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Abstract: In the rapidly evolving landscape of digital finance, the increasing sophistication of 
fraudulent activities has created significant challenges for traditional detection systems. This research 
paper investigates the integration of federated learning with unsupervised deep learning techniques 
to meet the dual demands of data privacy and robust fraud detection. Using two real-world datasets, 
the Credit Card Fraud dataset and the NeurIPS 2022 Bank Account Fraud dataset, we developed a 
federated framework based on deep autoencoders. The framework simulates decentralized model 
training across multiple financial nodes while ensuring that raw data remains local. The methodology 
includes detailed data pre-processing steps, the construction of a compact autoencoder architecture 
and a threshold-based approach to anomaly detection. Experimental outcomes demonstrate the 
model’s ability to distinguish between legitimate and fraudulent transactions by the use of 
performance evaluation through using Receiver Operating Characteristic (ROC) curves, confusion 
matrices, and reconstruction error distributions. Despite the challenges of class imbalance and data 
heterogeneity, the proposed model achieved promising results by maintaining competitive 
discrimination capabilities. Overall, the research study establishes the potential of federated learning 
combined with anomaly detection to provide scalability, privacy-preservation, and interpretable 
fraud detection solutions suitable for real-world financial environments. 

Keywords: fraud detection; federated learning; deep autoencoder; anomaly detection; financial 
security; machine learning; decentralized learning 
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1. Introduction 

The surge in digital finance has led to a parallel rise in fraudulent activities, placing 
unprecedented pressure on institutions to develop accurate, secure, and scalable fraud detection 
systems. As financial operations increasingly migrate online, cybercriminals exploit vulnerabilities 
across e-banking platforms, mobile payment applications, and transaction APIs [1,2]. This evolving 
threat landscape demands not only precise predictive capabilities but also interpretability and 
compliance with strict data privacy standards. 

Conventional fraud detection strategies predominantly rely on supervised machine learning 
models such as Support Vector Machines (SVM), Decision Trees, Random Forests, and various forms 
of neural networks [3]. These algorithms analyze engineered features derived from transactional 
metadata and behavioral patterns to classify transactions as legitimate or fraudulent. However, 
centralizing data for model training raises significant concerns regarding data breaches, regulatory 
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compliance, and the protection of sensitive personal information, particularly under frameworks like 
the General Data Protection Regulation (GDPR). 

To mitigate these concerns, Federated Learning (FL) has emerged as a transformative approach. 
FL enables multiple institutions to collaboratively train a global model without exchanging raw data. 
Instead, only local model updates or gradients are shared, thus preserving data locality and 
minimizing privacy risks [4,5]. This collaborative yet privacy-preserving paradigm aligns closely 
with the regulatory and ethical expectations placed on financial systems today. 

In parallel, the field of Explainable Artificial Intelligence (XAI) has gained prominence as a 
necessary complement to black-box models. In high-stakes environments such as financial services, 
decision-makers require not only accurate outputs but also a clear rationale behind model 
predictions. Techniques, such as Shapley Additive Explanations (SHAP) and Local Interpretable 
Model-Agnostic Explanations (LIME), provide insight into feature contributions and improve model 
transparency. When embedded into a federated architecture, these interpretability tools enhance 
local accountability without compromising the security of underlying data. 

Despite these advances, several challenges remain. Fraud datasets often suffer from severe class 
imbalance, with fraudulent instances typically representing less than one percent of the total data [6]. 
This imbalance skews traditional classifiers and increases the likelihood of undetected fraud. 
Moreover, federated systems must address additional technical hurdles including non-independent 
and identically distributed (non-IID) data, communication overhead, and model convergence 
discrepancies across nodes. 

This study introduces a federated anomaly detection framework based on deep autoencoders, 
designed to operate across decentralized financial data silos [7]. The architecture is validated using 
two real-world datasets: a publicly available credit card transaction dataset and a large-scale 
synthetic banking dataset from the NeurIPS 2022 competition. The autoencoders are trained locally 
on each node and detect anomalous transactions by measuring reconstruction error, identifying fraud 
without the need for labelled data. 

The primary contributions of this work are as follows: 

1. A privacy-preserving federated learning pipeline tailored for real-time fraud detection; 
2. The application of deep autoencoders for effective anomaly detection in highly imbalanced data 

scenarios; 
3. An interpretability approach that supports model transparency through ROC curves, confusion 

matrices, and feature correlation heatmaps. 

In general, the above components present a robust, ethical, and scalable approach to modern 
fraud detection that balances performance, privacy, and interpretability. 

2. Related Work 

In recent years, the rapid evolution of digital financial ecosystems has elevated fraud detection 
to a subject of paramount significance within both academic inquiry and professional practice [8]. As 
fraudulent techniques grow increasingly intricate and adaptive, the imperative for detection systems 
that are not only accurate but also scalable, privacy preserving, and transparent has become ever 
more pressing. Traditional machine learning models typically trained in centralized environments 
have long underpinned automated fraud detection. However, their effectiveness is frequently 
hampered by persistent challenges, including the management of severely imbalanced datasets, the 
protection of sensitive user information, and the inherent opacity of their decision-making processes. 

