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Abstract: The injection molding process is a traditional technique for making products in various 

industries such as electronics and automobiles via solidifying liquid resin into certain molds. 

Although the process is not related to creating the main part of engines or semiconductors, this 

manufacturing methodology sets the final form of the products. Recently, research has continued to 

reduce the defect rate of the injection molding process. This study proposes an optimal injection 

molding process control system to reduce the defect rate of injection molding products with XAI 

(eXplainable Artificial Intelligence) approaches. Boosting algorithms (XGBoost and LightGBM) are 

used as tree-based classifiers for predicting whether each product is normal or defective. The main 

features to control the process for improving the product are extracted by SHapley Additive 

exPlanations, while the individual conditional expectation analyzes the optimal control range of these 

extracted features. To validate the methodology presented in this work, the actual injection molding 

AI manufacturing dataset provided by KAMP (Korea AI Manufacturing Platform) is employed for 

the case study. The results reveal that the defect rate decreases from 1.00% (Original defect rate) to 

0.21% with XGBoost and 0.13% with LightGBM, respectively. 

Keywords: XAI; Manufacturing Process; Injection Molding; SHAP; ICE 

 

1. Introduction 

During the injection molding process, liquid raw materials are injected into a mold and 

hardened to produce a product. It is widely used as an effective technique to mass-produce large core 

components and small parts, such as automobiles, displays, and semiconductors. The injection 

molding process maintains a relatively high quality and has been improved over time. 

Injection molding manufacturers have recently employed machine learning, deep learning, and 

artificial intelligence to the injection molding process [1–4]. However, machine learning and deep 

learning often lack transparency and interpretability, making them unfamiliar to field operators. 

The injection molding process has been continuously improved hereby reaching a high yield 

rate.(over 90%) However, achieving a process yield close to 100% from an already high-yield state 

requires fine-tuning of process variables. This paper aims to reduce the defect rate of injection-

molded products, by employing eXplainable Artificial Intelligence (XAI) algorithm to fine-tune the 

process variables. 

Traditional machine learning techniques that exhibit black-box characteristics, lack the ability to 

provide explanations for their predictions, thereby demonstrating limited reliability. This 

shortcoming poses significant challenges to their practical implementation in real-world processes. 

However, XAI methods provide clear reasons and justifications for the model’s outcomes. This 

feature makes XAI a suitable approach for fine-tuning process variables to improve the defect rate in 

injection molding processes. This paper aims to enhance the reliability of the process and achieve 

even higher yield rates by employing XAI. Also, XAI enables field experts to more easily understand 

AI predictions by providing evidence for model learning. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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SHAP (SHapley Additive exPlanations) extracts the main features affecting product defects. 

Tree-based algorithms, such as XGBoost and LightGBM, are used as training models for feature 

extraction. The optimal control range of features identified through SHAP is determined using the 

ICE (Individual Conditional Expectation) algorithm. 

The remainder of this paper is organized as follows. Section 1 introduces the motivation and 

purpose of this study. Section 2 describes previous studies. Section 3 presents a methodology that 

explains the process management method presented in this paper. Section 4 presents the 

experimental results using actual injection molding process data. Section 5 discusses the conclusions 

and future work. 

2. Related Studies 

2.1. Injection Process 

The injection molding process involves plastic molding. The structure of injection molding 

process is shown in Figure 1. 

 

Figure 1. Structure of Injection Molding Process. 

The injection process involves plastic molding. This process is performed by injecting a 

dissolved thermoplastic resin into a mold and cooling it [5]. 

The injection molding process has six stages, as shown in Figure 2: plasticization, clamping, 

filling, packing, cooling, demolding, and ejection [6]. 

 

Figure 2. Injection Process. 

1. Plasticization stage: The screw moves forward, and the plastic resin is dissolved by a heated 

barrel. 

2. Clamping stage: The oil pressure system enables the plastic resin to fit the fixed and movable 

parts of the mold closely. 

3. Filling stage: The mold is filled with dissolved plastic resin from the nozzle. 

4. Packing stage: To prevent the volume from shrinking, pressure was applied before the plastic 

resin hardens completely. 

