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Abstract: Costa Rica, despite its environmental leadership in Latin America, faces persistent 

challenges in achieving equitable and efficient solid waste management—particularly across its 

urban–rural divide. This study introduces a novel, multi-model computational framework that 

integrates geospatial simulation, agent-based modeling (ABM), reinforcement learning (RL), and 

economic cost analysis to assess and optimize recycling accessibility, behavior, and system 

efficiency.Using spatial data for all seven provinces, household-level recycling engagement is 

simulated under varying infrastructure and policy scenarios. Initial simulations reveal that more than 

18,000 households in provinces like Alajuela remain over 50 km from the nearest facility, significantly 

constraining participation. While baseline ABM results show regional disparities—with recycling 

rates ranging from 28.9% to 36.7%—the integration of RL raises national recycling performance to 

84.3% and lowers the cost-per-ton of waste managed from USD 1,784 to just USD 128. Monte Carlo-

based cost simulations identify processing, setup, and operations as the primary cost drivers, while 

sensitivity analyses confirm the economic resilience of the RL strategy. By linking adaptive behavioral 

modeling with spatial equity and environmental impact, this study offers a scalable, data-driven 

decision-support tool to inform policy, guide infrastructure investment, and support Costa Rica’s 

circular economy and Sustainable Development Goal (SDG) targets. The framework is transferable 

to other Global South contexts facing similar waste governance challenges. 

Keywords: agent-based modeling (ABM); reinforcement learning (RL); waste management; circular 

economy; spatial accessibility; sustainable infrastructure 

 

1. Introduction 

Effective waste management systems are critical to mitigating the environmental impacts of 

growing solid waste streams—particularly in developing nations where urban–rural disparities in 

infrastructure and service delivery complicate sustainable practices. The United Nations Sustainable 

Development Goals (SDGs), specifically SDG 12 (Responsible Consumption and Production) and 

SDG 13 (Climate Action), emphasize equitable access to waste recovery systems to reduce pollution 

and promote circularity (United Nations, 2023). Although Costa Rica is often hailed as a regional 

sustainability leader, significant challenges persist: landfill saturation, limited rural infrastructure, 

and persistent gaps in public waste-sorting behavior all threaten the long-term resilience of the 

national system (Baltodano-Goulding & Poveda-Montoya, 2023; Rojas Robles, 2025). 

These systemic constraints mirror global patterns. In the Global South, limited recycling 

infrastructure, open dumping, and underdeveloped circular practices continue to dominate 

(Ferronato et al., 2024). Urban centers such as San José benefit from dense recycling networks, while 

coastal and rural areas—including Limón and Guanacaste—struggle with sparse facility coverage 

and low participation rates (Bravo et al., 2024; Graham, 2024a). Past studies suggest that Geographic 

Information Systems (GIS) can significantly improve facility placement, especially in underserved 
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regions, while social factors—such as internet access and education—play a key role in driving 

household behavior (Graham, 2024a; Bravo et al., 2024). 

This study addresses these challenges by developing the first computational framework in Costa 

Rica that integrates spatial accessibility (Model 1), agent-based behavioral simulation (Model 2), 

reinforcement learning (Model 3), cost modeling (Model 4), and parameter sensitivity analysis 

(Model 5). This systems-level approach quantifies the technical, behavioral, and economic effects of 

decentralized recycling strategies. 

The research pursues five objectives: 

(1) To assess current recycling accessibility across Costa Rican provinces using geospatial and 

demographic data; 

(2) To simulate infrastructure expansion scenarios to improve household access in underserved 

areas; 

(3) To model recycling participation and environmental outcomes using ABM and RL; 

(4) To estimate the financial feasibility of proposed strategies through a cost model incorporating 

setup, labor, operational, and energy expenses; and 

(5) To evaluate parameter sensitivity through contour-based simulations, informing scalable and 

economically viable policy design. 

To this end, the study deploys an agent-based model (ABM) to replicate household sorting 

behaviour across Costa Rica’s diverse regions. ABMs are well-established tools for capturing socio-

environmental feedbacks and simulating spatial behavior under policy scenarios (Le Page et al., 

2013). Recent spatial ABM work further confirms their utility in reproducing intention–behaviour 

gaps and localised performance under infrastructure change (Cohen, Gil, & Rosado, 2025). 

Reinforcement learning (RL) is layered onto the ABM to optimise agents’ decisions and facility 

policies dynamically—an approach shown to reduce transport exposure risk by nearly 20% in 

municipal waste-routing systems (Sert et al., 2020; Khallaf et al., 2025). To assess economic viability, 

the model integrates a Monte Carlo-based cost simulation, enabling propagation of uncertainty in 

logistics, energy use, and investment inputs—an essential feature for robust circular economy 

planning (Gamal et al., 2025). Together, these innovations deliver a systems-level platform for 

evaluating decentralised infrastructure, grounded in recent evidence on composting and 

decentralised waste-energy conversion in tropical contexts (Ashraf et al., 2025). 

By uniting spatial intelligence, machine learning, behavioral simulation, and economic 

modeling, this research provides a novel, multidisciplinary framework for improving recycling 

participation, siting infrastructure equitably, and reducing the cost-per-ton of sustainable waste 

recovery in Costa Rica. 

2. Literature Review 

2.1. Current State of Waste Management 

Costa Rica continues to face significant challenges in managing solid waste, particularly due to 

regional inequalities in socioeconomic conditions and the availability of infrastructure. In the 

Metropolitan Area, the estimated waste generation rate is around 0.59 kg per person per day, with 

organic waste accounting for 55.9% of the total waste (Herrera-Murillo et al., 2016). Conversely, in 

the canton of Guácimo, the waste generation rate is slightly lower, at 0.55 kg per person per day, with 

waste composition comprising 45% biodegradable material, 35% recyclable waste, and 20% destined 

for landfills (Campos Rodríguez & Soto Córdoba, 2014). These differences highlight the fact that 

urban areas, such as San José, contribute to roughly 47% of the country’s waste, putting substantial 

pressure on existing infrastructure. The recent shutdown of the Los Pinos landfill in Cartago has 

further emphasized the need for alternative methods of waste management. In light of this, the 

development of regionally tailored leachate management models that consider Costa Rica’s tropical 

climate has been recognized as an essential strategy for improving landfill operations (Baltodano-

Goulding & Poveda-Montoya, 2023). Understanding the dynamics of these regional variations is key 
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to developing targeted and equitable strategies that can enhance waste management systems across 

both urban and rural regions. 