These limitations have precipitated a paradigm shift towards more advanced and resilient 
frameworks, particularly those rooted in decentralized learning architectures [9]. In this regard, 
federated learning has emerged as a promising alternative, enabling multiple institutions to 
collaboratively train high-performing models without the need to share confidential or proprietary 
data. In parallel, the rise of explainable artificial intelligence reflects a broader movement towards 
interpretability, ensuring that model outputs are not only robust but also comprehensible to 
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stakeholders, auditors, and regulatory bodies [10]. What follows is a detailed exploration of the 
prevailing approaches to fraud detection, with particular attention given to the intersection of 
federated learning and explain ability as key pillars underpinning the next generation of ethical and 
effective solutions. 

2.1. Traditional Approaches to Financial Fraud Detection 

The detection of fraudulent financial transactions has long been recognized as a matter of critical 
importance within the banking and e-commerce sectors. Traditional methodologies have primarily 
relied upon supervised machine learning algorithms, including Support Vector Machines (SVM), 
Decision Trees, Random Forests, and various forms of neural networks, to categories transactions as 
either legitimate or fraudulent [11]. These approaches typically draw upon engineered features 
extracted from transaction metadata, user profiles, and historical behavioral patterns to identify 
anomalies in real time. 

Despite their widespread application, such models face notable limitations when deployed in 
real-world settings, chiefly due to the pronounced class imbalance inherent in most fraud-related 
datasets [12].  Indeed, Fraudulent transactions generally constitute less than one per cent of all 
activity, which significantly hampers the ability of conventional classifiers for conducting an effective 
recognition of normal and anomalous behavior [13]. Consequently, these systems often exhibit 
elevated false-negative rates, resulting in a failure to detect fraudulent instances. To counteract this, 
oversampling methods, most notably the Synthetic Minority Over-sampling Technique (SMOTE) and 
Adaptive Synthetic Sampling (ADASYN) have been adopted to artificially increase the 
representation of minority class instances, thereby enhancing the model’s responsiveness to rare 
fraudulent behavior [14]. 

Table 1 presents a concise comparison of key approaches in financial fraud detection, 
highlighting the evolution from traditional supervised models like SVMs and Random Forests to 
modern frameworks such as Federated Learning and Explainable AI. While earlier models struggle 
with data imbalance and lack transparency, newer methods address privacy, scalability, and 
interpretability making them more suited to real-world financial ecosystems. 

Table 1. Comparative Overview of Key Studies in Financial Fraud Detection. 

Study Approach Dataset Technique Evaluation 
Metric 

Limitations 

Zhang et 
al. 
(2022) 

Supervised 
ML 

Credit Card 
Dataset 

Random 
Forest, SVM 

Accuracy, 
ROC-AUC 

Low accuracy 
on imbalanced 
data 

Garg & 
Bansal 
(2023) 

Oversampl
ing + ML 

Synthetic 
fraud data 

SMOTE + 
Decision 
Tree 

F1-score, 
Precision 

Overfitting due 
to synthetic data 
generation 

Yin et al. 
(2019) 

Federated 
Learning 
(FL) 

Multi-bank 
simulation 

Federated 
Autoencode
r 

ROC-AUC 
  

No parameter 
aggregation, 
non-IID  
challenge 

Liu et al. 
(2024) 

FL + Graph 
Neural 
Networks 

Federated 
Financial 
Datasets 

GNN in 
Federated 
Setup 

Precision, 
Recall 
  

High 
communication 
overhead 

Kumar 
et al. 
(2023) 

Explainabl
e FL 

Bank 
Transaction 
Logs 

FL + SHAP 
  

Interpretabili
ty + 
Accuracy 

Explainability 
layer adds 
complexity 

In parallel with supervised learning, unsupervised learning techniques have garnered 
increasing interest. Models, such as clustering algorithms,   Isolation Forests, and deep learning-
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based autoencoders, have proven to be effective in contexts where labelled data is limited or 
altogether unavailable [15]. These methods operate on the principle of anomaly detection, which 
identifies suspicious patterns by measuring deviations in reconstruction error or data distribution, 
and thus enables the detection of fraud without prior explicit annotation. 

2.2. Federated Learning in the Context of Fraud Detection 

Amid growing global concern over data privacy, spurred in large part by regulatory 
frameworks, such as the General Data Protection Regulation (GDPR), traditional centralized 
approaches to machine learning have increasingly come under scrutiny. This shift has prompted the 
rise of federated learning, an innovative paradigm that enables organisations together train a shared 
global model together without the need to exchange raw or sensitive data. In the context of fraud 
detection, FL presents an especially promising solution by affording financial institutions the ability 
to jointly enhance detection abilities while upholding stringent data confidentiality standards [15]. 