5. Cooling stage: The dissolved plastic resin is cooled and hardened. 

6. Demolding and ejection stage: When the mold is opened, the resin shrinks, and the product is 

ejected. 
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The injection molding products are processed by repeating the clamping, demolding, and 

ejection stages. Because the injection molding process produces finished products, a high quality 

must be maintained. Therefore, the optimal management of variables, such as temperature and 

pressure, which are the major variables that determine product quality, is very important for 

improving the process product yield. 

Controlling the parameters of the injection molding process is important for optimization in 

various fields. In the field of injection molding process control for internal combustion engines, 

numerical analysis of the injection molding process is performed by modeling and computer 

simulations based on multiple fuel injections[7]. The AVL Boost simulation application is used to 

monitor engine functionality. However, the simulation used only three monitoring conditions. This 

study uses continuous feature conditions to propose the control range of main features. In the medical 

field, research on injection molding process optimization is also being conducted. A polycaprolactone 

parts development system is proposed for future implants through several injection molding 

parameter improvements, including the melting temperature, injection time, and injection 

pressure[8]. The results of this system demonstrate the potential of using simulations as tools to 

optimize the injection-molding process. However, the data used in this study are artificial data 

generated from the literature. Therefore, it is necessary to consider its application in actual processes. 

Injection molding process has low defect rate. Therefore, failure data is extremely lower than the 

normal product data. Consequently, when applying artificial intelligence to injection molding 

process data, an imbalance between normal and defective data is inherent. Various studies have been 

conducted to address this issue [9–11]. SMOTE(Synthetic Minority Over-sampling TechniquE) is 

appropriate for addressing data imbalance in manufacturing processes because it generates new data 

points between existing variable values[9]. This study employs the SMOTE technique to augment 

defective data, thereby resolving the imbalance problem. 

2.2. eXplainable Artificial Intelligence(XAI) 

Unlike existing AI, explainable XAI is a algorithm that increases reliability by presenting validity 

and grounds for machine learning[12]. Original AI has the “black box” characteristic that does not 

provide grounds for prediction results. In 2017, the Defense Advanced Research Projects Agency 

suggested using XAI to address the limitations of AI, as shown in Figure 3 [13]. Because of these 

characteristics of XAI, field experts can easily understand the prediction results. 

 

Figure 3. eXplainable Artificial Intelligence(XAI). 

Recently, research into yield improvement processes based on these factors has progressed. 

Zhang proposed a fault-diagnosis system for oil-immersed transformers [14]. The system used the 

SHAP for feature selection and achieved a recall value of 0.96 for the fault samples[15]. However, no 
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additional measures were conducted for the selected features. This study employs ICE algorithm to 

provide the optimal control range of each selected features to the field experts. 

To improve manufacturing quality, rule-based explanations are performed based on ensemble 

machine learning[16]. Feature importance is used to obtain the most significant process conditions, 

and PDP(Partial Dependence Plot) and ICE plots are used to provide a visual overview. However, 

the feature importance does not consider the correlation of each feature. The SHAP algorithm creates 

a subset of each feature to extract the main features by calculating the correlations. In addition, this 

study uses the PDP and ICE plots to determine the optimal control range of the main features. 

3. Methodology 

The injection molding process is a traditional manufacturing method with high production yield. 

This process is the final step in creating the surface of a product. Therefore, it is directly related to 

product defects, and strict yield management is required. Recently, XAI has become a state-of-the-art 

methodology for improving manufacturing processes. This paper presents a pilot study for 

implementing XAI to increase the injection molding process yield. This study aims to improve the 

injection molding process based on artificial intelligence, and the methodology of the study is shown 

in Figure 4. 

 

Figure 4. Flowchart of the Methodology. 

The injection process shows a data imbalance between normal and defect data owing to the high 

yield of its own nature. To resolve the data imbalance, the SMOTE technique is employed in the data 

preprocessing stage. (Section 3.1) Then, the tree-based classifier (Section 3.2) trains a model for 

predicting the product’s defect. The SHAP Algorithm (Section 3.3) extracts major features that 

critically affect defect prediction. Finally, the control range of the major features is determined using 

the ICE algorithm (Section 3.4). 

