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Abstract: This paper presents a thorough review of path-planning algorithms employed for the 

navigation of Unmanned Ground Vehicles (UGVs) in underground mining environments. It outlines 

the key components and requirements that are essential for an effective path planning framework, 

including sensors and the Robot Operating System (ROS). The review examines both global and local 

path-planning techniques, encompassing traditional graph-based methods, sampling-based 

approaches, nature-inspired algorithms and Reinforcement learning strategies. Through the analysis 

of the extant literatures on the subject, the review paper highlighted the strengths of the employed 

techniques, the application scenarios, the testing environments and the optimization strategies. The 

most favorable and relevant algorithms were identified. The paper acknowledges a significant 

limitation: the over-reliance on simulation testing for path-planning algorithms and the 

computational difficulties in implementing some of them in real mining condition. It concludes by 

emphasizing the necessity for full-scale research on path planning in real mining conditions. 
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1. Introduction 

In the age of technological advancement, automatization has permeated almost all industries, 

including underground mining [1]. The high risk and challenges inherent in traditional mining have 

precipitated the introduction of automation measures. The elevated probability of injury in such a 

harsh environment poses a significant threat to workers’ lives [2]. In addition, survey accuracy is 

affected by worker fatigue, which impacts measurement accuracy and increases survey time. 

Underground automation heavily depends on efficient and reliable navigation systems, serving 

as a key enabler for autonomous operations in complex and hazardous environments [3]. 

Autonomous navigation is applicable in various environments, including outdoor, indoor, 

underground mines, and even underwater [4]. Beyond improving precision and reliability, effective 

navigation reduces the risks associated with manual operations, making it a fundamental component 

of underground automation. 

Compared to other environments, navigation in underground mine presents unique challenges, 

including the unpredictable nature of underground terrain, such as irregular surfaces, narrow 

passages and dynamic obstacles as listed in Table 1, requiring robust navigation to ensure safety and 

efficiency [5]. Additionally, absence of GPS signals, requiring advanced techniques like Simultaneous 

Localization and Mapping (SLAM) and Dead-reckoning methods [6,7]. 
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Table 1. Unique factors of each environment and theirs impact for navigation. 

Factors Mine Indoor Outdoor 

Surface 

Conditions 

Irregular surfaces, 

narrow passages, mud 

Smooth and structured  

surfaces 
Varied surfaces 

Obscurants Dust, smoke, gas Nearly clear Rain, fog and snow 

GPS Availability GPS denied 
Available with extended 

setups 

Widely available and 

effective 

Obstacle Density Relatively high Low Moderate 

Navigation in mining is crucial for enabling autonomous vehicles and systems to perform 

various tasks efficiently and safely in challenging underground environments. For an example: 

 For surveying and mapping. Autonomous vehicles equipped with LiDAR and SLAM systems 

navigate the mine to generate 3D maps for planning and operational purposes [8]; 

 Transportation. Autonomous haul trucks navigate predefined routes to transport ore, 

minerals, or waste material between loading and dumping points in underground mines [9]; 

 Drilling and Blasting Operations. Navigation systems guide autonomous drilling machines to 

precise coordinates within the mine for efficient drilling [10]; 

 Inspection and Maintenance. Autonomous robots navigate mine tunnels to detect structural 

integrity issues and gas leaks [11]; 

 Search and Rescue Operations (SAR). Navigation enables unmanned vehicles to explore 

hazardous or collapsed mine areas where human entry is unsafe [12]. 

 Underground navigation in autonomous vehicle applications involves several key steps to 

ensure safe and efficient operation. It begins with Localization, where the vehicle determines 

its position and orientation within its environment using techniques like SLAM, or Dead-

reckoning. Next is Perception, which involves sensing and mapping the surroundings using 

Light Detection and Ranging (LiDAR), cameras, or radar to detect obstacles and terrain 

features. Then Path planning determines the optimal route to reach a destination while 

avoiding obstacles and adapting to environmental changes. Finally, Motion control executes 

the planned path by steering, accelerating or braking, ensuring precise and smooth movement. 

These steps are supported by sensor integration and real-time decision-making to handle 

dynamic conditions effectively [13]. 

 In the context of autonomous underground navigation, a variety of platforms assume 

significant roles in enhancing efficiency, safety and productivity. Unmanned Ground Vehicles 

(UGVs) and Unmanned Aerial Vehicles (UAVs) are among the key technologies driving 

automation in underground mining operations. Both of them are essential for surveying, 

exploration, inspection and SAR tasks, where human intervention is either constrained or 

infeasible. UGVs with high power and payload capacity have advantages in long-duration 

missions and transportation, but they are limited in mobility. UAVs, on the other hand, are 

good at quick inspections and can reach areas that are difficult to access [14]. Beyond 

unmanned vehicles, many mining machines, including LHDs, are being redesigned for full 

automation, further enhancing the efficiency and safety of underground operations [15]. 

