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Abstract: Calculating a minimum-time trajectory requires the solving of a boundary value problem resulting 

from invocation of necessary conditions of optimality to set up a set of ordinary differential equations to solve 

the trajectory between the initial position and desired ending position with set constraints on the path between 

the two. This manuscript expresses the minimum time optimum trajectory between a satellite in a 

geosynchronous orbit and a target set on earth’s surface utilizing a non-rotating earth centric coordinate 

system. Expressing motion in coordinates of rotating reference frames necessitates transformation between 

reference frames, and one such transformation is embodied in the direction cosine matrices formed by a 

sequence of three successive frame rotations. Rotation about the local wing of an aerospace vehicle is almost 

never the pitch angle, yet modern application of kinematics often assumes such (with accompanying angular 

error). The same assertion is usually true about the nature of roll and yaw angles. This manuscript evaluates 

which sequence is the most advantageous for an object starting in space and then traveling through the 

atmosphere to a targeted spot on the Earth’s surface. Simulation precision (validated using a quaternion 

normalization condition) reveals the most accurate sequence with an average error of 0.14° and a computational 

time of 0.013 seconds: resulting in a 97.95% increase in accuracy over the ubiquitous benchmark rotation 

sequence and a 99.84% increase over the well-known “orbital rotation sequence”. Subsequently, an optimal 

trajectory candidate is proposed and illustrated to yield a total flight time of 2 hours, 34 minutes and 46 seconds, 

or an average velocity of 3.85 kilometers per second, reaching a targeted spot with a velocity of 11.54 kilometers 

per second. 

Keywords: convex optimization; trajectory optimization; path planning; kinematics 

 

1. Introduction 

  
(a) (b) 

Figure 1. (a) Guidance, Navigation, and Control Technology Assessment image. [1] Credit: NASA, 

Patricia M. Beauchamp. (b) Shuttle STS-135 mission reentry streak from orbit. [2] Credit: NASA, 

International space station Expedition 28 crew, usage compliant with image use policy [3]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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The study presented in this manuscript seek to minimize errors to increase safe deliveries, and 

the focus is twofold: 1) errors due the choice of kinematic representation (i.e., “representation 

errors”), where there is a difference between the mathematical representation and the beliefs about 

the representation by the users; and 2) reentry trajectory optimization to minimize the delivery time.  

1.1. Errors Induced by Choice of Kinematic Representation 

The study of forces in action, known as kinetics, combined with the properties of motion without 

reference to forces, or kinematics, forms the study of dynamic motion. In 1775 Leonhard Euler, a 

Swiss mathematician, began the formal study of kinematics [1]. Following this Baron William 

Thomson, better known as Lord Kelvin, and a physicist named Guthrie Tait [5] showed that system 

of dynamic motion maintains energy conservation. A decade later in 1876, Theoretische Kinematik 

by Franz Reuleaux was republished in English [6] and became a staple in engineering courses from 

Italy to Russia and the United States by taking practices of engineers and compiling them into a single 

source document. Prior to the end of the century Thomas Wallace Wright compiled necessary topics 

for kinematics into a single disquisition [7] that was specifically designed to allow mathematics as 

simple as basic geometry and trigonometry while still allowing calculus for more compact forms. 

Five years later in 1903 John Theodore Merz, a German British chemist attempted to unify the 

kinematic field of thought by publishing a history of European thought on the subject [8]. 

In a philosophical effort to give credit to the works of Chasle, Hamilton and Rodrigues, Sir 

Edmund Whittaker published four editions in 1904 [9-12]. In contrast to the approach of Whittaker, 

Irving Porter Church focused on the engineering approach and published his own guide in 1908 [13]. 

In an effort to build on Wrights work [14] and reduce the mathematical requirements further 

Christian Hugo Eduard Study, another German mathematician published reference [15] in 1913. Five 

years later Andrew Gray argued that the key facet to understand dynamics is kinematics in reference 

[16]. Gray’s assertion was reemphasized in 1954 when Clifford Truesdell stated, “I cannot too 

strongly urge that a kinematical result is a result valid forever, no matter how time and fashion may 

change the ”laws” of physics” [17] and then again in 1967 when G.C. Fox stated “It is my belief that 

students have difficulty with mechanics because of an inadequate knowledge of kinematics” [18]. 

In the second half of 1950’s Kane focused on kinetics and expounded on D’Alembert’s version 

of Lagrange’s equation [20,21]. Computational capabilities drastically approved over the following 

decade and were utilized by Fang in order to develop a way to mathematically simulate rigid body 

rotational kinematics [22]. Henderson, in the late 1970’s, further elaborated on the kinematic 

relationships between rotational sequences as well as the four-dimensional quaternion and direction 

cosine matrices [23,24]. From this history, the sequential rotation sequences were formed with the 

two specific sequences being termed the aerospace sequence about repeating axes, sometimes 

referred to as the “Tait-Bryan angles”, and the orbital sequence using axis-type repetitions, or the 

“proper Euler angles”. 

In the 1980’s, ubiquitous acceptance of two rotation sequences (the so-called “orbital” sequence, 

and the so–called “aerospace” sequence) appeared in the literature and mature textbooks. [25] In the 

following decade of the 1990’s renewed interest in improvements was evidenced amidst the 

ubiquitously accepted paradigms elaborated in a comprehensive survey presented in [26] and 

evaluation of linearization schemes in reference [27]. Renewed interest in the errors resulting from a 

chosen kinematic selection was sparked at conference in the United Kingdom at the turn of the 

century [28] and elaborated for attitude estimation the same year in the Journal of Guidance, Control, 

and Dynamics. [29] The differences in choices for parameterizing attitude was presented geometrically 

in 2013. [30] From the available rotation choices, the question may be posed: of the twelve possible 

sequences, which is the best to convert inertial coordinates to body coordinates? In 2018, Smeresky 

and Rizzo [31] studied the sequence known as the so–called “aerospace sequence” (also referred to 

as “3-2-1”) and concluded that the yaw and pitch angles do not accurately depict a rotation about the 

body’s 𝑧–axis and 𝑦–axis respectively. Conversely, only the roll angle, or last angle in the rotation 

sequence, is accurate in the rotation about the body’s 𝑥 -axis. These facts drive some of the 
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innovations in this manuscript. In 2019, [32] presented the full analytical derivations of the attitude 

error kinematics equations. 

Two figures of merit are used to evaluate the twelve rotation sequences: mean and standard 

deviation of the representation error to indicate how the tested sequence compares to true roll, pitch 

and yaw angles and computational burden as shown by total calculation time which shows relative 

numerical superiority. As an aside, this manuscript separates itself from the work of Smeresky, et. 

Al, [31] by calculating absolute representation error and precise execution time of the rotation 

sequence as opposed to tracking errors and end-to-end simulation run-time. Instead, the kinematics 

portions of this manuscript repeat and validate just–published work. [33]. Meanwhile, the application 

of Pontryagin’s minimization methods [34] follow the procedures laid out by Sandberg [35] as 

elaborated in [36] are utilized for the trajectory optimization portions of this manuscript’s proposals, 

importantly notice time minimization is proposed here, where Sandberg [35] and Raigoza [37] 

optimized for minimum fuel usage and Raigoza proposed autonomous collision avoidance during 

reentry. 

The results from kinematic analysis show that the so-called aerospace sequence and the reverse 

(123 sequence) are contrasting in error and computational time with the aerospace sequence being 

superior between the two. Additionally, the 123 sequence results in a significantly slower 

computational time than all other rotation sequences. Symmetric rotation sequences, or those that 

rotate about the same axis first and third in order, average slower computational times than non-

symmetric, or rotations involving all three axes, despite requiring the mathematical process and steps 

to solve for Euler angles. Of all the non-symmetric rotation sequences, the “aerospace” rotation 

sequence (also called the “321”) was the fastest, while the fastest symmetrical sequence was the “232” 

demonstrating lower computational requirements.  

1.2. Reentry Trajectory Optimization to Minimize the Delivery Time 

There are many terms that can be associated with an optimum trajectory; whether the problem 

is looking for the path of least resistance, the path that provides the best fuel burn, or the path that 

takes the least amount of time to get from point a to point b. Most of the time, these paths are not 

direct lines connecting the two points. Knowing the starting and end points turn the selection of the 

flight path into a boundary value problem solved using ordinary differential equations that can be 

solved in a multitude of ways. The first, and possibly least complex, method is known as the shooting 

method where the problem is turned into an initial value problem. A major downfall to the shooting 

method is initial guesses are required for any unknown initial values. If the provided initial guesses 

are even minutely off, the entire problem will “implode” and fail to provide a viable solution as the 

problem is extremely sensitive to initial guess errors [NEW 1]. A second method is known as the 

collocation method where the boundary value problem is provided a set number of points to form a 

mesh between the start and end points and this mesh is then continuously analyzed to form an 

optimal path between the two [NEW2]. As the dynamics and variables used are all known positions, 

the collocation method eliminates the errors induced by guessing errors but does typically require 

more computing power than the shooting method. The MATLAB function bvp4c is a built-in 

program that uses the collocation method. Lastly, multiple companies have developed their own 

proprietary programs that will solve boundary value problems to a set accuracy. This manuscript 

uses the program “DIDO” to solve the dynamic optimal problem for a missile set in geosynchronous 

orbit to a target on the earth’s surface. An advantage to using DIDO is its ability to solve complex 

dynamic problems without requiring the user to generate the Hamiltonian or any costates or 

endpoint vectors [NEW3]. By not having to code the Hamiltonian or costate equations, the 

opportunities for human error in coding is limited to the initial complex dynamic functions. 

In the case of a missile delivered from orbit, the amount of fuel used, while a consideration, does 

not outweigh the necessity to strike the target as fast as possible. A solid rocket motor will burn at a 

set rate and does not require the oxygen of the atmosphere to burn, and as such can be planned for 

as a set constant depending on flight time. To validate the results achieved, the Hamiltonian and all 

costates are developed to concur with the products from DIDO’s program. By manually computing 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0787.v1

https://doi.org/10.20944/preprints202312.0787.v1


 4 

 

the Hamiltonian and associated equations, natural points are produced that can be analyzed to ensure 

the validity of the simulation. The results from this manuscript produce a minimum time trajectory 

from the launch position to chosen target site with a flight time of two hours, thirty-four minutes and 

forty-six seconds, a fraction of the time required to launch in the opposite direction.  

B. Broad context and proposed innovations 

  

(a) (b) 

Figure 2. (a) Re-entry mission by UP Aerospace [38] Credit:, usage compliant with image use policy 

[39] (b) European ATV-2 re-entry and breakup because of the atmospheric forces of Earth. [40] 

Illustration credit: ESA/D. Ducros, usage compliant with image use policy [41]. 

Just last year, [42] proposed and investigated the potential of using suborbital space vehicles for 

the transportation of cargo to precise delivery locations. Towards achievement of the necessary high–

precision of delivery to ensure safety, this manuscript describes selection of kinematics 

representations to minimize errors and also includes a formal time–minimizing optimization 

problem seeking rapid delivery capabilities. Three-dimensional (rotational and translational) motion 

with six degrees of freedom when applied to an object delivered from geostationary orbit. Due to size 

constraints in modern systems and to minimize necessary computing power, efficient schemes are 

desired to provide vehicle guidance. Determining the most accurate and computationally efficient 

kinematic representation is, therefore, essential to producing an effective space delivery capability. 

1. This research simulates an object launched from geosynchronous orbit with limited computing 

power. Proposed innovations include: 

2. Identification of an optimal (minimum time) trajectory from a set launch point to any target on 

the surface of the earth as measured by minimal time of flight. 

3. Identification of most accurate rotation sequence, where accuracy is evaluated based on ability 

to correctly represent rotations about body axes (the paradigm expected by a pilot).  

4. Identification of the options with advantageous computational requirements measured in 

minimal computational time. 

2. Materials and Methods 

Due to the design of the project, the optimal trajectory is one that takes the least amount of time 

for the object to arrive at the targeted destination within a set number of constraints. Pontryagin’s 

Principle was used to accomplish this minimum time trajectory by solving a boundary value problem 

with ordinary differential equations.  

2.1. Dynamic Problem Framing 

A state variable is one that describes the corresponding state of a dynamic system and can be 

written as a function of a control variable and the dynamic function of that system. When the state 

dynamic functions are known, the performance function can be written as Equation 1, where J is the 

standard performance function, x is a state vector, u is the control variable, E is the endpoint 

performance (also known as the cost function) and F is the running performance (also known as the 

running cost). 
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𝐽[𝑥(∙), 𝑢(∙)] = 𝐸൫𝑥௙൯ + න 𝐹(𝑥(𝑡), 𝑢(𝑡))௧೑
௧బ 𝑑𝑡 

(1)

To minimize the performance function, the state variables are normalized using a common unit 

of measurement, CU, to ensure that the units make sense. The common unit is used to create a costate 

identified by λ as shown in Equation 2. 𝜆 = 𝐶𝑈𝑥௨௡௜௧ (2)

Each state and costate variable do not just consist of a single value but is instead a vector and 

combines to create the value ω as shown in Equation 3. 𝜔(𝑥) = 𝜆 ∙ 𝑥 = 𝜆ଵ𝑥ଵ + 𝜆ଶ𝑥ଶ + ⋯ 𝜆ேೣ𝑥ேೣ (3)

Knowing this combination, the units of Equation 1 are the common unit established to form the 

costate vector since the endpoint performance is composed of the common unit and the running 

performance is the common unit per time unit integrated. 

Table 1. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

J Performance Function x General State Vector 

F 
Running Performance 

Function 
E 

Endpoint Performance 

Function 

u Control Variable λ Costate Variable 

CU Common Unit   

2.2. Pontryagin’s Principles 

Pontryagin used a series of equations to determine a candidate optimal solution written as 

“HAMVET” [36]. These letters represent the sequence: Hamiltonian, Adjoint Equation, Minimization 

of the Hamiltonian, Value Condition, Evolution Condition, and Transversality. The process is called 

HAzMAT in [34]. 

2.2.1. Hamiltonian construction 

The Hamiltonian function is defined by the running cost and costate transposed as a function of 

the state and control variables as shown in Equation 4. 𝐻(𝜆, 𝑥, 𝑢) = 𝐹(𝑥, 𝑢) + 𝜆்𝑓(𝑥, 𝑢) (4)

2.2.2. Adjoint Equations 

The adjoint equations describe the rate of change of the costate vector and is defined as the 

partial derivative of the Hamiltonian with respect to the corresponding state vector as shown in 

Equation 5. 𝜆̇ = − 𝜕𝐻𝜕𝑥  (5)

By utilizing the adjoint equation, a boundary value problem is created. Knowing the endpoints, 

or the beginning and ending conditions, the optimal trajectory connecting the endpoints can be 

solved for. 

2.2.3. Minimization of the Hamiltonian 
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The Hamiltonian is minimized with respect to the control variable only as shown in Equation 6 

in effort to provide additional variables to set as boundary points for the overall solution. 