Recent developments have affirmed the viability of FL in practical applications. Notably, Yin et 
al. (2019) introduced the Federated Fraud Detection (FFD) framework, which successfully 
orchestrated collaborative model training across multiple banking institutions while maintaining 
strict data locality. This framework offered a robust compromise between model accuracy and 
regulatory compliance [16]. Building upon this foundation, Liu et al. (2024) advanced the field further 
by integrating FL with Graph Neural Networks (GNNs), thereby enabling models to capture complex 
inter-transactional relationships, significantly bolstering their capacity to detect fraudulent patterns 
with greater nuance and precision. Yet, despite its considerable promise, FL is not without its 
challenges. Real-world implementations must grapple with issues such as statistical heterogeneity 
between nodes, heightened communication costs, and difficulties in achieving convergence under 
non-independent and identically distributed (non-IID) data conditions. Addressing these technical 
and operational hurdles remains a critical area of ongoing investigation, as researchers continue to 
refine FL frameworks to meet the demands of large-scale, heterogeneous financial environments [17]. 

2.3. Explainable AI in Financial Fraud Detection 

As machine learning models continue to grow in complexity and opacity, the imperative for 
interpretability has become increasingly pronounced particularly in high-stakes sectors such as 
finance. Explainable Artificial Intelligence (XAI) seeks to render model predictions transparent, 
offering critical insights into the rationale underpinning algorithmic decisions [18]. This capability is 
especially vital in the realm of fraud detection, where human analysts must often justify and 
substantiate automated flags before initiating corrective or preventative actions. 

Among the most prominent tools in the XAI arsenal are Shapley Additive Explanations (SHAP) 
and Local Interpretable Model-Agnostic Explanations (LIME), both of which have proven effective 
in illuminating the inner mechanisms of otherwise opaque black-box models. These methods provide 
feature-attribution explanations that not only enhance understanding but also foster institutional 
trust and regulatory transparency [18]. When deployed within a federated learning environment, 
such techniques enable the interpretability of locally trained models without the need to compromise 
on data privacy, a critical advantage in data-sensitive domains. 

A notable contribution in this context is the Explainable Federated Learning (XFL) framework 
proposed by [19]. which adeptly combines the data protection benefits of FL with the clarity afforded 
by SHAP-based interpretability. Their work exemplifies how privacy and transparency can be 
mutually reinforced rather than mutually exclusive by ensuring that financial institutions can detect 
fraudulent activity, both effectively and accountably. 

In summary, the evolution of fraud detection technologies reflects a broader paradigm shift 
towards systems that are not only accurate and adaptive but also ethically responsible and 
intelligible. While foundational models have laid the groundwork for real-time detection, the 
integration of federated learning with explainable AI marks a pivotal step to build fraud detection 
models that are robust, scalable, and aligned with regulatory expectations and public trust [18]. 
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Nonetheless, continued research is required to navigate persistent challenges, including data 
imbalance, model scalability, and the often-delicate balance between performance, interpretability, 
and privacy. 

3. Methodology and Methods 

This research adopts a federated learning-based anomaly detection framework to identify 
fraudulent banking transactions across decentralized data silos. The design intentionally reflects the 
privacy, scalability, and heterogeneity challenges typical of real-world financial ecosystems [20]. The 
methodology comprises structured phases: dataset selection, preprocessing, model construction, 
decentralized training simulation, and evaluation all detailed below to facilitate full reproducibility 
and transparency. 

3.1. Dataset Description 

This study integrates two publicly available datasets to simulate decentralized fraud detection 
in conditions that closely resemble those in real-world financial institutions. 

The first dataset, known as the Credit Card Fraud Detection dataset, was compiled by 
researchers at the Université Libre de Bruxelles and is frequently cited in academic literature [21]. It 
consists of 284,807 anonymized credit card transactions recorded in Europe, with each transaction 
represented by 30 numerical features derived through Principal Component Analysis (PCA). The 
binary variable Class designates fraudulent (1) and legitimate (0) transactions. One of the most 
challenging aspects of this dataset is its highly imbalanced nature, as fraudulent activities constitute 
less than 0.2% of all records, thereby posing a significant obstacle for traditional classification models. 

The second dataset employed in this study originates from the NeurIPS 2022 competition and is 
titled the Bank Account Fraud [22]. It was developed by a consortium of researchers, including Sérgio 
Jesus, José Pombal, Duarte Alves, André F. Cruz, Pedro Saleiro, Rita P. Ribeiro, João Gama, and Pedro 
Bizarro. The dataset comprises more than six million synthetic banking records, distributed across 
six structured CSV files. Each entry encapsulates a wide range of attributes, including demographic 
details, transactional behaviour, and device metadata. Fraudulent activity is identified using fields 
such as fraud_bool or is_fraud, which are inconsistently labeled across the various files and require 
standardization during preprocessing. 

Although synthetic in nature, this dataset was meticulously generated using domain-informed 
simulations designed to emulate authentic fraud scenarios and user behavioural patterns within 
digital banking systems. Its scale and complexity render it particularly suitable for evaluating 
decentralised learning algorithms under near-realistic financial conditions. 

3.2. Data Preprocessing 

To unify the structure and quality of the datasets, a comprehensive preprocessing strategy was 
implemented. Categorical features found within the NeurIPS datasets, such as employment_status, 
device_os, and housing_status, were converted into numerical format using label encoding. For 
numeric attributes, Z-score standardization was applied to scale features such as transaction Amount, 
Time, and behavioral signals in order to ensure uniform variance across variables [23]. 

