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Abstract: This paper presents a thorough review of path-planning algorithms employed for the
navigation of Unmanned Ground Vehicles (UGVs) in underground mining environments. It outlines
the key components and requirements that are essential for an effective path planning framework,
including sensors and the Robot Operating System (ROS). The review examines both global and local
path-planning techniques, encompassing traditional graph-based methods, sampling-based
approaches, nature-inspired algorithms and Reinforcement learning strategies. Through the analysis
of the extant literatures on the subject, the review paper highlighted the strengths of the employed
techniques, the application scenarios, the testing environments and the optimization strategies. The
most favorable and relevant algorithms were identified. The paper acknowledges a significant
limitation: the over-reliance on simulation testing for path-planning algorithms and the
computational difficulties in implementing some of them in real mining condition. It concludes by
emphasizing the necessity for full-scale research on path planning in real mining conditions.
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1. Introduction

In the age of technological advancement, automatization has permeated almost all industries,
including underground mining [1]. The high risk and challenges inherent in traditional mining have
precipitated the introduction of automation measures. The elevated probability of injury in such a
harsh environment poses a significant threat to workers’ lives [2]. In addition, survey accuracy is
affected by worker fatigue, which impacts measurement accuracy and increases survey time.

Underground automation heavily depends on efficient and reliable navigation systems, serving
as a key enabler for autonomous operations in complex and hazardous environments [3].
Autonomous navigation is applicable in various environments, including outdoor, indoor,
underground mines, and even underwater [4]. Beyond improving precision and reliability, effective
navigation reduces the risks associated with manual operations, making it a fundamental component
of underground automation.

Compared to other environments, navigation in underground mine presents unique challenges,
including the unpredictable nature of underground terrain, such as irregular surfaces, narrow
passages and dynamic obstacles as listed in Table 1, requiring robust navigation to ensure safety and
efficiency [5]. Additionally, absence of GPS signals, requiring advanced techniques like Simultaneous
Localization and Mapping (SLAM) and Dead-reckoning methods [6,7].
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Table 1. Unique factors of each environment and theirs impact for navigation.

Factors Mine Indoor Outdoor
Surface Irregular surfaces, Smooth and structured .
.. Varied surfaces
Conditions narrow passages, mud surfaces
Obscurants Dust, smoke, gas Nearly clear Rain, fog and snow
GPS Availability CPS denied Available with extended Widely aval.lable and
setups effective
Obstacle Density Relatively high Low Moderate

Navigation in mining is crucial for enabling autonomous vehicles and systems to perform
various tasks efficiently and safely in challenging underground environments. For an example:

e  For surveying and mapping. Autonomous vehicles equipped with LIDAR and SLAM systems
navigate the mine to generate 3D maps for planning and operational purposes [8];

e  Transportation. Autonomous haul trucks navigate predefined routes to transport ore,
minerals, or waste material between loading and dumping points in underground mines [9];

¢  Dirilling and Blasting Operations. Navigation systems guide autonomous drilling machines to
precise coordinates within the mine for efficient drilling [10];

e Inspection and Maintenance. Autonomous robots navigate mine tunnels to detect structural
integrity issues and gas leaks [11];

e  Search and Rescue Operations (SAR). Navigation enables unmanned vehicles to explore
hazardous or collapsed mine areas where human entry is unsafe [12].

¢  Underground navigation in autonomous vehicle applications involves several key steps to
ensure safe and efficient operation. It begins with Localization, where the vehicle determines
its position and orientation within its environment using techniques like SLAM, or Dead-
reckoning. Next is Perception, which involves sensing and mapping the surroundings using
Light Detection and Ranging (LiDAR), cameras, or radar to detect obstacles and terrain
features. Then Path planning determines the optimal route to reach a destination while
avoiding obstacles and adapting to environmental changes. Finally, Motion control executes
the planned path by steering, accelerating or braking, ensuring precise and smooth movement.
These steps are supported by sensor integration and real-time decision-making to handle
dynamic conditions effectively [13].

e  In the context of autonomous underground navigation, a variety of platforms assume
significant roles in enhancing efficiency, safety and productivity. Unmanned Ground Vehicles
(UGVs) and Unmanned Aerial Vehicles (UAVs) are among the key technologies driving
automation in underground mining operations. Both of them are essential for surveying,
exploration, inspection and SAR tasks, where human intervention is either constrained or
infeasible. UGVs with high power and payload capacity have advantages in long-duration
missions and transportation, but they are limited in mobility. UAVs, on the other hand, are
good at quick inspections and can reach areas that are difficult to access [14]. Beyond
unmanned vehicles, many mining machines, including LHDs, are being redesigned for full
automation, further enhancing the efficiency and safety of underground operations [15].

e  Asone of the crucial components of navigation, path planning might be modified or enhanced
with optimization strategies to achieve efficient and accurate navigation in the underground
mining environment. While extensive research has been conducted on surface-level path
planning [16], underground navigation remains a critical and evolving research area due to its
unique environmental challenges and constraints. This paper provides a comprehensive
review of recent advancements in underground UGV path planning, highlighting emerging
trends, methodological improvements, and existing gaps in the field. The analysis aims to offer
insights into current limitations and identify opportunities for future research and
development in optimizing autonomous navigation for underground mining applications.
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2. Requirement Analysis for Path Planning for UGV in Underground Mining
Environment

The requirements outlined in this section serve as a key consideration for navigation and the
evaluation of existing path planning research in underground mine using UGVs. General
requirements for underground navigation:

e UGV must operate autonomously in GPS-denied environments;

e  Performing effectiveness in low-light, high-dust and uneven terrain conditions with help of
advanced sensors such as LiDAR, cameras, radars, IMUs and motor encoders for accurate
environmental mapping and obstacle detection;

e UGV must be compatible with Robot Operating System (ROS) framework, enabling modular
communication, multi-sensor integration and scalability;

e UGV must be reliably detect and avoid both static and dynamic obstacles, generating accurate
and efficient paths in real-time while incorporating recovery behaviors to handle unexpected
environmental changes;

e Adaptability to environmental complexity, such as dynamic obstacles and sudden changes in
tunnel structures, is necessary for reliable underground navigation

e Energy-efficient operation is also essential to prolong the operational lifespan of UGVs in
underground mine [17].