 As one of the crucial components of navigation, path planning might be modified or enhanced 

with optimization strategies to achieve efficient and accurate navigation in the underground 

mining environment. While extensive research has been conducted on surface-level path 

planning [16], underground navigation remains a critical and evolving research area due to its 

unique environmental challenges and constraints. This paper provides a comprehensive 

review of recent advancements in underground UGV path planning, highlighting emerging 

trends, methodological improvements, and existing gaps in the field. The analysis aims to offer 

insights into current limitations and identify opportunities for future research and 

development in optimizing autonomous navigation for underground mining applications. 
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2. Requirement Analysis for Path Planning for UGV in Underground Mining 

Environment 

The requirements outlined in this section serve as a key consideration for navigation and the 

evaluation of existing path planning research in underground mine using UGVs. General 

requirements for underground navigation: 

 UGV must operate autonomously in GPS-denied environments; 

 Performing effectiveness in low-light, high-dust and uneven terrain conditions with help of 

advanced sensors such as LiDAR, cameras, radars, IMUs and motor encoders for accurate 

environmental mapping and obstacle detection; 

 UGV must be compatible with Robot Operating System (ROS) framework, enabling modular 

communication, multi-sensor integration and scalability; 

 UGV must be reliably detect and avoid both static and dynamic obstacles, generating accurate 

and efficient paths in real-time while incorporating recovery behaviors to handle unexpected 

environmental changes; 

 Adaptability to environmental complexity, such as dynamic obstacles and sudden changes in 

tunnel structures, is necessary for reliable underground navigation 

 Energy-efficient operation is also essential to prolong the operational lifespan of UGVs in 

underground mine [17]. 

Path planning requirements are primarily determined by the algorithms employed. The 

selection of an appropriate algorithm is based on an analysis of environmental and vehicle 

parameters. To evaluate path planning algorithms and review existing research, the key requirements 

and evaluation criteria for planned paths are summarized in Table 2. 

Table 2. Requirement and the evaluation criteria for planned path. 

Requirements Evaluation criteria 

Optimal path Minimal travel time and path length 

Smoothness Spatial and temporal smoothness coefficients [18] 

High accuracy and safety Avoids obstacles and ensures collision-free path 

Success rate Percentage of successful path completions 

Computational cost Processing time and resource consumption  

Robustness Ability to handle uncertainties 

Handling narrow tunnels Minimum passable width 

After obtaining the results, the analysis focuses on aligning the evaluated criteria with the 

specific requirements of the desired mining tasks. These requirements provide a basis for evaluating 

UGV navigation systems and identifying research gaps. 

3. Materials 

3.1. Sensors to Perceive Environment 

Sensors are critical components in underground mining applications, enabling UGVs to perceive 

their surroundings, detect obstacles, and generate optimal paths in challenging environments. 

Considering the different operating conditions in underground mines, the selection of suitable 

sensors depends on the specific navigation requirements of the UGV. The following sensors are 

frequently employed for navigation purposes in mining operations: 

 LiDAR (Light Detection and Ranging); 

 Depth Camera; 

 Radar; 

 IMU (Inertial Measurement Units); 
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 Motor encoders. 

LiDAR is widely utilized technique for 3D mapping and obstacle detection, in which precise 

point clouds of the surroundings are generated. Laser scanners, on the other hand, operate similarly 

but offer high-resolution scans for detailed surface analysis. Depth cameras capture depth 

information to identify variations in the terrain and assist in real-time object detection. Radar is 

effective in low-visibility conditions such as dust and fog, using radio waves to detect obstacles 

beyond the limitations of optical sensors. IMUs enhance localization accuracy by tracking motion 

changes through accelerometers and gyroscopes. In addition, Motor encoders which measure wheel 

rotations, provide odometry data to estimate the vehicle’s displacement and support dead reckoning-

based navigation [19]. Each sensor has its strengths and weaknesses in different applications, 

depending on the environment and accuracy required, as described in Table 3. 

Table 3. Sensors Features. 

Sensors Strengths Weaknesses 
Range and 

frequency 

LiDAR 3D 

[20] 

Works well in 

low-light environments; 

Performance can degrade in dust, 

smoke or reflective surfaces; 10 – 300 m; 

10 – 100 Hz High accuracy in 3D mapping and 

obstacle detection. 
High power consumption. 

Laser scanner 

2D [21] 

Works in low-light environments; 
Performance may degrade in heavy 

particulate environments; 0,5 - 25 m; 

10 – 100 Hz Provides precise distance 

Measurements. 
Computationally Intensive. 

Depth 

Camera [22] 

Provides both color (RGB) and 

depth (D) information; 

Sensitive to reflective and 

transparent surfaces; 
0.2 – 10 m; 

30 – 90 Hz 

Compact and lightweight Can be disrupted by dust or fog. 

Radar [23] 

Works in harsh environments 

(Dust, smoke); 

Difficult to interpret data 

without additional processing; 
0.1 – 250 

m; 

10 – 200 Hz 
Reliable for detecting dynamic 

Objects. 
Lower resolution. 

IMU [24] 

Small, lightweight, and power-

efficient; 

Susceptible to external 

vibrations and sensor noise; 100 – 1000 

Hz Provides high-frequency motion 

data. 
Accumulates drift over time. 