Missing and infinite values were identified and removed, as their presence risked invalidating 
model optimization by introducing undefined gradients during backpropagation. Once cleaned, the 
datasets were filtered to retain only shared, numerical attributes to ensure model compatibility across 
both training nodes [24]. Inconsistent fraud labels were renamed to a unified Class column, and all 
non-contributing metadata such as IDs or timestamps were excluded to prioritize behavioral and 
transactional patterns. 

3.3. Autoencoder Model Architecture 
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In this study, an unsupervised deep autoencoder was employed as the primary anomaly 
detection mechanism due to its proven capacity to learn compact representations of normal 
transaction patterns and flag deviations without reliance on extensive labelled data [23]. This 
approach is especially advantageous in financial fraud detection, where fraudulent samples are 
significantly outnumbered by legitimate ones, thus making supervised techniques less effective. 

An autoencoder consists of two main components: the encoder, which compresses the high-
dimensional input features into a low-dimensional latent space, and the decoder, which attempts to 
reconstruct the original input from this compressed representation [25]. The discrepancy between the 
input and its reconstruction serves as an anomaly score, reflecting the degree to which the transaction 
deviates from learned normal [26]. 

The architecture adopted in this research is depicted in Figure 1. It illustrates a symmetric 
structure with three primary layers in both the encoder and decoder. The encoder comprises fully 
connected layers of 16, 8, and 4 neurons respectively, applying the ReLU activation function [25]. The 
decoder mirrors this configuration in reverse order, culminating in a linear output layer to ensure 
real-valued reconstruction. 

 
Figure 1. Visual depiction of the autoencoder structure [21]. 

The input data is first compressed by the encoder into a smaller latent representation, and then 
reconstructed by the decoder to closely match the original input [23]. The bottleneck layer at the 
center of the model captures the key patterns that describe normal transaction behavior. 

Mathematically, the reconstruction process of the autoencoder can be represented by the 
following formulation: 𝑥ො = 𝐷൫𝐸ሺ𝑥ሻ൯                                ሺ1ሻ 
where 𝑥 denotes the original input vector encapsulating the transaction features, and 𝑥ො represents 
the reconstructed output vector generated by the network. The function 𝐸ሺ⋅ሻ corresponds to the 
encoder, which compresses the input into a lower-dimensional latent space, while 𝐷ሺ⋅ሻ denotes the 
decoder that reconstructs the input from the latent representation [24]. Both components are 
governed by their respective learnable parameters, 𝜃ா and𝜃஽. The primary objective of training the 
autoencoder is to minimize the reconstruction loss typically the mean squared error between 𝑥 and 𝑥𝑥ො, thereby enabling the detection of anomalies through deviations in reconstruction fidelity. 

The autoencoder is trained to minimize the reconstruction loss, quantified using the mean 
squared error (MSE) between the original input and its reconstruction: 𝑀𝑆𝐸 = ଵ௡ ∑ ሺ𝑥௜ − 𝑥పෝ ሻଶ௡௜ୀଵ                                           (2) 

Here, 𝑥௜ and 𝑥పෝ  refer to the 𝑖thelements of the original and reconstructed vectors, respectively, 
and n denotes the number of input features. 

This architectural and mathematical formulation ensures that the autoencoder becomes highly 
attuned to the normal distribution of transactional data. Consequently, when a transaction deviates 
significantly from this learned pattern resulting in a large reconstruction error, it is flagged as 
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anomalous, potentially indicating fraud [22]. The compact latent representation also enhances the 
model’s robustness, enabling generalization across both real and synthetic datasets used in this 
federated [24]. 

3.4. Federated Learning Simulation 

To emulate the operational constraints typically observed within real-world banking systems 
where legal compliance and stringent data protection regulations preclude the centralization of 
sensitive information this research employed a federated learning simulation framework. The Kaggle 
and NeurIPS datasets were conceptualized as representing two autonomous financial institutions, 
each maintaining local data sovereignty [25]. Rather than amalgamating records into a centralized 
repository, each institution independently trained its own instance of the autoencoder model using 
only its respective dataset. 

Importantly, no raw data or model parameters were transmitted between nodes, thereby 
upholding rigorous standards of privacy and reinforcing the decentralized ethos of FL. Although this 
study did not incorporate parameter aggregation protocols such as Federated Averaging (FedAvg), 
the isolated training approach encapsulates the fundamental tenet of federated learning collaborative 
modelling without data exposure [22]. 

FedAvg, widely regarded as a cornerstone technique in federated systems, is mathematically 
articulated as: 𝑤௧ = ∑ ௡ೖ௡ 𝑤௧௞௄௞ୀଵ                                        (3) 

This federated training regime reflects the industry’s broader pivot towards decentralized 
artificial intelligence an approach that not only aligns with evolving regulatory expectations such as 
the General Data Protection Regulation (GDPR), but also offers a scalable and ethically sound 
alternative to traditional, centralized learning pipelines [26]. The methodology addresses core 
challenges associated with data heterogeneity and institutional autonomy, thereby paving the way 
for privacy-preserving innovations in financial fraud detection [27]. 