Additionally, minimizing with respect to the control variables provides a verification and validation 

point to check the solution. 𝜕𝐻𝜕𝑢 = 0 (6)

2.2.4 Final Value Condition 

In certain problems when the total time is unknown or complicated, the Value Condition 

becomes necessary to provide an optimal stopping condition and is defined as E ̅ as shown in 

Equations 7 and 8. 𝐻ห@𝑡௙ห − 𝜕𝐸ത𝜕𝑡௙ (7)

𝐸ത = 𝑡௙ + 𝜐ଵ൫𝑥௙ − 𝑥௙൯ + 𝜐ଶ൫𝑥௙ − 𝑥௙൯ + ⋯ (8)

Table 2. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

H Hamiltonian Function 𝐸ത Final Value Condition 

F Running Performance λ Costate Variable 

x State Variable u Control Variable 

t Time   

2.2.5 Hamiltonian Evolution Condition 

In some situations, a control input will not provide a constant value Hamiltonian, but instead 

require control constraints. An example of a situation requiring a control constraint is an airplane 

with a maximum deflection angle of a control surface. At some point, the control surface will reach 

its maximum deflection and require a different control input to maintain trajectory. These control 

constraints are placed into the problem as shown in Equation 9. 𝑢௅ ≤ 𝑢(𝑡) ≤ 𝑢௎ (9)

Karush observed that using this constraint, if the control variable is equal to the lower constraint, 

then the partial of the Hamiltonian with respect to that variable must be greater than zero. Similarly, 

if the control variable equals the maximum constraint, then the partial is less than zero. Finally, if the 

control variable is between the two constraints, then the partial equals zero. The problem with this 

solution is that it relies on the assumption that the Hamiltonian has a constant slope with respect to 

the control variable instead of realizing the possibility that the relationship is not constant in nature. 

To account for the possibility of a nonlinear relationship, the Lagrangian of the Hamiltonian, H ̅, is 

created as shown in Equation 10 where μ is another control variable such that the partial of the 

Hamiltonian plus this variable is equal to zero. 𝐻ഥ(𝜇, 𝜆, 𝑥, 𝑢, 𝑡) ≔ 𝐻(𝜆, 𝑥, 𝑢, 𝑡) + 𝜇்𝜇 (10)

Setting the partial derivative of the Lagrangian of the Hamiltonian with respect to the control 

variable equal to zero allows the use of what is known as the Karush-Kuhn-Tucker, or KKT, 

conditions. The two conditions are the stationarity condition and the complementarity condition 

shown in Equations 11 and 12. 𝜕𝐻𝜕𝑢 = 0 (11)
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𝜇௜ ൝≤ 0= 0≥ 0      𝑢௜ = 𝑢௜௟௢௪௘௥𝑢௜௟௢௪௘௥ < 𝑢௜ < 𝑢௜௨௣௣௘௥𝑢௜ = 𝑢௜௨௣௣௘௥  (12)

This process changes the basic boundary value problem established with the formation of the 

adjoint equation into a differential algebraic non-smooth boundary problem but allows for the 

possibility of a nonlinear control. 

Table 3. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

u Control Variable H Hamiltonian Function 

μ 
Stationarity Control  

Variable 
λ Costate Variable 

x State Variable t Time 

E Endpoint Performance   

2.2.6. Transversality 

Transversality is a tool that enables the generation of additional boundaries necessary to solve 

the boundary value problem by checking the ending value of the costate vector by setting it equal to 

the change in the Endpoint Lagrangian developed by the Endpoint Value Condition, defined by 

Equation 8, with respect to the change in the final condition of each respective state as shown in 

Equation 13. 𝜆௫൫𝑡௙൯ = 𝜕𝐸ത𝜕𝑥௙ (13)

2.3. Solving the Boundary Value Problem 

There are a few different methods in which to attempt to determine an optimal solution to the 

boundary value problem. The first, known as the shooting method, is a simple iterative approach in 

which the boundary value problem is transformed into an initial value problem using the known 

initial values and subsequently guessing on the remaining unknown initial values. These values are 

then iterated forward through the state dynamic equations to see if the final conditions set forth are 

met. If the required conditions are not met, the initial conditions that were guessed are changed and 

equations are run again. This process repeats until the conditions do meet at which point the solution 

becomes a candidate for the optimal solution pending verification and validation. The shooting 

method is extremely sensitive to small errors in the initial values used for the problem as these errors 

are then magnified through the dynamic state equations during the iteration. 

The second method of solving the boundary value problem is known as the collocation method. 

The collocation method creates a mesh of a set number of points between the initial condition to the 

final condition and then adjusts each of these points until all conditions of the BVP are satisfied 

through the dynamic equations given. The collocation method requires more guesses than the 

shooting method as any unknown final conditions will need to be guessed in addition to the initial 

conditions. Additionally, this method requires a great deal more computing power. 

Lastly, some companies or corporations create their own software designed to solve the 

boundary value problem. These programs are typically not either shooting or collocation methods, 

but instead generate their own algorithm to produce the solution. For this project, a program called 

“DIDO” [43] is used that takes the problem with the dynamic equations and formats Pontryagin’s 

Principle into a boundary value problem and then produces a candidate solution. To understand the 

solution that DIDO gives, it is important that the use works through Pontryagin’s Principle and 

conduct verification or validation in order to determine if the candidate solution is truly optimal. 
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For kinetics, this manuscript will discuss the use of Newton’s and Euler’s principles and 

specifically how they combine to form Chasle’s theorem to form a direct line to explaining the six 

degrees of freedom in kinetics. Direction cosines and the matrices they form, or quaternions, describe 

the body of an object in terms of a predefined axis.  

2.4. Kinetics of Rotational Motion 

In accordance with Euler’s equations of motion, the sums of externally applied torques will 

angularly accelerate a proportional mass moment of inertia as depicted in Equation 14, where τ is 

torque, J is the rotation tensor, and ω is the angular velocity. 𝜏|௡ = 𝐽𝛼௡ → 𝜏 = 𝐽𝜔̇ + 𝜔 × 𝐽𝜔 (14)

2.5. Kinetics of Translational Motion 

Similarly, an object of a defined mass will accelerate proportionally to the sum of forces acting 

on that mass in accordance with Newton’s second law as depicted in Equation 15 where F is the force, 

m is the defined mass, a is the acceleration, ω is angular velocity, r’ is the position vector, and v’ is 

velocity vector. 𝐹 = 𝑚𝑎 + 𝑚 𝑑𝜔𝑑𝑡 × 𝑟ᇱ + 2𝑚𝜔 × 𝑣ᇱ + 𝑚𝜔 × (𝜔 × 𝑟ᇱ) (15)

Newton’s law applies in the inertial frame and allows us to express our results in a set of 

coordinates in another defined frame of reference. 

Table 4. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

τ Torque J Rotation Tensor 

ω Angular Velocity m Mass 

a Acceleration v Velocity 

r’ Position Vector t Time 

2.6. Kinetics of Disturbance Forces and Torques 

Disturbance forces and torques act on a body in accordance with equations (14) and (15) and are 

accounted for within the Simulink model for simulation found in Appendix (A). 

2.7. Kinetics of Motion in Three Degrees 

By utilizing direction cosines, we are able to take a set of coordinates relative to the non-rotating 

inertial frame and express them in terms of the body frame to account for motion in all three degrees 

as depicted in Figure 1, where all lines are unit vectors and the thin solid line represents the non-

rotating inertial frame and each dash line increasing in weight indicates the first prime, second prime 

and finally the body frame respectively. 

Table 5. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

θ Pitch Euler Angle ϕ Roll Euler Angle 

ψ Yaw Euler Angle B Body Axis Designation 

i Inertial Axis ‘ and ‘’ Intermediate Axes 

The DCM is labeled in the order that the mathematical calculations are solved, right to left in 

accordance with algebraic multiplication rules to pre-multiply the total transformation matrix. 

Equation (16) represents the three mathematical calculations for a “3-2-1” rotation and is then 

multiplied to generate the total DCM in Equation (17). 
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൝𝑋஻𝑌஻𝑍஻ൡ = ൥1 0 00 𝑐𝑜𝑠(Φ) 𝑠𝑖𝑛(Φ)0 −𝑠𝑖𝑛(Φ) 𝑐𝑜𝑠(Φ)൩ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥଵି௥௢௧௔௧௜௢௡ ௔௕௢௨௧ ௓"ୀ௓ಳ
൥𝑐𝑜𝑠(𝜃) 0 −𝑠𝑖𝑛(𝜃)0 1 0𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃) ൩ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥଶି௥௢௧௔௧௜௢௡ ௔௕௢௨௧ ௒ᇲ

൥ 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜓) 0−𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 00 0 1൩ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ ൝𝑋௜𝑌௜𝑍௜ൡ
ଷି௥௢௧௔௧௜௢௡ ௔௕௢௨௧ ௓೔

 
(16) 

൝𝑋஻𝑌஻𝑍஻ൡ = ቎ 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) −𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(Φ)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) − 𝑐𝑜𝑠(Φ)𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(Φ)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(Φ)𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(Φ)𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(Φ)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) + 𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(Φ)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(Φ)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(Φ)𝑐𝑜𝑠(𝜃)቏ ൝𝑋௜𝑌௜𝑍௜ൡ (16) 

A mathematical problem arising from the DCM is the inability to pull values directly from the 

matrix due to quadrant ambiguity presented by the law of sines and cosines. To solve the quadrant 

ambiguity problem portions of the DCM have to be individually selected that allow use of the atan2 

function to solve for a specific angle by cancelling out other portions, as shown in Equation 18 in 

which the atan2 function distinguishes between the four standard reference quadrants. tanିଵ ቆ[𝐷𝐶𝑀](1,2)[𝐷𝐶𝑀](1,1)ቇ ≡ atan2 ቆ𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓)ቇ = 𝜓 (17)

An additional mathematical error from the law of sines and cosines is singularities in the DCM 

from solutions equaling 1/0. Lastly, the DCM, based on the chosen order of rotation, results in errors 

in the final result with only the “last” rotation having zero error due to being the only rotation about 

the body axis. To account for zero error in all three Euler angles, an additional rotation needs to be 

completed for each angle in the “last” position. 

One way to remove the singularity problem presented by DCMs is to use the quaternion where 

the three-dimensional rotation is executed around a 4th axis; a scaled, stretched and normalized 

eigenvector, instead of the three standard axes. This requires induction of three imaginary axes of 

motion as opposed to the standard inertial frame and is shown in Figure (1c) and Equation (19) where 

q represents the different values of the quaternion and η is the angle that allows a single rotation 

[1,2]. The quaternion works so long as we enforce the quaternion normalization condition shown in 

Equation (19). Specifically, Equation 19 shows a direct comparison to the DCM shown in Equation 

(17). 

Table 6. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

DCM Direction Cosine Matrix q Quaternion 

B Body Reference Frame i Inertial Reference Frame 

u Controller ω Angular Velocity 

J Rotational Tensor 𝜔ௗ Desired ω 

 

൝𝑋஻𝑌஻𝑍஻ൡ = [𝐷𝐶𝑀] ൝𝑋௜𝑌௜𝑍௜ൡ = ቎1 − 2(𝑞ଶଶ + 𝑞ଷଶ) 2(𝑞ଵ𝑞ଶ + 𝑞ଷ𝑞ସ) 2(𝑞ଵ𝑞ଷ + 𝑞ଶ𝑞ସ)2(𝑞ଵ𝑞ଶ + 𝑞ଷ𝑞ସ) 1 − 2(𝑞ଵଶ + 𝑞ଷଶ) 2(𝑞ଶ𝑞ଷ + 𝑞ଵ𝑞ସ)2(𝑞ଵ𝑞ଷ + 𝑞ଶ𝑞ସ) 2(𝑞ଶ𝑞ଷ + 𝑞ଵ𝑞ସ) 1 − 2(𝑞ଵଶ + 𝑞ଶଶ)቏ ൝𝑋௜𝑌௜𝑍௜ൡ ∀ 𝑞்𝑞 + 𝑞ସଶ = 𝑞ଵଶ + 𝑞ଶଶ + 𝑞ଷଶ + 𝑞ସଶ = 1ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥொ௨௔௧௘௥௡௜௢௡ ௡௢௥௠௔௟௜௭௔௧௜௢௡ ௖௢௡ௗ௜௧௜௢௡  (18) 

2.8. Guidance of Motion in Three Degrees 

The guidance of objects is known as the outer loop function and generates commands for the 

inner loop discussed in section 2.5 by accounting for three degrees of freedom of translational motion 

governed by Newton’s 2nd Law expressed in Equation 15. 

2.9. Decoupling Nonlinear Coupled Motion 

Due to the transport theorem, ω couples the three degrees of freedom of translational and 

rotational motion. Additionally, equations 14 and 15 are internally coupled within the inertia matrix 

with ω, causing motion in all three degrees with inputs to only one. A non-linear decoupling 

controller is placed in a feedback control, or a desired output is placed in a feed forward control, to 
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decouple the nonlinear couple motion as displayed in Equation 20 where u is the controller and 𝜔ௗ 

is the desired output angular velocity. 𝑇 = 𝑢 − (𝜔 × 𝐽𝜔)ᇣᇧᇧᇤᇧᇧᇥ௡௢௡ି௟௜௡௘௔௥ௗ௘௖௢௨௣௟௜௡௚௖௢௡௧௥௢௟௟௘௥
= 𝑢 + (𝜔ௗ × 𝐽𝜔ௗ)ᇣᇧᇧᇤᇧᇧᇥ஽௘௦௜௥௘ௗ ௢௨௧௣௨௧௙௢௥௙௘௘ௗ௙௢௥௪௔௥ௗ

 

(19)

2.10. Interim Summary 

By using Newton’s and Euler’s equations and invoking Chasle’s method, we are able to express 

six degrees of freedom for a three-dimensional movement of an object. DCMs are then used to 

describe the position of a body in terms of a defined axes, with quaternions used to eliminate 

singularities and validate the DCM. From these equations we pull out the true Euler angles. 