Given these disparities in both geography and demographics, utilizing a geospatial approach 

for modeling accessibility is crucial. By simulating how distance and infrastructure influence 

household access to recycling facilities, this study’s spatial model provides a data-driven foundation 

to identify underserved areas and evaluate the potential impacts of new infrastructure, particularly 

in rural areas and densely populated urban zones. 

 

2.2. Landfill Capacity, Waste Flows, and Global Recycling Comparison 

Costa Rica continues to face severe structural inefficiencies in its solid waste system. According 

to the Ministry of Health, approximately 1,282,057 tonnes of waste were landfilled in 2021, but only 

9.6% was recovered: 3.9% through recycling, 2.7% composting, and 2.4% co-processing (Chaves 

Brenes, 2024; OECD, 2023; Quesada Cordero, 2024). The vast majority—94%—is still directed to 

landfill, a figure compounded by limited infrastructure in rural areas (Ministerio de Ambiente y 

Energía, 2023). Urban centers like San José generate over 58% organic waste, underscoring the urgent 

need for better composting infrastructure (Becerra, 2021). 

However, the landfill situation has deteriorated rapidly. In early 2025, La Carpio landfill, which 

serves most of the Greater Metropolitan Area (GAM), was reported to be at the end of its operational 

life, while El Huazo, the only alternative in Aserrí, is projected to close within months. A proposed 

replacement, the Bajo Pita landfill in San Miguel de Turrúcares, has faced public backlash due to 

environmental concerns and questionable permitting processes. Despite legal disputes, the national 

government has backed this site under Project Law 24.251, aiming to regionalize landfill 

management, even overriding municipal decision-making authority—a move heavily contested by 

communities and local governments (Rojas Robles, 2025). 

Parallel to the infrastructure crisis, waste generation in Costa Rica has shown a steady rise: 1.46 

million tonnes in 2018, 1.61 million tonnes in 2022, and over 11,000 tonnes produced daily in 2025 

(Rodríguez, 2025; Li, 2025). Despite national circular economy efforts, including composting, 

recycling, and reuse programs, most of the recoverable waste ends up in landfills or informal dump 

sites due to gaps in enforcement, funding, and education (Li, 2025). 

International comparisons highlight Costa Rica's lag in recovery. Germany and South Korea 

recycle 69.3% and 69% of their waste, respectively, thanks to robust public participation and 

infrastructure, while Costa Rica recycles only 9.6% (OECD, 2023). As Table 1 shows, Costa Rica’s 

reliance on landfill contrasts with countries that have implemented mandatory separation, waste-to-

energy technologies, and circular design policies (Landgeist, 2024; Klein, 2024; Seoul Metropolitan 

Government, 2023). 

Table 1. Global Recycling Rates and Contributing Factors. 

Region/Country Recycling Rate 

(%) 

Key Contributing Factors References 

European Union 46% (2020) Varies across member states; strong 

policies and infrastructure  (European Environment 

Agency, 2023) 

Germany 69.3% (2024) Stringent waste separation, strong 

regulations Landgeist, 2024 

United States 21% (2024) State-level variations, mixed public 

participation Recycling Partnership, 2024 
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Japan 20% (2023) Meticulous waste sorting, but lower 

recycling infrastructure Klein, 2024 

Brazil 4% (2024) Driven by informal sector, lack of formal 

infrastructure Gerden, 2024 

South Korea 69% (2023) Public involvement, advanced waste 

sorting systems Seoul Metropolitan 

Government, 2023 

Sweden 50% (2024) High integration of Waste-to-Energy 

(WtE) technologies Swedish Environmental 

Protection Agency, 2024 

 

Costa Rica 9.6% High landfill dependency, minimal 

recycling infrastructure OECD, 2023 

The crisis in landfill capacity, the growth of daily waste generation, and weak recovery practices 

form the foundation for this study's computational approach. By integrating geospatial accessibility 

(Model 1), agent-level behavior simulations (Models 2 and 3), and economic modeling (Model 4), the 

research quantifies how infrastructure, behavior, and policy interact. These models enable the testing 

of alternative facility locations, regional management scenarios, and recycling strategies under 

different economic and behavioral conditions—scenarios urgently needed to respond to the 

challenges detailed in this section. 

2.3. Government Initiatives and Policies 

The Costa Rican government has introduced key initiatives, such as the Environmental Health 

Route policy and the National Circular Economy Strategy, to increase the national recycling rate to 

25% by 2033. These initiatives include specific targets, such as a 10% reduction in per capita waste 

generation by 2025, enhanced public education on recycling, and development of new processing 

facilities in underserved areas (Ministerio de Salud de Costa Rica, 2023). Additionally, Law No. 

9786, targeting single-use plastics, supports these goals by enforcing restrictions and promoting 

sustainable alternatives (Gómez, 2023; Holland Circular Hotspot, 2021). 

As shown in Table 2, the government has outlined a series of strategic initiatives, each with 

specific targets and timeframes aimed at reducing waste generation and improving recycling 

infrastructure. 

Table 2. Government Initiatives and Goals. 

Initiative Goal Target 

Year 

Reference 

Environmental Health Route Policy Increase recycling rate to 25% 2033 
Ministerio de Salud de 

Costa Rica, 2023 

Environmental Health Route Policy Ensure regular garbage 

collection in 34% of the 

territory 

2023 
Ministerio de Salud de 

Costa Rica, 2023 
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Environmental Health Route Policy Reduce per capita waste 

generation by 10% 

2025 
Ministerio de Salud de 

Costa Rica, 2023 

National Circular Economy Strategy Promote circular economy 

practices 

Ongoing 
Gómez, 2023; Holland 

Circular Hotspot, 2021 

Law No. 9786 (Law to Combat Plastic 

Pollution and Protect the 

Environment) 

Drastically reduce single-use 

plastic usage and promote 

sustainable alternatives 

2019 
Procuraduría de la 

República de Costa 

Rica, 2024 

These policy frameworks provide a valuable context for evaluating the behavioral and economic 

implications simulated in this study’s models, particularly those addressing regional waste flow, 

recycling infrastructure, and incentive strategies. 