3.5. Evaluation Strategy 

The evaluation phase formed a critical component of this research, designed to rigorously assess 
the anomaly detection capability of the trained federated models across diverse and decentralized 
datasets. In order to comprehensively measure model performance, a multi-pronged evaluation 
approach was adopted, combining quantitative metrics with interpretative visual analytics [26]. 

Following the completion of training at each federated node, the reconstruction error for each 
sample was calculated. The reconstruction error was determined by comparing the original input 
vector X with its reconstructed counterpart ሺ𝑥, 𝑥ොሻ , as produced by the autoencoder model [25]. 
Specifically, the mean squared error (MSE) was utilized, formally expressed as: 

MSEሺ𝑥, 𝑥ොሻ = ଵ௡ ∑ ሺ𝑥௜ − 𝑥పෝ ሻଶ௡௜ୀଵ                                        (4) 
where n denotes the number of features per input sample. Samples exhibiting higher reconstruction 
errors were indicative of deviations from the learned representation of legitimate transactional 
behavior, thereby suggesting potentially fraudulent activity. 

To operationalize anomaly detection, a thresholding mechanism was applied based on the 
distribution of reconstruction errors. The 98th percentile of the reconstruction errors observed in 
legitimate transactions was set as the detection [27]. Transactions yielding reconstruction errors 
greater than this threshold were classified as potentially fraudulent. This choice of high percentile 
threshold strikes a balance between sensitivity and specificity, favoring the identification of rare but 
significant anomalies. 

For quantitative validation, the Receiver Operating Characteristic–Area Under Curve (ROC-
AUC) score was employed [28]. The ROC-AUC metric is particularly well-suited for imbalanced 
datasets such as fraud detection, where the positive class (fraud) constitutes a very small minority. 
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The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) across varying 
threshold settings, where: 𝑇𝑃𝑅 = 𝑇𝑃/ሺ𝑇𝑃 + 𝐹𝑁ሻ 𝑎𝑛𝑑 𝐹𝑃𝑅 = 𝐹𝑃/ሺ𝐹𝑃 + 𝑇𝑁ሻ                   (5) 

Here, TPTPTP represents True Positives (correct fraud predictions), FPFPFP denotes False 
Positives (legitimate transactions misclassified as frauds), TN indicates True Negatives (correct non-
fraud predictions), and FN stands for False Negatives (fraud cases incorrectly predicted as legitimate) 
A high ROC-AUC value closer to 1 indicates that the model effectively separates fraudulent from 
legitimate transactions. 

Furthermore, confusion matrices were constructed to provide a detailed breakdown of 
classification outcomes [23]. From the confusion matrix, secondary performance metrics such as 
Precision, Recall, and F1-Score were derived, capturing the model’s ability to accurately detect fraud 
without incurring excessive false alarms. These metrics were computed as follows: 

Precision = ்௉்௉ାி௉                                                 (6) 

Recall = ்௉்௉ାிே                        (7) 

F1 = 2 × Precision×Recall
PrecisionାRecall

 } }                               (8) 
Precision measures the proportion of detected frauds that were actual frauds, thus reflecting the 

model’s predictive accuracy on positive cases. Recall, on the other hand, measures the proportion of 
actual frauds that were correctly identified, thus capturing the model’s sensitivity [25]. The F1-Score 
harmonically balances both precision and recall, providing a single measure of test accuracy 
particularly suitable for datasets with class imbalance. 

To complement the numerical analysis, visual exploratory techniques were employed. 
Histograms and density plots of the reconstruction error distribution were generated for both 
legitimate and fraudulent classes [26]. These visualizations provided intuitive insights into how 
effectively the model separated normal and anomalous samples, illustrating the impact of the 
threshold selection and offering additional evidence of model efficacy. 

In addition to traditional visualizations, the separation between the two classes in the latent 
space was examined, where feasible, to qualitatively validate the feature representations learned by 
the autoencoders. This multi-faceted evaluation strategy not only verified the quantitative 
performance of the federated learning models but also enhanced the interpretability and reliability 
of the findings, thereby reinforcing the robustness and real-world applicability of the proposed 
framework [28]. 

3.6. Implementation Tools and Reproducibility 

All experiments were conducted in Python 3.11 using standard machine learning and data 
science libraries. Data preprocessing was managed using Pandas and Scikit-learn, while model 
development and training were carried out using TensorFlow and Keras. Visualizations were created 
using Matplotlib and Seaborn. The full source code, notebooks, and training logs will be made 
publicly accessible via GitHub upon publication. This ensures that all findings can be replicated and 
further extended by future researchers or practitioners. 

4. Experiments and Results 

This chapter provides an extensive overview of the experimental procedures, performance 
metrics, and visual analyses conducted to assess the effectiveness of the proposed federated 
autoencoder-based anomaly detection framework. Each experimental output is critically evaluated, 
with emphasis on the underlying patterns observed in fraud detection across decentralized datasets. 