Table 7. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

r Distance (km) v Planet Relative Velocity 

θ Longitude Angle φ Latitude Angle 

γ Flight Path Angle ψ Heading Azimuth 

L Lift D Drag 

m Mass T Thrust 𝜌 Air Density A Surface Area 𝐶஽ Coefficient of Drag 𝜌௉ Propellant Density 𝐴஻ Burn Area 𝑃஼ Chamber Pressure 

μ Gravitational Parameter   

2.11. Dynamic Modeling 

The dynamic equations of motion describing the vehicle in flight are defined as shown in 

Equation 21, where r is the distance from the center of the planet in kilometers, θ is the longitude 

angle, φ is the latitude angle, v is the planet relative velocity, γ is the planet relative flight path angle 

(or pitch), and ψ is the planet relative heading azimuth (or yaw). 𝑟̇ = 𝑣𝑠𝑖𝑛(𝛾)𝜃̇ = 𝑣𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜓)𝑟𝑐𝑜𝑠(𝜑)𝜑̇ = 𝑣𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜓)𝑟𝑣̇ = − 𝐷𝑚 − 𝜇𝑠𝑖𝑛(𝛾)𝑟ଶ + 𝑇𝑚𝛾̇ = 𝐿ఊ𝑚𝑣 − 𝜇𝑐𝑜𝑠(𝛾)𝑟ଶ𝑣 + 𝑣𝑟 𝑐𝑜𝑠(𝛾)𝜓̇ = 𝐿ట𝑚𝑣𝑐𝑜𝑠(𝛾) + 𝑣𝑟 𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜓)𝑡𝑎𝑛(𝜑)
 (20)

2.11.1. Truth Model Development 

The truth model, or high-fidelity model, for this application would include a changing drag 

force, D, with altitude as is defined by the drag equation shown in Equation 22 due to changing air 

density and velocity. 𝐹஽ = 12 𝜌𝑣ଶ𝐶஽𝐴 (21)

For any motor other than a nuclear reactor, the mass of the vehicle will change during flight as 

fuel burns where the mass flow rate of a solid rocket motor propellant grain is defined by Equation 
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23 as a function of the density of the propellant, burn area, chamber pressure and empirical constants 

that describe the pressure dependence and temperature effects of the propellant. A solid rocket motor 

is required due to operating in a vacuum for most of the flight path as the solid rocket motor’s 

oxidizer is mixed into the propellant grain, enabling its use in space. 𝑚̇ = 𝜌௉𝐴஻𝑎𝑃஼௡ (22)

Additionally, the thrust of any rocket motor is not going to be constant due to ramp up and burn 

off periods, but the motor can be designed so that these periods are extremely short and negligible 

during the duration of the burn. The solar pressure disturbance acting on the vehicle while in orbit 

needs to be considered as well. 

2.11.2. Medium Fidelity Optimization Model 

Taking the high-fidelity model described by the truth model, a medium fidelity model can be 

derived from these equations. A way to do this is by assuming a constant set of forces acting on the 

vehicle during the duration of the flight. For example, instead of modeling atmospheric pressure at 

varying altitude, the median or average altitude could be picked and use that pressure to calculate 

the drag on a set vehicle size or design. As the mass flow rate will depend on the specific impulse 

and thrust requirements with the burn parameter (neutral, regressive, or progressive), it is difficult 

to accurately input this data before the propellant composition and grain design is chosen. These 

constants, along with the Earth’s gravitational parameter, would then be placed into the dynamic 

equations and run to verify the project design and ensure useable trajectory outputs are given. Even 

with these modifications, the problem set would be true in nature so long as the scaling is consistent 

throughout the process. 

In this model, additional constraints could be placed to prevent flight maneuvering through 

certain areas where there is a higher density of satellites or a final desired impact angle on the target. 

Both constraints would be beneficial if applied. The first so that the vehicle is not knocked off 

trajectory or causing catastrophic damage to another satellite during its flight path. The second so 

that maximum penetration is achieved, and blast area is near a true circle instead of an ellipse that 

extends beyond the point of impact. A secondary benefit from a vertical impact is the near 

impossibility of intercepting from modern defense systems due to the speed of the vehicle flight at 

endgame. The outputs from this model would give trajectories of the vehicle but would not take the 

additional step of converting those trajectory and state inputs into true control input commands. 

2.11.3. Low Fidelity Model 

As the medium-fidelity model is already assuming a constant thrust, drag and mass, the only 

way to simplify the problem further is to assume a constant gravitational force acting on the vehicle 

during the flight instead of as a function of altitude and force vehicle to operate in one plane at a time 

(i.e., zero out the flight path angle or heading azimuth). In the case of making gravity a constant, less 

acceleration over time is expected compared with the truth model due to losing the increased 

gravitational pull near end game, but the overall direction and orientation of the flight path should 

look similar. 

If one of the angles was made constant, the model would be limited to a two-dimensional 

system, making the ability to turn towards the target off the north-south or east-west axis impossible. 

Additionally, by zeroing one of the control angles and making the other a constant input, the 

longitude and latitude states would be shown as constant. In these flight paths, the vehicle is expected 

to look like the path of a ball thrown off the side of a building, arcing down toward the earth until it 

impacts after its initial turn in the appropriate direction. Table 1 below shows a comparison of the 

variables and concepts considered for each fidelity level of the model. 
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Table 8. High, medium, and low fidelity model comparison of incorporating variables/concepts. 

Variable/concept Low fidelity Medium fidelity High fidelity 

Control actuator input No No Yes 

Coupled motion No No Yes 

Reference frame conversion No No Yes 

Variable mass No No Yes 

Variable drag No No Yes 

Variable gravity No Yes Yes 

Path constraints No Yes Yes 

Simultaneous state calculations No Yes Yes 

Constant gravity Yes No No 

Isolate states Yes No No 

Zero thrust Yes No No 

2.12. Trajectory Optimization Boundary Value Problem Development 

2.12.1. Constraints 

Due to real world considerations, an object can only take a certain amount of force on its control 

fins before they break. Because of this, the controls identified by the lift force in flight path angle and 

heading angle are limited to 1 ௞௚௞௠௦మ  or 1000 Newtons of force. With the extremely high velocities the 

vehicle will encounter, the heating rate of the nose, 𝑄̇, must also be limited. A value of 4.9 × 10ଽ ௐ௠మ 

was arbitrarily chosen based on density change rate. 

2.12.2. Canonical Scaling 

To validate the solving of the program in incremental steps, this milestone is run initially with 

constant drag instead of fluctuating as a function of altitude. Additionally, the model is run isolating 

the flight pitch angle and planet relative heading angle separately. To solve the model 

mathematically, the equations were canonically scaled with the scaling terms displayed in the 

unnumbered equation immediately below, where R = 6378km, M = 10, AU = 1 and g = 0.00981 km/sec2: 

𝑟̃ = 𝑟𝑅 ;  𝜏 = 𝑡𝑇𝑈 ; 𝑣෤ = 𝑣𝑉 ; 𝑚෥ = 𝑚𝑀 ; 𝐷෩ = 𝐷𝐹𝑈 ; 𝑇෨ = 𝑇𝐹𝑈 ;  𝑉 = 𝑅𝑇𝑈 ;  𝑇𝑈 = ඨ𝑅𝑔 ;  𝐹𝑈 = 𝑀𝐴;  𝐴 = 𝑅𝑇𝑈ଶ ;  𝑎𝑈 = 1 (23) 

For units to cancel appropriately, θ and φ are scaled with the relation of ቀ௔௎்௎ቁ ∗ 𝜃෨̇ = 𝜃̇ ̇, the 

gravitational parameter was scaled by 𝜇෤ = ቀ்௎మோయ ቁ 𝜇, and the controls were scaled by 𝐿෨ = ቀ்௎మோெ ቁ 𝐿. Full 

canonical scaling of each equation is found in Appendix B. 

Table 9. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

r Distance R Scaling Term 

τ Time TU Scaling Term 

v velocity V Scaling Term 

m Mass M Scaling Term 

D Drag FU Scaling Term 

T Thrust g Gravitational Constant 

2.12.3. Development of Necessary Conditions 

To find the minimum time trajectory, the problem is viewed through the steps of Pontryagin’s 

Principle by completing the HAMVET process. A full walkthrough of Pontryagin’s Principle is found 

in Appendix B. 
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2.12.3.1. Hamiltonian Construction 

As there must be one costate for every state, the Hamiltonian can be written as seen in Equation 

24 with path constraint controls identified as ε. 

𝐻ഥ(𝑥, 𝜆, 𝑢) = 𝜆௥൫𝑣෤𝑠𝑖𝑛(𝛾)൯ + 𝜆ఏ ቆ𝑣෤𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜓)𝑟̃𝑐𝑜𝑠(𝜑) ቇ + 𝜆ఝ ቆ𝑣෤𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜓)𝑟̃ ቇ + 𝜆௩ ቆ− 𝐷෩𝑚෥ − 𝜇෤𝑠𝑖𝑛(𝛾)𝑟̃ଶ + 𝑇෨𝑚෥ቇ ⋯ 
⋯ + 𝜆ఊ ቌ 𝐿෨ఊ𝑚෥𝑣෤ − 𝜇෤𝑐𝑜𝑠(𝛾)𝑟̃ଶ𝑣෤ + 𝑣෤𝑟̃ 𝑐𝑜𝑠(𝛾)ቍ + 𝜆ట ቌ 𝐿෨ఊ𝑚෥𝑣෤𝑐𝑜𝑠(𝛾) + 𝑣෤𝑟̃ 𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜑)ቍ + 𝜀ଵ൫𝐿෨ఊ൯ + 𝜀ଶ൫𝐿෨ట൯ + 𝜀ଷ൫𝑘෨ொඥ𝜌෤𝑣෤ଷ൯ 

(24) 

2.12.3.2 Adjoint Equation Development 

The rate of change of each costate is defined as the negative of the partial derivative of the 

Hamiltonian with respect to the corresponding state. These Equations are shown in Equation 25. −𝜆̇௥ = ൬𝜕𝐻𝜕𝑟 ൰ = −𝜆ఏ 𝜈෤𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑟̃ଶ𝑐𝑜𝑠𝜑 − 𝜆ఝ 𝜈෤𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑟̃ଶ + 𝜆ఔ 2𝑢෤𝑠𝑖𝑛𝛾𝑟̃ଷ − 𝜆ఊ ൬𝜈෤𝑐𝑜𝑠𝛾𝑟̃ଶ − 2𝜇෤𝑐𝑜𝑠𝛾𝜈෤𝑟̃ଷ ൰ − 𝜆ట 𝜈෤𝑟̃ଶ 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑡𝑎𝑛𝜑−𝜆̇ఏ = ൬𝜕𝐻𝜕𝜃 ൰ = 0−𝜆̇ఝ = ൬𝜕𝐻𝜕𝜑൰ = 𝜆ఏ 𝜈෤𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑𝑟̃ଶ𝑐𝑜𝑠𝜑 + 𝜆ట 𝜈෤𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓(𝑡𝑎𝑛ଶ𝜑 + 1)𝑟̃−𝜆̇௩ = ൬𝜕𝐻𝜕𝑣 ൰ = 𝜆௥𝑠𝑖𝑛𝛾 + 𝜆ఏ 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑟̃𝑐𝑜𝑠𝜑 + 𝜆ఝ 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑟̃ + 𝜆ఊ ቆ𝑐𝑜𝑠𝛾𝑟̃ − 𝐿෨ఊ𝑚෥𝑣෤ଶ + 𝜇෤𝑐𝑜𝑠𝛾𝑣෤ଶ𝑟̃ଶ ቇ − 𝜆ట ቆ 𝐿෨ట𝑚෥𝑣෤ଶ𝑐𝑜𝑠𝛾 − 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑡𝑎𝑛𝜑𝑟̃ ቇ + 3𝜀ଷ𝑘෨ொ−𝜆̇ఊ = ൬𝜕𝐻𝜕𝛾 ൰ = 𝜆௥𝑣෤𝑐𝑜𝑠𝛾 − 𝜆ఏ 𝑣෤𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓𝑟̃𝑐𝑜𝑠𝜑 − 𝜆ఝ 𝑣෤𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜓𝑟̃ − 𝜆ఊ ൬𝑣𝑠𝑖𝑛𝛾𝑟̃ − 𝜇෤𝑠𝑖𝑛𝛾𝑣෤𝑟̃ଶ ൰ − 𝜆௩ 𝑢෤𝑐𝑜𝑠𝛾𝑟̃ଶ − 𝜆ట ቆ 𝐿෨ట𝑠𝑖𝑛𝛾𝑚෥𝑣෤𝑐𝑜𝑠ଶ𝛾 − 𝑣෤𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓𝑡𝑎𝑛𝑟̃−𝜆̇ట = ൬𝜕𝐻𝜕𝜓൰ = 𝜆ఏ 𝑣෤𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑟̃𝑐𝑜𝑠𝜑 − 𝜆ఝ 𝑣෤𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑟̃ + 𝜆ట 𝑣෤𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑡𝑎𝑛𝜑𝑟̃

(25

)

2.12.3.1 Hamiltonian Minimization 

Minimize the Hamiltonian with respect to each control to find possible verification factors 

available for the solution. These two equations, or the stationarity conditions, are shown in Equation 

27 and 28 with the complementarity conditions listed in Equation 29. 

Table 10. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

H Hamiltonian Function λ Costate Variable 

r Distance v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

φ Latitude Angle θ Longitude Angle 

L Lift Control Value m Mass 

D Drag T Thrust 

μ Gravitational Parameter ε Path Constraint Control 

 

𝜕𝐻𝜕𝑢 = 𝜕𝐻𝜕𝐿෨ఊ = 0 = 𝜆ఊ𝑚෥𝑣෤ + 𝜀ଵ (26)

 𝜕𝐻𝜕𝑢 = 𝜕𝐻𝜕𝐿෨ట = 0 = 𝜆ట𝑚෥𝑣෤𝑐𝑜𝑠𝛾 + 𝜀ଶ 
(27)
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𝜀ଵ ൞≤ 0  𝑖𝑓               𝐿෨ఊ = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ఊ ≤ 10 ≥ 0 𝑖𝑓                  𝐿෨ఊ = 10
𝜀ଶ ൞≤ 0  𝑖𝑓               𝐿෨ట = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ట ≤ 10 ≥ 0 𝑖𝑓                  𝐿෨ట = 10
𝜀ଷ ቐ ≤ 0  𝑖𝑓                     𝑄̇ = 0= 0 𝑖𝑓       0 ≤  𝑄̇ ≤ 4.9𝑒ଽ ≥ 0 𝑖𝑓                  𝑄̇ = 4.9𝑒ଽ

 (28)

Table 11. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

H Hamiltonian Function L Lift Control Unit 

u Control Variable m Mass 

v Velocity λ Costate Variable 

γ Flight Path Angle ψ Heading Azimuth 

ε Path Constraint Variable 𝑄̇ Heating Rate 

E Endpoint Value Function t Time 

r Distance θ Longitude Angle 

φ Latitude Angle   

2.12.3.1 Endpoint Value Condition 

The value of the Hamiltonian at the final time can be found by taking the partial derivative of 

the endpoint cost with respect to time and is shown in Equation 29. 𝐸ሬ⃑ = 𝑡௙ + 𝜈ଵ൫𝑟௙ − 𝑟௙൯ + 𝜈ଶ൫𝜃௙ − 𝜃௙൯ + 𝜈ଷ൫𝜑௙ − 𝜑௙൯; − 𝜕𝐸𝜕𝑡௙ = 1 = 𝐻ഥ൫𝑡௙൯ (29)

2.12.3.1 Hamiltonian Evolution Condition 

The Hamiltonian Evolution Condition shows how the Hamiltonian behaves with respect to time 

and is found by taking the partial derivative of the Hamiltonian with respect to time as shown in 

Equation 30. 𝜕𝐻𝜕𝑡 = 𝜕ℋ𝜕𝑡 = 0 (30)

2.12.3.1 Transversality Condition 

Transversality is used to determine more points for verification and validation and is done by 

taking the partial derivative of the endpoint cost function with respect to each state individually as 

shown in Equation 31. 
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𝐸ሬ⃑ = 𝑡௙ + 𝜈ଵ൫𝑟௙ − 𝑟௙൯ + 𝜈ଶ൫𝜃௙ − 𝜃௙൯ + 𝜈ଷ൫𝜑௙ − 𝜑௙൯𝜆௥(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝑟௙ = 𝜈ଵ
𝜆ఏ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜃௙ = 𝜈ଶ
𝜆ఝ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜑௙ = 𝜈ଷ

𝜆௩(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝑣 = 0𝜆ఊ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝛾௙ = 0
𝜆ట(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜓௙ = 0

 (31)

Table 12. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

E Endpoint Value Function t Time 

r Distance θ Longitude Angle 

φ Latitude Angle λ Costate Variable 

t Time v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

2.12.4. Development of Necessary Conditions 

By completing the HAMVET process, it is shown that the theta costate is constant throughout 

the duration of flight, and the Hamiltonian is constant with an endpoint value of -1; or in other words, 

constant at -1. Velocity, flight pitch angle and planet relative heading co-states are all equal to zero at 

final time. With the canonical scaling used, the dynamic equations of motion can be written the same 

way with new boundary conditions as defined in equation (32). 

