main
features of the injection molding process and presents the control range of the main features by using
XAL To predict whether the products are defective, tree-based classifier models (XGBoost and
LightGBM) are used. The main features affecting the product defectivity are selected using the SHAP
algorithm. The control range of the selected main features is presented by using ICE algorithm.

d0i:10.20944/preprints202503.0217.v1
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A test dataset was used to verify the defect rate reduction for validation. The original dataset
consisted 3,995 of normal data values and 40 defect data values. The defect rate in the original dataset
was 1.00%. Using XGBoost, the improved dataset comprised 969 normal data values and 2 defect
data values. The defect rate in the improved dataset was 0.21%. Using LightGBM, the improved
dataset consisted of 2,314 normal data values and three defect data values. The defect rate of the
improved dataset was 0.13%. The defect rates were 0.79% and 0.87%, respectively.

This study proposes an optimal model for improving product yield using injection molding
process data. Compared with traditional Al approaches, XAl allows injection domain experts who
may lack expertise in Al to understand the results of the methodology. As the injection molding
process is not performed automatically in this study, it could help support injection engineers in
improving the yield rate by providing the main features with control ranges. The study authors
collaborated with LG Electronics to decrease the defect rate in the injection molding process.

This study focuses on the controllable variables in the injection molding process. The field
experts from LG Electronics identified the 16 features, and excluded 29 features including time and
position features. Therefore, the significance of this study lies in its ability to improve process yield
by adjusting the values of the main features identified in the methodology. Also, it enables field
experts to more easily understand Al predictions by providing evidence for model learning by using
XAL

Through the collaborating research projects with industries, the methodology presented in this
paper is extended to the practice level. Also, process datasets other than injection molding process
datasets should be conducted to expand the model to various manufacturing areas. In addition, the
application of neural-network-based classification models or reinforcement learning techniques
should be analyzed for automated manufacturing processes.

Abbreviations

The following abbreviations are used in this manuscript:
SHAP  Shapley Additive exPlanations

ICE Individual Conditional Expectation

PDP Partial Dependence Plot

XAI eXplainable Artificial Intelligence
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