4.1. Experimental Setup 

In order to emulate the operational constraints of real-world decentralised banking 
environments, a federated learning simulation was meticulously designed. Within this setup, the 
Kaggle Credit Card Fraud Dataset and the NeurIPS 2022 Synthetic Bank Fraud Dataset were each 
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treated as distinct institutional nodes. These nodes were intended to represent independent financial 
entities, each possessing its own locally stored, non-shareable data. In strict adherence to privacy-
preserving principles, no raw data or model parameters were exchanged between the participating 
nodes at any point during the experimentation process. This architectural decision was taken to 
replicate the regulatory and practical constraints faced by institutions under frameworks such as the 
General Data Protection Regulation (GDPR). 

Each node independently trained an instance of an unsupervised deep autoencoder model, 
specifically selected for its aptitude in learning compact representations of normal behaviour patterns 
and highlighting deviations that might indicate fraudulent activity. The architecture of the 
autoencoder was symmetrically structured: the encoder comprised three fully connected layers with 
progressively decreasing neuron counts (16, 8, and 4 neurons respectively), each employing the 
Rectified Linear Unit (ReLU) activation function to introduce non-linearity. The decoder mirrored 
this structure in reverse, reconstructing the input from its compressed latent representation and 
concluding with a linear activation layer, appropriate for producing real-valued outputs. 

For the purpose of anomaly detection, a statistical thresholding approach was employed. 
Specifically, the 98th percentile of reconstruction errors from legitimate transactions was selected as 
the cut-off point. Transactions whose reconstruction error exceeded this threshold were flagged as 
potential anomalies (fraudulent events). This percentile-based thresholding strategy was chosen to 
reflect a practical operational compromise, aiming to balance the competing objectives of fraud 
detection sensitivity and the minimisation of false positives in highly imbalanced datasets. 

This carefully crafted experimental design not only ensures scientific rigour but also closely 
mirrors the challenges and practicalities faced by contemporary financial institutions engaging in 
collaborative, privacy-conscious machine learning initiatives. 

4.2. Receiver Operating Characteristic – ROC Curve Analysis 

To evaluate the discriminative capacity of the autoencoder-based anomaly detection model, we 
utilised the receiver operating characteristic curve, a widely accepted metric in the domain of binary 
classification, particularly well-suited to contexts involving class imbalance. The ROC curve 
represents the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across 
a continuum of threshold values, thus offering a comprehensive view of the model’s performance 
under various operational conditions. 

As depicted in Figure 2, the orange curve illustrates the ROC performance of the autoencoder 
model trained within our federated simulation. The model achieves an Area Under the Curve (AUC) 
value of 0.6620, indicating a modest yet meaningful capacity to distinguish between fraudulent and 
legitimate transactions. Although the AUC value is not close to the ideal score of 1.0, it must be 
interpreted in the context of extreme class imbalance and the absence of supervised labels during 
model training. This is particularly relevant for unsupervised learning approaches, where no ground-
truth guidance is available during the learning process. 
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Figure 2. ROC Curve for Fraud Detection. 

The dashed blue diagonal line in the same figure represents the performance of a random 
classifier, which effectively guesses class labels without learning from data. This line serves as a 
baseline reference, where the model exhibits no discriminatory power (i.e., TPR equals FPR at all 
thresholds). A ROC curve that consistently lies above this diagonal confirms that the autoencoder is, 
indeed, learning a useful representation of normal versus anomalous transaction patterns, despite 
the challenging nature of the task. 

Further, the ROC curve shape indicates that the model performs best in low FPR regions, where 
it is able to identify a significant number of true positives while maintaining a manageable rate of 
false alarms. This is of critical importance in financial fraud detection, where false positives translate 
into operational costs such as manual review or customer inconvenience, and false negatives lead to 
undetected fraud losses. 

In summary, while the ROC-AUC score may appear conservative, it validates the potential of 
the unsupervised autoencoder in identifying fraudulent behaviours without explicit labels. It sets a 
foundational performance benchmark that can be further optimised through techniques such as 
threshold tuning, architectural adjustments, or incorporation of hybrid federated-supervised 
learning paradigms. 

4.3. Confusion Matrix Analysis 

In addition to the ROC curve, confusion matrices were employed to provide a granular 
examination of the model's classification performance. A confusion matrix visually summarises the 
correct and incorrect predictions made by the classifier, partitioned into True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN). In the context of fraud detection, such 
a detailed breakdown is indispensable for assessing the practical viability of the model. 

Figures 3 and 4 illustrate the confusion matrices for Node 1 (Kaggle dataset) and Node 2 
(NeurIPS dataset), respectively. These nodes represent independent financial institutions under the 
federated learning simulation. 
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Figure 3. Confusion Matrix of Node 1. 

In Figure 3 (Node 1), the matrix reveals that the model accurately classified 278,916 legitimate 
transactions while incorrectly flagging 5,399 cases as fraudulent (false positives). Although the false 
positive count is relatively small compared to the total number of legitimate transactions, it remains 
operationally significant in a real-world banking environment, where even minor increases in false 
alerts can strain manual verification resources. 