2.5.1. Waste Management Innovation Index 

The Waste Management Innovation Index provides a comparative overview of global progress 

in solid waste management by evaluating five key dimensions: technological advancement, policy 

innovation, public engagement, infrastructure development, and sustainability impact. 

As shown in Table 3, Costa Rica significantly lags behind high-performing countries, 

particularly in technology and infrastructure—two areas critical for modern waste diversion and 

circular economy strategies. 

Table 3. Waste Management Innovation Index. 

Country Technological 

Advancements 

Policy 

Innovation 

Public 

Engagement 

Infrastructure 

Development 

Sustainability 

Impact 

Overall 

Index 

Score 

References 

Germany High High High High High 9/10  BMUV, 2023 

United States High High High High Moderate 9/10 WIPO, 2024 

Japan High High High Moderate Moderate 8/10 
Klein, 2024 

Brazil Low Low Low Low Low 3/10 Lino et al., 2023 

South Korea High High High High High 9/10 Kwon et al., 2024 
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Sweden High High High High High 9/10 Sandhi & 

Rosenlund, 2024 

Costa Rica Low Moderate Moderate Low Low 4/10 Arias, 2024 

These innovation gaps directly inform the modeling strategies used in this research, which 

simulate the performance of improved infrastructure and policy interventions in closing Costa Rica’s 

technological and sustainability deficit. 

2.6. National Waste-to-Energy Initiatives 

The Costa Rican Electricity Institute (ICE) has launched a multi-phase biogas initiative to 

address the country’s escalating waste crisis by converting organic waste—53% of the national 

stream—into renewable energy. A pilot facility at La Uruca already feeds 140 kW of landfill-derived 

energy into the national grid, demonstrating the project’s potential for expansion. This effort aligns 

with the Ministry of Health’s broader Waste-to-Energy (WtE) strategy aimed at developing 

decentralized regional treatment centers (Tico Times, 2024). 

Despite its promise, the initiative faces major hurdles, including limited technical infrastructure, 

inconsistent municipal engagement, and public resistance in target regions. The program's success, 

especially in the highly pressured Greater Metropolitan Area (GAM), will depend on transparent 

implementation, regulatory alignment, and investment in enabling technologies. 

These national WtE efforts underscore the importance of this study’s modeling framework. By 

simulating household behavior, spatial siting, and cost dynamics, the models provide a decision-

support tool for evaluating the feasibility and impact of WtE deployment under varying regional 

conditions. 

2.7. Computational Modeling in Waste Management 

Although Costa Rica’s policy reforms and international comparisons are well documented, the 

computational modeling of waste-system dynamics remains underdeveloped. A recent global review 

of 2000–2023 studies found that nearly half of all solid waste agent-based models (ABMs) still rely on 

static, rule-based decision mechanisms, with limited use of adaptive behaviors (Tian et al., 2025). 

Spatially explicit simulations also show limitations: for example, an urban ABM that incorporated 

the Theory of Planned Behavior failed to account for changing bin locations, resulting in rigid sorting 

behaviors and widened intention–behavior gaps (Cohen et al., 2025). 

Parallel research highlights that machine learning (ML) integration is still rare. A PRISMA meta-

analysis of 69 municipal solid waste studies reported that fewer than 10% used ML in any capacity, 

and almost none applied it within ABMs (Dawar et al., 2025). When ML is used, reinforcement 

learning (RL) remains an exception. Notable cases include an A*–Deep Q Network that reduced 

medical-waste vehicle routing distance and risk by 18% compared to heuristic methods (Khallaf et 

al., 2025) and a PPO agent that achieved near-zero safety violations in a waste-sorting plant through 

curriculum learning (Pendyala et al., 2024). 

Building on these insights, this study develops the first systems-level model of decentralized 

household recycling and facility siting in Costa Rica, combining ABM with ML-based behavioral 

prediction and RL-driven policy optimization, calibrated to national socio-economic and cost data. 

This hybrid approach addresses the identified methodological gaps by linking adaptive household 

dynamics with geospatial decision-making. 

3. Methodology 

3.1. Geospatial Data Integration and Household Simulation 
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This study employed a geospatial simulation framework to evaluate household accessibility to 

waste management infrastructure across Costa Rica’s seven provinces. Spatial data included 

shapefiles for provincial boundaries, existing recycling facilities, and proposed facility locations, 

processed using GeoPandas in Python. All geospatial layers were reprojected to a unified coordinate 

reference system to ensure accurate distance calculations. Facility points were filtered to include only 

those within provincial boundaries using spatial joins. 

To simulate household distributions, each province was populated with 100 random points, 

generated uniformly within the provincial boundaries. These points represented households and 

were probabilistically labeled as urban or rural based on province-specific urbanization ratios (e.g., 

84% urban for San José). The simulation approach accounted for spatial heterogeneity in settlement 

patterns without requiring detailed address-level data. The total number of households in each 

province was estimated using the following formula (Equation 1): 

 
The variables used were: 

Population: total number of inhabitants in the province 

Average Household Size: the mean number of individuals per household 

Occupancy Rate: percentage of dwellings that are inhabited 

Population and household size values were obtained from national census statistics (Instituto 

Nacional de Estadística y Censos, 2022), as summarized in Supplementary Table 1. This total was 

used to scale the simulated points, ensuring that distance-based accessibility analyses reflected the 

actual number of households per province. 

3.2. Distance Computation and Accessibility Binning 

For each simulated household location, the straight-line (Euclidean) distance to the nearest 

recycling facility, both existing and proposed, was determined. While this approach is simplified, it 

is a common method in spatial accessibility research, providing a reliable measure of proximity when 

detailed transportation network data are unavailable. 