Path planning requirements are primarily determined by the algorithms employed. The
selection of an appropriate algorithm is based on an analysis of environmental and vehicle
parameters. To evaluate path planning algorithms and review existing research, the key requirements
and evaluation criteria for planned paths are summarized in Table 2.

Table 2. Requirement and the evaluation criteria for planned path.

Requirements Evaluation criteria
Optimal path Minimal travel time and path length
Smoothness Spatial and temporal smoothness coefficients [18]
High accuracy and safety Avoids obstacles and ensures collision-free path
Success rate Percentage of successful path completions
Computational cost Processing time and resource consumption
Robustness Ability to handle uncertainties
Handling narrow tunnels Minimum passable width

After obtaining the results, the analysis focuses on aligning the evaluated criteria with the
specific requirements of the desired mining tasks. These requirements provide a basis for evaluating
UGYV navigation systems and identifying research gaps.

3. Materials
3.1. Sensors to Perceive Environment

Sensors are critical components in underground mining applications, enabling UGVs to perceive
their surroundings, detect obstacles, and generate optimal paths in challenging environments.
Considering the different operating conditions in underground mines, the selection of suitable
sensors depends on the specific navigation requirements of the UGV. The following sensors are
frequently employed for navigation purposes in mining operations:

e LiDAR (Light Detection and Ranging);
e  Depth Camera;

e Radar;

e IMU (Inertial Measurement Units);
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° Motor encoders.

LiDAR is widely utilized technique for 3D mapping and obstacle detection, in which precise
point clouds of the surroundings are generated. Laser scanners, on the other hand, operate similarly
but offer high-resolution scans for detailed surface analysis. Depth cameras capture depth
information to identify variations in the terrain and assist in real-time object detection. Radar is
effective in low-visibility conditions such as dust and fog, using radio waves to detect obstacles
beyond the limitations of optical sensors. IMUs enhance localization accuracy by tracking motion
changes through accelerometers and gyroscopes. In addition, Motor encoders which measure wheel
rotations, provide odometry data to estimate the vehicle’s displacement and support dead reckoning-
based navigation [19]. Each sensor has its strengths and weaknesses in different applications,
depending on the environment and accuracy required, as described in Table 3.

Table 3. Sensors Features.

Sensors Strengths Weaknesses Range and
frequency

Works well in Performance can degrade in dust,
LiDAR 3D low-light environments; smoke or reflective surfaces; 10 -300 m;
[20] High accuracy in 3D mapping and 10 -100 Hz

High power consumption.
obstacle detection. ghp p

Performance may degrade in heav
Works in low-light environments; ydee y

Laser scanner particulate environments; 0,5-25m;
2D [21] Provides precise distance . . 10 -100 Hz
Computationally Intensive.
Measurements.
Depr, el (G nd e onlebend 5 o
Camera [22] P ' p ' 30 -90 Hz
Compact and lightweight Can be disrupted by dust or fog.
Works in harsh environments Difficult to interpret data 01— 250
(Dust, smoke); without additional processing; )
Radar [23] Reliable for detecting dynamic o
? © . & dyna Lower resolution. 10 -200 Hz
Objects.
Small, lightweight, and power- Susceptible to external
IMU [24] S e}ﬁfifcri;mt;e I vibrations and sensor noise; 100;1;000
ovides g queEncy moto Accumulates drift over time.
data.
Simple integration with UGV Accumulates drift over long
Motor control systems; distances (wheel slippage); 10 — 1000
Encoder [25] Not reliable for rough terrain or Hz

High frequency data.

slippery surfaces.

For robust underground mine path planning, sensor fusion (combining multiple sensors) is often
necessary. A typical UGV utilizes LiDAR or Scanners, along with IMUs and motor encoders.
Additionally, Radar complements LiDAR in harsh conditions, while Depth cameras are used for
object recognition and enhanced depth sensing [26].

In underground navigation, ROS (Robot Operating System) plays a key role as a middleware,
facilitating communication between sensors, data acquisition, and processing in UGVs. It provides a
structured framework for integrating multiple sensors, ensuring synchronized data flow for
perception, localization and navigation.
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3.2. ROS as Main Operation System

ROS is a flexible framework used primarily in robotics for developing robot software. Despite
its name, ROS is not a traditional operating system but rather a middleware framework that provides
tools, libraries, and conventions for creating complex and robust robot applications [27]. There
several advantages that ROS can provide:

e ROS is open source that can be augmented by developers;

e  Modular and flexible framework allows researchers to customize and adapt it for a wide range
of applications.

e  Cross-platform compatibility and hardware-agnostic design supports diverse robotic systems
from drones and robotic arms to autonomous vehicles.

e  Robust built-in libraries for computer vision, motion planning and navigation;

e  Simulation tools such as Gazebo and RViz, allowing researchers to efficiently prototype, test and
refine robots.

e Integration with Al and machine learning technologies extends its usefulness in creating
intelligent and autonomous systems [28].