Motor 

Encoder [25] 

Simple integration with UGV 

control systems; 

Accumulates drift over long 

distances (wheel slippage); 10 – 1000 

Hz 
High frequency data. 

Not reliable for rough terrain or 

slippery surfaces. 

For robust underground mine path planning, sensor fusion (combining multiple sensors) is often 

necessary. A typical UGV utilizes LiDAR or Scanners, along with IMUs and motor encoders. 

Additionally, Radar complements LiDAR in harsh conditions, while Depth cameras are used for 

object recognition and enhanced depth sensing [26]. 

In underground navigation, ROS (Robot Operating System) plays a key role as a middleware, 

facilitating communication between sensors, data acquisition, and processing in UGVs. It provides a 

structured framework for integrating multiple sensors, ensuring synchronized data flow for 

perception, localization and navigation. 
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3.2. ROS as Main Operation System 

ROS is a flexible framework used primarily in robotics for developing robot software. Despite 

its name, ROS is not a traditional operating system but rather a middleware framework that provides 

tools, libraries, and conventions for creating complex and robust robot applications [27]. There 

several advantages that ROS can provide: 

 ROS is open source that can be augmented by developers; 

 Modular and flexible framework allows researchers to customize and adapt it for a wide range 

of applications. 

 Cross-platform compatibility and hardware-agnostic design supports diverse robotic systems 

from drones and robotic arms to autonomous vehicles. 

 Robust built-in libraries for computer vision, motion planning and navigation; 

 Simulation tools such as Gazebo and RViz, allowing researchers to efficiently prototype, test and 

refine robots. 

 Integration with AI and machine learning technologies extends its usefulness in creating 

intelligent and autonomous systems [28]. 

ROS has evolved through two major generations. ROS 1 (2007) laid the foundation for robotics 

development with modularity and ease of use, widely adopted for research and non-critical 

applications. Key versions include ROS Kinetic (2016) and ROS Melodic (2018). However, it faced 

limitations in real-time performance and scalability. ROS 2 (2017) addressed these issues with parallel 

processing, secure communication and real-time support, making it ideal for industrial use. Built on 

Data Distribution Service (DDS), ROS 2 ensures robust communication and scalability, with key 

releases like Foxy (2020) and Humble (2022). Although ROS 1 is still in use, the focus is gradually 

shifting to ROS 2 as the emerging industry standard [29]. 

In ROS, a node is a fundamental building block that represents a single process performing a 

specific task, such as controlling a sensor or executing a robot’s movement logic. Nodes communicate 

with each other using topics, which are named channels for message passing. A node can publish 

messages to a topic or subscribe to a topic to receive messages, enabling modular and scalable 

communication between different parts of a robot’s system. For instance, a camera node might 

publish image data to a topic, while another node subscribes to process that data. The ROS file system 

provides a structured way to organize resources and facilitate development within the ROS 

framework. It is designed to manage the various components of a robotics project, including nodes, 

packages, messages and configurations. 

Key Components of ROS File System: 

 Packages - is the fundamental unit of software organization in ROS. It contains all the necessary 

files for a specific functionality, such as nodes, libraries, configurations and launch files. Each 

package is self-contained, enabling easy reuse and sharing; 

 Metapackages - are collections of related packages grouped together under a common purpose, 

such as ros_base or desktop_full; 

 Workspaces - are directories where ROS packages are developed and built. 

 Each package has a standardized directory structure: 

 src/: Source code for nodes and other scripts; 

 launch/: Launch files to start nodes and set parameters; 

 config/: Configuration files of the robot descriptions to manage its behavior; 

 msg/ and srv/: Definitions for custom message and service types; 

 CMakeLists.txt and package.xml: Build system and package metadata files. 

 ROS defines specific file types for communication as Figure 1: 

 Messages: Define data structures for node-to-node communication; 

 Services: Specify request-response structures for synchronous interactions; 

 Actions: Provide a framework for long-running tasks with feedback. 
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Figure 1. ROS communication types. 

The ROS file system ensures consistency, modularity and ease of collaboration. By organizing 

code and resources into packages, it simplifies sharing, testing and scaling across projects [30]. 

The operating system requirements for ROS vary depending on the generation. ROS1 is 

primarily designed for Ubuntu Linux, as it leverages Ubuntu’s package management system and 

development ecosystem. In contrast, ROS 2 offers broader compatibility and can be installed on 

multiple operating systems, including Ubuntu and Windows. 

ROS is also ideal for underground and mining applications due to its modular and flexible 

architecture, enabling customization for navigation, mapping and inspection in challenging 

environments. It enables UGVs to perform essential tasks, including SLAM, path planning and 

visualization and supports multi-sensor integration such as LiDAR, radar and cameras for reliable 

operation in low-light and dusty conditions. ROS facilitates real-time data processing, remote 

operation and multi-robot coordination, enhancing safety and efficiency. Numerous completed and 

ongoing ROS-based projects focus on automating mining operations and conducting rescue missions 

in mining disasters. As an example, successful completion of the DARPA Subterranean Challenge in 

2021 [31]. It was a robotics competition aimed at pushing the boundaries of autonomous navigation 

and exploration in complex underground environments. The challenge sought innovative 

approaches to quickly and effectively map, navigate and search through difficult subterranean 

environments such as caves, tunnels and urban underground structures. 

