
1 
 

    HAMILTONIAN FORMALISM OF BIANCHI TYPE I MODEL FOR PERFECT FLUID 

             
        Alokananda kar      

 2nd year M.Sc University of Calcutta ; Department of Physics ; West Bengal ; India  

    Email : alokanandakar@gmail.com 

Shouvik Sadhukhan                 

   2nd year M.Sc Indian Institute of Technology ; Kharagpur ; Department of Physics ; West Bengal ; India  

      Email : shouvikphysics1996@gmail.com  

 

Abstract 

We propose the Hamiltonian formalism of Bianchi type 1 cosmological model  for perfect fluid. 

We have considered both the equation of state  parameter  ω and the cosmological constant  Λ  

as the function of volume V(t) which is defined by the product of three scale factors of  the Bianchi 

type 1 line  element. We propose a Lagrangian for the anisotropic Bianchi type-1 model in view 

of a variable mass moving in a variable potential . We can decompose the anisotropic expansion 

in terms of expansion and shearing motion by Lagrangian mechanism. We have considered a 

canonical transformation from expanding  scale factor to scalar field ø which helps us to give the 

proper classical definition of that scalar field in terms of scale factors of the mentioned model. 

This definition helps us to explain the cosmological inflation. We have used large anisotropy(as 

in the cases of Bianchi models) and proved that cosmic inflation is not possible in such large 

anisotropy. Therefore we can conclude that the extent of anisotropy is less in case of our 

universe. Otherwise the inflation theory which explained the limitations of Big Bang cannot be 

resolved.Part II is contained with some analysis of the lagrangian ; derived in Part I ; on the 

quintessence model. 

Keywords : General theory of Relativity ; Bianchi Type I model ; Isotropic and Anisotropic 

cosmology ; Perfect fluid ; Fluid mechanics ; Quintessence model ; cosmological inflation ; 

Viscosity ; Gravitational physics 

 

Introduction 

The accepted model of  present day universe is homogenous and isotropic on large scales and is 
defined by the FRW model. However in the present high precision cosmology era there are 
certain experimental evidences of the broken isotropy of cosmic microwave background(CMB) 
in locar frame.The most common anisotropic expanding universe is explained by the Bianchi 
models.Although the experimental datas collected from CMBR provides the proof of isotropy of 
the universe in large scale basis but the local anisotropy may give the possibilities of initial 
anisotropy in early universe. 
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Bianchi models are the flat generalization of FRW cosmological model where the spatial 
expansion is considered anisotropic. The models have been developed from the Bianchi 
Classification of Lie Algebra and that is why it is named as Lie Classification. Here we will be 
discussing about the type 1 model. This model is designed as flat space with spatial anisotropy. 

The paper is organized as follows. In section A  we  calculate the Ricci tensor as well as the 
equation of motion from the Bianchi type 1 line element. The overall expansion is in terms of 
volume which is defined  by the product of three scale factors. We define a Lagrangian and  a 
potential which are a function of  volume. The Lagrangian corresponds  to a system in terms of 
variable mass moving in a variable potential.  

In section B we simplify the above problem by making a canonical transformation to obtain a 

system comprising  of a mass moving in a scalar field φ and we define the Lagrangian in terms of 

a scalar field φ and obtain a harmonic oscillator solution at the end of the cosmological inflation. 

Finally in section C we did the analysis of our result  by comparing it with large anisotropic 

deviation and small anisotropic deviation and proved that the cosmological inflation is not 

possible in large anisotropic deviation and concluded that the scale factors used in Bianchi type I 

model should not have much difference. It’s all about the area given in part-I. 

In part-II we have used that lagrangian into the Einstein Hilbert action to modify the Quintessence 

model. From this modification we have shown how the inflation condition breaks due to high 

degree of anisotropy. Finally we have assumed the low value of anisotropy to satisfy the inflation 

condition as well as slow roll mechanism. At the end we have derived the variable G concept for 

this anisotropic model. 

 

Part-I 

Section – A 

Bianchi type 1 metric is  

ds2=  -dt2 + X2(t) dx2 +Y2(t) dy2 +Z2(t) dz2 ------------------------------(1) 

 Einstein Field equation states 

Rab - 
1

2
 R gab + Λgab = GTab---------------------------------(2) 

For a perfect fluid the energy momentum tensor is given by 

Tab =(p+ρ) uaub +p gab---------------------------(3) 

For Bianchi Type 1 the field equations are 

(ẊẎ/XY) +(ŻẎ/𝑍𝑌)+ (ẊŻ/XZ) = Gρ +Λ----------------------------(4) 

(Ÿ/Y)+ (Z̈/Z)+(ẎŻ/YZ) = - Gp +Λ ----------------------------(5) 
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(Ẍ/X) +(Z̈/Z) +(Ż Ẋ/Z X) = - Gp +Λ -------------------------(6) 