ROS has evolved through two major generations. ROS 1 (2007) laid the foundation for robotics
development with modularity and ease of use, widely adopted for research and non-critical
applications. Key versions include ROS Kinetic (2016) and ROS Melodic (2018). However, it faced
limitations in real-time performance and scalability. ROS 2 (2017) addressed these issues with parallel
processing, secure communication and real-time support, making it ideal for industrial use. Built on
Data Distribution Service (DDS), ROS 2 ensures robust communication and scalability, with key
releases like Foxy (2020) and Humble (2022). Although ROS 1 is still in use, the focus is gradually
shifting to ROS 2 as the emerging industry standard [29].

In ROS, a node is a fundamental building block that represents a single process performing a
specific task, such as controlling a sensor or executing a robot’s movement logic. Nodes communicate
with each other using topics, which are named channels for message passing. A node can publish
messages to a topic or subscribe to a topic to receive messages, enabling modular and scalable
communication between different parts of a robot’s system. For instance, a camera node might
publish image data to a topic, while another node subscribes to process that data. The ROS file system
provides a structured way to organize resources and facilitate development within the ROS
framework. It is designed to manage the various components of a robotics project, including nodes,
packages, messages and configurations.

Key Components of ROS File System:

e  Packages - is the fundamental unit of software organization in ROS. It contains all the necessary
files for a specific functionality, such as nodes, libraries, configurations and launch files. Each
package is self-contained, enabling easy reuse and sharing;

e  Metapackages - are collections of related packages grouped together under a common purpose,
such as ros_base or desktop_full;

e Workspaces - are directories where ROS packages are developed and built.

e  Each package has a standardized directory structure:

e  src/: Source code for nodes and other scripts;

e launch/: Launch files to start nodes and set parameters;

e  config/: Configuration files of the robot descriptions to manage its behavior;

e  msg/ and srv/: Definitions for custom message and service types;

e  CMakeLists.txt and package.xml: Build system and package metadata files.

e  ROS defines specific file types for communication as Figure 1:

e  Messages: Define data structures for node-to-node communication;

e  Services: Specify request-response structures for synchronous interactions;

e  Actions: Provide a framework for long-running tasks with feedback.
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Figure 1. ROS communication types.

The ROS file system ensures consistency, modularity and ease of collaboration. By organizing
code and resources into packages, it simplifies sharing, testing and scaling across projects [30].

The operating system requirements for ROS vary depending on the generation. ROS1 is
primarily designed for Ubuntu Linux, as it leverages Ubuntu’s package management system and
development ecosystem. In contrast, ROS 2 offers broader compatibility and can be installed on
multiple operating systems, including Ubuntu and Windows.

ROS is also ideal for underground and mining applications due to its modular and flexible
architecture, enabling customization for navigation, mapping and inspection in challenging
environments. It enables UGVs to perform essential tasks, including SLAM, path planning and
visualization and supports multi-sensor integration such as LiDAR, radar and cameras for reliable
operation in low-light and dusty conditions. ROS facilitates real-time data processing, remote
operation and multi-robot coordination, enhancing safety and efficiency. Numerous completed and
ongoing ROS-based projects focus on automating mining operations and conducting rescue missions
in mining disasters. As an example, successful completion of the DARPA Subterranean Challenge in
2021 [31]. It was a robotics competition aimed at pushing the boundaries of autonomous navigation
and exploration in complex underground environments. The challenge sought innovative
approaches to quickly and effectively map, navigate and search through difficult subterranean
environments such as caves, tunnels and urban underground structures.

4. Path Planning Framework

Path planning is a fundamental component of autonomous UGV navigation, responsible for
determining an optimal or feasible path from a starting position to a destination while avoiding
obstacles and considering environmental constraints. Developing a path-planning framework is
inherently complex, as it encompasses environment representation, localization and perception,
path-planning algorithms, obstacle avoidance and motion control. This framework ensures that
UGVs can safely and efficiently navigate underground environments, where GPS is unavailable and
traditional navigation methods are ineffective [32].

The environment representation plays a crucial role in path planning, as it defines how the UGV
perceives and interacts with its surroundings. Various representation methods include grid-based
maps, topological maps, point cloud maps and hybrid maps, each offering different advantages
depending on the navigation requirements and computational constraints [33]. For localization in a
known environment, sensor-based techniques such as Monte Carlo Localization (MCL) and feature-
based localization are commonly employed [34]. However, in unknown environments, SLAM is
required to build a map while simultaneously determining the UGV’s position. Once the UGV has
identified its start or current position, it can execute path planning algorithms to navigate efficiently
toward the target location. After that, Motion control manages the movement of vehicles.

Path planning algorithms can be broadly classified into global and local planning approaches,
each serving a specific role in navigation as described in Figure 2.
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4.1. Global Path Planning Algorithms

Global path planning operates with a pre-existing map and computes a path before execution.

These algorithms are suitable for structured environments where a detailed representation of the

terrain is available. The global planner gives information about obstacles and environments

contained in the map, the position of robot and targets in the world. It creates a global path to reach

the target position. Based on how they model the environment and search strategies for an optimal

path, global path planning algorithms divide into Graph-based, Sampling-based, Nature-Inspired

Algorithms, Reinforcement learning (RL)-based algorithms and Hybrid [35].