(𝑟଴, 𝜃଴, 𝜑଴, 𝑣଴, 𝛾଴, 𝜓଴) = (42164,0,0,0,0,0)𝑟௙ = 6378൫𝜃௙, 𝜑௙൯ = (36.6002, −121.8947) (𝑑𝑒𝑔𝑟𝑒𝑒𝑠)𝜆ሚ௩(𝑡௙) = 0𝜆ሚఊ(𝑡௙) = 0𝜆ሚట(𝑡௙) = 0𝐻ഥ൫𝑡௙൯ = −1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 (32)

3. Results  

The trajectory problem was solved in MATLAB using the DIDO program. The complete DIDO 

program files can be found in Appendix C. 

3.1. Trajectory Optimization Solution 

3.1.1. Low Fidelity Dynamic Verification 

The low fidelity numerical simulation was run twice, once for each isolated control state of γ 

and ψ and produced the altitude and state magnitudes shown in Figures 2 and 3. 
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(a) (b) (c) 

Figure 3. (a) A depiction of three-dimensional comparison of the body frame to the inertial frame 

through prime axes by the Euler angles pitch (θ), roll (ϕ) and yaw (ψ). (b) depicts determining the 

sign value of each sine or cosine for direction cosine matrix (DCM) of rotating about the Zi axis. 1c 

depicts a rotation using a quaternion to directly compare the inertial frame to the body frame by 

mathematically rotating around a 4th axis, defined in relation to the eigenvector, by the angle η. 

Table 13. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

With the flight path isolated by zeroing out azimuth, the altitude and states behaved exactly as 

expected. Altitude dropped at a constant parabolic rate as expected with the constant forces applied 

and gravity and thrust overriding the drag. Velocity increased at a constant rate due to these forces 

while latitude and longitude remained constant due to no turn inputs and isolated controls. With ψ ̇ 
set to equal 0, the initial input angle of 0 remains constant with a constant gravitational force, γ slowly 

decreases in angle magnitude as it is a function of the radius and velocity but on much smaller scale. 

The end portion of the plot where pitch and azimuth look to start spiking is where if the simulation 

was run for a longer time, the vehicle bounces off the earth and proceeds back up. 

When the azimuth angle is isolated and pitch is set to an initial angle with no change, the altitude 

behaves as expected. Velocity increases at a constant rate as expected with the constant forces acting 

on the vehicle while latitude and longitude remain constant as the cosine of -90 degrees is near zero, 

causing little to no change in the overall state. γ remains constant as we have set the rate change to 

zero. Initial simulation runs resulted in azimuth angles on the order of 1014 due to the angle not being 

limited so radians continued to climb to numbers that are not within the range of angles. To fix this 

problem, the “wrapToPi” function was placed in front of the ψ ̇ equation to convert the output of the 

angle to a value between -π and π (-180 to 180 degrees). 

Additionally, as expected, r, v, latitude, and longitude remained constant from one simulation 

to the other. Based on these observations, the base dynamics of the model have been validated and 

the simulation can proceed to a medium fidelity, or optimization model. 

3.1.2. Medium fidelity model validation 

The dynamic model was simulated another time with the vehicle at the same longitude as the 

target and making the rate of change of the flight pitching angle to zero in the dynamics equations 

while accounting for a changing gravitational force due to altitude. The scaled outputs from this 

simulation are shown in Figure 4. 
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(a) (b) 

Figure 4. Subfigure (a) is altitude flight descent and (b) shows the state magnitudes with isolating the 

flight path angle and constant control input. 

Table 14. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

L Lift Control Variable   

As expected, the altitude falls in a parabolic fashion towards the earth with a corresponding 

increase in velocity throughout the simulation. To verify that we have isolated the azimuth heading 

control, the controls page shows a nearly constant flight path angle control. For analyzing purposes, 

the propagated states and Hamiltonian are shown in Figure 5 and a three-dimensional depiction of 

the flight path is shown in Figure 6. 

  
(a) (b) 

Figure 5. Subfigure (a) is altitude flight descent and (b) shows the state magnitudes with isolating the 

azimuth angle and constant control input. 
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(a) (b) (c) 

Figure 6. Subfigure (a) is the simulation output of the scaled states, and (b) is the scaled co-states, and 

4c is the scaled controls. 

Table 15. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

As seen in Figure 5a, the state trajectories follow that of the propagated states to satisfy the 

feasibility check. The Hamiltonian remains constant for the first 90% of the simulation before it 

destabilizes and diverges at the end of the simulation leading to some doubt as to the optimality of 

the simulation. Conversely, the theta co-state does stay constant for the duration of the simulation as 

expected. This leads to the belief that the Hamiltonian is spiking due to a lack of determinacy on the 

time value in the problem which could possibly be resolved by adding a running cost in the final 

problem. Additionally, all co-states ended as expected with velocity, flight path angle and heading 

azimuth all ending near zero. 

The next test had both controls activated to test the overall validity of the dynamic model while 

maintaining constant forces throughout the simulation. No constraints were placed on the model 

other than limiting the controls to approximately 1000N as an arbitrary limit on the forces allowed 

on the control fins. Due to singularity issues that arose when -90 degrees was chosen as the initial 

flight path angle, an initial angle of -89 was used. Figure 7 shows the scaled outputs of this simulation. 

  
(a) (b) 

Figure 7. Subfigure (a) is altitude flight descent and (b) shows the state magnitudes with isolating the 

azimuth angle and constant control input. 
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Table 16. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

L Lift Control Variable λ Costate Variable 

The trajectories act as expected with the altitude lowering from its initial altitude to final in a 

parabolic fashion with a corresponding increase in velocity. For analysis, the simulation was again 

propagated through the ode45 program. Figure 8 shows the control propagated states and 

Hamiltonian. 

 

Figure 8. Three-Dimensional plot of the vehicle flight path. 

As shown in the propagated states, the trajectories of the states perfectly match those of the 

DIDO solution. Additionally, the Hamiltonian is nearly constant at 1 for the duration of the 

simulation with a maximum fluctuation of two ten-thousandths from a steady -1. For the purposes 

of this simulation, this will be labeled as constant at -1. Lastly, the co-states converge to zero as 

expected from the HAMVET process. Between these points, the feasibility of the model is verified.  

This flight path appears closer to what is expected with a large downward trajectory while 

building speed prior to turning in a smooth manner towards the target instead of arcing around the 

target which was shown in the single control plots. This smooth flight profile is shown in Figure 9. 

   

(a) (b) (c) 

Figure 9. Subfigure (a) is the simulation output of the scaled states, (b) is the scaled co-states, and (c) 

is the scaled controls. 
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These tests verify the general build of the model using propagated states while isolating each 

individual control and using the DIDO program to solve for an extremal solution and repeating the 

process with both controls activated without path constraints or varying thrust or drag. 

3.1.3. Optimization Model 

The model was updated to account for the constrain the heating rate of the vehicle during flight 

through varying density based off of altitude in accordance with Equation 33 where kQ is the heating 

constant, ρ is the air density at altitude and v is the velocity of the vehicle and air density was 

calculated using Equation 34 where ρo is the air density at sea level, h is the altitude, rp is the radius 

of the earth, and Hs is a height scaling factor equal to 7500. 𝑄̇ = 𝑘ொඥ𝜌𝑣ଷ < 4.9𝑒ଽ 𝑊𝑚ଶ (33)

𝜌 = 𝜌଴ exp ൬− ℎ − 𝑟௣𝐻ௌ ൰ (34)

The remaining initial conditions remained constant from the previous test. Figure 10 shows the 

scaled outputs of this simulation. 

  
(a) (b) 

Figure 10. Subfigure (a) is the propagated states of the simulation and (b) is the Hamiltonian vs 

time. 

 

Figure 11. Three-Dimensional plot of the Vehicle Flight Path. 
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(a) (b) (c) 

Figure 12. Subfigure (a) is the simulation output of the scaled states, (b) is the scaled co-states and (c) 

is the scaled controls. 

Table 17. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

L Lift Control Variable λ Costate Variable 

As seen in Error! Reference source not found., the trajectories act as expected with the altitude 

lowering from its initial altitude to final in a parabolic fashion with a corresponding increase in 

velocity. Of note, the heading azimuth state fluctuates much more drastically than seen in any other 

tests to this point. For verification and validation, Figure 11 shows the control propagated states and 

Hamiltonian. 

  
(a) (b) 

Figure 13. Subfigure (a) is the propagated states of the simulation with r divided by 1e4 to balance 

the chart and (b) is the Hamiltonian vs time. 

The Hamiltonian is nearly constant at 1 for the duration of the simulation with a maximum 

fluctuation of 8 ten-thousandths from a steady -1. For the purposes of this simulation, this will be 

labeled as constant at -1. The feasibility check follows the dynamic path for all except for φ with 

iteration unable to maintain due to small step sizes, most likely due to singularities in the 

denominator of the equations due to the denominator of the azimuth state dynamic containing the 

cosine of the flight path angle. At any point the flight path angle crosses -90 degrees, or straight down, 

this value turns to zero and is mathematically impossible to calculate. An additional cause for the 

failure to continue solving is the drastic changes in the azimuth state as the ode45 solver is unable to 

follow the sudden change in direction while propagating states forward. Attempts at solving this 
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included lessening the initial downward angle of the vehicle, but this is undesirable as it presents a 

bias towards a certain hemisphere instead of allowing global targeting. Additionally, when this initial 

angle was placed in for troubleshooting, the feasibility check would pass as the singularities were no 

longer present, but the overall solution was deemed as a suboptimal solution instead of the extremal 

solution that is achieved with a near 90-degree initial angle. The stationarity condition checks, and 

complementarity condition checks are shown in Figure 12. 

Table 18. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

ε Path Constraint Variable L Lift Control Variable 

Based on the stationarity condition in equation (26), the path constraint control, ε_1 should be 

equal and opposite of the function identified as Stat1 in Figure 12a. Similarly, the path constraint 

control ε2 should be equal and opposite of the curve labeled as Stat2 in accordance with equation (27). 

While not perfectly matching in the slope of the curve, the magnitudes for the first path constraint 

control match with ε_1 maxing out at 8.57e-4 and Stat1 with maximum negative of -8.57e-4. The 

second stationarity check is a little off in that the constraint control remains constant at zero for the 

duration of the simulation, but Stat2 fluctuates to a maximum of 2.6e-4. While this number is small, 

a closer relationship in slope in the first stationarity check and magnitude in the second would be 

preferred. 

According to the complementarity conditions in Equation 28 and that the scaled controls max 

out at 10 and -10, the constraint controls should remain constant at zero for the duration of the 

simulation with the possibility of the control fluctuating either positively or negatively when the 

control is touching the maximum deflection of 10. As shown in Figure 12b, the only time that ε_1 

fluctuates is when 𝐿෨ఊ is holding at 10.0, allowing a value greater than or equal to zero during this 

time. From the scaled time of 5 to 11, this is shown in the maximum fluctuation of the control to a 

value of 8.57e-4. Of concern is that while 𝐿෨ఊ is at a positive 10 from scaled time 1 to 2.5, there is a 

negative ε_1 which should not occur. While the values remain small in the range of 1e-4, according 

to the complementarity conditions there should not be a negative value at all during this time, but 

instead should be greater than or equal to zero. 

The second complementarity condition follows the same rules as the first regarding when a 

positive and negative value are allowed. With ε2, however, the value remains constant at zero for the 

duration of the simulation. This path constraint control passes the check as even when the controls 

are maxed, the constraint control is allowed to maintain zero. Due to being unable to constrain the 

heating rate of the vehicle due to constant velocity increases with a maximum velocity at the final 

time, the heating rate constraint is never activated and ε3 remains constant at zero. 

Lastly, the co-states converge to zero as expected from the HAMVET process. The 𝜆ሚ௩ costate 

ends at 1.2928e-4, 𝜆ሚఊ  ends at -0.0198, and 𝜆ሚట  ends at -1.4421e-4. With 𝜆ሚ௩  having a maximum 

magnitude of -14.2817, the end point is less than one ten-thousandth of a percent of the maximum 

magnitude. Doing the same comparison with 𝜆ሚఊ and 𝜆ሚట, the end points result in 5.5% and 3.3% of 

the maximum magnitude respectively. Between these points, the feasibility of the model is verified. 

The states, co-states and controls were descaled and are shown in Figure 13, but due to the large 

magnitude differences and scale of the plot all the states appear to be at zero. 

To observe the behavior of each state, they are plotted individually with the state and co-state 

simultaneously as shown in Figures 14 and 15. 
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(a) (b) 

Figure 14. Subfigure (a) the stationarity condition check and (b) is the complementarity condition 

check. 

   

(a) (b) (c) 

Figure 15. Subfigure (a) is the simulation output of the scaled states, (b) is the scaled co-states and (c) 

is the scaled controls. 

Table 19. Table of proximal variable definitions. 

Variable/concept Definition Variable/concept Definition 

φ Latitude Angle v Velocity 

γ Flight Path Angle ψ Heading Azimuth 

θ Longitude Angle r Distance 

λ Costate Variable L Lift Control Variable 

Figures 14 and 15 are beneficial in observing the direct behavior of each individual state. During 

the simulations and testing, it was observed that the heating rate could not be constrained to any 

value other than the maximum value expected at sea level with the maximum velocity. By looking at 

Figure 14a, this becomes apparent as the velocity is constantly increasing due to the constant thrust 

on the vehicle, and therefore the maximum heating rate will occur at the exact point that it was 

calculated and cannot be lowered. To constrain the heating rate, the velocity will need to be lowered 

by either a variable thrust motor or utilizing a non-extremal solution. Figure 14 a and b indicate that 

the vehicle falls almost vertically from the release point for the first third of flight before making a 

smooth turn towards the target. This behavior is expected due to the limited control authority from 

control fins in orbit. 