 

Figure 4. Confusion Matrix of Node 2. 

Similarly, Figure 4 (Node 2) displays the results for the NeurIPS dataset. Here, the model 
correctly classified an impressive 1,939,178 legitimate transactions, but also recorded 38,762 false 
positives. The larger scale of the dataset explains the increased absolute number of misclassifications; 
however, proportionally, the false positive rate remains comparable to that of Node 1. 

A key observation across both nodes is that the models exhibit a low true fraud detection rate. 
This outcome is expected given the unsupervised nature of the autoencoder and the significant class 
imbalance skewing towards legitimate transactions. Since fraudulent events are exceedingly rare, the 
models tend to be conservative, prioritising minimisation of false positives at the cost of missing some 
fraudulent cases (i.e., false negatives). 

Nonetheless, these confusion matrices reinforce the potential utility of the federated autoencoder 
framework in practical settings: the models are highly proficient at affirming legitimate transactions, 
reducing the workload on fraud analysts, while still flagging a manageable subset of transactions for 
further scrutiny. 
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Overall, the confusion matrix analysis corroborates the findings from the ROC curve evaluation, 
highlighting both the strengths and the areas requiring refinement specifically, improving sensitivity 
to rare fraudulent patterns without disproportionately increasing false alarms. 

4.4. Reconstruction Error Distribution Analysis 

To complement the classification metrics and further substantiate the model's performance, the 
distribution of reconstruction errors was analysed for each federated node. This analysis is vital, as 
the reconstruction error produced by the autoencoder is the fundamental indicator used to 
distinguish normal from anomalous (potentially fraudulent) behaviour. 

Figures 5 and 6 depict the reconstruction error distributions for Node 1 and Node 2, respectively. 

 

Figure 5. Reconstruction Error Distribution (Node1). 

In Figure 5 (Node 1 - Kaggle dataset), the histogram demonstrates a clear concentration of 
reconstruction errors near zero, corresponding to the majority of legitimate transactions. The 
reconstruction errors associated with fraudulent transactions, although relatively sparse, are notably 
higher on average. A vertical red dashed line marks the anomaly threshold, set at the 98th percentile 
of the reconstruction errors observed for legitimate samples. Transactions with reconstruction errors 
exceeding this threshold are classified as potentially fraudulent. 

This separation indicates that the autoencoder effectively learned the dominant patterns of 
legitimate behaviour, yielding low reconstruction errors for typical activities. However, the overlap 
between the legitimate and fraudulent distributions highlights the inherent challenge: some 
fraudulent transactions mimic legitimate behaviour closely enough to evade detection, while some 
legitimate transactions exhibit atypical patterns resulting in false positives. 

 

Figure 6. Reconstruction Error Distribution (Node2). 

Similarly, Figure 6 (Node 2 - NeurIPS dataset) follows the same analytical structure. The larger 
dataset size results in a denser concentration around the mean, but the general behaviour mirrors 
that observed in Node 1. Fraudulent transactions again tend to exhibit higher reconstruction errors 
relative to legitimate ones, albeit with some degree of overlap. 
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A noteworthy observation across both nodes is that although a fixed threshold (98th percentile) 
is employed, the optimal threshold may vary between datasets depending on their intrinsic noise 
levels and fraud typologies. Future work could investigate dynamic or adaptive thresholding 
techniques to further refine detection sensitivity. 

Overall, the reconstruction error distributions reinforce the suitability of the autoencoder 
approach for fraud detection under decentralised, privacy-preserving conditions. They validate that 
high reconstruction errors are reliable proxies for suspicious behaviour, thus forming the backbone 
of the anomaly-based detection strategy. 

4.5. Correlation Heatmap Analysis 

To gain deeper insights into the internal structure of fraudulent activities, feature correlation 
heatmaps were generated exclusively for the fraud-labelled samples from each federated node. This 
analysis serves twofold: first, to reveal inherent relationships between features that may be indicative 
of fraudulent patterns, and second, to provide explainability to the autoencoder’s learned 
representations. 

Figures 7 and 8 present the correlation heatmaps for Node 1 (Kaggle dataset) and Node 2 
(NeurIPS dataset), respectively. 

 

Figure 7. Correlation Heatmap (Node1). 

In Figure 4.6 (Node 1), the fraud-only correlation matrix demonstrates relatively weak inter-
feature correlations across most principal components (V1–V28), suggesting that the fraudulent 
transactions in the credit card dataset are largely diverse and lack strong internal feature 
dependencies. This observation aligns with the understanding that credit card fraud schemes often 
involve randomised or opportunistic behaviours to evade detection systems. A few modest 
correlations between specific components, such as V14 and V17, can be discerned, which may 
correspond to subtler behavioural patterns or systematic exploitation tactics. 
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Figure 8. Correlation Heatmap (Node2). 