(Ẍ/X)+ (Ÿ/Y)+(ẊẎ/XY)= - Gp +Λ --------------------------------(7) 

Adding equation (5),(6) and (7) we get 

2((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) +((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)) = -3Gp+3Λ--------------(8) 

The equation of state of the matter(cosmic fluid except the cosmological constant) is commonly 

assumed to be 

     p=(𝛾 − 1)ρ--------------------------------------(9) 

We combine equation (4),(8),(9) to get 

((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
))+ (

3𝛾−2

2
) ((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)) -  

3𝛾𝛬

2
 =0---------(10) 

We consider equation (10) as the basic starting point, if the dynamical equation for the scale 

factor can be written as that form ,the present framework is valid. Our aim is to find a Hamiltonian 

description of equation (10) as the classical equation of motion.Now the volume dependent 

Lagrangian is ;- 

Lv= 
1

2
 M(V)V̇2 -ṽ(V)                            ṽ (V)  = Variable Potential------------(11) 

And we consider a function V which is defined by the product of three scale factors 

V=X(t)Y(t)Z(t) 

The Euler Lagrangian Equation is 

𝑑

𝑑𝑡
(
𝜕 Lv

𝜕𝑉̇
) - 

𝜕 Lv

𝜕𝑉
 = 0 ; 

Or; 
𝑉̈

𝑉
  -
1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
 (
𝑉̇

𝑉
)2 +(1/MV)(

𝜕ṽ

𝜕𝑉
) = 0 ----------------------------------(12) 

Now, 
𝑉̇

𝑉
 =
𝑋̇

𝑋
+

𝑌̇

𝑌
+

𝑍̇

𝑍
 

𝑉̈

𝑉
  =((

Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)) 

We can rewrite equation (12)  after using these equations we get 

((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2(1 −

3

4

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
)((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))+(1/MV)(

𝜕ṽ

𝜕𝑉
) -
1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
((
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-

((
ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)))  =0---(13) 
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Comparing equation (10) and (13) we get 

2(1 −
3

4

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
) =(

3𝛾−2

2
) 

M=exp∫
2−𝛾

𝑉
dV ---------------------------(13a) 

(1/MV)(
𝜕ṽ

𝜕𝑉
)= -  

3𝛾𝛬

2
 

ṽ = - 
3

2
∫𝑀𝑉𝛾𝛬dV-----------------------------(13b) 

Here we are getting an extra part in the equation 13. We have already said in equation 11 that 

our considered lagrangian is dependent upon the volume expansion only and the euler lagrangian 

equation giving us the extra part when we want to compare this with equation 10 , the extra part 

is as ;- 

1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
((
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))) ≠ 0 ; if   X ≠ Y ≠ Z   

That means if the first part i.e ; 

((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2(1 −

3

4

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
)((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))+(1/MV)(

𝜕ṽ

𝜕𝑉
) = 0 ;  

Then the euler lagrangian equation of motion will not give zero that means ; 

((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2(1 −

3

4

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
)((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))+(1/MV)(

𝜕ṽ

𝜕𝑉
) -

1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
((
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-

((
ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))) ≠ 0  

So we have some deficiency in the consideration of the lagrangian in equation 11 and we have 

to add some extra part that mutually make all the extra terms as zero. 

So suppose the new modified lagrangian is  

L= Lv +LG  ----------------------------------------------------------------(14) 

Where the extra term LG is the lagrangian to modify the system motion definition which is also a 

function of V and V̇ . So from the euler lagrangian equation using the modified lagrangian , we 

get ;- 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑉̇
) - 

𝜕𝐿

𝜕𝑉
 =

𝑑

𝑑𝑡
(
𝜕Lg

𝜕𝑉̇
) - 

𝜕Lg

𝜕𝑉
 +
𝑑

𝑑𝑡
(
𝜕 Lv

𝜕𝑉̇
) - 

𝜕 Lv

𝜕𝑉
 =
𝑑

𝑑𝑡
(
𝜕 Lv

𝜕𝑉̇
) - 

𝜕 Lv

𝜕𝑉
 +Q 

Where Q= 
𝑑

𝑑𝑡
(
𝜕Lg

𝜕𝑉̇
) - 

𝜕Lg

𝜕𝑉
  -------------------------(14a) 

The Euler Lagrangian equation corresponding to equation (14) is 
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𝑉̈

𝑉
  -
1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
 (
𝑉̇

𝑉
)2 +(1/MV)(

𝜕ṽ

𝜕𝑉
)+(

𝑄

𝑀𝑉
)=0-------------------------(15) 

Now, 
𝑉̇

𝑉
 =
𝑋̇

𝑋
+

𝑌̇

𝑌
+

𝑍̇

𝑍
 

𝑉̈

𝑉
  =((

Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)) 