1. Graph-Based algorithms. These algorithms model the environment as a graph and find the

shortest path using various search techniques. Sample algorithms:

Dijkstra: Dijkstra’s algorithm is designed to determine the minimum-cost path from a
source vertex to all other vertices in a directed graph. The algorithm operates by iteratively
selecting the closest unvisited node, updating the shortest known distances to its
neighboring vertices and continuing this process until the destination node is reached or all
reachable nodes have been explored. Since Dijkstra’s algorithm follows a breadth-first
search-like approach, it systematically expands the search from the starting node outward.
However, this leads to relatively high time and space complexity, especially in large graphs,
as it requires maintaining and updating distance information for multiple vertices
throughout the execution [36];

A and A* algorithms: A algorithm, often linked to Dijkstra’s approach, identifies the
shortest path between nodes in a weighted graph by evaluating all possible routes based
on cumulative cost. However, it lacks heuristic guidance, which can make it inefficient in
larger environments. The A* algorithm improves upon this by integrating a heuristic
function with cost-based search, allowing it to prioritize more promising paths. It evaluates
the total estimated cost from the start node and estimates the remaining cost to the goal
[37];

D* and D* lite: The D* algorithm is an incremental path-planning method designed for
dynamic environments, where obstacles or terrain conditions may change over time. It
initially computes an optimal path from the start position to the goal under the assumption
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of a static environment. When the robot moves and encounters updated information, D*
efficiently recalculates only the affected portions of the path instead of recomputing from
scratch, making it suitable for real-time applications in navigation and robotics. D* Lite, a
simplified version of D¥, follows a similar approach but computes paths in reverse, from
the goal to the start. This backward search allows for efficient path updates when obstacles
appear or disappear. By maintaining a cost-efficient priority queue and selectively updating
affected nodes, D* Lite reduces computational complexity while preserving optimality [38].

2. Sampling-Based Algorithms. These algorithms generate a path by randomly sampling points in

the environment. Sample algorithms:

Rapidly-exploring Random Tree (RRT). It is designed to efficiently navigate complex, high-
dimensional spaces. It incrementally builds a tree by randomly sampling points within the
search space and connecting them to the nearest existing node, effectively exploring feasible
paths in environments with numerous obstacles. While RRT is proficient at quickly finding
a viable path, it doesn’t guarantee optimality [39]. To address this limitation, RRT* was
developed as an extension of the original algorithm. RRT* enhances the path quality by
incorporating a process of iterative refinement, where it rewires the tree structure to explore
shorter or more efficient paths as new samples are added. This approach guarantees that,
under sufficient conditions and with an adequate number of samples, RRT* will reach an
optimal solution. It achieves this by balancing the rapid exploration capabilities of RRT with
optimality [40];

Probabilistic Roadmap (PRM). This method efficiently navigates high-dimensional spaces.
It works in two phases: first, the construction phase generates random collision-free nodes
and connects them to form a roadmap, and second, the query phase links the start and goal
positions to the roadmap, using graph search algorithms like Dijkstra to determine the
optimal path. PRM is particularly effective in static environments where multiple queries
are needed, as the roadmap can be reused, reducing computational complexity [41].

3. Nature-Inspired Algorithms. These algorithms are modelled after biological processes and use

mathematical optimization techniques to find the best path. Sample algorithms:

Genetic Algorithm (GA) is an evolutionary optimization technique inspired by the
principles of natural selection. It begins with a randomly generated population of candidate
solutions, which evolve over multiple iterations through selection, crossover and mutation.
A fitness function evaluates each candidate, favoring the best solutions for reproduction.
The algorithm applies crossover to combine parent solutions and mutation to introduce
small variations, ensuring diversity in the search space. This iterative process continues
until an optimal or near-optimal solution is found. GA is widely used in complex
optimization problems where traditional methods struggle with large or nonlinear search
spaces [42];

Particle Swarm Optimization (PSO) algorithm is a population-based optimization
technique inspired by the collective movement of birds and fish. It initializes a group of
candidate solutions, called particles, which explore the search space by updating their
positions based on both their individual best-known solution and the globally best-known
solution within the swarm. This dynamic adjustment allows particles to converge toward
optimal solutions over multiple iterations. PSO is particularly useful for solving high-
dimensional and nonlinear optimization problems due to its simplicity and efficiency in
navigating complex search spaces [43];

Ant Colony Optimization (ACO). It mimics the foraging behavior of ants to find optimal
paths in a graph. Artificial ants explore potential routes, depositing virtual pheromones that
influence the decisions of subsequent ants. Over successive iterations, paths with stronger
pheromone trails become more favorable, leading the swarm toward efficient solutions [44].
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4. Reinforcement learning (RL)-based algorithms. RL-based methods learn optimal paths through
trial-and-error interactions with the environment, refining their policies over time based on
cumulative rewards and don’t require a predefined model [45]. Sample algorithms:

e  Q-Learning algorithm. It builds a Q-table where each state-action pair is assigned a value,
updated iteratively using the Bellman equation. By maximizing cumulative rewards, the
algorithm ensures efficient obstacle avoidance and goal-reaching, making it particularly
useful in dynamic or uncertain environments [46];

e  Deep Q-Networks (DQN) employs a Deep Neural Network (DNN) to approximate Q-
values for state-action pairs, enabling the robot to learn an optimal policy through
continuous interaction with the environment. This approach is particularly beneficial in
dynamic, uncertain, or partially observable settings where traditional methods struggle.
Additionally, experience replay and target networks stabilize training, mitigating the
overestimation of Q-values and improving convergence [47].

5. Hybrid Algorithms. These algorithms combine two or more approaches to improve efficiency
and robustness. Sample combinations: A-RRT¥, D-lite with RRT* [48].