Conversely, in Figure 8 (Node 2), the heatmap derived from the NeurIPS dataset exhibits 
markedly stronger and more structured correlations among features. Attributes related to user 
demographics, transaction velocity, and device behaviour display moderate to high correlations. For 
instance, variables such as device_os, session_length_in_minutes, and velocity_24h appear to co-vary 
in fraudulent records. Such interconnectedness implies that synthetic fraudulent activities in banking 
datasets are often orchestrated with predictable behavioural signatures, offering a different challenge 
profile compared to randomised transactional fraud. 

The contrasting nature of the two heatmaps is highly informative. It indicates that fraudulent 
behaviours can vary substantially across different financial ecosystems: credit card fraud tends to be 
sparse and irregular, whereas account-based fraud in banking systems may manifest in clusters of 
correlated anomalies. 

Understanding these correlations is crucial for several reasons: 

• It assists in refining feature selection for downstream models. 
• It enhances interpretability by allowing practitioners to focus on groups of related features 

rather than treating all variables independently. 
• It highlights potential areas for domain-specific anomaly detection refinement, such as 

composite feature engineering. 

By visualising fraud-specific feature interactions, the heatmaps contribute an important layer of 
explain ability to the overall detection framework, aligning with best practices in trustworthy 
artificial intelligence. 

5. Discussion and Findings 

The experimental findings demonstrate that the federated autoencoder framework offers a 
promising, privacy-preserving solution for decentralised fraud detection. ROC-AUC scores across 
the two nodes showed that the model was moderately successful in discriminating fraudulent 
transactions, particularly under strict class imbalance conditions. Confusion matrices revealed a 
strong ability to correctly identify legitimate transactions, although certain fraudulent activities 
evaded detection, a challenge common in real-world financial datasets. The distribution of 
reconstruction errors displayed distinct clustering patterns for fraudulent versus non-fraudulent 
transactions, yet some overlap persisted, suggesting the need for further enhancements in latent 
representation learning and anomaly threshold calibration. 

5.1. Implications for Real-World Deployment 
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These results highlight the potential for federated anomaly detection systems to revolutionise 
fraud detection across financial institutions. The model’s strict adherence to localised training 
maintains data privacy, supporting regulatory compliance under frameworks such as GDPR. 
Nevertheless, challenges such as performance degradation due to heterogeneous node data and 
difficulty in detecting subtle fraud instances remain. Future deployments should consider the 
integration of more advanced federated strategies, including model personalisation, dynamic 
thresholding, and explainability modules, to enhance operational robustness and trustworthiness. 

Following the observations outlined in Table 2, it is clear that while the current federated 
architecture provides a secure and scalable approach, several enhancements are necessary to achieve 
optimal operational efficacy. Specifically, improvements in threshold calibration, handling data 
imbalance, and fostering model explainability are critical for achieving broader real-world 
applicability. By systematically addressing these areas, future iterations of federated fraud detection 
systems can offer both improved performance and greater transparency, aligning more closely with 
the evolving demands of financial compliance and trust. 

Table 2. Summary of Key Observations and Suggested Future Directions. 

Observation Implication Proposed Future 
Improvement 

Moderate ROC-AUC 
with high specificity 

Effective in identifying 
legitimate transactions 

Refinement of anomaly 
thresholds and latent 
space tuning 

Significant class 
imbalance issues 

Difficulty in detecting 
rare fraudulent cases 

Adoption of oversampling 
or anomaly boosting 
methods 

Data heterogeneity 
between nodes 

Inconsistent model 
generalizability 

Incorporation of 
personalized federated 
algorithms 

Limited interpretability 
of predictions 

Barriers to stakeholder 
and regulatory trust 

Integration of explainable 
AI techniques (e.g., SHAP) 

Static threshold 
limitations 

Inflexibility against 
evolving fraud tactics 

Implementation of 
adaptive threshold 
mechanisms 

6. Conclusions 

This research has presented a comprehensive exploration of federated learning for financial 
fraud detection, employing an unsupervised autoencoder framework across decentralised datasets. 
By integrating two distinct datasets the Kaggle Credit Card Fraud Dataset and the NeurIPS Bank 
Account Fraud Dataset the study successfully simulated a federated environment that mirrors real-
world banking scenarios where data privacy, heterogeneity, and scalability are of paramount 
concern. 

The findings affirm the viability of federated anomaly detection in preserving data 
confidentiality while maintaining an acceptable level of detection performance. Reconstruction error-
based thresholding demonstrated strong discriminatory capability, although challenges such as 
severe class imbalance and latent data drift across nodes were evident. The results further underscore 
the potential of deep autoencoders in learning intricate patterns of legitimate transactions and 
distinguishing anomalies without extensive reliance on labelled data. 

The project not only validates federated learning’s applicability to fraud detection but also opens 
critical avenues for future research. In particular, improving the sensitivity to rare fraudulent 
patterns, enhancing explainability of model predictions, and dynamically adapting to evolving fraud 
tactics remain areas requiring substantial investigation. 
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Ultimately, this work reinforces the proposition that ethical, privacy-conscious artificial 
intelligence systems are not only desirable but also achievable in high-stakes domains like financial 
services. As the regulatory landscape tightens and digital ecosystems grow more interconnected, 
solutions that balance innovation with privacy and trust will be indispensable. 
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