We can rewrite equation (15)  after using these equations we get 

((
Ÿ

Y
) + (

Ẍ

X
) + (

Z̈

Z
)) + 2(1 −

3

4

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
)((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
))+ 

𝑄

𝑀𝑉
 +(1/MV)(

𝜕ṽ

𝜕𝑉
) -

1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
((
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)))  =0---(16) 

So we get ;- 

𝑄

𝑀𝑉
 - 
1

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
 ((
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)))=0 

Q=
𝑀𝑉

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
 σ2  -----------------------------------------------------------------(17) 

Where σ is the shearing scalar given by  

σ2=(
𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)) ---------------------------(17a) 

From equation (16) it is evident that we get a shearing in the cosmic fluid due to the anisotropy 

present in Bianchi type 1 model .  

So finally we get a proper definition of the extra lagrangian term LG which is giving the shearing 

on the system motion. But the problem is that we have considered LG as a function of V and 𝑉̇ so 

we have to show the the shearing scalar is also a function of same . 

We know that X ≠ Y ≠ Z  again we know ; 

𝑉̇

𝑉
 =
𝑋̇

𝑋
+

𝑌̇

𝑌
+

𝑍̇

𝑍
  ;   

Now let 𝛥1 ;  𝛥2 and 𝛥3 are three excess term for the scale factors that make them different 

from √𝑉
3

 . so we may write ; 

1

3
 
𝑉̇

𝑉
 = 

𝑋̇

𝑋
 + 

 𝛥1̇

 𝛥1
  ;  

1

3
 
𝑉̇

𝑉
 = 

𝑌̇

𝑌
 + 

 𝛥2̇

 𝛥2
   ; 

1

3
 
𝑉̇

𝑉
 = 

𝑍̇

𝑍
 + 

 𝛥3̇

  𝛥3
  -------------------------(18) 

Where 
 𝛥1̇

 𝛥1
 + 

 𝛥2̇

 𝛥2
  + 

 𝛥3̇

  𝛥3
 = 0 -------------------------(18a) 

Now from equation 18 by solving them we get ; 
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X = 
𝑉
1
3⁄

𝛥1
  ; Y = 

𝑉
1
3⁄

 𝛥2
  ; Z = 

𝑉
1
3⁄

  𝛥3
 ----------------------------------(19) 

Now from the equation 17a we can write as ;  

σ2=(
1

3
 
𝑉̇

𝑉
− 

 𝛥1̇

 𝛥1
)2+(

1

3
 
𝑉̇

𝑉
− 

 𝛥2̇

 𝛥2
)2+(

1

3
 
𝑉̇

𝑉
−

 𝛥3̇

  𝛥3
)2-((

1

3
 
𝑉̇

𝑉
− 

 𝛥1̇

 𝛥1
) (

1

3
 
𝑉̇

𝑉
− 

 𝛥2̇

 𝛥2
) + (

1

3
 
𝑉̇

𝑉
− 

 𝛥2̇

 𝛥2
) (

1

3
 
𝑉̇

𝑉
−

 𝛥3̇

  𝛥3
) +

(
1

3
 
𝑉̇

𝑉
−

 𝛥3̇

  𝛥3
) (

1

3
 
𝑉̇

𝑉
− 

 𝛥1̇

 𝛥1
)) ---------------------------------(20) 

so it is proved that the shearing scalar is also a function of V and 𝑉̇ . So the Q is also a function 

of them. 

So from equation 17 ; 17a ; 14 ; 14a we can conclude that the lagrangian mechanism 

decomposed the anisotropic expanding motion of the cosmological model into it’s expansion 

and shearing motion. 

So finally the lagrangian will be as follows;- 

L = 
1

2
 M(V)V̇2 -ṽ(V) + 𝐿𝑔        ---------------------------------------- (20a) 

Where M(V) and ṽ(V) are the variable mass and the variable potential respectively and they are 

variable of volume factor V. 𝐿𝑔 is the lagrangian to represent the shearing and Q= 
𝑑

𝑑𝑡
(
𝜕Lg

𝜕𝑉̇
) - 

𝜕Lg

𝜕𝑉
 

and also Q=
𝑀𝑉

2

𝜕𝑙𝑛𝑀

𝜕𝑙𝑛𝑉
 𝜎2 and σ2=(

𝑋̇

𝑋
)2+(

𝑌̇

𝑌
)2+(

𝑍̇

𝑍
)2-((

ẊẎ

XY
) + (

ŻẎ

𝑍𝑌
) + (

ŻẊ

ZX
)). So we can able to 

distribute the lagrangian for bianchi type I universe into volume expanding and shearing part 

using lagrangian mechanism. 

 

Section – B 

Now it is the time to get the canonical transformation to give a definition of the scalar field in 

classical point of view. 