4. Path Planning Framework 

Path planning is a fundamental component of autonomous UGV navigation, responsible for 

determining an optimal or feasible path from a starting position to a destination while avoiding 

obstacles and considering environmental constraints. Developing a path-planning framework is 

inherently complex, as it encompasses environment representation, localization and perception, 

path-planning algorithms, obstacle avoidance and motion control. This framework ensures that 

UGVs can safely and efficiently navigate underground environments, where GPS is unavailable and 

traditional navigation methods are ineffective [32]. 

The environment representation plays a crucial role in path planning, as it defines how the UGV 

perceives and interacts with its surroundings. Various representation methods include grid-based 

maps, topological maps, point cloud maps and hybrid maps, each offering different advantages 

depending on the navigation requirements and computational constraints [33]. For localization in a 

known environment, sensor-based techniques such as Monte Carlo Localization (MCL) and feature-

based localization are commonly employed [34]. However, in unknown environments, SLAM is 

required to build a map while simultaneously determining the UGV’s position. Once the UGV has 

identified its start or current position, it can execute path planning algorithms to navigate efficiently 

toward the target location. After that, Motion control manages the movement of vehicles. 

Path planning algorithms can be broadly classified into global and local planning approaches, 

each serving a specific role in navigation as described in Figure 2. 
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Figure 2. Workflow and types of path planning. 

4.1. Global Path Planning Algorithms 

Global path planning operates with a pre-existing map and computes a path before execution. 

These algorithms are suitable for structured environments where a detailed representation of the 

terrain is available. The global planner gives information about obstacles and environments 

contained in the map, the position of robot and targets in the world. It creates a global path to reach 

the target position. Based on how they model the environment and search strategies for an optimal 

path, global path planning algorithms divide into Graph-based, Sampling-based, Nature-Inspired 

Algorithms, Reinforcement learning (RL)-based algorithms and Hybrid [35]. 

1. Graph-Based algorithms. These algorithms model the environment as a graph and find the 

shortest path using various search techniques. Sample algorithms: 

 Dijkstra: Dijkstra’s algorithm is designed to determine the minimum-cost path from a 

source vertex to all other vertices in a directed graph. The algorithm operates by iteratively 

selecting the closest unvisited node, updating the shortest known distances to its 

neighboring vertices and continuing this process until the destination node is reached or all 

reachable nodes have been explored. Since Dijkstra’s algorithm follows a breadth-first 

search-like approach, it systematically expands the search from the starting node outward. 

However, this leads to relatively high time and space complexity, especially in large graphs, 

as it requires maintaining and updating distance information for multiple vertices 

throughout the execution [36]; 

 A and A* algorithms: A algorithm, often linked to Dijkstra’s approach, identifies the 

shortest path between nodes in a weighted graph by evaluating all possible routes based 

on cumulative cost. However, it lacks heuristic guidance, which can make it inefficient in 

larger environments. The A* algorithm improves upon this by integrating a heuristic 

function with cost-based search, allowing it to prioritize more promising paths. It evaluates 

the total estimated cost from the start node and estimates the remaining cost to the goal 

[37]; 

 D* and D* lite: The D* algorithm is an incremental path-planning method designed for 

dynamic environments, where obstacles or terrain conditions may change over time. It 

initially computes an optimal path from the start position to the goal under the assumption 
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of a static environment. When the robot moves and encounters updated information, D* 

efficiently recalculates only the affected portions of the path instead of recomputing from 

scratch, making it suitable for real-time applications in navigation and robotics. D* Lite, a 

simplified version of D*, follows a similar approach but computes paths in reverse, from 

the goal to the start. This backward search allows for efficient path updates when obstacles 

appear or disappear. By maintaining a cost-efficient priority queue and selectively updating 

affected nodes, D* Lite reduces computational complexity while preserving optimality [38]. 

2. Sampling-Based Algorithms. These algorithms generate a path by randomly sampling points in 

the environment. Sample algorithms: 

 Rapidly-exploring Random Tree (RRT). It is designed to efficiently navigate complex, high-

dimensional spaces. It incrementally builds a tree by randomly sampling points within the 

search space and connecting them to the nearest existing node, effectively exploring feasible 

paths in environments with numerous obstacles. While RRT is proficient at quickly finding 

a viable path, it doesn’t guarantee optimality [39]. To address this limitation, RRT* was 

developed as an extension of the original algorithm. RRT* enhances the path quality by 

incorporating a process of iterative refinement, where it rewires the tree structure to explore 

shorter or more efficient paths as new samples are added. This approach guarantees that, 

under sufficient conditions and with an adequate number of samples, RRT* will reach an 

optimal solution. It achieves this by balancing the rapid exploration capabilities of RRT with 

optimality [40]; 

 Probabilistic Roadmap (PRM). This method efficiently navigates high-dimensional spaces. 