The calculated distances were grouped into five distinct accessibility categories: 0–5 km, 5–10 

km, 10–20 km, 20–50 km, and distances greater than 50 km. These categories serve as key thresholds 

for evaluating the extent of service coverage in different geographic contexts, including both urban 

and rural areas. The number of households falling within each of these distance ranges was 

determined using the following formula (Equation 2): 

 
Where: 

dⅈ is the distance from simulated household ⅈ to the nearest facility 

1X≤dⅈ<Y is an indicator function equal to 1 if the distance falls within the interval [X,Y), 0 otherwise 

n is the number of sampled households 

Scaling Factor adjusts the household sample to reflect actual population totals 

The results were disaggregated by province, region type (urban or rural), distance bin, and 

facility type (existing or proposed), yielding a robust overview of national accessibility conditions. 

3.3. Agent-Based Modeling and Machine Learning Integration 

To simulate household-level recycling behavior across Costa Rica’s seven provinces, we 

developed a hybrid Agent-Based Model (ABM) integrated with a machine learning (ML) classifier. 

This framework enabled dynamic modeling of household decision-making, incorporating spatial 

accessibility, economic incentives, policy penalties, and behavioral adaptation over time. 

Province-specific population and average household size data (see Supplementary Table 1) 

were used to estimate the number of households per province. A total of 1,000 agents were 

proportionally distributed based on these estimates. Each agent was initialized with a randomly 
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assigned set of attributes, including an initial recycling rate (centered around 0.096), binary indicators 

for policy incentives and penalties, a classification as urban or rural, and an accessibility score from 

0 (best access) to 4 (worst), derived from the spatial accessibility model presented in Section 3.2. 

A Random Forest classifier was trained on synthetically generated behavioral data to estimate 

each agent’s probability of engaging in recycling behavior. The classifier used five key input features: 

the agent’s initial recycling rate, the presence of a policy incentive, the presence of a penalty, the 

region type (urban or rural), and the accessibility score. The synthetic data generation process 

simulated participation likelihood based on the following factors (Equation 3): 

 
r is the initial recycling rate (0 to 1) 

I is a binary indicator for policy incentive (1 if present, 0 otherwise) 

P is a binary indicator for penalty (1 if present, 0 otherwise) 

U is the region code (1 for urban, 0 for rural) 

A is the accessibility score (0 = best, 4 = worst) 

The classifier was trained on 1,000 synthetically generated samples and subsequently embedded 

into the ABM as the core decision-making mechanism for each household agent. At every simulation 

time step, agents used the classifier to estimate the probability of recycling based on their current 

attributes. If the probability exceeded a randomly drawn threshold, the agent was classified as 

recycling. When an agent chose to recycle, its personal recycling rate increased by 0.005; if it did not 

recycle, the rate decreased by the same amount. This behavioral adjustment was bounded within the 

interval [0,1][0, 1][0,1], simulating gradual reinforcement or disengagement over time based on past 

behavior. 

Each household’s daily waste generation was modeled using demographic characteristics and 

behavioral parameters. Specifically, the waste generation rate varied depending on household 

location and policy influence. Urban households were assumed to generate 0.59 kg of waste per 

person per day, while rural households generated 0.55 kg, based on national estimates (Herrera-

Murillo et al., 2016; Campos Rodríguez & Soto Córdoba, 2014). The model also incorporated the 

impact of Pay-As-You-Throw (PAYT) policies, which reduce waste generation through economic 

incentives. Accordingly, the total daily waste generated per household agent was calculated as shown 

in Equation (4): 

 
p is the number of persons in the household 

R is the waste generation rate (kg/person/day) 

D is the PAYT discount factor (0.13 if active, 0 if not) 

If the agent chose to recycle, all waste generated was assumed to be diverted from landfill and 

counted as recycled waste. This recycled quantity was then used to estimate associated 

environmental outcomes. 

Based on emission factors published by the U.S. Environmental Protection Agency, mixed 

municipal recyclables diverted from landfill avoid approximately 0.75 kg CO₂-equivalent per 

kilogram of waste (U.S. EPA, 2024). This  represents the net benefit of recycling compared to 

landfilling, and has been widely used in lifecycle-based carbon accounting studies.. Plastic waste was 

estimated as 12% of the total household waste, based on national plastic composition studies 

(Graham, 2024b), and organic waste was assumed to comprise 30% of total waste. The energy 

potential of the organic fraction was modeled as biogas generation at a rate of 0.25 kWh per kilogram 

of organic waste (Vega et al., 2024). These relationships are summarized in Equations (5), (6), and 

(7): 

 

 

 
Landfill emissions were estimated based on national statistics indicating that 94% of household 

waste is disposed of in landfills (Quesada Cordero, 2024). A landfill emission factor of 0.5 kg CO₂-

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2025 doi:10.20944/preprints202408.0274.v8

https://doi.org/10.20944/preprints202408.0274.v8


 9 of 22 

 

equivalent per kilogram of waste was applied to this portion. The total landfill-related emissions were 

therefore calculated as shown in Equation (8): 

 
Agent behavior and environmental outputs were tracked over 50 time steps. Each agent’s 

province, region, recycling decision, and environmental metrics were recorded at each step using the 

Mesa framework’s DataCollector module.  

3.4. Reinforcement Learning and Machine Learning Integration in Agent-Based Modeling 

To enhance the adaptive behavior of household agents, a reinforcement learning (RL) extension 

was implemented within the existing Agent-Based Model (ABM). This framework incorporated Q-

learning, enabling agents to learn optimal recycling decisions through environmental feedback over 

time, while continuing to rely on machine learning (ML) predictions as an initial behavioral guide. 

Each agent began with a probabilistic recycling decision derived from a Random Forest classifier 

trained on 1,000 synthetic samples, using five key features: recycling rate, policy incentive, policy 

penalty, urban/rural classification, and accessibility score. This ML component informed agents’ 

initial behavior, but the core decision-making evolved through Q-learning, which allowed agents to 

update their action values based on perceived rewards. 