Let consider a generalized equation that can represent the anisotropic equation given in 

equation 15 ;- 

𝑞̈ = f1(q)𝑞̇2 +f2(q) +f3 (q, 𝑞̇) ----------------------------(21) 

f1(q),f2(q),f3 are specified functions,f3  is due to anisotropy. Here q is equivalent to V .  

Comparing equation (15) and (21) we get 

M=exp[-2∫ f1(q)dq] 

Q=Mf3        
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ṽ =  -∫ Mf2(q)dq   ----------------------------(21a) 

 Now we consider a new variable φ as   dφ =exp[- ∫ f1(q)dq]dq-------------(21b) 

This transformation can be used to write the Lagrangian in terms of new variable φ 

It is evident that 𝜑̇2 = M 𝑞̇2                                                ,
1

2
M 𝑞̇2 =

1

2
𝜑̇2-----------------(22) 

Now,
𝑑𝜑

𝑑𝑡
 =exp[- ∫ f1(q)dq]

𝑑𝑞

𝑑𝑡
 =𝜑̇ 

𝑑𝜑̇

𝑑𝑡
 =exp[- ∫ f1(q)dq][𝑞̈ −f1(q)𝑞̇2] 

𝜑̈   = [f3+ f2]exp[- ∫ f1(q)dq]---------------------------(23) (using equation (21) 

So we have defined the scalar field using the generalized scale factor which gives the definition 

of scalar field in terms of volume expansion. 

Now the lagrangian in terms of scaler field will become ;- 

L=  
1

2
𝜑̇2- ṽ(φ)  +Lg 

Here Lg  is the function of φ . V or q is the function of φ and Lg is a function of V and 𝑉̇ so we can 

say that Lg is a function of ø and ø̇ . 

The Euler Lagrangian equation becomes 𝜑̈   +
𝜕ṽ

𝜕𝜑
=  - 

𝑑

 𝑑𝑡
(
𝜕Lg

𝜕𝜑̇
) + 

𝜕Lg

𝜕𝜑
 

𝜑̈   = - 
𝑑

𝑑𝑡
(
𝜕Lg

𝜕ø̇
) + 

𝜕Lg

𝜕ø
  - 

𝜕ṽ

𝜕𝜑
=[f3+ f2]exp[- ∫ f1(q)dq        (using equation (21) 

So we can write from the previous equation that  

ṽ= -∫ f2(q)exp[-2 ∫ f1(q)dq]dq                    ------------------------(22) 

And  - 
𝑑

𝑑𝑡
(
𝜕Lg

𝜕ø̇
) + 

𝜕Lg

𝜕ø
 =f3exp[- ∫ f1(q)dq =Q1 

Now  Qdq= Q1dφ= f3exp[-2 ∫ f1(q)dq]dq 

Q=Q1
𝑑∅

𝑑𝑞
=[ - 

𝑑

𝑑𝑡
(
𝜕Lg

𝜕ø̇
) + 

𝜕Lg

𝜕ø
  ]
𝑑∅

𝑑𝑞
-------------------------------------------(23) 

Hence the Lagrangian in terms of scalar field is L=  
1

2
𝜑̇2- ṽ (φ)  +Lg 

So we get the canonical lagrangian for anisotropic cosmology and it can be used in Einstein Hilbert 

action to modify the quintessence model. 

In equation we have shown the transformation of Q into the function of scalar field.From this 

equation we can get the Lg in as a function of scalar field by inverse euler equation derivation. 

Using the V instead of q we get ; 
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As we know φ =∫√𝑀 dV 

φ=∫ exp(∫
2−𝛾

2𝑉
dV) dV ---------------------------(24)(using equation 13a) 

By comparing (21a) and (13a),(13b) 

 We get    -2f1=
2−𝛾

𝑉
 

           f1= - (
2−𝛾

2𝑉
) 

           f2= 
3𝛾𝑉𝛬

2
 

 if Both Λ,𝛾 are both constants then the equation (24) gives us 

φ= 
2

4−𝛾
𝑉(4−𝛾)/2   for  𝛾 ≠ 0   ;     and   φ= ½ 𝑉2 for 𝛾 = 0   

so we see that for 𝛾 = 0  or w=-1 ; φ does not give the exponential representation. 

We can find the potential (taking q instead of V) 

ṽ(φ) = - ∫ f2(q)exp[-2 ∫ f1(q)dq]dq 

 putting the values of f1 and f2 and integrating  we get  ṽ= 
3𝛾𝛬

2(𝛾−4)
𝑉(4−𝛾)---------(25) 

Using the value of φ we can write ṽ(φ)  = 
 3

 8
𝛾𝛬φ2(𝛾 − 4) or we can write as  

ṽ(φ)  = 
 3

 8
𝛾2𝛬𝜑2 – 

3

2
 𝛾𝛬𝜑2 which is a distorted potential of harmonic oscillator. 