3.1. Data Preprocessing for Injection Process 

This study uses the injection molding process data collected by sensors from a mold and 

machine[17]. The DataFrame is constructed by selecting controllable features such as temperature 

and pressure. The injection molding process has a high yield; therefore, the numbers of normal data 

and defect data are imbalanced, which results in a biased analysis. Therefore, oversampling is 

performed to balance the data used in the study. To solve this problem, this study employs the 

SMOTE algorithm for oversampling. SMOTE is a k-nearest neighbor (KNN)-based oversampling 

algorithm[18]. Figure 5 shows the operating principle of SMOTE. 
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Figure 5. Operating Principle of the SMOTE Algorithm. 

First, one selects one of the data points of the minority class; in this case, the defect is a minority 

class, such as the red squares (��) in Figure 5. The squares represent defect data for the injection 

molding process. One of the K nearest data points of the corresponding data is randomly selected, 

and the difference between the two selected data points is multiplied by the weight to generate new 

data, such as the green squares in Figure 5(����). In this case, the weight is randomly generated 

between zero and one. The imbalance in the data is resolved by repeating this process until a 

sufficient amount of data is generated. In this study, defective data are oversampled to equal the 

amount of normal data. Because the injection molding process data is distributed within a similar 

range owing to the characteristics of the process, the SMOTE algorithm is employed to generate 

virtual defect datasets close to the original data. 

3.2. Tree Based Classifier(XGBoost, LightGBM) 

This study uses a tree-based classifier to learn and predict whether products are defective. The 

tree-based classifiers used in this study are XGBoost and LightGBM. XGBoost is a gradient-boosting-

based algorithm that combines several weak decision trees to build a robust model[19,20]. XGBoost 

is widely used in many ways because of its parallel learning, fast calculation speed, and excellent 

performance. The learning process for XGBoost is shown in Table 1. 

Table 1. XGBoost Algorithm. 

XGBoost (eXtreme Gradient Boosting) 

Input:  

Instance set of current node; feature dimension; 

Procedure:  

�(�) = 0 

� =  ∑�∈� ��, � =  ∑�∈� ℎ� 

��� � = 1 �� � �� 

�� = 0, �� = 0  

��� � �� ������ �� 

�� = �� +  ��, �� = �� + �� 

�� = � − ��, �� = �� −  ��  

����� = max (�����, �(�)) 

��� 

��� 
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Output: Split with max score 

LightGBM is a gradient-boost-based algorithm, like XGBoost[21,22]. The primary technology 

used is gradient-based one-sided sampling (GOSS), which applies multiplier constants to low-weight 

objects. LightGBM uses memory more efficiently by dividing the tree leafwise rather than levelwise; 

therefore, it exhibits good speed and performance. A levelwise tree requires additional operations to 

balance it. However, a leafwise tree is more efficient, because it divides and calculates the node with 

the largest delta loss. The LightGBM learning process is shown in Table 2. 

Table 2. LightGBM Algorithm. 

LightGBM (Light Gradient Boosting Machine) 

Input:  

�������� ����: 

� = {(�1, �1), (�2, �2), … , (��, ��)}, 

�� ∈ �, � ⊆ �, �� ∈  −1, +1; 

���� ��������: �(�, �(�)) 

 

Iterations:  

�; Big gradient data sampling ratio: a; 

slight gradient data sampling ratio: b; 

1. ������� �������� �ℎ�� ��� ��������  

���������(�. �. , �������� ����� ��������������  

������ ������� ������) �� ��,� = {1, … , �} ��  

�ℎ� ��������� ������� �������� (���) ���ℎ�����;  

2. ��� �0(�) = ������� � �(��, �);

�

�

 

3. ��� � = 1 �� � �� 

4. ��������� �������� �������� ������; 

�� = |��(��, �(��))/��(��)|�(�)����1(�), � = {1, … , �} 

5. �������� ���� ��� ����� �������� ����� ��� 

���� �������� (����) �������;  

���� = � × ���(�); ����� = � × ���(�); 

������ = ��������������������(�)�; 

� = ������[1: ����]; 

� = ����������(������[����: ���(�)], �����); 

�� = � + �; 