The Q-learning update followed the standard Bellman equation, shown below as Equation (9): 

 
where: 

Q(s,a): Q-value for taking action aaa in state sss (defined by accessibility score) 

α: learning rate (0.05) 

γ: discount factor (0.9) 

r: reward received after taking action aaa 

a′: possible future actions (recycle or not) 

The reward function was crafted to balance environmental benefits and spatial equity, aligning 

with best practices in reward engineering and shaping in reinforcement learning applications 

(Ibrahim et al., 2024) using Equation (10): 

 
where: 

CO2avoided: kilograms of CO₂ emissions avoided through recycling 

RegionWeight: 1.2 for urban agents, 1.0 for rural 

AccessScore: discrete value from 0 (best) to 4 (worst) indicating spatial access to facilities 

r: the immediate reward used to update the Q-table in the agent’s reinforcement learning process 

This function rewarded agents for maximizing environmental benefits while applying a minor 

penalty for being in less accessible regions. The result was a dynamic learning mechanism that 

adapted behavior based on both environmental impact and spatial equity. 

To advance beyond fixed classifier-based decision-making, a reinforcement learning (RL) 

module was embedded into the ABM to enable agents to adaptively refine their recycling behaviors 

over time. While the initial recycling probabilities were estimated using a Random Forest classifier 

(see Section 3.3), the RL layer empowered agents to autonomously update their strategies based on 

cumulative environmental rewards. This hybrid learning model mirrors real-world behavioral 

plasticity, where initial tendencies evolve through experience and feedback. 

3.5. Economic Evaluation Model 

To quantify the economic implications of each waste management strategy, we developed a 

post-simulation cost estimation model using Python. This model processed agent-level output data 

generated by the ABM and RL-based simulations. Specifically, it aggregated the total waste 

generated, recycled, and associated by-products such as CO₂ avoided, biogas, and plastic waste. 
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A cost function was implemented to evaluate each scenario using standardized unit costs 

sourced from national institutions and international agencies. Cost categories included collection, 

disposal, recycling transportation, recycling operations, facility setup and maintenance, energy, 

labor, and general waste processing. The model assumed fixed parameters such as seven facilities, 

twenty-one operational workers, and a simulation horizon of twelve months. Energy use and fuel 

consumption were estimated per ton of waste managed. 

All unit cost values used in the analysis are summarized in Supplementary Table 3, which 

compiles the most recent available rates from government and international sources. These values 

were applied directly to simulation outputs using basic arithmetic operations—without the need for 

formal symbolic equations.By applying these cost parameters to the aggregated simulation outputs, 

the model computed key financial indicators, including total operational cost, cost per ton of waste 

managed, and cost per kilogram of CO₂ avoided. This allowed for a direct economic comparison 

between the agent-based and reinforcement learning strategies. 

3.6. Sensitivity Analysis 

To evaluate the robustness of the economic model and identify the parameters with the greatest 

influence on system costs, a one-way sensitivity analysis was conducted. This involved 

independently varying key unit cost parameters used in the economic evaluation (Section 3.5) and 

observing the resulting changes in total system cost. 

The analysis was performed on the reinforcement learning simulation outputs, as this strategy 

represented the highest operational scale and provided a realistic testing ground for parameter 

volatility. Each parameter was varied by ±10% and ±25% while holding all others constant, in order 

to isolate its effect on the economic outcome. 

The total system cost for each scenario was recalculated using the cost function defined in 

Equation 11, which aggregates the individual cost components of the waste management system as 

follows: 

 
where: 

Ccoll= waste collection cost (waste generated × unit collection cost) 

Cdisp= final disposal cost (landfilled waste × disposal cost per ton) 

Ctrans= recycling transportation cost (recycled waste × transport cost per ton) 

Crecycle= recycling operation cost (recycled waste × operational cost per ton) 

Cproc= general waste processing cost (waste generated × processing cost per ton) 

Cfac= facility setup cost (cost per facility × number of facilities) 

Clab= labor cost (monthly wage × number of workers × simulation months) 

Celec= electricity cost (kWh per ton × recycled waste × electricity rate) 

Each parameter sweep was visualized through line plots showing the relationship between 

parameter variation and resulting total cost. This allowed identification of the most sensitive cost 

components, guiding future model refinement and investment prioritization. 

4. Results 

4.1. Accessibility of Waste Management Facilities Across Provinces 

This study assessed household accessibility to existing and potential waste management 

facilities across Costa Rica’s seven provinces by simulating household distributions and calculating 

distances to the nearest facility. Each province’s results were scaled to reflect actual household counts 

and further disaggregated by urban and rural classifications. The findings reveal pronounced spatial 

inequalities. In provinces such as Alajuela and Puntarenas, rural households were significantly more 

likely to reside far from both current and proposed facilities. Notably, over 18,000 households in 

Alajuela remained more than 50 km away from any facility, even under the proposed infrastructure 

scenario. This suggests that new deployments have not sufficiently addressed deep-rooted 

accessibility gaps in less urbanized zones. 
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Urban regions showed comparatively higher levels of access. In San José and Heredia, a 

substantial proportion of households were located within 0–10 km of an existing facility, reflecting 

denser infrastructure typical of metropolitan areas. While potential facility additions improved access 

in most provinces—shifting some rural households into closer proximity bands—the gains were 

modest. Peripheral regions such as Limón, Guanacaste, and rural Puntarenas continued to exhibit 

large numbers of households situated more than 20 km from any facility. Supplementary Figure 1 

visually supports these findings by mapping the simulated spatial distribution of households and 

facility proximity, highlighting the persistent geographic disparity. These spatial disparities have 

direct behavioral implications, as accessibility was found to correlate with participation in recycling 

efforts. 

Figure 1 illustrates these model-derived patterns through three panels: the national recycling 

rate trend over time, provincial disparities in final recycling outcomes, and the observed relationship 

between household access (measured via Distance Score) and recycling behavior. These patterns 

underscore how infrastructural and spatial variables shape environmental participation outcomes in 

Costa Rica. 