Finally we can write the Lagrangian as L=  
1

2
𝜑̇2- 

3

8
𝛾𝛬φ2(𝛾 − 4)   +Lg----------(26) 

Therefore we get the Lagrangian of a distorted harmonic oscillator. 

Equation 26 may also be written as L = 1/ 2(𝛻𝜑)2−V (φ) + 𝐿𝑔  where the potential has taken as V 

(φ) and the scaler field is a function of not only time but also the whole four coordinate system 

and thus the term 𝜑̇2 has been substituted by generalized gradient (𝛻𝜑)2.   

 

Section – C 

If we consider the case of 𝛾=0 ,the equation of state parameter becomes  ω =p/ρ = -1,which 

corresponds to the time of cosmological inflation .But in case of anisotropic universe we do not 

get the exponential expansion of  universe as φ= ½ 𝑉2 (or φ= ½ 𝑞2) for 𝛾 = 0   during at w = -1. 

So for anisotropy we are not getting inflation that may break the solutions of big bang cosmology 

and we must have to follow the inflation. 
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Therefore, We can assume that during the time of cosmological inflation the expansion of the 

universe was so rapid that it was almost isotropic(if the anisotropy in expansion is small). One 

such expanding isotropic model is FRW model. So for 𝛾=0 we can assume the universe to satishfy 

FRW model(with zero curvature).For which the scaler field is given by 

φ =∫ exp (∫(
3𝛾−2

2𝑞
)dq)dq 

 

For 𝛾=0, we get φ= ln(q) which satisfies the exponential expansion of universe during 

cosmological expansion. 

 

Part-II 

We have discussed here the quintessence model i.e the model with canonical lagrangian and 

kinetic energies.In section A ; we have discussed the quintessence model shortly for FRW model 

in perfect fluid in reference to the publication by Edmund J Copeland ; M.sami, and shinji 

Tsujikawa. In this section we have given the action with canonical lagrangian for isotropic and 

homogeneous universe. In section B we have used the canonical lagrangian for anisotropic and 

homogeneous universe and taken the lagrangian from PART – I . In section C finally we have used 

the divergenceless condition of energy-momentum tensor of perfect fluid with anisotropic 

cosmology and proved that the gravitational constant should vary inversely with time to stabilize 

the universe with high value of anisotropy in cosmological model. 

 

Section A 

Quintessence is described by an ordinary scalar field φ which is a function of time, but we will 

see with particular potentials that lead to late time inflation. The action for Quintessence is given 

by 

S =∫𝑑4𝑥 √−𝑔[1/ 2(𝛻𝜑)2−V (φ)]------------------------------------------------(27) 

where (𝛻𝜑)2= 𝑔µν𝜕µ φ𝜕νφ and V (φ) is the potential of the field. In a flat FRW spacetime the 

variation of the action with respect to φ gives 

𝜑̈ + 3H𝜑̇ +dV/d φ =0 -----------------------------------------------------------------(28) 

The energy momentum tensor of the field is derived by the action in terms of  𝑔µν: 

𝑇µν= -
2

√−𝑔

𝛿𝑆

𝛿 𝑔µν
 ------------------------------------------------------------------------(29) 

We can write that δ√−𝑔= −(1/2) √−𝑔𝑔µνδ𝑔µν,then 
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𝑇µν= 𝜕µ φ𝜕νφ - 𝑔µν [ ½ 𝑔𝛼𝛽𝜕𝛼  φ𝜕𝛽φ + V(φ) ] ----------------------------------(30) 

In the flat Friedmann background we obtain the energy density and pressure density of the scalar 

field: 

ρ = - 𝑇0
0 = ½ 𝜑̇2 + V(φ)    ; p = 𝑇1

1 =  ½ 𝜑̇2 - V(φ)   ------------------(31a) 

Then we get ; 

𝐻 2= 8πG/3 [ ½ 𝜑̇2 + V(φ) ] --------------------------------------------------------------(32a) 

𝑎̈

𝑎
 = - 8πG/3 [ 𝜑̇2 - V(φ)   ] -------------------------------------------------------------(32b) 

From v we get 

W= p/ ρ = 
½ 𝜑̇2 − V(φ) 

½ 𝜑̇2 + V(φ)   
 ---------------------------------------------------------------(31b) 

From equation Vb if we get V(φ) >> 𝜑̇2 then we can write  

W= - 1   ;  
𝑤+1

𝑤−1
 = 0    ----------------------------------------------(33) 

This is the condition for cosmological inflation. 

Section B 

In the previous section we have given the well known calculations for the cosmological inflation 

theory with Quintessence model. In the action we have used the canonical lagrangian for perfect 

fluid with isotropic and homogeneous cosmology. Now we will show how this result is changed 

for using the newly derived canonical lagrangian for anisotropic cosmology. 