6. ��������� ����������� �����; 
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��(�) =  �� � �� + ((1 − �)/�) � ��

��∈����∈��

�

2

/ ��
�
(�)

+  � � �� + ((1 − �) / �) � ��

��∈����∈��

�

2

/��
�
(�)� /� 

7. ������� � ��� �������� ���� ��(�)′ �� ��� �′ 

8. ������ ��(�) =  ���1(�) + ��(�) 

9. ��� 

Output: Return ��(�) =  ��(�) 

3.3. Shapley Additive exPlanations (SHAP) 

The SHAP algorithm extracts the main features of the injection molding process by exploring 

the impact of each feature on product quality. The algorithm is based on Shapley’s game theory, 

which examines how individuals make decisions when faced with interdependent circumstances. 

This algorithm regards each manufacturing feature as an individual in game theory. The impact on 

feature i is analyzed using the process described in Figure 6. 

 

Figure 6. Procedure for Obtaining the Shapley Value. 

�(�) =  � ��(�1, … , ��)���∉� − ��(��(�)) (1)

��(�) = �
|�|! (� − |�| − 1)! 

�!
(�(�⋃{�}) − �(�))

�⊆1,…,� {�}

 (2)

��: �ℎ����� ����� ��� ������������� ������� � 

�: ����� ������ �� ������������� �������� 

�: ������ �ℎ�� ���� ��� ������� ������������� ������� � 

�(�) ∶ ������������ �� � ������ � 

�(�⋃�): ������������ �� � ������ (�⋃�) 

The SHAP algorithm generates every possible subset of each manufacturing feature. To examine 

the influence of a manufacturing feature, one subtracts the algorithm subsets the contribution of a 

subset which does not contain features from the contribution of a subset; the contribution of the 
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subset is calculated as shown in (1). To check the importance of the feature, as shown in (2), a value 

called the Shapley value is calculated. In this study, the Shapley values are used to select the main 

features. The mean absolute Shapley Value is used to consider both the negative and positive 

influences on the product. Figure 7 shows the Shapley Value for each instance and expresses the mean 

of the absolute Shapley Value. The SHAP algorithm addresses the limitations of traditional variable 

importance methods (e.g., Feature Importance) by accounting for both negative and positive 

interactions between variables. 

 

Figure 7. Representative Plots of the SHAP Value. 

The injection features are sorted in descending order of importance. The main features of the 

process are selected based on the line in which the cumulative importance of the features is 70% of 

the total importance. 

3.4. ICE and PDP 

To explore the conditions for improving the injection quality, both the ICE and PDP algorithms 

are proposed to determine the control range of the main features. The ICE predicts the target value 

of an instance according to the changes in the feature values of the manufacturing process. In the 

injection molding process, the target value is predicted by fixing other features (temperature and 

RPM) and changing a particular feature (pressure) to propose a control pressure range. The ICE 

process is presented in Table 3. 

Table 3. Procedure Used by the ICE Algorithm to Predict the Control Range in the Injection Process. 

ICE algorithm to predict the control range in injection molding process 

Input:  

�� ∶ � �������� ������������� ������� ���  

���������� �ℎ� ������� ����� 

��
′ ∶ ��� ������������� �������� ������ �� 

� ∶ ������ �� �������� 

�, � ∶ ���ℎ �������� 

Procedure:  

1. ���������� ����� ���ℎ � �������� �����  

��(��
(�)

, ��
(�)′

)�,��1
�  

2. ��� � = 1 �� �: 

��� � =  1 �� �: 
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��
�

= �ℎ� ����� �� �� �� ����� �   

��
�′

= �ℎ� ����� �� ��
′ �� ����� �   

�������� ��(��
(�)

, ��
(�)′

) 

Output: ICE & PDP plot 

4. Experimental Results 

This paper aims to present a process yield improvement methodology using XAI-based 

algorithms. The main features are derived using SHAP, and their control range is determined using 

ICE. 

4.1. Collection and Preprocessing for the Injection Process 

This study uses automobile windshield side molding injection molding process data collected 

from October 16th, 2020 to November 19th, 2020. The total number of collected data points is 7,990, 

and the number of features is 45. Total dataframe is shown in Table 4. The target value is 

“PassOrFail,” and it is expressed as 1 for normal products and 0 for defective products. 