 

Figure 1. Simulation-derived recycling outcomes across Costa Rica’s provinces. (a) National recycling rate 

progression across 50 simulated time steps. (b) Final recycling rate by province, highlighting regional disparities. 

(c) Relationship between accessibility to recycling facilities (Distance Score) and average recycling rate. All 

outputs were generated using a hybrid Agent-Based Model integrated with machine learning classifiers trained 

on synthetic behavior data. The viridis color palette emphasizes gradient differences across provinces and 

variables. 

These findings reinforce the presence of spatial inequities in waste management infrastructure. 

Even with expanded facility deployment, many rural communities remain underserved—

particularly in provinces with dispersed geographies. The contrast between high-access urban areas 

and infrastructure-poor rural zones highlights the need for more geographically targeted 

interventions. Without improving regional accessibility, national recycling goals may face persistent 

structural constraints. The behavioral implications of these accessibility gaps are explored further 

through simulation in the next section. 

4.2. Recycling Rates by Province: Simulation Model Results 

The simulation results using the agent-based model combined with machine learning revealed 

moderate differences in recycling rates across Costa Rica’s provinces. The highest recycling rate was 

observed in Alajuela (36.7%), followed closely by Heredia (34.0%) and Guanacaste (32.1%). These 

provinces likely benefit from a combination of urban infrastructure, improved accessibility, and 

population engagement in waste management practices. 

San José, the most urbanized province, reported a recycling rate of 30.6%, slightly below the 

national simulation average. This outcome may be influenced by high waste generation volumes in 

densely populated areas, which could dilute the impact of available recycling programs. Similarly, 

Puntarenas and Limón both exhibited recycling rates of 30.4%, showing that coastal and tourist-
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heavy regions may have comparable levels of recycling participation, despite differing infrastructure 

conditions. 

On the lower end of the spectrum, Cartago had the smallest recycling rate at 28.9%, highlighting 

ongoing issues with infrastructure and accessibility, especially in the province’s rural areas. Although 

the differences across provinces are not substantial, they still illustrate the significant impact of both 

spatial and structural factors on recycling behaviors. 

Figure 2 provides an in-depth analysis of the final recycling rates, the amount of CO₂ avoided, 

and regional comparisons. 

 

Figure 2. Regional and Structural Influences on Recycling Behavior in the ABM + Machine Learning Model. 

Caption:The figure summarizes recycling behavior and environmental outcomes based on the 

agent-based simulation incorporating machine learning predictions.(a) Final recycling rates by 

province show moderate variation, with provinces such as Alajuela and Heredia performing slightly 

above average, while Cartago records the lowest rate.(b) CO₂ emissions avoided through recycling 

efforts vary similarly across provinces, reflecting waste volumes and participation.(c) A marked 

difference is observed between urban and rural regions, with urban agents exhibiting significantly 

higher recycling rates.(d) Recycling rates decline as access to recycling facilities worsens, confirming 

the influence of spatial accessibility on participation. 

Together, these findings suggest that while infrastructure and regional characteristics shape 

recycling patterns, behavioral adaptation modeled through learning mechanisms also plays a critical 

role in determining outcomes across Costa Rica’s provinces. 

4.3. Recycling Behavior and Environmental Impact 

The simulation results derived from the reinforcement learning (RL) model demonstrate a 

consistently high level of recycling behavior across Costa Rican provinces. The average recycling rate 
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stabilized at 84.3% by the end of the simulation, indicating that agents learned to adopt recycling 

practices efficiently over time. This behavioral adjustment is driven by reinforcement mechanisms 

embedded in the model and suggests an evolution toward more sustainable waste management 

practices under the simulated conditions. 

Agent-level data indicate that the recycling behavior was largely uniform across regions. 

Specifically, agents located in urban areas exhibited a recycling rate of 84.3%, while their rural 

counterparts achieved a nearly identical rate of 84.1%. These findings suggest that, within the current 

configuration of the model, regional context (urban versus rural) exerted a limited influence on 

recycling outcomes. Similarly, when examined at the provincial level, only minor variations were 

observed. Puntarenas recorded the highest recycling rate (85.6%), whereas Cartago registered the 

lowest (83.4%). These narrow differences imply that local infrastructure disparities, policy 

environments, or social norms—as represented in the model—did not translate into markedly 

divergent recycling behaviors between provinces. 

Further analysis of accessibility revealed a somewhat counterintuitive result. Agents with poorer 

access to recycling infrastructure (represented by a higher access score) recycled more frequently than 

those with better access. For example, agents with an AccessScore of 4 recycled at an average rate of 

87.4%, while those with the best accessibility (AccessScore 0) had a lower recycling rate of 73.7%. This 

inversion may be attributed to the dominance of reinforcement learning optimization in the model’s 

decision-making processes, which could have overridden accessibility as a key determinant of 

behavior. Nevertheless, the inclusion of accessibility as a spatial constraint remains an important 

structural feature of the simulation. 

In terms of environmental outcomes, each agent generated approximately 1.78 kilograms of 

waste per day, consistent with empirical national values. Of this amount, approximately 84% was 

recycled. The model estimated an average avoidance of ~405 kg of CO₂-equivalent emissions per 

agent due to recycling activity. Additionally, plastic waste accounted for roughly 12% of the total 

waste stream, and biogas production from organic waste was modeled at 0.25 kWh per agent, 

reinforcing the broader sustainability benefits derived from recycling engagement. 

These patterns are visually summarized in Figure 3, which presents recycling rates and 

environmental indicators by province, region, and access score. The figure illustrates the limited 

variation between geographic categories and highlights the dominance of behavioral adaptation in 

shaping sustainable waste outcomes. 
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Figure 3. Recycling Behavior and Environmental Impact by Province, Region, and Access Score. 

Caption:Subfigure (a) shows the final recycling rates across Costa Rica’s seven provinces, while 

(b) illustrates the corresponding CO₂ emissions avoided. Subfigure (c) compares recycling behavior 

between urban and rural regions, and (d) plots recycling rate as a function of access score (0 = best 

access; 4 = worst). Despite structural differences, behavioral convergence was observed across 

geographic contexts, suggesting the strength of adaptive learning under the simulated conditions. 