4.2. Local Path Planning Algorithms

Local path planning algorithms are crucial for UGVs, especially in dynamic environments. The
global path planner determines the overall trajectory for vehicle motion but lacks efficient real-time
obstacle avoidance. Direct execution of the global path often results in suboptimal performance. One
limitation is the reduced robustness of global planners, particularly in handling dynamic obstacles
and adapting to inaccuracies in environmental mapping. Additionally, as the search space expands,
the computational time of global path planning increases significantly [49]. Local planning adapts
planned path based on real-time data, ensuring that the robot can navigate effectively while
considering its physical limitations and avoiding obstacles. They work within the framework
established by the global planner but have a more dynamic role that involves constant adjustments
rather than a strictly defined trajectory generation.
¢  Dynamic Window Approach (DWA) is a real-time motion planning algorithm that ensures both

collision avoidance and adherence to dynamic constraints. It evaluates a range of possible

velocities within a short time horizon and selects the trajectory that optimally balances safety,
efficiency and goal direction. By considering the kinematic limitations of the robot and
environmental obstacles, DWA enables smooth and reactive navigation in dynamic

environments [50];

e  Artificial Potential Field (APF). In this approach, the robot is influenced by an artificial force field
composed of attractive forces pulling it toward the goal and repulsive forces pushing it away
from obstacles. The robot navigates by following the resultant force vector, aiming for a collision-
free path to the target. While APF is computationally efficient and straightforward to implement,
it can encounter issues such as local minima, where the robot becomes trapped in a position that
is not the goal. Various modifications have been proposed to address these limitations and
enhance the effectiveness of this method [51];

e  Vector Field Histogram (VFH) constructs a two-dimensional Cartesian histogram grid using
range sensor data. This grid is continuously updated to reflect the environment of the robot. The
algorithm reduces this grid to a one-dimensional polar histogram centered on the current
position of the robot, where each sector represents the obstacle density in a specific direction. By
analyzing these sectors, VFH identifies obstacle-free paths and determines the most suitable
steering direction, allowing the robot to navigate toward its target while avoiding collisions.
This method effectively balances reactive obstacle avoidance with goal-oriented navigation [52];

¢  Model Predictive Control (MPC) is an advanced control strategy that utilizes a dynamic model
of a system to predict and optimize its future behavior over a specified time horizon. In the
context of mobile robot local path planning, MPC involves formulating an optimization problem
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that accounts for the kinematic constraints of the robot, environmental obstacles and a
predefined cost function. At each time step, the controller solves this optimization problem to
determine the optimal control inputs, resulting in a trajectory that guides the robot toward its
target while avoiding collisions. This process is repeated in a receding horizon manner, allowing
the robot to adapt its path in real-time to dynamic changes in the environment. MPC’s ability to
handle multivariable control problems and incorporate constraints makes it particularly
effective for complex path planning tasks in uncertain environments [53];

e  Timed Elastic Band (TEB) algorithm optimizes the trajectory of the robot by considering both
spatial and temporal constraints. Starting with an initial path, TEB refines it into a time-
parametrized trajectory by adjusting the positions and velocities of intermediate points,
ensuring adherence to the kinematic constraints of the robot and obstacle avoidance. This
optimization process allows the robot to navigate efficiently in dynamic environments,
responding adaptively to changes while maintaining smooth and feasible motion [54].

Several algorithms, such as ACO, RRT*, A* and RL, can be utilized for both global and local path

planning after appropriate optimization [55].

However, despite the existence of a wide range of path-planning algorithms, their practical

implementation often reveals specific limitations in meeting all operational requirements. These

limitations are dependent on the testing environment and the characteristics of the UGV. As a result,

many algorithms require optimization or fusion with other approaches to enhance efficiency,

adaptability and robustness. Table 4 presents a detailed comparison of the advantages and limitations

of each algorithm.

Table 4. Strengths and Weaknesses of algorithms.

Algorithms Strength Weakness
.. Guarantees the shortest path; Computationally intensive;
Dijkstra . . . . . . .
Works well in static environments. Inefficiency in dynamic environment.
A% Fast and Efficient; Heuristic sensitivity;
Guarantees optimal path. Slow in high-dimensional spaces.
D* Efficient replanning; Higher memory usage;
Handles dynamic obstacles well. Slower with frequent changes.
RRT* Efficient in high-dimensional spaces; Paths are not always smooth;
Incremental path improvement. Slower in narrow passages.
PRM Reusable path for repeated queries; Paths are not always smooth;
Works well in large, open spaces. Struggles with dynamic obstacles.
GA Efficient in high-dimensional spaces; Slow convergence;
Works well with noisy data. No guarantee of finding optimal path.
PSO Simple to implement; Prone to local minima;
Adaptive to dynamic environments. Sensitive to parameter selection.
ACO Good for multi-agent path planning; Computationally intensive;
Works in dynamic environments. Slower convergence.
. Works with Partial Information; Higher memory usage;
Q-Learning . .
Can Handle Complex Environments. Slow convergence in large spaces.
Suitable for high-dimensional spaces; Requires high computational power;
DON . . 3 o .
Works with Partial Observability. Sensitive to parameter selection.
DWA Smooth and feasible paths; Prone to local minima;
Computationally lightweight. Struggles with complex environment.
APF Lightweight, fast obstacle avoidance; Prone to local minima;
Simple, best for reactive navigation. Struggles with dynamic obstacles.
VFH Efficient real-time obstacle avoidance; Prone to local minima;
Handles noisy sensor data well. Oscillations in Narrow Spaces.
MPC Optimizes performance; Computationally intensive;
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Generates smooth and efficient paths. Limited real-time application.
TEB Generates smooth, time-optimal path; Computationally intensive;
Dynamic Obstacle Avoidance. Sensitive to parameter selection.