Comparing the behavior of the flight path angle and heading azimuth illustrates a difference in 

the method used for adjustments between the two. Figure 15b shows that the flight path angle 

gradually decreases towards zero as the vehicle flies and impacts with a flight path angle of -47.86 

degrees, or nearly 48 degrees nose down below the planet relative horizon. In contrast to this method, 

the heading azimuth makes large and rapid adjustments at the beginning of the trajectory and then 
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smooths out at the end, impacting with a heading azimuth of -46.93 degrees, or 47 degrees to the left 

of planet relative 0 (north). Due to the search window of -180 degrees to 180 degrees, or a full 360-

degree circle, the heading azimuth bounces from -180 to 180 degrees and continues but should be 

viewed as continuing through planet relative south heading as the vehicle maneuvers. This portion 

of the flight is the same portion that causes the validation check to fail with the sharp changes in 

direction of the state vector. 

Even with these concerns, an extremal solution was found with the vehicle directly hitting the 

intended target. The optimal flight time of the trajectory for this specific target case is two hours, 

thirty-four minutes, and forty-six seconds. The vehicle impacts with a final velocity of 11.54 km/sec, 

equaling a kinetic energy of 0.333 terajoules. This kinetic energy is roughly equivalent to 300,000 lbs. 

of TNT. For perspective, this is 150 times the strength of a standard 2000lb bomb carried by fighter 

aircraft without any explosives in the vehicle itself. The three-dimensional trajectory of the vehicle 

flight path is shown in Figure 16. 

   

(a) (b) (c) 

Figure 16. Subfigure (a) is the r state and co-vector, (b) is the θ state and co-vector, and (c) is the φ 

state and co-vector. 

3.2. Coordinate Transformation Results 

3.2.1. Simulation Configuration and Accuracy 

The simulation was run using multiple Matlab Simulink solvers in order to determine the 

accuracy of the simulation as demonstrated in Figure 17 and Table X. 

 
  

(a) (b) (c) 

Figure 17. Subfigure (a) is the v state and co-vector, (b) is the γ state and co-vector, and (c) is the ψ 

state and co-vector. 

Table 20. High, medium, and low fidelity model comparison of incorporating variables/concepts. 

Solver Solver Type Frequency (Hz) Max Error 

ode4 Runge-Kutta 34.6 1.6x10-10 

ode5 Dormand-Prince 34.6 1.1x10-12 

ode5 Dormand-Prince 40 1.7x10-9 

ode4 Dormand-Prince 40 3.1x10-13 
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Auto Auto Select FAILED FAILED 

ode4 Runge-Kutta 90 2.1x10-15 

ode4 Runge-Kutta 110 1.4x10-15 

ode4 Runge-Kutta 130 1.4x10-11 

ode4 Runge-Kutta 100 0.9 x10-15 
1 Runge-Kutta (ode4) with 100Hz was selected 

Using the quaternion normalization condition, the simulation was verified to be accurate to near 

machine precision in the case of input to a single Euler angle while accounting for six degrees of 

freedom. For commanded Pitch, Roll and Yaw simultaneously, best precision was found to be 4.8x10-

11 using the ode4 solver with a frequency of 117Hz. 

3.2.2. Dynamics of Motion in Six Degrees 

The only change between tests was the order of the mathematical rotation conducted in the DCM 

in order to validate the accuracy and computation required for each and allow a direct comparison. 

3.2.2.1. Kinetics of Rotational Motion 

The simulation ran in accordance with Euler’s equations of motion accounting for the changing 

angular velocities and accelerations found with a falling and rotating object, while accounting for the 

rotation of the earth under the falling missile. 

3.2.2.2. Kinetics of Translational Motion 

With mass remaining constant, the simulation runs in accordance with Newton’s second law. 

The simulation starts in a geosynchronous orbit with less velocity than required to maintain orbit. 

This initial condition, coupled with the commanded inputs, immediately initiates a dive towards the 

earth with a constant thrust along the XBody axis. 

3.2.2.3. Kinetics of Disturbance Forces and Torques 

The simulation accounts for magnetic disturbances and the gravity gradient as the missile falls 

to the earth but does not account for drag disturbances. While drag would slow the missile, because 

the forces used remain constant, the DCM comparison remains valid. 

3.2.2.4. Kinetics of Motion 

As discussed in Section III, the only “true” Euler angle output from a DCM is the last 

mathematical rotation. For the purposes of analysis, the true Roll angle, Φ, is pulled from executing 

a 321 rotation; the true pitch angle, Θ, is from a 132 rotation; and the true yaw angle, ψ, is from a 213 

rotation. The true Euler angles from these rotations is given as Φ = -0.5825°, Θ = 10.2404°, and ψ = 

0.0863°. With the defined maneuver of Φ = 10°, Θ = -30°, and ψ = 30°, the desired angles, rates and 

acceleration trajectories remain constant. 

Changing the mathematical rotation order changes the flightpath and distance traveled of the 

missile as displayed in Figure 18. Derived Euler angles with associated error and computational 

burden expressed in run time for each rotation are found in Table 3. 
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Figure 18. Three-Dimensional plot of the Vehicle Flight Path. 

 

Figure 19. Comparison of Quaternion Normalizations (on the ordinate) for different step sizes and 

solver schemes. 

 
 

(a) (b) 

Figure 20. Three-dimensional flight path of the missile based on the order of mathematical rotation 

chosen in the DCM and a zoomed in portion of the rotations traveling closest to each other. 
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Table 21. Derived Euler angles, associated error and simulation run time. 

4. Discussion 

Based on this analysis, it can be shown that the most accurate single DCM rotation method for a 

missile delivered from orbit is the 132 sequences. Of all the rotation schemes, the 132 is the only 

rotation resulting in less than 1 degree of error in all three Euler angle calculations from the true Euler 

angles derived. The next closest solution is the 312 sequences with the most accurate pitch value of 

any rotation not used to calculate the true value. In all simulations when a rotation is repeated (i.e., 

131 or 313), the average error is drastically larger than the remaining rotation schemes. All 

simulations had similar computational burdens, with eleven of the twelve rotation schemes separated 

by three one-thousandths of a second. Between the two most accurate rotation schemes, the 132 

rotation was one one-thousandth of a second quicker than the 312 (0.013 vs 0.014 seconds). Therefore, 

in order to maximize accuracy for this type of delivery without increasing computing power 

required, a 132-rotation scheme will provide the most accurate solution, while any solution not 

rotating by one of the Euler angles will lead to the greatest miss. 

Due to the construct of the simulation, the DCM was continuously updated as the missile fell to 

the ground, causing an updated Euler angle. While the method of solving for each angle resulted in 

no quadrant ambiguity, the angles values were dependent on other “non-true” values from the DCM 

sequence selected. To find a constant true Euler angle, further research can be conducted to resolve 

this dependency. 

The optimal trajectory solution is validated through a series of tests with error in the level of tens 

of thousandths of a point through the duration of flight as determined during the development of 

the Hamiltonian and using Pontryagin’s Principle. The program is written in a manner that is easily 

replicated for any target by merely changing the desired latitude and longitude of impact while still 

accounting for variable density and gravitational forces at altitude. 

Combining the means to calculate a desired flight path with the ability to convert it into useable 

information and commands for the missile control system provides a means for defense agencies to 

fill a gap within the hypersonic weapons systems capabilities that will defeat current defense systems 

available. The optimal trajectories calculated are being tracked in open loop, amplifying the 

importance of eliminating kinematically induced errors as described in this manuscript. With these 

conclusions in mind, one can say that an orbitally delivered kinetic missile that accurately impacts 

Rotation Angle 

Derived 

Value 

(Deg) 

Error 

(Deg) 

Average 

Error 

(Deg) 

Run 

Time 

(Sec) 

Rotation Angle 

Derived 

Value 

(Deg) 

Error 

(Deg) 

Average 

Error 

(Deg) 

Run 

Time 

(Sec) 

121 

Roll (Φ) 130.7395 131.322 

55.3893 0.005 231 

Roll (Φ) 0.4906 1.0731 

7.312 0.014 Pitch (Θ) 45.0 34.7596 Pitch (Θ) -10.2447 20.4851 

Yaw (ψ) 0.0 0.0863 Yaw (ψ) -0.2915 0.3778 

123 

Roll (Φ) 144.7919 145.3744 

58.7043 0.014 232 

Roll (Φ) 108.6987 109.2812 

97.58703 0.013 Pitch (Θ) -6.3093 16.5497 Pitch (Θ) 0.0 10.2404 

Yaw (ψ) -14.1025 14.1888 Yaw (ψ) -173.153 173.2395 

131 

Roll (Φ) 0.0 0.5825 

108.4614 0.013 312 

Roll (Φ) 0.9839 1.5664 

0.5805 0.014 Pitch (Θ) -164.374 174.6144 Pitch (Θ) 10.2398 0.0006 

Yaw (ψ) -150.101 150.1873 Yaw (ψ) 0.2608 0.1745 

132 

Roll (Φ) -0.2011 0.3814 

0.143967 0.013 313 

Roll (Φ) 0.0 0.5825 

89.83103 0.012 Pitch (Θ) 10.2404 0.0 Pitch (Θ) -156.248 166.4886 

Yaw (ψ) 0.1368 0.0505 Yaw (ψ) -102.336 102.422 

212 

Roll (Φ) 76.5964 77.1789 

34.52863 0.012 321 

Roll (Φ) -0.5825 0.0 

6.8473 0.015 Pitch (Θ) -16.0803 26.3207 Pitch (Θ) -10.2373 20.4777 

Yaw (ψ) 0.0 0.0863 Yaw (ψ) 0.1505 0.0642 

213 

Roll (Φ) -0.8559 0.2734 

6.916233 0.013 323 

Roll (Φ) 9.9889 10.5714 

37.2335 0.011 Pitch (Θ) -10.2349 20.4753 Pitch (Θ) 0.0 10.2404 

Yaw (ψ) 0.0863 0.0 Yaw (ψ) 90.975 90.8887 
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only the desired target at over 33 times the speed of sound and comparable to an atomic weapon with 

zero fallout is within our reach. 
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Appendix A SIMULINK® models 

 

Figure A1. Simulink System Page. 

 

Figure A2. Trajectory Generation Subsystem. 
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Figure A3. Actuators and controls subsystem. 

 

Figure A4. Sensors and observer’s subsystem. 

 

Figure A5. Dynamics Subsystem. 

 

Figure A6. Rotational Kinetics Subsystem. 
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Figure A7. Kinematics Subsystem. 

 

Figure A8. Translational Kinetics Subsystem. 

 

Figure A9. Disturbances Summing Subsystem. 
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Figure A10. Disturbances Subsystem. 

 

Figure A11. Magnetic Disturbances Subsystem. 

 

Figure A12. Orbit Parameters Subsystem. 
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Figure A13. Solar and Aero Disturbances Subsystem. 

 

Figure A14. Orbit Parameters Subsystem. 

Appendix B Complete canonical scaling and Pontryagin’s principle 

B.1. Canonical scaling 

𝑟̃ = 𝑟𝑅 ;  𝜏 = 𝑡𝑇𝑈 ; 𝑣෤ = 𝑣𝑉 ; 𝑚෥ = 𝑚𝑀 ; 𝐷෩ = 𝐷𝐹𝑈 ; 𝑇෨ = 𝑇𝐹𝑈 ; 𝑉 = 𝑅𝑇𝑈 ; 𝑇𝑈 = ඨ𝑅𝑔 ; 𝐹𝑈 = 𝑀𝐴; 𝐴 = 𝑅𝑇𝑈ଶ ; 𝑎𝑈 = 1 (35) 

   𝑥 = [𝑟, 𝜃, 𝜑, 𝑣, 𝛾, 𝜓]் ∈ ℝ, 𝑢 = [𝐿ఊ, 𝐿ట] ∈ ℝ 

 Minimize  𝐽ൣ𝑥(∙), 𝑢(∙), 𝑡௙൧ =  𝑡௙ 

 Subject To  𝑟̇ =  𝑣 sin 𝛾 

    𝜃̇ = ௩ ୡ୭ୱ ఊ ୱ୧୬ ట௥ ୡ୭ୱ ఝ  

    𝜑̇ = ௩ ୡ୭ୱ ఊ ୡ୭ୱ ట௥  

    𝑣̇ = − ஽௠ − ఓ ୱ୧୬ ఊ௥మ + ௠் 

    𝛾̇ = ௅ം௠௩ − ఓ ୡ୭ୱ ఊ௥మ௩ + ௩௥ cos 𝛾 

    𝜓̇ = ௅ഗ௠௩ ୡ୭ୱ ఊ + ௩௥ cos 𝛾 sin 𝜓 tan 𝜑 

    𝑡଴ = 0 

    (𝑟଴, 𝜃଴, 𝜑଴, 𝑣଴, 𝛾଴, 𝜓଴) = (42164,0,0,0,0,0) 

    𝑟௙ = 6378 

    ൫𝜃௙ , 𝜑௙൯ = (36.6002, −121.8947) (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 

    −10 ≤ 𝐿෨ఊ ≤ 10 

    −10 ≤ 𝐿෨ట ≤ 10 

    𝜇 = 3.986004418 × 10ହ  ቀ௞௠య௦మ ቁ 

    𝑚 = 5000 (𝑘𝑔) 

    𝑇 = 4000 𝑙𝑏𝑓 = 17793 𝑁 ቀ௞௚௠௦మ ቁ = 17.793 ቀ௞௚∗௞௠௦మ ቁ 

    𝑘ொ = 164,000 ௐ௞௠∙௄ (𝑇ℎ𝑒𝑟𝑚𝑎𝑛 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑇𝑢𝑛𝑔𝑠𝑡𝑒𝑛)  
 

(36) 
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B.1.1. 𝑟 𝑟̇̃ = 𝑑൫𝑟 𝑅ൗ ൯𝑑൫𝑡 𝑇𝑈ൗ ൯ = 𝑑𝑟 ቀ1𝑅ቁ𝑑𝑡 ቀ 1𝑇𝑈ቁ = 𝑇𝑈𝑅 𝑑𝑟𝑑𝑡 (37) 

𝑟̇̃ = 𝑇𝑈𝑅 𝑣 sin 𝛾 = 𝑇𝑈𝑅 (𝑉𝑣෤) sin 𝛾 = 𝑉𝑇𝑈𝑅 𝑣෤ sin 𝛾 = 𝑅𝑇𝑈𝑇𝑈𝑅 𝑣෤ sin 𝛾 (38) 𝑟̇̃ = 𝑣෤ sin 𝛾   => ൬𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑈𝑛𝑖𝑡𝑇𝑖𝑚𝑒 𝑈𝑛𝑖𝑡 × 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠൰ (39) 

B.1.2. Θ ൬𝑎𝑈𝑇𝑈൰ ∗ 𝜃෨̇ = 𝜃̇ (40) 

𝜃෨̇ = 𝑣 cos 𝛾 sin 𝜓𝑟 cos 𝜑 / ቀ𝑎𝑢𝑇𝑈ቁ = (𝑣෤𝑉) cos 𝛾 sin 𝜓(𝑟̃𝑅) cos 𝜑 / ቀ𝑎𝑢𝑇𝑈ቁ = ቀ𝑣෤ 𝑅𝑇𝑈ቁ cos 𝛾 sin 𝜓(𝑟̃𝑅) cos 𝜑 / ቀ𝑎𝑢𝑇𝑈ቁ (41) 

𝜃෨̇ = 𝑣෤ cos 𝛾 sin 𝜓𝑟̃𝑇𝑈 cos 𝜑 / ቀ𝑎𝑢𝑇𝑈ቁ (42) 𝜃෨̇ = 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ cos 𝜑     => ൬𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠𝑡𝑖𝑚𝑒 ൰ (43) 

B.1.3. 𝜑 ൬𝑎𝑈𝑇𝑈൰ ∗ 𝜑෤̇ = 𝜑̇ (44) 

𝜑෤̇ = 𝑣 cos 𝛾 cos 𝜓𝑟ቀ𝑎𝑢𝑇𝑈ቁ = (𝑣෤𝑉) cos 𝛾 cos 𝜓(𝑟̃𝑅)ቀ𝑎𝑢𝑇𝑈ቁ = ቀ𝑣෤ 𝑅𝑇𝑈ቁ cos 𝛾 cos 𝜓(𝑟̃𝑅)ቀ𝑎𝑢𝑇𝑈ቁ  
(45) 

𝜑෤̇ = 𝑣෤ cos 𝛾 cos 𝜓𝑟̃          => ൬𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠𝑡𝑖𝑚𝑒 ൰ (46) 

B.1.4. 𝑣 𝑣෤̇ = 𝑑൫𝑣 𝑉ൗ ൯𝑑൫𝑡 𝑇𝑈ൗ ൯ = 𝑑𝑣 ቀ1𝑉ቁ𝑑𝑡 ቀ 1𝑇𝑈ቁ = 𝑇𝑈𝑉 𝑑𝑣𝑑𝑡  (47)

𝑣෤̇ = 𝑇𝑈𝑅𝑇𝑈 ൬− 𝐷𝑚 − 𝜇 sin 𝛾𝑟ଶ + 𝑇𝑚൰ = 𝑇𝑈𝑅𝑇𝑈 ቆ− 𝐷෩𝐹𝑈𝑚෥𝑀 − 𝜇 sin 𝛾(𝑟̃𝑅)ଶ + 𝑇෨𝐹𝑈𝑚෥𝑀 ቇ = 𝑇𝑈𝑅𝑇𝑈 ቆ− 𝐷෩𝑀𝐴𝑚෥𝑀 − 𝜇 sin 𝛾(𝑟̃𝑅)ଶ + 𝑇෨𝑀𝐴𝑚෥𝑀 ቇ (48)

𝑣෤̇ = 𝑇𝑈𝑅𝑇𝑈 ቌ− 𝐷෩𝑀 𝑅𝑇𝑈ଶ𝑚෥𝑀 − 𝜇 sin 𝛾(𝑟̃𝑅)ଶ + 𝑇෨𝑀 𝑅𝑇𝑈ଶ𝑚෥𝑀 ቍ = 𝑇𝑈ଶ𝑅 ቆ− 𝐷෩𝑅𝑚෥𝑇𝑈ଶ − 𝜇 sin 𝛾(𝑟̃𝑅)ଶ + 𝑇෨𝑅𝑚෥𝑇𝑈ଶቇ (49)

𝑣෤̇ = − 𝐷෩𝑚෥ − 𝜇 sin 𝛾 𝑇𝑈ଶ𝑟̃𝑅ଷ + 𝑇෨𝑚෥          𝑠𝑒𝑡 𝜇෤ = ቆ𝑇𝑈ଶ𝑅ଷ ቇ 𝜇 (50)𝑣෤̇ = − 𝐷෩𝑚෥ − 𝜇෤ sin 𝛾𝑟̃ଶ + 𝑇෨𝑚෥        =>  ൬ 𝐷𝑖𝑠𝑡𝑇𝑖𝑚𝑒ଶ൰ (51)

B.1.5. 𝛾 ൬𝑎𝑈𝑇𝑈൰ ∗ 𝛾෤̇ = 𝛾̇ (52) 

𝛾෤̇ = ൬ 𝐿ఊ𝑚𝑣 − 𝜇 cos 𝛾𝑟ଶ𝑣 + 𝑣𝑟 cos 𝛾൰𝑎𝑢𝑇𝑈 = ൬ 𝐿ఊ𝑚෥𝑀𝑣෤𝑉 − 𝜇 cos 𝛾(𝑟̃𝑅)ଶ𝑣෤𝑉 + 𝑣෤𝑉𝑟̃𝑅 cos 𝛾൰𝑎𝑢𝑇𝑈  (53) 

𝛾෤̇ = ቌ 𝐿ఊ𝑚෥𝑀𝑣෤ 𝑅𝑇𝑈 − 𝜇 cos 𝛾(𝑟̃𝑅)ଶ𝑣෤ 𝑅𝑇𝑈 + 𝑣෤ 𝑅𝑇𝑈𝑟̃𝑅 cos 𝛾ቍ𝑎𝑢𝑇𝑈 = 𝐿ఊ𝑇𝑈ଶ𝑚෥𝑣෤𝑅𝑀 − 𝜇 cos 𝛾 𝑇𝑈ଶ𝑟̃ଶ𝑣෤𝑅ଷ + 𝑣෤𝑟̃ cos 𝛾 
(54) 

𝛾෤̇ = 𝐿ఊ𝑇𝑈ଶ𝑚෥𝑣෤𝑅𝑀 − 𝜇෤ cos 𝛾𝑟̃ଶ𝑣෤ + 𝑣෤𝑟̃ cos 𝛾        𝑠𝑒𝑡 𝐿෨ = ቆ𝑇𝑈ଶ𝑅𝑀 ቇ 𝐿 (55) 𝛾෤̇ = 𝐿෨ఊ𝑚෥𝑣෤ − 𝜇෤ cos 𝛾𝑟̃ଶ𝑣෤ + 𝑣෤𝑟̃ cos 𝛾     => ൬𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠𝑡𝑖𝑚𝑒 ൰ (56) 
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B.1.6. 𝜓 

𝜓෨̇ = ൬ 𝐿ట𝑚𝑣 cos 𝛾 + 𝑣𝑟 cos 𝛾 sin 𝜓 tan 𝜑൰𝑎𝑢𝑇𝑈 = ൬ 𝐿ట𝑚෥𝑀𝑣෤𝑉 cos 𝛾 + 𝑣෤𝑉𝑟̃𝑅 cos 𝛾 sin 𝜓 tan 𝜑൰𝑎𝑢𝑇𝑈  (57) 

𝜓෨̇ = ቌ 𝐿ట𝑚෥𝑀𝑣෤ 𝑅𝑇𝑈 cos 𝛾 + 𝑣෤ 𝑅𝑇𝑈𝑟̃𝑅 cos 𝛾 sin 𝜓 tan 𝜑ቍ𝑎𝑢𝑇𝑈 = 𝐿ట𝑇𝑈ଶ𝑚෥𝑣෤𝑅𝑀 cos 𝛾 + 𝑣෤𝑟̃ cos 𝛾 sin 𝜓 tan 𝜑 
(58) 

𝜓෨̇ = 𝐿෨ట𝑚෥𝑣෤ cos 𝛾 + 𝑣෤𝑟̃ cos 𝛾 sin 𝜓 tan 𝜑        => ൬𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠𝑇𝑖𝑚𝑒 ൰ (59) 

B.1.7. 𝑄 𝑄̇ = 𝑘ொඥ𝜌𝑣ଷ → ቆ𝑘𝑔.ହ𝑚.ହ ቇ ቆ𝑘𝑔.ହ𝑚ଵ.ହቇ ቆ𝑚ଷ𝑠ଷ ቇ → 𝑘𝑚𝑔ଶ𝑚ଶ𝑠ଶ → 𝑊𝑚ଶ (60) 𝑄෨̇ = 𝑄̇𝑄𝑈  𝑎𝑛𝑑 𝑠𝑒𝑡 𝐾𝑈 = 𝑀.ହ𝑅.ହ , 𝐷𝑈 = 𝑀𝑅ଷ (61) 𝑄෨̇ = 𝑇𝑈𝑄𝑈 ൫𝐾𝑈𝑘෨ொ൯ඥ𝐷𝑈𝜌෤(𝑉𝑣෤)ଷ = 𝑇𝑈𝑄𝑈 ቆ𝑀.ହ𝑅.ହ ቇ 𝑘෨ொ ቆ𝑀.ହ𝑅ଵ.ହቇ ඥ𝜌෤ ቆ 𝑅ଷ𝑇𝑈ଷቇ 𝑣෤ଷ = 𝑇𝑈𝑄𝑈 ቆ 𝑀𝑅ଶ𝑅ଶ𝑇𝑈ଷቇ 𝑘෨ொඥ𝜌෤𝑣෤ଷ (62) 𝑠𝑒𝑡 𝑄𝑈 = 𝑅ଶ𝑇𝑈ଶ𝑀𝑅ଶ → 𝑄෨̇ = 𝑘෨ொඥ𝜌෤𝑣෤ଷ → 𝑚𝑎𝑠𝑠𝑡𝑖𝑚𝑒ଶ (63) 

B.2. HAMVET 

B.2.1. Hamiltonian construction 𝐻ഥ(𝑥, 𝜆, 𝑢) = 𝐹(𝑥, 𝑢) + 𝜆்𝑓(𝑥, 𝑢) + 𝜀்ℎ(𝑥, 𝑢) (64) 

𝐻ഥ(𝑥, 𝜆, 𝜀, 𝑢) = 0 + 𝜆 ⎣⎢⎢
⎢⎡ 𝑟𝜃𝜑𝑣𝛾𝜓⎦⎥⎥

⎥⎤
 since we need to have one costate for every state (65) 

𝐻ഥ(𝑥, 𝜆, 𝜀, 𝑢) = 𝜆௥(𝑣෤ sin 𝛾) + 𝜆ఏ ൬𝑣෤ cos 𝛾 sin 𝜓𝑟̃ cos 𝜑 ൰ + 𝜆ఝ ൬𝑣෤ cos 𝛾 cos 𝜓𝑟̃ ൰ + 𝜆௩ ቆ− 𝐷෩𝑚෥ − 𝜇෤ sin 𝛾𝑟ଶ + 𝑇෨𝑚෥ቇ+ 𝜆ఊ ቆ 𝐿෨ఊ𝑚෥𝑣෤ − 𝜇෤ cos 𝛾𝑟̃ଶ𝑣෤ + 𝑣෤𝑟̃ cos 𝛾ቇ + 𝜆ట ቆ 𝐿෨ట𝑚෥𝑣෤ cos 𝛾 + 𝑣෤𝑟̃ cos 𝛾 sin 𝜓 tan 𝜑ቇ + 𝜀ଵ൫𝐿෨ఊ൯+ 𝜀ଶ൫𝐿෨ట൯ + 

(66) 

B.2.2. Adjoint equations 

𝜆 ̇ = −(𝜕𝐻 ̅)/𝜕𝑥 (67)

So,  

−𝜆̇௥ = ቆ𝜕𝐻ഥ𝜕𝑟 ቇ = −𝜆ఏ 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ଶ cos 𝜑 − 𝜆ఝ 𝑣෤ cos 𝛾 cos 𝜓𝑟̃ଶ + 𝜆௩ 2𝜇෤ sin 𝛾𝑟̃ଷ − 𝜆ఊ ൬ 𝑣෤𝑟̃ଶ cos 𝛾 − 2𝜇෤ cos 𝛾𝑣෤𝑟̃ଷ ൰
− 𝜆ట ൬ 𝑣෤𝑟̃ଶ cos 𝛾 sin 𝜓 tan 𝜑൰ 

(68)

−𝜆̇ఏ = 0  ቆ𝜕𝐻ഥ𝜕𝜃 ቇ (69)

−𝜆̇ఝ = ቆ𝜕𝐻ഥ𝜕𝜑ቇ = 𝜆ఏ 𝑣෤ cos 𝛾 sin 𝜓 sin 𝜑𝑟̃ cosଶ 𝜑 + 𝜆ట ቆ𝑣෤ cos 𝛾 sin 𝜓 (tanଶ 𝜑 + 1)𝑟̃ ቇ (70)
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〖−𝜆̇௩ = ቆ𝜕𝐻ഥ𝜕𝑣 ቇ = 𝜆௥(sin 𝛾) + 𝜆ఏ cos 𝛾 sin 𝜓𝑟̃ cos 𝜑 + 𝜆ఝ cos 𝛾 cos 𝜓𝑟̃ + 𝜆ఊ ቆcos 𝛾𝑟̃ − 𝐿෨ఊ𝑚෥𝑣෤ଶ + 𝜇෤ cos 𝛾𝑣෤ଶ𝑟̃ଶ ቇ
− 𝜆ట ቆ 𝐿෨ట𝑚෥𝑣෤ଶ cos 𝛾 − cos 𝛾 sin 𝜓 tan 𝜑𝑟̃ ቇ + 3𝜀ଷ𝑘෨ொ𝑣෤ଶඥ𝜌෤ 

(71)

−𝜆̇ఊ = ቆ𝜕𝐻ഥ𝜕𝛾 ቇ = 𝜆௥(𝑣෤ cos 𝛾) − 𝜆ఏ 𝑣෤ sin 𝛾 sin 𝜓𝑟̃ cos 𝜑 − 𝜆ఝ 𝑣෤ sin 𝛾 cos 𝜓𝑟̃ − 𝜆ఊ ൬𝑣෤ sin 𝛾𝑟̃ − 𝜇෤ sin 𝛾𝑣෤𝑟̃ଶ ൰ − 𝜆௩ 𝜇෤ cos 𝛾𝑟̃ଶ
− 𝜆ట ቆ𝑣෤𝑟̃ sin 𝛾 sin 𝜓 tan 𝜑 − 𝐿෨ట sin 𝛾𝑚෥𝑣෤ cosଶ 𝛾ቇ 

(72)

−𝜆̇ట = ቆ𝜕𝐻ഥ𝜕𝜓ቇ = 𝜆ఏ 𝑣෤ cos 𝛾 cos 𝜓𝑟̃ cos 𝜑 − 𝜆ఝ 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ + 𝜆ట ൬𝑣෤𝑟̃ cos 𝛾 cos 𝜓 tan 𝜑൰ (73)