In summary, the simulation results show that reinforcement learning (RL) significantly 

enhanced recycling behavior across Costa Rican provinces, achieving an average recycling rate of 

84.3%. There were minimal differences between urban and rural areas, suggesting that RL can 

overcome spatial barriers. Interestingly, agents with poorer access to recycling infrastructure recycled 

more, likely due to the optimization of decision-making through RL. Environmental benefits were 

substantial, with approximately 405 kg of CO₂-equivalent emissions avoided per agent. These 

findings highlight the effectiveness of adaptive learning in promoting sustainable waste management 

practices, regardless of regional disparities. 

4.4. Economic Comparison of the Agent-Based and Reinforcement Learning Strategies 

The economic analysis revealed notable differences in performance between the agent-based and 

reinforcement learning (RL) strategies. Although the RL approach incurred a higher total operational 

cost (USD 11.38 million) compared to the agent-based method (USD 3.24 million), it processed and 

recycled significantly more waste, resulting in superior economic and environmental efficiency. 

The RL strategy managed 88,884.25 tons of waste and recycled 76,431.07 tons, achieving a 

recycling efficiency of approximately 86%. In contrast, the agent-based strategy handled only 1,813.96 

tons and recycled 592.08 tons, corresponding to a 33% recycling rate. Consequently, the RL approach 

avoided approximately 1.49 million kilograms of CO₂ emissions, compared to just 444.06 kilograms 

under the agent-based approach. 
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When normalized per ton of waste managed, the RL strategy achieved a unit cost of USD 128.05, 

significantly lower than the agent-based strategy’s USD 1,784.03. The cost per kilogram of CO₂ 

avoided was also dramatically lower under the RL approach (USD 7.62) than with the agent-based 

approach (USD 7,287.64), indicating substantially greater cost-effectiveness from an environmental 

perspective. 

A breakdown of cost categories is shown in Figure 4, illustrating the distribution and intensity 

of expenditures across both strategies. While both strategies incur similar fixed costs for facility setup 

and labor, the RL strategy’s expenditures are proportionally higher in processing, transportation, and 

operations due to its larger operational scale. 

 

Figure 4. Cost breakdown comparison between the agent-based and reinforcement learning strategies. 

Caption:Subplot (a) shows the agent-based strategy, while subplot (b) corresponds to the 

reinforcement learning strategy. Each scatter point represents a cost category, with color intensity 

scaled to absolute cost (USD). The RL strategy shows higher costs across most categories due to its 

significantly larger waste handling capacity, yet maintains lower cost per unit of environmental 

impact. 

These results suggest that although the RL-based strategy demands higher absolute investment, 

its superior waste recovery rates and environmental returns result in significantly improved cost 

efficiency. This reinforces the potential of intelligent decision systems for large-scale municipal waste 

optimization. 

4.5. Sensitivity Analysis Results 

To assess the robustness of the economic evaluation, a sensitivity analysis was conducted on the 

cost model by perturbing key input parameters ±10% and ±25% individually. The goal was to 

quantify how sensitive the total system cost is to changes in electricity, labor, and waste management 

expenses. Figure 5 presents the results of a two-way sensitivity analysis using contour plots, where 

each panel shows how the total cost changes when two parameters are varied simultaneously. 

Independent colorbars and labeled contour lines provide a clear representation of cost behavior 

across parameter ranges. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2025 doi:10.20944/preprints202408.0274.v8

https://doi.org/10.20944/preprints202408.0274.v8


 16 of 22 

 

 

Figure 5. Two-way sensitivity analysis of total system cost across key economic parameters. 

Caption:Subplots (a) through (d) illustrate how total cost varies when pairs of cost parameters 

are jointly perturbed by ±25%. Each panel shows a contour plot using the Viridis colormap, with 

darker regions representing lower costs and lighter regions indicating higher costs. The parameter 

pairs analyzed include: (a) electricity cost vs. labor wage, (b) collection cost vs. processing cost, (c) 

facility setup cost vs. labor wage, and (d) recycling operational cost vs. electricity cost. Cost values 

are labeled directly on contour lines, and each subplot features an independent colorbar scaled to its 

respective output range. 

The one-way analysis revealed that processing cost per ton, facility setup cost, and recycling 

operational cost had the greatest impact on total system cost. For example, increasing the processing 

cost by 25% raised total cost from USD 11.28 million to USD 11.99 million, while a 25% increase in 

recycling operational cost raised it to USD 11.80 million. Increasing the facility setup cost from USD 

400,000 to USD 500,000 increased total expenditure by over USD 700,000. 

In contrast, the system was relatively insensitive to changes in electricity and labor rates. 

Modifying the electricity rate by ±25% affected total cost by less than 0.01%, and a 25% increase in 

labor costs led to under 1% variation. Notably, the recycling transport cost had no effect, as it 

remained fixed across scenarios. 

Overall, the results confirm that while some operational costs have marginal impact, capital 

investment and processing efficiency are the most influential cost drivers in large-scale recycling 

systems. 

6. Discussion 

This study demonstrates that overlaying reinforcement learning on an agent-based household 

model can raise Costa Rica’s simulated recycling rate from 31 % to 84 % and cut the cost-per-ton 

managed from USD 1 784 to USD 128. These gains stem from adaptive reward structures that steer 

agents toward high-impact actions even when physical access is poor—a result that corroborates 

Khallaf et al. (2025) and extends their routing insights to household behaviour. 
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Spatial analysis confirms long-standing inequities: more than 18 000 households in Alajuela and 

14 000 in Guanacaste still sit >50 km from the nearest facility despite proposed expansions. Similar 

distance effects depress participation in Cartago (28.9 %), echoing Tian et al. (2025) on the primacy 

of proximity in recycling uptake. Yet in the RL scenario agents facing the poorest access recycled 87 

%, highlighting how value-based learning can partially neutralise structural barriers—though at the 

cost of realism, since real households incur transport time and fuel costs. Future work should embed 

distance-weighted penalties to temper this artefact. 