Global path planning algorithms differ significantly in efficiency and adaptability based on the
environment and constraints. Graph-based methods such as A* and Dijkstra guarantee optimal paths
but are computationally expensive, while sample-based approaches like RRT* and PRM offer better
scalability in high-dimensional spaces but may require additional smoothing. Nature-Inspired
Algorithms like GA and ACO are useful for solving complex optimization problems but may suffer
from slower convergence. RL-techniques, including DQN, provide adaptability in dynamic and
unknown environments but require computational resources.

Local path planning algorithms offer also common and distinct advantages and drawbacks.
DWA, APF and VFH are prone to local minima, however they are good at real time obstacle
avoidance. Moreover, DWA, MPC and TEB ensures smooth and optimized paths, but MPC and TEB
demand high computation power. TEB is excellent for dynamic trajectory adjustments but requires
fine-tuned parameters. In the field of practical robotics, a universal algorithm that is best suited for
all applications is not yet available. Consequently, there is a preference for hybrid methods that
integrate multiple classical or RL-based approaches, particularly in the context of efficient path
planning. Alternatively, the existing algorithms may be modified through the implementation of
optimization strategies [56].

In terms of using path planning algorithms in underground mine, the evaluation criteria as
mentioned in requirement section will be selected based on key operational and environmental
requirements, including the optimality of the path, computational demand, robustness and obstacle
avoidance. Additionally, the variability in excavation methods influence the requirements for these
algorithms.

5. Related Works on Underground Mine Path Planning with UGVs

The automation of underground mine vehicles has been the focus of research and industry for
several decades. However, path planning for autonomous navigation remains a critical challenge and
an active area of investigation. Despite the several studies have been conducted on the review of path
planning algorithms on the ground [57], [58], a limited number of studies have successfully
addressed optimal path planning for mining vehicles and robotic applications in underground
environments.

Effective path planning allows UGVs to traverse complex, unstructured terrains while ensuring
efficiency, safety and adaptability. Researchers have explored various techniques, ranging from
classical graph-based methods to modern metaheuristic and RL-based approaches, each aiming to
optimize path efficiency, obstacle avoidance and computational feasibility. These approaches have
been validated in real underground mine, controlled indoor environment and virtual simulations
such as MATLAB, Python, Gazebo. Table 5 reviews key contributions by researchers in the field,
categorizing existing studies based on algorithmic approaches, testing strategies and demonstrated
advantages in underground mining applications.

Table 5. Analysis of various path planning techniques for UGVS in underground mine.

Basic
Auth
u: © Path typealgorithm  Optimization Strategy = Test field Advantages Application
s
Gaussian filtering method; Safe path; . .
[59] Global A¥ Quadratic programming MATLAB LHD in mm.mg
Smoother. transportation
method.

Expanding nodes by Indoor; Enhanced search ~ LHD in mining

*
[60]  Global A articulation angle; C++. efficiency; transportation
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Collision threat cost. Collision free.
Exponer?tlal .functlon Smoother path;
Global weighting; MATLAB Transportation
[61] A*+ APF  Cubic spline interpolation; More robust; . .
Local ] . ; Indoor. in coal mine
Repulsion potential field .
. Guarantied safety.
correction factor.
Key node selection strategy; Safety; L .
[62] Global A*+DWA Clamped-B spline; MATLAB Smoother path; Vehicle in rr}lne
Local ; Indoor. . transportation
Fuzzy control. Optimal path.
lobal hortest path; il ti
[63] Globa A*DWA i Indoor Shortest path; M(?bl e ro?o in
Local Smoothest path. inspection
Global Floyd Algorithm; MATLAB ’ ' Inspe.ctlon
[64] A*+DWA . Local optima solution robot in coal
Local B-Spline curves. ; Indoor. .
mine
MATLAB More efficiency search;
[65] Global VFH-A* Bezier interpolation; ,; Smooth path; LHD in n?mmg
Mine. . operation
Fast calculation speed.
MAKLINK lines.
lobal Dijkstra -
[66] Globa E Shifting locally; Mine Smooth path Robot in SAR
Local ACO . ;
Symmetric polynomial curve.
(67] Global DU b b sed optimization  MATLAB ~ norterpath; - Mine mapping
PSO Safety. and inspection
. Survey robot in
DE t-
[68] Global Dijkstra 3 nv1ronme.zn based MATLAB Feasible path mine
adaptation )
exploration
Safer path; Downhole
[69] Global D* Manhattan distances MATLAB Reduced planning time robot in mine
and cost. detection
Vectorized ; Short th; i ini
[70]  Global RRT* . ectorized map . Python orter pa LHD in rTunmg
Optimal tree reconnection. Smoother. operations
th path; i
MATLAB BS: O? o elj((:):\::(c)r
[71]  Global RRT* Line corner ; cterm n.arro.w .
Outdoor,  P2SSages with tight loader in
turn; excavation
RRI- Fan-sk'laped goa.ll orientati?n; MATLAB Higher success rate; Tnspection
[72]  Global Adaptive step size expansion; ; Smoother path; : .
PRM i robot in Mining
Third-order Bessel curve.  Indoor.  Shorter path length.
(73] Global RRG! Ray tracing mf:thod; Gazebo Shorter pat.h; .Mob.lle Robot
Next-Best View. Fast calculation. in Mine rescue
Retreat-punishment strategy; Coal mine
[74] Global ACO  Serial number and Cartesian MATLAB Consumes less costs robot
coordinate methods.
[75] Local ACO Membrane computing Simulatio - Faster convergence; Mobile robot
n Better robustness.
16-directional 24-
. Improved search
neighbourhood ant search ..
approach; efficiency; Rescue robot in
[76] Global  ACO pproach; MATLAB ue!
U-shaped trap Mine
Ant retreat strategy. solution;
Shorter path.
Annealing algorithm; Strong in robustness; | = . .
[77] Global ~ ACO , MATLAB  High convergence L1118 robotin
Entropy increase strategy. SAR
speed.
Global ACO+TE ' MATLAB Enhance.d' s.earch Dljilling 1"obot
[78] Pheromone updating model; ; capabilities; in mining
Local B
Indoor.  Faster convergence. rockburst
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Fast convergence