It works in two phases: first, the construction phase generates random collision-free nodes 

and connects them to form a roadmap, and second, the query phase links the start and goal 

positions to the roadmap, using graph search algorithms like Dijkstra to determine the 

optimal path. PRM is particularly effective in static environments where multiple queries 

are needed, as the roadmap can be reused, reducing computational complexity [41]. 

3. Nature-Inspired Algorithms. These algorithms are modelled after biological processes and use 

mathematical optimization techniques to find the best path. Sample algorithms: 

 Genetic Algorithm (GA) is an evolutionary optimization technique inspired by the 

principles of natural selection. It begins with a randomly generated population of candidate 

solutions, which evolve over multiple iterations through selection, crossover and mutation. 

A fitness function evaluates each candidate, favoring the best solutions for reproduction. 

The algorithm applies crossover to combine parent solutions and mutation to introduce 

small variations, ensuring diversity in the search space. This iterative process continues 

until an optimal or near-optimal solution is found. GA is widely used in complex 

optimization problems where traditional methods struggle with large or nonlinear search 

spaces [42]; 

 Particle Swarm Optimization (PSO) algorithm is a population-based optimization 

technique inspired by the collective movement of birds and fish. It initializes a group of 

candidate solutions, called particles, which explore the search space by updating their 

positions based on both their individual best-known solution and the globally best-known 

solution within the swarm. This dynamic adjustment allows particles to converge toward 

optimal solutions over multiple iterations. PSO is particularly useful for solving high-

dimensional and nonlinear optimization problems due to its simplicity and efficiency in 

navigating complex search spaces [43]; 

 Ant Colony Optimization (ACO). It mimics the foraging behavior of ants to find optimal 

paths in a graph. Artificial ants explore potential routes, depositing virtual pheromones that 

influence the decisions of subsequent ants. Over successive iterations, paths with stronger 

pheromone trails become more favorable, leading the swarm toward efficient solutions [44]. 
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4. Reinforcement learning (RL)-based algorithms. RL-based methods learn optimal paths through 

trial-and-error interactions with the environment, refining their policies over time based on 

cumulative rewards and don’t require a predefined model [45]. Sample algorithms: 

 Q-Learning algorithm. It builds a Q-table where each state-action pair is assigned a value, 

updated iteratively using the Bellman equation. By maximizing cumulative rewards, the 

algorithm ensures efficient obstacle avoidance and goal-reaching, making it particularly 

useful in dynamic or uncertain environments [46]; 

 Deep Q-Networks (DQN) employs a Deep Neural Network (DNN) to approximate Q-

values for state-action pairs, enabling the robot to learn an optimal policy through 

continuous interaction with the environment. This approach is particularly beneficial in 

dynamic, uncertain, or partially observable se�ings where traditional methods struggle. 

Additionally, experience replay and target networks stabilize training, mitigating the 

overestimation of Q-values and improving convergence [47]. 

5. Hybrid Algorithms. These algorithms combine two or more approaches to improve efficiency 

and robustness. Sample combinations: A-RRT*, D-lite with RRT* [48]. 

4.2. Local Path Planning Algorithms 

Local path planning algorithms are crucial for UGVs, especially in dynamic environments. The 

global path planner determines the overall trajectory for vehicle motion but lacks efficient real-time 

obstacle avoidance. Direct execution of the global path often results in suboptimal performance. One 

limitation is the reduced robustness of global planners, particularly in handling dynamic obstacles 

and adapting to inaccuracies in environmental mapping. Additionally, as the search space expands, 

the computational time of global path planning increases significantly [49]. Local planning adapts 

planned path based on real-time data, ensuring that the robot can navigate effectively while 

considering its physical limitations and avoiding obstacles. They work within the framework 

established by the global planner but have a more dynamic role that involves constant adjustments 

rather than a strictly defined trajectory generation. 

 Dynamic Window Approach (DWA) is a real-time motion planning algorithm that ensures both 

collision avoidance and adherence to dynamic constraints. It evaluates a range of possible 

velocities within a short time horizon and selects the trajectory that optimally balances safety, 

efficiency and goal direction. By considering the kinematic limitations of the robot and 

environmental obstacles, DWA enables smooth and reactive navigation in dynamic 

environments [50]; 

 Artificial Potential Field (APF). In this approach, the robot is influenced by an artificial force field 

composed of a�ractive forces pulling it toward the goal and repulsive forces pushing it away 

from obstacles. The robot navigates by following the resultant force vector, aiming for a collision-

free path to the target. While APF is computationally efficient and straightforward to implement, 

it can encounter issues such as local minima, where the robot becomes trapped in a position that 

is not the goal. Various modifications have been proposed to address these limitations and 

enhance the effectiveness of this method [51]; 

 Vector Field Histogram (VFH) constructs a two-dimensional Cartesian histogram grid using 

range sensor data. This grid is continuously updated to reflect the environment of the robot. The 

algorithm reduces this grid to a one-dimensional polar histogram centered on the current 

position of the robot, where each sector represents the obstacle density in a specific direction. By 

analyzing these sectors, VFH identifies obstacle-free paths and determines the most suitable 

steering direction, allowing the robot to navigate toward its target while avoiding collisions. 