We know from the paper with title PART –I that the canonical lagrangian for the anisotropic 

cosmology is ;- 

L = 1/ 2(𝛻𝜑)2−V (φ) + 𝐿𝑔  ------------------------------------------------(34) 

So the action will become ;- 

S =∫𝑑4𝑥 √−𝑔[1/ 2(𝛻𝜑)2−V (φ) + 𝐿𝑔]------------------------------------------------(35) 

So using this action we get the energy momentum tensor as ;- 

𝑇µν= 𝜕µ φ𝜕νφ - 𝑔µν [ ½ 𝑔𝛼𝛽𝜕𝛼  φ𝜕𝛽φ + V(φ) - 𝐿𝑔 ] + 2
𝜕𝐿𝑔

𝜕 𝑔µν
----------------------------------(36) 

So ; using this equation (36) and from the concept of density and pressure in cosmology we get ; 

ρ = - 𝑇0
0 = ½ 𝜑̇2 + V(φ) - 𝐿𝑔 + 2 (

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

   ;   p= 𝑇1
1=  ½𝜑̇2-V(φ)+𝐿𝑔+2(

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

---(37) 

so we get ; 
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𝐻 2= 8πG/3 [ ½ 𝜑̇2 + V(φ) - 𝐿𝑔 + 2 (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 ] ------------------------------------------------(38) 

𝑎̈

𝑎
 = - 8πG/3 [ 𝜑̇2 - V(φ) +  𝐿𝑔 +(

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ 3 (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

] -----------------------------(38a) 

From (v) we get 

W= p/ ρ = 
½ 𝜑̇2 + V(φ)− 𝐿𝑔 +2(

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 

 ½ 𝜑̇2 − V(φ) + 𝐿𝑔 +2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

  
 ---------------------------------------------------------------(38b) 

From equation( 38b )if we get V(φ) >> 𝜑̇2 then we can write  

W=  
V(φ)− 𝐿𝑔 +2(

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 

  − V(φ) + 𝐿𝑔 +2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

  
 ;  

𝑤+1

𝑤−1
 =

1

(V(φ)− 𝐿𝑔)
 [
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

− (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

]---(38c) 

So from 38c we get ; 

W ≠ -1   as well as  
𝑤+1

𝑤−1
 ≠ 0     ---------------------------------(38d) 

So we see that the inflation condition breaks if the values of  𝐿𝑔 ; (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

; (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

   

are considerable in the system. So to get inflation condition those values should be too low to 

consider inflation. Thus we may say that during the inflation the anisotropy of the universe was 

too low and presently it is almost zero. But if we say the anisotropy of the universe is considerable 

in present universe ; then the scale during inflation was large. Again if we want to consider 

anisotropy then G must vary with time. We have given this proof in this following section. 

Section C 

From the Bianchi Type I model using the divergenceless condition of energy momentum tensor 

 𝑇µν = ρ𝑈µ 𝑈ν + p  ℎµν 

We can write 

 𝜌̇ + (ρ + p)(
𝑋̇

𝑋
+ 

𝑌̇

𝑌
+ 

𝑍̇

𝑍
) = 0-----------------------------------------------------------------(39) 

Or;  𝜌̇ + 3(ρ + p)H = 0------------------- (39a) 

Now from 37 we get ; 

𝜑̇ 𝜑̈ + (
𝜕𝑉

𝜕φ
) 𝜑̇ − 𝜑̇

𝜕𝐿𝑔

𝜕φ
 + 2𝜑̇

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 + 3H [ 𝜑̇2 + 2 ((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

)]=0 

Or;  𝜑̈ + 3H𝜑̇ + 
𝜕𝑉

𝜕φ
 + 2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
 + 

6𝐻

𝜑̇
 ((

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) =0 ---(40) 
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Here 𝜑̇ act as friction in the second order differential equation.For inflation the potential should 

be flat and we can neglect the acceleration  𝜑̈. For if the field φ starts off with a huge acceleration 

 𝜑̈ ≫ 1, the friction term will take care of it. 

So now if we apply the idea of slow roll mechanism we say that acceleration is huge and so ; 

3H𝜑̇ + 
𝜕𝑉

𝜕φ
 + 2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
 + 

6𝐻

𝜑̇
 ((

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) =0 ;  

Or; 𝜑̇2 + 
1

3𝐻
[ 
𝜕𝑉

𝜕φ
 +  2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
] 𝜑̇ + 6((

𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

)=0 ---(40a) 

Now from the solution of this quadratic equation we can say that ; 

If A = 
1

3𝐻
[ 
𝜕𝑉

𝜕φ
 +  2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]; 

B = 6((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) ; 

Then we can write ;- 

𝜑̇ = 
− 𝐴 ± √𝐴2−4𝐵

2
  ; 