Tested by traveling Rescue robot in

7! lobal BFA2-PSA ATLAB ;
(791 Globa 5 salesman problem (TSP) M speed; coal mine
Better Robustness
I ic algorith: ATLAB h h;
mproved genetic algorithm M Shorter path; Patrol robot in
[80] Global - AFSA>+ Adaptive trajectory evaluation / mine safet
Local DWA plive trajectory evaiu Gazebo; Smoother path. . e
function inspection
Indoor.
(81] Global QLearnin Even gray I.node'l; MATLAB Smoother convergence; UGV in SAR
Multi-attribute intelligent. Shorter path;
(2] Local Skeleton- Thinning algorithm Mine High robustness;  LHD in mining
Based Stable; operation
Velocity and acceleration Dvnamic collision
fields; MATLAB y avoidance: Mobile robot in
[83] Local APF Global potential field line; ; v ! coal mine
Genetic Trust Region Indoor rescue

Algorithm

Escape local minima.

1. Rapidly Random Graph; 2. Bacterial Foraging algorithm; 3. Artificial fish swam algorithm.

A thorough analysis of the data presented in the table indicates that several underground mining
operations are being targeted by UGV navigation systems. The majority of research in path planning
focused on mine transportation, which is primarily carried out using LHD. Additionally, mine
exploration and inspection tasks with mobile robots equipped with specialized sensors emerged as
significant area of research interest. SAR is another critical topic for underground and numerous
researchers are exploring optimal path planning algorithms for successful rescue operations after
disasters. It is notable that coal mines are considered to be high-risk environments due to their
potential for accidents.

Despite the limited research in this area, existing studies have employed all types of
environment representation and search strategy models. The most prevalent techniques employed in
underground mine environments include classical such as graph-based and sampling-based
algorithms as illustrated in Figure 3a based on an analysis current existed research.

Other Learning based 4

and Metaheuristic
2
DWA APF TEB ACO PRM

A* 32%

ACO
18%

=Y

18%
RRT* 18% 1% °

@) (b)

Figure 3. Percentage of existing path planning algorithms that are being investigated by researchers for the

underground mining environment (a) Global path planning; (b) Local path planning.

It is illustrated that the A* algorithm is the most prevalent in the field, with approximately one
in three studies utilizing this approach. This method incorporates a range of optimization strategies,
including Gaussian filtering, quadratic programming, expanding and selection nodes, collision threat
cost, exponential function weighting, spline and others. These techniques ensure safe, smooth and
optimal paths for UGVs in mining transportation and inspection tasks [59-64]. Graph-based
algorithms have also demonstrated a high level of efficiency in hybrid contexts. For example, the
utilization of A* with VFH employing Bazier interpolation and Dijkstra with ACO and PSO
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employing curve strategies have been shown to enhance search efficiency, smoothness and accelerate
calculation in mining operations and SAR [65-67]. Dijkstra algorithm also demonstrated strong
performance in path planning within 3D environments [68] and represents 14% of the analyzed
studies.

Sampling-based methods such as RRT, has gained significant attention, accounting for 18% of
all research in the field. Optimized versions incorporating vectorized map, optimal tree reconnection,
and line corner for narrow passages have demonstrated superior path smoothness and shorter path
lengths in operating mining transports [70,71]. A hybrid RRT* - PRM model integrating fan-shaped
goal orientation, adaptive step-size expansion, and Bessel curve has been shown to enhance success
rates and smoothness for mining inspection robots [72]. Similarly, the incorporation of ray-tracing
and next-best-view methods into the RRG has been applied to mine rescue operations, achieving
shorter path generation and faster computational speed [73].

Nature-inspired approach, such as ACO, has been explored at a similar rate to RRT¥,
approximately 18%, for underground mine navigation and rescue applications. Studies have
employed retreat-punishment mechanisms, serial numbering and Cartesian coordinates, along with
a 16-directional, 24-neighborhood ACO approach, the ant retreat strategy, annealing algorithms,
pheromone updating models and entropy-increasing strategies to reduce consumption costs,
overcome U-shaped obstacle traps and enhance convergence speed, efficiency and robustness [74,76—
78].

The last 18% of the analyzed research is primarily divided between various types of nature-
inspired and RL-based algorithms. For example, the hybrid approach BFA combined with PSA tested
by traveling salesman problem and AFSA with improved genetic algorithm demonstrated fast
convergence, better robustness and shorter path in SAR applications [79,80]. Additionally, RL
algorithm, such as Q-learning combined with the Even Gray Model and Multi-Attribute Intelligent
Decision-Making, demonstrated smoother convergence and high robustness in SAR operation [81].