B.2.3. Minimizing the Hamiltonian with respect to u 𝜕𝐻ഥ𝜕𝑢 = 𝜕𝐻ഥ𝜕𝐿෨ఊ = 0 = 𝜆ఊ𝑚෥𝑣෤ + 𝜀ଵ (74) 𝜕𝐻ഥ𝜕𝑢 = 𝜕𝐻ഥ𝜕𝐿෨ట = 0 = 𝜆ట𝑚෥𝑣෤ cos 𝛾 + 𝜀ଶ (75) 

𝜀ଵ ൞≤ 0  𝑖𝑓               𝐿෨ఊ = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ఊ ≤ 10 ≥ 0 𝑖𝑓                  𝐿෨ఊ = 10  (76) 

𝜀ଶ ൞≤ 0  𝑖𝑓               𝐿෨ట = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ట ≤ 10 ≥ 0 𝑖𝑓                  𝐿෨ట = 10  (77) 

𝜀ଷ ቐ ≤ 0  𝑖𝑓                     𝑄̇ = 0= 0 𝑖𝑓       0 ≤  𝑄̇ ≤ 120 ≥ 0 𝑖𝑓                  𝑄̇ = 120 (78) 

B.2.4. Value condition 

𝐻ห@𝑡௙ห = − 𝜕𝐸𝜕𝑡௙ (79) 𝐻ห@𝑡௙ห = 𝐻(𝜆൫𝑡௙൯, 𝑥൫𝑡௙൯, 𝜀൫𝑡௙൯, 𝑢൫𝑡௙൯, 𝑡௙) (80) 𝐸ሬ⃑ = 𝑡௙ + 𝜈ଵ൫𝑟௙ − 𝑟௙൯ + 𝜈ଶ൫𝜃௙ − 𝜃௙൯ + 𝜈ଷ൫𝜑௙ − 𝜑௙൯ (81) − 𝜕𝐸𝜕𝑡௙ = 1 (82) 𝐻ഥ൫𝑡௙൯ = −1 (83) 

B.2.5. Hamiltonian evolution condition 𝜕𝐻𝜕𝑡 = 𝜕ℋ𝜕𝑡 = 0 (84) 

B.2.6. Transversality 

𝐸ሬ⃑ = 𝐸൫𝑥௙൯ + 𝜈௧𝑒൫𝑥௙൯ 𝑤𝑖𝑡ℎ 𝜆൫𝑡௙൯ = 𝜕𝐸ሬ⃑𝜕𝑥௙ (85) 𝐸ሬ⃑ = 𝑡௙ + 𝜈ଵ൫𝑟௙ − 𝑟௙൯ + 𝜈ଶ൫𝜃௙ − 𝜃௙൯ + 𝜈ଷ൫𝜑௙ − 𝜑௙൯ (86) 
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𝜆௥(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝑟௙ = 𝜈ଵ (87) 

𝜆ఏ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜃௙ = 𝜈ଶ (88) 

𝜆ఝ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜑௙ = 𝜈ଷ (89) 

𝜆௩(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝑣 = 0 (90) 

𝜆ఊ(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝛾௙ = 0 (91) 

𝜆ట(𝑡௙) = 𝜕𝐸ሬ⃑𝜕𝜓௙ = 0 (92) 

So, the boundary value problem becomes: 𝑟̇̃ = 𝑣෤ sin 𝛾 (93) 𝜃෨̇ = 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ cos 𝜑  (94) 

𝜑෤̇ = 𝑣෤ cos 𝛾 cos 𝜓𝑟̃  (95) 

𝑣෤̇ = − 𝐷෩𝑚෥ − 𝜇෤ sin 𝛾𝑟ଶ + 𝑇෨𝑚෥ (96) 

𝛾෤̇ = 𝐿෨ఊ𝑚෥𝑣෤ − 𝜇෤ cos 𝛾𝑟̃ଶ𝑣෤ + 𝑣෤𝑟̃ cos 𝛾 (97) 

𝜓෨̇ = 𝐿෨ట𝑚෥𝑣෤ cos 𝛾 + 𝑣෤𝑟̃ cos 𝛾 sin 𝜓 tan 𝜑 (98) 𝑄෨̇ = 𝑘෨ொඥ𝜌෤𝑣෤ଷ ≤ 120 (99) −𝜆ሚ̇௥ = −𝜆ఏ 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ଶ cos 𝜑 − 𝜆ఝ 𝑣෤ cos 𝛾 cos 𝜓𝑟̃ଶ + 𝜆௩ 2𝜇෤ sin 𝛾𝑟̃ଷ − 𝜆ఊ ൬ 𝑣෤𝑟̃ଶ cos 𝛾 − 2𝜇෤ cos 𝛾𝑣෤𝑟̃ଷ ൰
− 𝜆ట ൬ 𝑣෤𝑟̃ଶ cos 𝛾 sin 𝜓 tan 𝜑൰ (100) 

−𝜆ሚ̇ఏ = 0  (101) −𝜆ሚ̇ఝ = 𝜆ఏ 𝑣෤ cos 𝛾 sin 𝜓 sin 𝜑𝑟̃ cosଶ 𝜑 + 𝜆ట ቆ𝑣෤ cos 𝛾 sin 𝜓 (tanଶ 𝜑 + 1)𝑟̃ ቇ (102) 

−𝜆ሚ̇௩ = 𝜆௥(sin 𝛾) + 𝜆ఏ cos 𝛾 sin 𝜓𝑟̃ cos 𝜑 + 𝜆ఝ cos 𝛾 cos 𝜓𝑟̃ + 𝜆ఊ ቆcos 𝛾𝑟̃ − 𝐿෨ఊ𝑚෥𝑣෤ଶ + 𝜇෤ cos 𝛾𝑣෤ଶ𝑟̃ଶ ቇ
− 𝜆ట ቆ 𝐿෨ట𝑚෥𝑣෤ଶ cos 𝛾 − cos 𝛾 sin 𝜓 tan 𝜑𝑟̃ ቇ + 3𝜀ଷ𝑘෨ொ𝑣෤ଶඥ𝜌෤ 

(103) 

−𝜆ሚ̇ట = 𝜆ఏ 𝑣෤ cos 𝛾 cos 𝜓𝑟̃ cos 𝜑 − 𝜆ఝ 𝑣෤ cos 𝛾 sin 𝜓𝑟̃ + 𝜆ట ൬𝑣෤𝑟̃ cos 𝛾 cos 𝜓 tan 𝜑൰ (104) 

With Boundary Conditions: ൫𝑟̃଴, 𝜃෨଴, 𝜑෤଴, 𝑣෤଴, 𝛾෤଴, 𝜓෨଴൯ = (6.61,0,0,0,0,0) (105) 𝑟̃௙ = 1 (106) ൫𝜃෨௙ , 𝜑෤௙൯ = (36.6002, −121.8947) (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) (107) 𝜆ሚ௩(𝑡௙) = 0 (108) 𝜆ሚఊ(𝑡௙) = 0 (109) 
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𝜆ሚట(𝑡௙) = 0 (110) 𝐻ഥ൫𝑡௙൯ = −1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (111) 

With Complementarity Conditions: 

𝜀ଵ ൞≤ 0  𝑖𝑓             𝐿෨ఊ = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ఊ ≤ 10 ≥ 0 𝑖𝑓                 𝐿෨ఊ = 10  (111) 

𝜀ଶ ൞≤ 0  𝑖𝑓             𝐿෨ట = −10= 0 𝑖𝑓 − 10 ≤  𝐿෨ట ≤ 10 ≥ 0 𝑖𝑓                 𝐿෨ట = 10  (111) 

𝜀ଷ ቐ≤ 0  𝑖𝑓                   𝑄̇ = 0= 0 𝑖𝑓       0 ≤  𝑄̇ ≤ 4.9 ≥ 0 𝑖𝑓                𝑄̇ = 4.9  (111) 

Appendix C DIDO Program Code 

C.1. Preamble file 

function [rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, DBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal) 

%========================================================================= 

% Preamble for Missile Launched from Geostationary Orbit to Specific Target min time 

%========================================================================= 

%Scaled Values 

rBar = primal.states(1,:); %States 

thetaBar = primal.states(2,:); 

phiBar = primal.states(3,:); 

vBar = primal.states(4,:); 

gammaBar = primal.states(5,:); 

psiBar = primal.states(6,:); 

 

LgammaBar = primal.controls(1,:); %Controls 

LpsiBar = primal.controls(2,:); 

 

tBar = primal.time; %Time 

 

r0Bar = primal.initial.states(1); %Initial States 

theta0Bar = primal.initial.states(2); 

phi0Bar = primal.initial.states(3); 

v0Bar = primal.initial.states(4); 

gamma0Bar = primal.initial.states(5); 

psi0Bar = primal.initial.states(6); 

 

t0Bar = primal.initial.time; %Initial Time 
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rfBar = primal.final.states(1); %Final States 

thetafBar = primal.final.states(2); 

phifBar = primal.final.states(3); 

vfBar = primal.final.states(4); 

gammafBar = primal.final.states(5); 

psifBar = primal.final.states(6); 

 

tfBar = primal.final.time; %Final Time 

 

uBar = primal.constants.uBar; %Constants 

TBar = primal.constants.TBar;  

mBar = primal.constants.mBar; 

DBar = primal.constants.DBar; 

g = primal.constants.g; 

Cd = primal.constants.Cd; 

S = primal.constants.S; 

FU = primal.constants.FU; 

R = primal.constants.R; 

V = primal.constants.V; 

TU = primal.constants.TU; 

kq = primal.constants.kq; 

DU = primal.constants.DU; 

KU = primal.constants.KU; 

 

%eof 

C.1. Pz %Search Space for rBar 

 

-pi, pi; %Search Space for thetaBar (Longitude) 

 

-pi/2, pi/2; %Search Space for phiBar (Latitude) 

 

0, 5; %Search Space for vBar 

 

-pi, pi; %Search Space for gammaBar 

 

-pi, pi]; %Search Space for psiBar 

search.controls = [-11, 11; %Search Space for Lgamma 

 

-11, 11]; %Search Space for Lpsi 

%========================================================================= 

%Defining Problem Specific Constants 

%Unscaled Constants 

mu = 3.986004418e5; %Earth Gravitational Parameter km/sec2 

Thrust = 17.799; %4000lbf converted to kgkm/s^2 

mass = 5000; %Initial Mass 

 

MS4.constants.g = 0.00981; %Gravitational Constant of Earth in km/s^2 

MS4.constants.Cd = 0.8; %Drag Coefficient 

MS4.constants.S = 3.44e-6; %Drag Reference Area (km^2) 

MS4.constants.kq = sqrt(1000)*9e-5; %kg^.5/km^.5 

 

%Scaling Factors 
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MS4.constants.R = 6378; %Distance Scaling 

MS4.constants.TU = sqrt(MS4.constants.R/MS4.constants.g);%Time Scaling 

MS4.constants.AU = 1; %Angle Scaling => Radians remain unscaled 

MS4.constants.V = MS4.constants.R/MS4.constants.TU; %Velocity Scaling 

MS4.constants.M = 10; %Mass Scaling 

MS4.constants.A = MS4.constants.R/(MS4.constants.TU^2);%Acceleration Scaling 

MS4.constants.FU = MS4.constants.M*MS4.constants.A; %Force Scaling 

MS4.constants.DU = MS4.constants.M/(MS4.constants.R^3); %Density Scaling 

MS4.constants.KU = (MS4.constants.M^.5)/(MS4.constants.R^.5); 

 

%Scaled Constants 

MS4.constants.uBar = (MS4.constants.TU^2/(MS4.constants.R^3))*mu; %Scaled Earth 

Gravitational Parameter 

%MS4.constants.TBar = Thrust/MS4.constants.FU; %Scaled Thrust 

MS4.constants.TBar = Thrust; 

MS4.constants.mBar = mass/MS4.constants.M; %Scaled Mass in kg 

MS4.constants.DBar = 1.2344; 

%========================================================================= 

%Boundary Conditions 

rInitial = 43378; %kilometers - Does not change 

rFinal = 6378; %kilometers - Changes with tgt location 

r0Bar = rInitial/MS4.constants.R; %Scale initial condition 

rfBar = rFinal/MS4.constants.R; %Scale final condition 

phi0Bar = deg2rad(0); %Latitude is unscaled in radians 

theta0Bar = deg2rad(-90); %Longitude is unscaled in radians 

v0Bar = 1/MS4.constants.V; %Initial velocity is near zero 

gamma0Bar = deg2rad(-89); %Flight Path angle is unscaled in radians 

psi0Bar = deg2rad(0); %Flight Path Azimuth is unscaled in radians 

phifBar = deg2rad(36.6002); %Latitude of target to radians 

thetafBar = deg2rad(-121.8947); %Longitude of target to radians 

 

bounds.events = [r0Bar, r0Bar; %Radius of geosynchronous orbit 

 

theta0Bar, theta0Bar;%Set initial latitude of orbit 

 

phi0Bar, phi0Bar; %Set initial longitude of orbit 

 

v0Bar, v0Bar; %v0 is 0 

 

gamma0Bar, gamma0Bar;%Set initial flightpath angle 

 

psi0Bar, psi0Bar; %Set initial flightpath azimuth 

 

rfBar, rfBar; %Target radius 

 

thetafBar, thetafBar;%Target latitude 

 

phifBar, phifBar]; %Target longitude 

%========================================================================= 

%Initial and Final Time Constraints 

bounds.initial.time = [0, 0]; %Clock starts at beginning 

bounds.final.time = [0, 15]; %Guess on upper bound 
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%========================================================================= 

%Path Constraints 

bounds.path = [-10, 10; %Control Constraint, -10<=LBar<=10 

 

-10, 10; %Control Constraint, -10<=LBar<=10 

 

0, 4.9]; %Heating Rate Constraint 

%========================================================================= 

%Problem Definition 

MS4.cost = 'MS4Cost'; 

MS4.dynamics = 'MS4Dynamics'; 

MS4.events = 'MS4Events'; 

MS4.path = 'MS4Path'; 

MS4.search = search; 

MS4.bounds = bounds; 

 

%========================================================================= 

%DIDO Formulation check 

 

check(MS4); 

 

%========================================================================= 

%Node selection 

algorithm.nodes = 55; 

 

%========================================================================= 

%Run DIDO and time the program 

tic 

[cost, primal, dual] = dido(MS4, algorithm); 

toc 

 

%========================================================================= 

%Output Analysis 

 

[rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, DBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal); 

 

 

MinTime = cost*MS4.constants.TU 

 

lam_rBar = dual.dynamics(1,:); 

lam_thetaBar = dual.dynamics(2,:); 

lam_phiBar = dual.dynamics(3,:); 

lam_vBar = dual.dynamics(4,:); 

lam_gammaBar = dual.dynamics(5,:); 
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lam_psiBar = dual.dynamics(6,:); 