Table 4. Example of Injection Process Dataset. 

PassOFail 
Average_ 

Screw_RPM 

Max_ 

Screw_RPM 

Barrel_ 

Temperature_1 

… Max_ 

Injection_Pressure 

1 292.5 30.7 276.5 ∙∙∙ 141.8 

1 292.4 30.8 276.2 ∙∙∙ 141.7 

1 292.5 30.8 276.2 ∙∙∙ 141.7 

1 292.6 31.0 276.5 ∙∙∙ 141.5 

1 292.6 30.8 276.8 ∙∙∙ 142.5 

0 292.5 30.9 276.3 ∙∙∙ 142.6 

1 292.5 31.0 275.5 ∙∙∙ 142.5 
…

 

…
 

…
 

…
 

…
 

…
 

0 290.5 30.9 286.1 ∙∙∙ 142.6 

The preprocessing is performed in three steps. A dataframe is constructed by selecting 16 

controllable features such as temperature, pressure, and RPM from the collected process features. 

Time features such as ’Filling_Time’, ’Ejection_Time’ and position features are excluded due to 

uncontrollability. Also, products with different process indices are excluded as they violate the 

control variables. Subsequently, a process is conducted to check for missing values or outliers. An 

example of the selected process features is presented in Table 5. 

Table 5. Independent Variables of the Injection Molding Process Data. 

Independent Variable  

(Unit) 
Description 

Max_Screw_RPM  

(mm/s) 
Maximum speed of screw for injection 

Average_Screw_RPM  

(mm/s) 
Average speed of screw for injection 

Max_Injection_Pressure  

(MPa) 

Maximum pressure applied to the molten resin flowing into 

the mold 
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Max_Switch_Over_Pressure 

(MPa) 
Pressure converted from injection to packing pressure 

Average_Back_Pressure  

(MPa) 

Average pressure to prevent the screw from being pushed 

out 

Barrel_Temperature_1~7  

(°C) 
Temperature of the barrel 

Hopper_Temperature  

(°C) 
Temperature of the hopper 

Mold_Temperature_3, 4  

(°C) 
Temperature of the mold 

Training and validation are performed using train–test splits. The training and test datasets are 

split in a 5:5 ratio, and each split dataset is listed in Table 6. 

Table 6. Result of the Train-Test Split. 

 Normal Defective 

Train Dataset 3,964 31 

Test Dataset  3,955 40 

The SMOTE algorithm is used to balance the ratios of normal and defective data. The results of 

the oversampling are listed in Table 7. 

Table 7. Oversampling Results. 

 Normal Defective 

Train Dataset 3,964 3,964 

Test Dataset  3,955 40 

4.2. Model Training for Injection Process 

This study uses a tree-based classifier, XGBoost, and LightGBM to train and predict whether 

injection molding process products are defective. The training dataset (Normal Data: 3964 / Defective 

Data: 3964) is used for training, and the Test Dataset (Normal Data: 3955 / Defective Data: 40) is used 

to check the accuracy of the model. Additionally, cross-validation is performed to check the model’s 

performance. During the cross-validation process, the number of subsets is set to three. For XGBoost, 

the accuracy of each cross-validation is 0.9947, 0.9977, and 0.9981, with a CV average accuracy of 

0.9968. For LightGBM, the respective accuracies are 0.9924, 0.9955, and 0.9977, with a CV average 

accuracy of 0.9952. The results of XGBoost and LightGBM are presented in Table 8. 

Table 8. Model Training Results. 

 
Actual  

Normal Data 

Actual 

Defective 

Data 

Accuracy 
CV Average 

Accuracy 

XGBoost 

Predicted  

Normal Data 
3,941 25 

99.02 0.9968 
Predicted  

Defective Data 
14 15 

LightGBM 

Predicted  

Normal Data 
3,941 25 

99.02 0.9952 
Predicted  

Defective Data 
14 15 
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4.3. SHAP(Shapley Additive exPlanations) 

To verify the importance of features in the injection molding process, the main features are 

extracted by using the SHAP algorithm. Figure 8 shows the mean absolute Shapley value of each 

manufacturing feature for XGBoost and LightGBM. 