Unlike global path planning, local path planning involves fewer algorithms. As illustrated in
Figure 3b, the DWA is the most favorable method for adjusting the kinematics of UGVs. In the second
place stands APF that could be modified with global potential field line and genetic Trust Region
strategies to overcome local minima and dynamic collision in coal mine rescue tasks [83]. Moreover,
membrane computing-based ACO enhances robustness and convergence speed [75], while skeleton-
based thinning algorithms provide high stability and robustness [81]. Additionally, other
applications of the TEB and PRM methods were utilized for local path planning.

The test environments used in the reviewed studies, highlight the progression from simulation-
based validation to real-world implementation. Many algorithms have been tested in MATLAB and
Python simulations, providing controlled conditions for evaluating path efficiency, convergence and
obstacle avoidance. However, some studies extend their validation to indoor lab environments,
where methods have been tested in structured, tunnel-like settings, enabling real-time sensor fusion
and navigation performance analysis. The most reliable assessments come from real underground
mine experiments. Only few algorithms have been deployed to evaluate practical feasibility,
adaptability to real-world constraints and system robustness.

6. Discussion

The analysis of various path-planning algorithms for underground mine UGVs highlights
significant trends and challenges in achieving efficient, safe and adaptive autonomous navigation.
Most existing research is focused on transportation, inspection and SAR operations in mine. The
comparison of graph-based, sampling-based, Nature-inspired, RL-based and Local path planning
approaches demonstrates that each method has unique advantages and limitations depending on the
operational environment and constraints.

Graph-based approaches such as A* and Dijkstra remain widely used due to their deterministic
nature and ability to find optimal paths. However, these algorithms often struggle with real-time
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adaptability, particularly in dynamic underground environments where sudden obstacles and
unpredictable conditions are common. To overcome these drawbacks especially for A* Collision
threat cost and Repulsion potential field correction factor strategies are used. Furthermore, A*
typically produces paths that can be jagged or not smooth, especially in complex environments.
Techniques like cubic spline interpolation and B-spline curves provide a way to refine paths.

The most commonly used sampling-based method, such as RRT, is effective in exploration tasks
and offers better adaptability in large-scale environments. However, it can suffer from path
irregularities and challenges in collision detection. To address these issues, several strategies,
including vectorized maps, line corner handling and third-order Bessel curves proposed.

Nature-inspired approaches, particularly ACO, improve search efficiency, robustness and
obstacle avoidance but require higher computational resources. To mitigate this problem, the 16-
Directional 24-Neighbourhood Ant Search Approach and the Pheromone Updating Model were
used.

RL-based approaches, such as grey QL, have demonstrated potential in adaptive decision-
making, but their practical implementation is still limited by computational complexity and training
data requirements.

Among local path planning algorithms, DWA has been identified as the most favorable. To
address its limitations, the Adaptive Trajectory Evaluation Function and Fuzzy Control were
employed.

Analyzing the current research, it is notable that some hybrid algorithms also demonstrated
effective and optimal path planning, such as VFH-A¥, Dijkstra-ACO, Dijkstra-PSO, RRT-PRM, BFA-
PSA.

Several limitations persist in analyzing the existing research studies on the selected topic. (1) An
Over-reliance on simulation environments which do not fully replicate real-world underground
conditions. While indoor lab testing improves sensor integration and navigation accuracy, only a
limited number of studies have been conducted in actual underground mines. Additionally, many
path-planning algorithms do not account for real-time constraints, such as sensor delays, terrain
variations and power limitations, which are critical for full-scale deployment in industrial mining
operations. (2) Some algorithms may be overly complex, making them difficult to implement or adapt
for real-world scenarios. Especially, hybrid, nature-inspired and RL algorithms can exhibit
complexities. Simplicity and interpretability are often important for practical applications.

Future research should focus on bridging the gap between simulation and real-world
implementation of several successful approaches modified with optimization strategies by
conducting more large-scale real-mine experiments.

7. Conclusions

The automation of underground mining operations has advanced significantly in recent years,
with UGVs playing a crucial role in improving efficiency, safety and productivity. Unlike outdoor
and structured indoor environments, underground mines present unique challenges, including
complex tunnel networks, dynamic obstacles, low visibility and unstable terrain. To navigate in these
environment, autonomous mining vehicles rely on core navigation components such as mapping,
SLAM and path planning, all of which must be tailored to the constraints of underground operations.
UGVs are deployed in exploration, monitoring structural changes, production-related tasks, SAR
tasks and inspection requiring robust navigation systems to ensure operational reliability.

Path planning in underground mines presents distinct challenges due to GPS-denied,
unpredictable environmental changes and the need for efficient real-time decision-making. The
requirement analysis in this study highlights the need for adaptive, efficient and safe path-planning
strategies that can be implemented in UGVs. To address these challenges, ROS serves as a widely
adopted implementation environment, offering flexibility, modular communication and support for
multi-sensor integration. The integration of various sensors such as LIDAR, IMU and cameras, along
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with ROS-based communication packages, enhances real-time perception and navigation
capabilities.

The review and analysis of path-planning algorithms in this study involve several global and
local path-planning techniques, including traditional graph-based and sampling-based approaches,
as well as nature-inspired and reinforcement learning (RL)-based algorithms. For global path
planning A*, Dijkstra, RRT*and ACO and for local path planning DWA remain widely used in
underground mine application with UGVS. Several critical factors such as robustness, calculation
speed, smoothness, length of the path is enhanced with optimization strategies.

The research limitation identified in the analysis of path planning techniques in underground
mine with UGVs indicates the need for real-world deployment of several algorithms. Many
algorithms have been validated in simulation environments only a limited number have been tested
in real underground mines.
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