The spatial model (Model 1) demonstrated that proximity strongly influences household access 

and behavioral engagement, especially when facilities are within a 0–10 km radius. Although 

proposed expansions improved access in some areas, more than 18,000 households in Alajuela 

remained over 50 km from the nearest facility—highlighting the persistent regional disparity. While 

geographic coverage showed improvement, the agent-based behavioral simulation (Model 2) 

revealed that access alone is insufficient; Cartago, for instance, maintained the lowest recycling rate 

at 28.9%, despite moderate improvements in infrastructure. These disparities underscore the role of 

behavioral adaptation and policy design. 

The integration of reinforcement learning (Model 3) significantly enhanced behavioral 

convergence, increasing the national average recycling rate to 84.3%, with marginal differences 

between urban and rural agents. This suggests that adaptive feedback mechanisms can override fixed 

barriers such as distance, provided that policies and rewards are well structured. The impact of 

optimized decision-making is reflected in both environmental and economic metrics, as the RL-based 

model diverted over 76,000 tons of waste from landfills and avoided nearly 1.5 million kilograms of 

CO₂ emissions. These outcomes reinforce the findings of Elsheekh et al. (2021), who advocate for 

integrated systems as tools to meet the Sustainable Development Goals (SDGs) in developing nations. 

From a cost-effectiveness perspective, the economic model (Model 4) revealed that while the RL 

strategy incurred higher total costs (USD 11.38 million), it was far more efficient per ton of waste 

managed (USD 128.05) and per kilogram of CO₂ avoided (USD 7.62), compared to the agent-based 

model. This aligns with the perspective of Esteves et al. (2024), who emphasize that higher capital 

investments in Latin American waste infrastructure can yield greater long-term social and 

environmental returns. The use of Monte Carlo simulations and cost disaggregation enabled the 

study to isolate key contributors to expenditure—most notably processing costs, facility setup, and 

operational expenses. 

The sensitivity analysis (Model 5) reinforced this by showing that system costs are highly 

responsive to changes in processing, recycling operation, and setup costs, but relatively insensitive 

to labor and electricity rates. This insight is particularly relevant for policy prioritization, suggesting 

that cost optimization should focus on procurement strategies, facility design, and efficiency gains in 

material processing. As Giraldo-Almario et al. (2024) noted in similar urban waste contexts, optimal 

facility placement and efficient resource allocation are essential in reducing operational burdens 

while maintaining equity. 

The findings also support the broader environmental and social goals of Costa Rica’s 

sustainability agenda. For example, targeted facility expansion and adaptive incentives could reduce 

landfill pressure by up to 15%, especially in accessible regions such as Alajuela and Heredia. Policy 

simulations within the model also suggest that performance-based incentives—such as Pay-As-You-

Throw (PAYT) schemes—could enhance participation, echoing insights from Fontaine et al. (2024) 

and ICE (2022) regarding financial drivers in sustainable transitions. 

Nonetheless, this study is not without limitations. Rural infrastructure data may be 

underrepresented, and while the ABM and RL models incorporate behavioral variability and 

learning, their outputs still rely on assumptions and synthetic training data that may not capture all 

socio-cultural dynamics. Future research should explore the incorporation of real-time data, 

community co-design mechanisms, and AI-driven sorting technologies, as proposed by Spirito 

(2024), to improve realism and engagement. Longitudinal studies would also enhance model 

calibration and policy evaluation over time. 
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In sum, this study presents a novel, integrated modeling approach that supports scalable, 

equitable, and cost-efficient waste management strategies. By bridging infrastructure, behavior, and 

economics, the research provides actionable insights to help Costa Rica meet its circular economy 

and SDG-aligned waste reduction goals. 

These findings underscore the transformative potential of intelligent systems in waste 

governance. By demonstrating that data-driven models can pinpoint infrastructure gaps, simulate 

adaptive behaviors, and quantify cost–climate tradeoffs, this study moves beyond diagnostics toward 

actionable design. As Costa Rica and other nations advance toward circular economy goals, 

integrated computational approaches like this one can serve as critical enablers—helping turn policy 

ambition into scalable, equitable, and cost-effective practice. 

7. Conclusion 

This study presents the first integrated modeling framework in Costa Rica that combines 

geospatial simulation, agent-based modeling (ABM), reinforcement learning (RL), and cost analysis 

to evaluate and optimize household recycling behavior and infrastructure deployment. By simulating 

accessibility, behavioral adaptation, and cost-effectiveness, the research identifies critical spatial and 

systemic barriers limiting recycling participation—particularly in rural provinces such as Alajuela, 

Guanacaste, and Cartago. 

Findings reveal stark disparities in physical access: over 18,000 households in Alajuela remain 

more than 50 km from any facility, even under proposed expansions. While urban centers like San 

José benefit from dense coverage, rural regions lag behind. These inequities correlate with lower 

recycling engagement in the ABM scenario, but the RL model demonstrates that well-structured, 

reward-based learning can drive behavioral convergence—raising national recycling rates to 84% and 

reducing the cost-per-ton of waste managed by over 90%. 

The economic simulation confirms that although RL strategies require higher absolute 

investment, their unit efficiency in waste recovery and carbon abatement is significantly superior. 

Processing costs, facility setup, and operations are the most influential cost drivers, highlighting key 

levers for policy and planning. Additionally, incentive-based policies such as Pay-As-You-Throw 

(PAYT), and mobile recovery solutions show promise for improving rural uptake and bridging the 

infrastructure gap. 

This research underscores the value of computational tools in supporting data-informed, equity-

focused, and SDG-aligned waste management. By integrating behavioral dynamics with real-world 

spatial and economic constraints, the model provides a decision-support system for targeting 

infrastructure investments, designing scalable interventions, and evaluating climate-mitigation co-

benefits. 

Future work should incorporate real-time behavioral data, community engagement feedback, 

and advanced sorting technologies to improve model fidelity. As Costa Rica advances toward its 

circular economy goals, intelligent, adaptable modeling approaches like this can guide national 

policy from broad ambitions to actionable implementation. 
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