 

Figure 8. Shapley Value of Manufacturing Features (Left: XGBoost, Right: LightGBM). 

Each graph shows the importance of manufacturing features in descending order. Features with 

cumulative importance corresponding to 70% of the total are selected as the main features. In the case 

of XGBoost, the main features are “Max Injection Pressure,” “Average Back Pressure,” “Max Switch 

Over Pressure,” “Barrel Temperature 5,” “Max Screw RPM,” “Average Screw RPM,” and “Barrel 

Temperature 1.” 

In the case of LightGBM, the main features are “Max Injection Pressure,” “Max Switch Over 

Pressure,” “Barrel Temperature 5,” “Average Back Pressure,” “Barrel Temperature 3,” and “Mold 

Temperature 4.” The selected main features and mean absolute Shapley values are listed in Table 9. 

Table 9. Selected Main Features and Mean of the Absolute Shapley Value. 

 
XGBoost 

Cumulative Ratio 
Feature Name Value 

1 Max_Injection_Pressure 1.74 0.15 

2 Average_Back_Pressure 1.52 0.28 

3 Max_Switch_Over_Pressure 1.21 0.38 

4 Barrel_Temperature_5 0.93 0.46 

5 Max_Screw_RPM 0.80 0.53 

6 Average_Screw_RPM 0.77 0.59 

7 Barrel_Temperature_1  0.75 0.66 

 LightGBM 
Cumulative Ratio 

 Feature Name Value 

1 Max_Injection_Pressure 2.05 0.17 

2 Max_Switch_Over_Pressure 1.92 0.34 

3 Barrel_Temperature_5 1.06 0.43 

4 Average_Back_Pressure 1.04 0.51 

5 Barrel_Temperature_3 0.94 0.59 

6 Mold_Temperature_4 0.87 0.67 

4.4. ICE and PDP 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2025 doi:10.20944/preprints202503.0217.v1

https://doi.org/10.20944/preprints202503.0217.v1


 12 

 

The ICE algorithm extracts the control range of the main features to reduce the process-defect 

rate. The ICE plots of the main features selected in Section 4.3 by each XGBoost and LightGBM, are 

given in Figure 9 and 10, respectively. 

 

Figure 9. ICE Plots of XGBoost. 
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Figure 10. ICE Plots of LightGBM. 

Each control range of the main features is presented according to the algorithm described in 

Section 3.4. The PDP is the average of the ICE experimental results, which are represented by orange 

dotted lines in Figures 9 and 10. The minimum and maximum PDP values of each main feature are 

indicated by red lines in Figures 9 and 10. 

For example, in the case of Figure 10 (b), the maximum PDP value is 0.73, and the minimum 

value is 0.26. Both values are calculated according to the change in the x value 

Max_Switch_Over_Pressure. Tables 10 and 11 show the control ranges of the main features for alpha 

values of 0.05, 0.1, and 0.2 based on the y-axis maximum values. 

Table 10. Control Range of the Main Features for Three Alpha Values (XGBoost Results). 

α

Variable 
0.05 0.1 0.2 

Max_Injection_Pressure [141.60, 142.40] [141.20, 183.20] [141.20, 183.20] 

Average_Back_Pressure [13.30, 90.80] [13.30, 90.80] [13.30, 90.80] 

Max_Switch_Over_Pressure [115.60, 136.50] [115.60, 136.52] [115.60, 136.52] 

Barrel_Temperature_5 [236.30, 255.00] [236.30, 266.40] [236.30, 266.40] 
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Max_Screw_RPM [30.30, 31.20] [30.30, 31.20] [30.30, 31.20] 

Average_Screw_RPM [29.00, 293.40] [29.00, 293.40] [29.00, 293.40] 

Barrel_Temperature_1 [244.70, 287.10] [244.70, 287.10] [244.70, 287.10] 

Table 11. Control Range of the Main Features for Three Alpha Values (LightGBM Results). 