This method effectively balances reactive obstacle avoidance with goal-oriented navigation [52]; 

 Model Predictive Control (MPC) is an advanced control strategy that utilizes a dynamic model 

of a system to predict and optimize its future behavior over a specified time horizon. In the 

context of mobile robot local path planning, MPC involves formulating an optimization problem 
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that accounts for the kinematic constraints of the robot, environmental obstacles and a 

predefined cost function. At each time step, the controller solves this optimization problem to 

determine the optimal control inputs, resulting in a trajectory that guides the robot toward its 

target while avoiding collisions. This process is repeated in a receding horizon manner, allowing 

the robot to adapt its path in real-time to dynamic changes in the environment. MPC’s ability to 

handle multivariable control problems and incorporate constraints makes it particularly 

effective for complex path planning tasks in uncertain environments [53]; 

 Timed Elastic Band (TEB) algorithm optimizes the trajectory of the robot by considering both 

spatial and temporal constraints. Starting with an initial path, TEB refines it into a time-

parametrized trajectory by adjusting the positions and velocities of intermediate points, 

ensuring adherence to the kinematic constraints of the robot and obstacle avoidance. This 

optimization process allows the robot to navigate efficiently in dynamic environments, 

responding adaptively to changes while maintaining smooth and feasible motion [54]. 

Several algorithms, such as ACO, RRT*, A* and RL, can be utilized for both global and local path 

planning after appropriate optimization [55]. 

However, despite the existence of a wide range of path-planning algorithms, their practical 

implementation often reveals specific limitations in meeting all operational requirements. These 

limitations are dependent on the testing environment and the characteristics of the UGV. As a result, 

many algorithms require optimization or fusion with other approaches to enhance efficiency, 

adaptability and robustness. Table 4 presents a detailed comparison of the advantages and limitations 

of each algorithm. 

Table 4. Strengths and Weaknesses of algorithms. 

Algorithms Strength Weakness 

Dijkstra 
Guarantees the shortest path; Computationally intensive; 

Works well in static environments. Inefficiency in dynamic environment. 

A* 
Fast and Efficient; Heuristic sensitivity; 

Guarantees optimal path. Slow in high-dimensional spaces. 

D* 
Efficient replanning; Higher memory usage; 

Handles dynamic obstacles well. Slower with frequent changes. 

RRT* 
Efficient in high-dimensional spaces; Paths are not always smooth; 

Incremental path improvement. Slower in narrow passages. 

PRM 
Reusable path for repeated queries; Paths are not always smooth; 

Works well in large, open spaces. Struggles with dynamic obstacles. 

GA 
Efficient in high-dimensional spaces; Slow convergence; 

Works well with noisy data. No guarantee of finding optimal path. 

PSO 
Simple to implement; Prone to local minima; 

Adaptive to dynamic environments. Sensitive to parameter selection. 

ACO 
Good for multi-agent path planning; Computationally intensive; 

Works in dynamic environments. Slower convergence. 

Q-Learning 
Works with Partial Information; Higher memory usage; 

Can Handle Complex Environments. Slow convergence in large spaces. 

DQN 
Suitable for high-dimensional spaces; Requires high computational power; 

Works with Partial Observability. Sensitive to parameter selection. 

DWA 
Smooth and feasible paths; Prone to local minima; 

Computationally lightweight. Struggles with complex environment. 

APF 
Lightweight, fast obstacle avoidance; Prone to local minima; 

Simple, best for reactive navigation. Struggles with dynamic obstacles. 

VFH 
Efficient real-time obstacle avoidance; Prone to local minima; 

Handles noisy sensor data well. Oscillations in Narrow Spaces. 

MPC Optimizes performance; Computationally intensive; 
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Generates smooth and efficient paths. Limited real-time application. 

TEB 
Generates smooth, time-optimal path; Computationally intensive; 

Dynamic Obstacle Avoidance. Sensitive to parameter selection. 

Global path planning algorithms differ significantly in efficiency and adaptability based on the 

environment and constraints. Graph-based methods such as A* and Dijkstra guarantee optimal paths 

but are computationally expensive, while sample-based approaches like RRT* and PRM offer better 

scalability in high-dimensional spaces but may require additional smoothing. Nature-Inspired 

Algorithms like GA and ACO are useful for solving complex optimization problems but may suffer 

from slower convergence. RL-techniques, including DQN, provide adaptability in dynamic and 

unknown environments but require computational resources. 

Local path planning algorithms offer also common and distinct advantages and drawbacks. 

DWA, APF and VFH are prone to local minima, however they are good at real time obstacle 

avoidance. Moreover, DWA, MPC and TEB ensures smooth and optimized paths, but MPC and TEB 

demand high computation power. TEB is excellent for dynamic trajectory adjustments but requires 

fine-tuned parameters. In the field of practical robotics, a universal algorithm that is best suited for 

all applications is not yet available. Consequently, there is a preference for hybrid methods that 

integrate multiple classical or RL-based approaches, particularly in the context of efficient path 

planning. Alternatively, the existing algorithms may be modified through the implementation of 

optimization strategies [56]. 