 

eps1 = dual.path(1,:); 

eps2 = dual.path(2,:); 

eps3 = dual.path(3,:); 

 

stat1 = lam_gammaBar./(mBar.*vBar); 

stat2 = lam_psiBar./(mBar.*vBar.*cos(gammaBar)); 

%========================================================================= 

%PLOTS 

figure; 

plot(tBar, [rBar; thetaBar; phiBar; vBar; gammaBar; psiBar]); grid on; 

title('Scaled State Trajectories (2D View)','Interpreter','latex'); 

xlabel('Scaled Time (\tau)','FontSize',16); 

ylabel('Scaled States $\mathbf{\tilde{x}}$','Interpreter','latex','FontSize',16); 

legend('$\tilde{r}$','$\tilde{\theta}$','$\tilde{\phi}$','$\tilde{v}$','$\tilde{\gamma}$','$\tilde{\

psi}$','Interpreter','latex','FontSize', 10); 

 

figure; 

plot(tBar, [LgammaBar; LpsiBar]); grid on; 

title('Scaled Controls') 

legend('$\tilde{L}_\gamma$','$\tilde{L}_\psi$','Interpreter','latex','FontSize',10) 

xlabel('Scaled Time (\tau)','FontSize',16) 

 

figure; 

plot(tBar, [lam_rBar; lam_thetaBar; lam_phiBar; lam_vBar; lam_gammaBar; lam_psiBar]); grid 

on; 

title('Scaled Co-State Trajectories','Interpreter','latex'); 

legend('$\tilde{\lambda_r}$','$\tilde{\lambda_\theta}$','$\tilde{\lambda_\phi}$','$\tilde{\la

mbda_v}$','$\tilde{\lambda_\gamma}$','$\tilde{\lambda_\psi}$','Interpreter','latex','FontSize', 10); 

xlabel('Scaled Time (\tau)','FontSize',16); 

 

figure; 

plot(tBar, dual.Hamiltonian); grid on; 

title('Scaled Hamiltonian'); 

xlabel('Scaled Time (\tau)','FontSize',16); 

ylabel('Scaled Hamiltonian $\tilde{H}$','Interpreter','latex','FontSize',16); 

 

figure; 

plot3(thetaBar,phiBar,rBar); grid on; 

title('Three Dimensional Flight Path of the Missile','Interpreter','latex'); 

xlabel('Latitude ${\theta}$','Interpreter','latex','FontSize',16); 

ylabel('Longitude ${\phi}$','Interpreter','latex','FontSize',16); 

zlabel('Radius from Center of the Earth ${r}$','Interpreter','latex','FontSize',10); 

 

figure; 

yyaxis left 

plot(tBar, [eps1; eps2; eps3]); grid on; 

title('Constraint Controls','Interpreter','latex'); 

xlabel('Scaled Time (\tau)','FontSize',16); 

ylabel('${\epsilon}$','Interpreter','latex','FontSize',16); 

yyaxis right 
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plot(tBar, [LgammaBar; LpsiBar]); 

legend('${\epsilon_1}$','${\epsilon_2}$','${\epsilon_3}$','$\tilde{L}_\gamma$','$\tilde{L}_\psi

$','Interpreter','latex','FontSize', 10); 

ylabel('Controls'); 

 

figure; 

plot(tBar, [eps1; eps2; stat1; stat2]); grid on; 

title('Stationarity Condition Check','Interpreter','latex'); 

xlabel('Scaled Time (\tau)','FontSize',16); 

legend('${\epsilon_1}$','${\epsilon_2}$','Stat_1','Stat_2','Interpreter','latex','FontSize',10); 

%========================================================================== 

%Unscale States, Co-States, Controls 

r = rBar.*MS4.constants.R; 

theta = thetaBar; 

phi = phiBar; 

v = MS4.constants.V.*vBar; 

gamma = gammaBar; 

psi = psiBar; 

T = tBar.*MS4.constants.TU; 

 

lam_r = (MS4.constants.TU/MS4.constants.R) .* lam_rBar; 

lam_theta = (MS4.constants.TU/MS4.constants.AU) .* lam_thetaBar; 

lam_phi = (MS4.constants.TU/MS4.constants.AU) .* lam_phiBar; 

lam_v = (MS4.constants.TU/MS4.constants.V) .* lam_vBar; 

lam_gamma = (MS4.constants.TU/MS4.constants.AU) .* lam_gammaBar; 

lam_psi = (MS4.constants.TU/MS4.constants.AU) .* lam_psiBar; 

 

Lgamma = LgammaBar./(MS4.constants.TU^2/(MS4.constants.R*MS4.constants.M)); 

Lpsi = LpsiBar./(MS4.constants.TU^2/(MS4.constants.R*MS4.constants.M)); 

 

% figure; 

% plot(T, [(r.*.0003); v]); grid on; 

% title('State Trajectories','Interpreter','latex'); 

% xlabel('Time ${t}$','Interpreter','latex','FontSize',16); 

% ylabel('States $\mathbf{{x}}$','Interpreter','latex','Fontsize',16); 

% legend('${r}$','${v}$','Interpreter','latex','FontSize',16); 

 

figure; 

plot(T, [r; v; theta; phi; gamma; psi]); grid on; 

title('State Trajectories','Interpreter','latex'); 

xlabel('Time $(t)$','Interpreter','latex','FontSize',16); 

ylabel('States $\mathbf{{x}}$','Interpreter','latex','FontSize',16); 

legend('${r}$','${v}$','${\theta}$','${\phi}$','${\gamma}$','${\psi}$','Interpreter','latex','FontSize',

10); 

 

figure; 

plot(T, [lam_r; lam_theta; lam_phi; lam_v; lam_gamma; lam_psi]); grid on; 

title('Co-State Trajectories','Interpreter','latex'); 

xlabel('Time ${t}$','Interpreter','latex','FontSize',16); 

ylabel('Co-States $\mathbf{{\lambda}}$','Interpreter','latex','FontSize',16); 

legend('${\lambda_r}$','${\lambda_\theta}$','${\lambda_\phi}$','${\lambda_v}$','${\lambda_

\gamma}$','${\lambda_\psi}$','Interpreter','latex','FontSize',10); 
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figure; 

plot(T, [Lgamma; Lpsi]); grid on; 

title('Controls'); 

legend('${L_\gamma}$','${L_\psi}$','Interpreter','latex','FontSize',10); 

xlabel('Time ${t}$','Interpreter','latex','FontSize',10); 

%========================================================================== 

%Individual State Comparisons 

figure; 

yyaxis left 

plot(T,r); 

xlabel('Time (sec)'),ylabel('${r}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_r); 

ylabel('${\lambda_r}$','Interpreter','latex') 

title('${r}$ vs ${\lambda_r}$','Interpreter','latex') 

 

figure; 

yyaxis left 

plot(T,theta); 

xlabel('Time (sec)'),ylabel('${\theta}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_theta); 

ylabel('${\lambda_\theta}$','Interpreter','latex') 

title('${\theta}$ vs ${\lambda_\theta}$','Interpreter','latex') 

 

figure; 

yyaxis left 

plot(T,phi); 

xlabel('Time (sec)'),ylabel('${\phi}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_phi); 

ylabel('${\lambda_\phi}$','Interpreter','latex') 

title('${\phi}$ vs ${\lambda_\phi}$','Interpreter','latex') 

 

figure; 

yyaxis left 

plot(T,v); 

xlabel('Time (sec)'),ylabel('${v}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_v); 

ylabel('${\lambda_r}$','Interpreter','latex') 

title('${v}$ vs ${\lambda_v}$','Interpreter','latex') 

 

figure; 

yyaxis left 

plot(T,gamma); 

xlabel('Time (sec)'),ylabel('${\gamma}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_gamma); 

ylabel('${\lambda_\gamma}$','Interpreter','latex') 

title('${\gamma}$ vs ${\lambda_\gamma}$','Interpreter','latex') 
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figure; 

yyaxis left 

plot(T,psi); 

xlabel('Time (sec)'),ylabel('${\psi}$','Interpreter','latex'); 

yyaxis right 

plot(T,lam_psi); 

ylabel('${\lambda_\psi}$','Interpreter','latex') 

title('${\psi}$ vs ${\lambda_\psi}$','Interpreter','latex') 

 

% %========================================================================== 

% Feasibility Check 

t_vec = T(:); 

[T_feas, X_feas] = ode45(@(t,y)stateDynamics(t,y,t_vec,[Lgamma; Lpsi]),[t_vec(1) 

t_vec(end)],[r(1);theta(1);phi(1);v(1);gamma(1);psi(1)]); 

r_feas = X_feas(:,1); 

theta_feas = X_feas(:,2); 

phi_feas = X_feas(:,3); 

v_feas = X_feas(:,4); 

gam_feas = X_feas(:,5); 

psi_feas = X_feas(:,6); 

 

figure; 

hLines = plot(T_feas,(r_feas./1e4),'.-',T_feas,theta_feas,'.-',T_feas,phi_feas,'.-',T_feas,v_feas,'.-

',T_feas,gam_feas,'.-',T_feas,psi_feas,'.-'); hold on; grid on; 

hMarkers4 = plot(t_vec,[r./1e4; theta; phi; v; gamma; psi],'o'); 

set(hLines,'MarkerSize',12); 

set(hMarkers4,'LineWidth',1); 

title('Control-Propagated States','Interpreter','latex'); 

xlabel('Time ${t}$','Interpreter','latex','FontSize',16); 

ylabel('States $\mathbf{{x}}$','Interpreter','latex','FontSize',16); 

legend('${r}$','${\theta}$','${\phi}$','${v}$','${\gamma}$','Interpreter','latex'); 

 

 

%========================================================================== 

%% FEASIBILITY CHECK FUNCTION  

function dXdt = stateDynamics(t,X,tData,uData,MS4) 

 

Lg_t = interp1(tData,uData(1,:),t,'pchip'); 

 

Lp_t = interp1(tData,uData(2,:),t,'pchip'); 

 

 

 

r = X(1); 

 

theta = X(2); 

 

phi = X(3); 

 

v = X(4); 
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gamma = X(5); 

 

psi = X(6); 

 

 

 

drdt = v .* sin(gamma); 

 

dtdt = (v.*cos(gamma).*sin(psi))./(r.*cos(phi)); 

 

dpdt = (v.*cos(gamma).*cos(psi))./r; 

 

dvdt = -(.1211/5000)-((3.986004418e5.*sin(gamma))./(r.^2))+(1.7461/5000); 

 

dgdt = (Lg_t./(5000.*v))-((3.9860044815e5.*cos(gamma))./((r.^2).*v))+((v./r).*cos(gamma)); 

 

didt = (Lp_t./(5000.*v.*cos(gamma)))+((v./r).*cos(gamma).*sin(psi).*tan(phi)); 

 

 

 

dXdt = [drdt; dtdt; dpdt; dvdt; dgdt; didt]; 

end 

C.1. Dynamics file 

All appendix sections must be cited in the main text. In the appendices, Figures, Tables, etc. 

should be labeled starting with “A”—e.g., Figure A1, Figure A2, etc. 

function dxdtBar = MS4Dynamics(primal) 

%Missile from Geosynchronous Orbit to target on Earth in minimum time 

 

%========================================================================= 

 

[rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, DBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal); 

 

 

%Equations of Motion  

 

rdotBar = vBar.*sin(gammaBar); 

thetadotBar = (vBar.*cos(gammaBar).*sin(psiBar))./(rBar.*cos(phiBar)); 

phidotBar = (vBar.*cos(gammaBar).*cos(psiBar))./rBar; 

[T, a, P, rho] = atmosisa((rBar.*R.*1000)-(R*1000));%Unscale altitude and change to meters 

rhoBar = rho./DU; %Scale Density by Density Unit Scale Factor 

SBar = S/(R^2); %Scale ReferenceArea 

Dscale = .5.*rhoBar.*vBar.^2*Cd*SBar; %Scaled Drag 

vdotBar = -(DBar/mBar)-((uBar.*sin(gammaBar))./(rBar.^2))+(TBar./mBar); 
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gammadotBar = (LgammaBar./(mBar.*vBar))-

((uBar*cos(gammaBar))./(rBar.^2.*vBar))+((vBar./rBar).*cos(gammaBar)); 

psidotBar = 

(LpsiBar./(mBar.*vBar.*cos(gammaBar)))+((vBar./rBar).*cos(gammaBar).*sin(psiBar).*tan(phiBar)); 

 

 

dxdtBar = [rdotBar; 

 

thetadotBar; 

 

phidotBar; 

 

vdotBar; 

 

gammadotBar; 

 

psidotBar]; 

 

 

%eof 

C.1. Cost file 

function [EndpointCost, RunningCost] = MS4Cost(primal) 

%Missile from Geosynchronous Orbit to target on Earth in minimum time 

%========================================================================= 

[rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, DBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal);  

EndpointCost = tfBar; 

RunningCost = 0; 

%eof 

C.1. Events file 

function endpointFunction = MS4Events(primal) 

%Missile from Geosynchronous Orbit to target on Earth in minimum time 

%Endpoint File 

%========================================================================= 

 

[rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal); 
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endpointFunction = zeros(9,1); 

 

%Beginnning Enpoints 

endpointFunction(1) = r0Bar; 

endpointFunction(2) = theta0Bar; 

endpointFunction(3) = phi0Bar; 

endpointFunction(4) = v0Bar; 

endpointFunction(5) = gamma0Bar; 

endpointFunction(6) = psi0Bar; 

 

%Final Endpoints 

endpointFunction(7) = rfBar; 

endpointFunction(8) = thetafBar; 

endpointFunction(9) = phifBar; 

C.1. Path file 

function H = MS4Path(primal) 

%Missile from Geosynchronous Orbit to target on Earth in minimum time 

%----------------------------------------- 

% Call preamble and load primal variables: 

%----------------------------------------- 

[rBar, thetaBar, phiBar, vBar, gammaBar, psiBar, LgammaBar, LpsiBar, tBar, ... 

 

r0Bar, theta0Bar, phi0Bar, v0Bar, gamma0Bar, psi0Bar, t0Bar, ... 

 

rfBar, thetafBar, phifBar, vfBar, gammafBar, psifBar, tfBar, ... 

 

uBar, TBar, mBar, DBar, Cd, S, R, V, kq, FU, DU, KU] ... 

 

= MS4Preamble(primal); 

%======================================================= 

% path constraint function: 

H(1,:) = LgammaBar; 

H(2,:) = LpsiBar; 

 

h = (rBar.*R.*1000); 

rho0 = 1.225; %Sea level density in kg/m^3 

Hs = 7500; %Height scale 

rp = R*1000; 

rho = rho0*exp(-(h-rp)/Hs); 

vd = vBar.*V.*1000; 

qdot = kq.*sqrt(rho).*(vd.^3); 

H(3,:) = qdot/1e9; %Scale in Engineering Units 
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