α

Variable 
0.05 0.1 0.2 

Max_Injection_Pressure [141.50, 142.20] [141.20, 183.20] [141.20, 183.20] 

Max_Switch_Over_Pressure [115.60, 119.00] [115.60, 119.55] [115.60, 136.80] 

Barrel_Temperature_5 [236.30, 254.90] [236.30, 255.00] [236.30, 266.40] 

Average_Back_Pressure [13.30, 60.00] [13.30, 60.00] [13.30, 60.00] 

Barrel_Temperature_3 [285.50, 285.80] [245.00, 285.40] [245.00, 285.40] 

Barrel_Temperature_4 [20.60, 22.60] [20.60, 22.69] [20.60, 27.70] 

To validate the methodology, the test dataset presented in Table 12 is utilized. The test dataset 

is not oversampled to reflect the low defect rate of the actual process. Subsequently, the optimal 

control range specified in Tables 10 and 11 is applied, and only the products produced within this 

range are selected. The defect rate from the test data set is compared with the original defect rate to 

determine whether the process has improved. The validation results are presented in Table 12. 

Table 12. Validation Results. 

 
XGBoost 

Defect rate (%) 
Normal Defect 

α = 0.05 969 2 0.21 

α = 0.1 2284 20 0.88 

α = 0.2 2284 20 0.88 

Original Data 3995 40 1.00 

 LightGBM 
Defect rate (%) 

 Normal Defect 

α = 0.05 N/A N/A N/A 

α = 0.1 N/A N/A N/A 

α = 0.2 2314 3 0.13 

Original Data 3995 40 1.00 

When the alpha value decreases, the defect rate also decreases because of the tight control range 

of the process features. In the case of LightGBM, for alpha values of 0.05 and 0.1, the defect rate cannot 

be calculated because no data exist in this range. This also indicates that defective products are not 

produced. For all six experiments, the defect rate was lower than the original defect rate of 1.00%. 

Based on the validation, LightGBM is better for controlling the injection molding process than 

XGBoost. However, both algorithms requires less than a minute to process the data. 

5. Conclusion 

This paper proposes an optimal injection molding process control model to minimize the defect 

rate during the injection molding process. The methodology proposed in this study selects the main 

features of the injection molding process and presents the control range of the main features by using 

XAI. To predict whether the products are defective, tree-based classifier models (XGBoost and 

LightGBM) are used. The main features affecting the product defectivity are selected using the SHAP 

algorithm. The control range of the selected main features is presented by using ICE algorithm. 
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A test dataset was used to verify the defect rate reduction for validation. The original dataset 

consisted 3,995 of normal data values and 40 defect data values. The defect rate in the original dataset 

was 1.00%. Using XGBoost, the improved dataset comprised 969 normal data values and 2 defect 

data values. The defect rate in the improved dataset was 0.21%. Using LightGBM, the improved 

dataset consisted of 2,314 normal data values and three defect data values. The defect rate of the 

improved dataset was 0.13%. The defect rates were 0.79% and 0.87%, respectively. 

This study proposes an optimal model for improving product yield using injection molding 

process data. Compared with traditional AI approaches, XAI allows injection domain experts who 

may lack expertise in AI to understand the results of the methodology. As the injection molding 

process is not performed automatically in this study, it could help support injection engineers in 

improving the yield rate by providing the main features with control ranges. The study authors 

collaborated with LG Electronics to decrease the defect rate in the injection molding process. 

This study focuses on the controllable variables in the injection molding process. The field 

experts from LG Electronics identified the 16 features, and excluded 29 features including time and 

position features. Therefore, the significance of this study lies in its ability to improve process yield 

by adjusting the values of the main features identified in the methodology. Also, it enables field 

experts to more easily understand AI predictions by providing evidence for model learning by using 

XAI. 

Through the collaborating research projects with industries, the methodology presented in this 

paper is extended to the practice level. Also, process datasets other than injection molding process 

datasets should be conducted to expand the model to various manufacturing areas. In addition, the 

application of neural-network-based classification models or reinforcement learning techniques 

should be analyzed for automated manufacturing processes. 

Abbreviations 

The following abbreviations are used in this manuscript: 

SHAP Shapley Additive exPlanations 

ICE Individual Conditional Expectation 

PDP Partial Dependence Plot 

XAI eXplainable Artificial Intelligence 
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