Or;𝜑̇=−
1

6𝐻
[ 
𝜕𝑉

𝜕φ
 +  2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]   ±

 √
1

4
(
1

3𝐻
[ 
𝜕𝑉

𝜕φ
 +  2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
])

2

− 6((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) ---------(41) 

Now if 𝜕φ𝑉 = 0   and  𝐻2 = V/3  

Then we get ; 

𝜑̇=−
1

6𝐻
[ 2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]   ±

 √
1

4
(
1

3𝐻
[ 2

𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
])

2

− 6((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) 

Now again from equation 38 we can write it as ; 
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𝜑̇=−
1

6√8πG/3 [ ½ 𝜑̇2 + V(φ) − 𝐿𝑔 + 2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 ]

[ 2
𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]   ±

 

√
  
  
  
  
 
 

1

4

(

 
 1

3√8πG/3 [ ½ 𝜑̇2 + V(φ) − 𝐿𝑔 + 2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 ]

[ 2
𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]

)

 
 

2

− 6((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) 

Using the condition for slow roll mechanism we get ; 

𝜑̇=−
1

6√8πG/3 [ V(φ) − 𝐿𝑔 + 2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 ]

[ 2
𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]   ±

 

√
  
  
  
  
 
 

1

4

(

 
 1

3√8πG/3 [ V(φ) − 𝐿𝑔 + 2(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

 ]

[ 2
𝜕

𝜕φ
(
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

−
𝜕𝐿𝑔

𝜕φ
]

)

 
 

2

− 6((
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=0; ν=0

+ (
𝜕𝐿𝑔

𝜕 𝑔µν
)
µ=1; ν=1

) 

       ------------------------(42) 

So from this equation we see whether the degree of anisotropy is considerable  and due to very low value 

of G ; 𝜑̇ is becoming too high but at the starting of this calculation for slow roll mechanism it was 

already considered that this friction term is small and is not capable of changing V(φ) significantly. 

So it seems this friction paremeter is considered small initially and showing very large value at 

the end. This is an ambiguity. It is better to consider the G as a variable of time which has high 

value during inflation and decreases with increase of time. Thus this ambiguity will be resolved 

with small value of anisotropy in cosmological model. 

 

 

Conclusion 

• From the Bianchi 1 model we are getting two types of motion for the fluid and they are 

expansion and shearing. We are not getting rotation. Shearing comes as a separate part 

in the Lagrangian which acts as a perturbation. 

• The cosmological fluid system under the Bianchi type 1 model can be considered as a 

body with variable mass M(a function of volume) is moving in a variable potential V҃ (a 

function of volume). 

• The shearing do not modify the potential in which the body is moving, instead it gives a 

shear in the body geometry. 

• The anisotropy of the universe should be low in value to get the cosmic inflation 

condition.So during inflation the coefficient Lg tends to 0. 
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• If we consider the high degree of anisotropy , then the flatness problem , horizon problem 

and monopole problem can not be resolved with cosmological inflation concept.So we 

can say that universe can not be highly anisotropic.  

• The gravitational constant should vary with time in inverse order in viscous universe i.e 

the value of this constant should be high during inflation and it should reduce as time 

increases to reach present time.  

• If we consider that the gravitational constant does not change with time inversely , the 

slow roll model will fail to explain the cosmological inflation and that is impossible. So 

gravitational constant term G should vary with time in case the universe is slightly 

anisotropic. 

In this paper we have applied the perfect fluid condition. Our next aim is to do the same on bulk 

viscous fluid cosmology and anisotropic fluid cosmology. Also we will show how the quintessence 

model modifies using this lagrangian in Einstein-Hilbert action. 

 

Reference  

1. Hamiltonian formalism in friedmann cosmology and it’s quantisation by JieRen ; Xin–He Meng ; and Liu Zhao [ 

10.1103/physRev D.76.04351]e-print [ arXiv:0704.0672 [hep-th] ] 

2. Bianchi type I cosmological models with variable G and Λ by AroonkumarBeesham.[Beesham , A.GenRelatGravit 

(1994)26:159] 

3. Bianchi type VI bulk viscous Fluid models with variable gravitational and cosmological constants by Manoj K Verma, Shri 

Ram.[ 10.4236/am.2011.23041] 

4. The Energy-Momentum Tensor for a Dissipative Fluid in General RelativityOscar M. Pimentel · F. D. Lora-Clavijo · 

Guillermo A. Gonz´alez[arxiv:1606.01318v2 14th September ] 

5. Copeland, Edmund & Sami, M. & Tsujikawa, Shinji. (2006). Dynamics of dark energy. Int. J. Mod. Phys. D. 15. 

6. Russell, Esra & Kılınç,Can & Pashaev, Oktay. (2013). Bianchi I       Model: An Alternative Way To Model The Presentday 

Universe. Monthly Notices of the Royal  Astronomical Society. 442. 10.1093/mnras/stu932 