In terms of using path planning algorithms in underground mine, the evaluation criteria as 

mentioned in requirement section will be selected based on key operational and environmental 

requirements, including the optimality of the path, computational demand, robustness and obstacle 

avoidance. Additionally, the variability in excavation methods influence the requirements for these 

algorithms. 

5. Related Works on Underground Mine Path Planning with UGVs 

The automation of underground mine vehicles has been the focus of research and industry for 

several decades. However, path planning for autonomous navigation remains a critical challenge and 

an active area of investigation. Despite the several studies have been conducted on the review of path 

planning algorithms on the ground [57], [58], a limited number of studies have successfully 

addressed optimal path planning for mining vehicles and robotic applications in underground 

environments. 

Effective path planning allows UGVs to traverse complex, unstructured terrains while ensuring 

efficiency, safety and adaptability. Researchers have explored various techniques, ranging from 

classical graph-based methods to modern metaheuristic and RL-based approaches, each aiming to 

optimize path efficiency, obstacle avoidance and computational feasibility. These approaches have 

been validated in real underground mine, controlled indoor environment and virtual simulations 

such as MATLAB, Python, Gazebo. Table 5 reviews key contributions by researchers in the field, 

categorizing existing studies based on algorithmic approaches, testing strategies and demonstrated 

advantages in underground mining applications. 

Table 5. Analysis of various path planning techniques for UGVS in underground mine. 

Autho

r 
Path type 

Basic 

algorithm

s 

Optimization Strategy Test field Advantages Application 

[59] Global A* 

Gaussian filtering method; 

MATLAB 

Safe path; 
LHD in mining 

transportation 
Quadratic programming 

method. 
Smoother. 

[60] Global A* 
Expanding nodes by 

articulation angle; 

Indoor; 

C++. 

Enhanced search  

efficiency; 

LHD in mining 

transportation 
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Collision threat cost. Collision free. 

[61] 
Global 

Local 
A* + APF 

Exponential function 

weighting; 
MATLAB

; Indoor. 

Smoother path; 

Transportation 

in coal mine 
Cubic spline interpolation; More robust; 

Repulsion potential field 

correction factor. 
Guarantied safety. 

[62] 
Global 

Local 
A*+ DWA 

Key node selection strategy; 
MATLAB

; Indoor. 

Safety; 
Vehicle in mine 

transportation 
Clamped-B spline; Smoother path; 

Fuzzy control. Optimal path. 

[63] 
Global 

Local 
A*+DWA - Indoor 

Shortest path; Mobile robot in 

inspection Smoothest path. 

[64] 
Global 

Local 
A*+DWA 

Floyd Algorithm; 
MATLAB

; Indoor. 
Local optima solution 

Inspection 

robot in coal 

mine  
B-Spline curves. 

[65] Global VFH-A* Bezier interpolation; 

MATLAB

; 

Mine. 

 

More efficiency search; 

LHD in mining 

operation 

Smooth path; 

Fast calculation speed. 

[66] 
Global 

Local 

Dijkstra -

ACO 

MAKLINK lines. 

Mine Smooth path Robot in SAR Shifting locally; 

Symmetric polynomial curve. 

[67] Global 
Dijkstra- 

PSO 
PSO-based optimization MATLAB 

Shorter path; Mine mapping 

and inspection Safety. 

[68] Global Dijkstra 
3D Environment-based 

adaptation 
MATLAB Feasible path 

Survey robot in  

mine 

exploration 

[69] Global D* Manhattan distances MATLAB 

Safer path; Downhole 

robot in mine 

detection 

Reduced planning time 

and cost. 

[70] Global RRT* 
Vectorized map; 

Python  
Shorter path; LHD in mining 

operations Optimal tree reconnection. Smoother. 

[71] Global RRT* Line corner 

MATLAB

; 

Outdoor. 

Smooth path; Robotic 

excavator 

loader in 

excavation 

Better in narrow 

passages with tight 

turn; 

[72] Global 
RRT- 

PRM 

Fan-shaped goal orientation; MATLAB

; 

Indoor. 

Higher success rate; 
Inspection 

robot in Mining 
Adaptive step size expansion; Smoother path; 

Third-order Bessel curve. Shorter path length. 

[73] Global RRG1 
Ray tracing method;  

Gazebo 
Shorter path; Mobile Robot 

in Mine rescue Next-Best View. Fast calculation. 

[74] Global ACO 

Retreat-punishment strategy; 

MATLAB Consumes less costs 
Coal mine 

robot 
Serial number and Cartesian 

coordinate methods. 

[75] Local ACO Membrane computing 
Simulatio

n 

Faster convergence; 
Mobile robot 

Better robustness. 

[76] Global ACO 

16-directional 24-

neighbourhood ant search 

approach; 
MATLAB 

Improved search 

efficiency; 
Rescue robot in 

Mine 

Ant retreat strategy. 

U-shaped trap 

solution; 

Shorter path. 

[77] Global ACO 

Annealing algorithm; 

MATLAB 

Strong in robustness; 
Mining robot in 

SAR Entropy increase strategy. 
High convergence 

speed. 