7. Dynamics of dark energy ;Edmund J. Copeland,M. Sami, and Shinji Tsujikawa 

8. Inflation ; Marieke Postma1 ; 1 NIKHEF, Science Park 105 1098 XG Amsterdam, The Netherlands. 

9. PHYSICAL REVIEW D 84, 024020 (2011) by Tiberiu Harko ; Francisco S.N. Lobo ; Shin’ichi Nojiri and Sergei D. Odintsov. 

10. Slow roll inflation ; Pascal Vaudrevange pascal@vaudrevange.com 

11. A Scalar Field Theory for Dark Matter–Dark Energy Interaction ; Pedro Miguel Grego´rio Carrilho 

12. THE QUINTESSENTIAL DARK ENERGY THEORY: QUINTESSENCE. ; A PREPRINT ;JackHughes Mathematical Physics University 

of Nottingham pmxjh7@nottingham.ac.uk 

13. A quintessential introduction to dark energy By Paul J. Steinhardt Department of Physics, Princeton University, Princeton, 

NJ 08540, USA 

14. The Energy-Momentum Tensor for a Dissipative Fluid in General Relativity ; Oscar M. Pimentel · F. D. Lora-Clavijo · Guillermo 

A. Gonz´alez 

15. Sadhukhan. S, Quintessence Model Calculations for Bulk Viscous Fluid and Low Value Predictions of the Coefficient of Bulk 

Viscosity, International Journal of Science and Research (IJSR) 9(3):1419-1420, DOI: 10.21275/SR20327132301  

16. Kar. A, Sadhukhan. S , HAMILTONIAN FORMALISM FOR BIANCHI TYPE I MODEL FOR PERFECT FLUID AS WELL AS FOR THE 

FLUID WITH BULK AND SHEARING VISCOSITY, Basic and Applied Sciences into Next Frontiers, ISBN: 978-81-948993-0-3 

17. SADHUKHAN, S.; KAR, A. Quintessence Model Calculations for Bulk viscous Fluid and Low Value Predictions of The 

coefficient of Bulk Viscosity in General as Well as Modified Gravity With the Form F(R,T)=R+F(T) and F(T)=λT.. Preprints 

2020, 2020120775 (doi: 10.20944/preprints202012.0775.v1). 

18. SADHUKHAN, S.; KAR, A. QUINTESSENCE MODEL WITH BULK VISCOSITY AND SOME PREDICTIONS ON THE COEFFICIENT OF 

BULK VISCOSITY AND GRAVITATIONAL CONSTANT.Recent Advancement of Mathematics in Science and Technology ; 

DOI:10.13140/RG.2.2.19900.67202 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 January 2021                   doi:10.20944/preprints202101.0145.v1

http://arxiv.org/abs/arXiv:0704.0672
mailto:pascal@vaudrevange.com
mailto:pmxjh7@nottingham.ac.uk
https://www.researchgate.net/profile/Shouvik_Sadhukhan2?_sg%5B0%5D=RxY4SUFpdPs-sI5gt4un5oAklyg66UtFFcrE3Z5G27XinuHdtHbvpe1qUwI6j-dzdyG7FiM.s0V_7Y_vH48XbBzmIGY7cjto2TvSwrNIOoe5j1QV_b0udcB_txz6a2LvVg6YnDbFdAD4Z9O1NDdFvu-55RKgfA&_sg%5B1%5D=Z8T6XMT6VbKiDEbG5h6pWtNf9tf2VRHSKUc0HsqkIzl5UgENXcIhbu-a8NM3rFKSh6BTjuA.PMysRCXma6DYq_FCTZm8jeVE6qCziPp7sJYQnhaPwP4izmlxfSNx-FwyESbV1o3fOVLlrOFvVeQxZzPUN0E95A
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21275%2FSR20327132301?_sg%5B0%5D=ZcbdTS7wBHhAsEjJWtsyjms-DrxSogKw9Tb0duRqRXPYZKPmzKhUSh1AsRQJj6wovVfF2hBL1ctzTZjBCa9gx6KzXw.3OXkAxa9e7hl_WoHN6QtatgCcnXcdC2QgUmtwrin6CIzH_6Pv0PjzC8kpnV6Dsf4e-c8Fnnza1FKASTFungsTA
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.13140%2FRG.2.2.19900.67202?_sg%5B0%5D=DzTnTSoS8EO-PT5ekXehFIcNTSqAJuOKeoYqnpLJnBI15mFsyfRdBUt_vEERxg5z6NIu6UFSlTIyp5cb5Hqm0H8zKg.ahuLoKdyGg0Dq4wNoa4I7dSPxvsDUq3_rQEH2vE806DrJMYt9ouY6Rlbrt4BdtSekAMt1lsWCtjTzzNX_XEJog
https://doi.org/10.20944/preprints202101.0145.v1