[78] 
Global 

Local 

ACO+TE

B 
Pheromone updating model; 

MATLAB

; 

Indoor. 

Enhanced search 

capabilities; 

Drilling robot 

in mining 

rockburst Faster convergence.  
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[79] Global BFA2-PSA 
Tested by traveling 

salesman problem (TSP) 
MATLAB 

Fast convergence 

speed; 
Rescue robot in 

coal mine 
Better Robustness 

[80] 
Global 

Local 

AFSA3 + 

DWA 

Improved genetic algorithm MATLAB

; 

Gazebo; 

Indoor. 

Shorter path; 
Patrol robot in 

mine safety 

inspection 

Adaptive trajectory evaluation 

function 
Smoother path. 

[81] Global 
QLearnin

g  

Even gray model; 

Multi-attribute intelligent. 
MATLAB 

Smoother convergence; 
UGV in SAR 

Shorter path; 

[82] Local 
Skeleton-

Based 
Thinning algorithm Mine 

High robustness; LHD in mining 

operation Stable; 

[83] Local APF 

Velocity and acceleration 

fields; MATLAB

; 

Indoor 

Dynamic collision 

avoidance; 
Mobile robot in 

coal mine 

rescue 

Global potential field line; 

Genetic Trust Region 

Algorithm 
Escape local minima. 

1. Rapidly Random Graph; 2. Bacterial Foraging algorithm; 3. Artificial fish swam algorithm. 

A thorough analysis of the data presented in the table indicates that several underground mining 

operations are being targeted by UGV navigation systems. The majority of research in path planning 

focused on mine transportation, which is primarily carried out using LHD. Additionally, mine 

exploration and inspection tasks with mobile robots equipped with specialized sensors emerged as 

significant area of research interest. SAR is another critical topic for underground and numerous 

researchers are exploring optimal path planning algorithms for successful rescue operations after 

disasters. It is notable that coal mines are considered to be high-risk environments due to their 

potential for accidents. 

Despite the limited research in this area, existing studies have employed all types of 

environment representation and search strategy models. The most prevalent techniques employed in 

underground mine environments include classical such as graph-based and sampling-based 

algorithms as illustrated in Figure 3a based on an analysis current existed research. 

  
(a) (b) 

Figure 3. Percentage of existing path planning algorithms that are being investigated by researchers for the 

underground mining environment (a) Global path planning; (b) Local path planning. 

It is illustrated that the A* algorithm is the most prevalent in the field, with approximately one 

in three studies utilizing this approach. This method incorporates a range of optimization strategies, 

including Gaussian filtering, quadratic programming, expanding and selection nodes, collision threat 

cost, exponential function weighting, spline and others. These techniques ensure safe, smooth and 

optimal paths for UGVs in mining transportation and inspection tasks [59–64]. Graph-based 

algorithms have also demonstrated a high level of efficiency in hybrid contexts. For example, the 

utilization of A* with VFH employing Bazier interpolation and Dijkstra with ACO and PSO 
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employing curve strategies have been shown to enhance search efficiency, smoothness and accelerate 

calculation in mining operations and SAR [65–67]. Dijkstra algorithm also demonstrated strong 

performance in path planning within 3D environments [68] and represents 14% of the analyzed 

studies. 

Sampling-based methods such as RRT, has gained significant attention, accounting for 18% of 

all research in the field. Optimized versions incorporating vectorized map, optimal tree reconnection, 

and line corner for narrow passages have demonstrated superior path smoothness and shorter path 

lengths in operating mining transports [70,71]. A hybrid RRT* - PRM model integrating fan-shaped 

goal orientation, adaptive step-size expansion, and Bessel curve has been shown to enhance success 

rates and smoothness for mining inspection robots [72]. Similarly, the incorporation of ray-tracing 

and next-best-view methods into the RRG has been applied to mine rescue operations, achieving 

shorter path generation and faster computational speed [73]. 

Nature-inspired approach, such as ACO, has been explored at a similar rate to RRT*, 

approximately 18%, for underground mine navigation and rescue applications. Studies have 

employed retreat-punishment mechanisms, serial numbering and Cartesian coordinates, along with 

a 16-directional, 24-neighborhood ACO approach, the ant retreat strategy, annealing algorithms, 

pheromone updating models and entropy-increasing strategies to reduce consumption costs, 

overcome U-shaped obstacle traps and enhance convergence speed, efficiency and robustness [74,76–

78]. 

The last 18% of the analyzed research is primarily divided between various types of nature-

inspired and RL-based algorithms. For example, the hybrid approach BFA combined with PSA tested 

by traveling salesman problem and AFSA with improved genetic algorithm demonstrated fast 

convergence, better robustness and shorter path in SAR applications [79,80]. Additionally, RL 

algorithm, such as Q-learning combined with the Even Gray Model and Multi-Attribute Intelligent 

Decision-Making, demonstrated smoother convergence and high robustness in SAR operation [81]. 

Unlike global path planning, local path planning involves fewer algorithms. As illustrated in 

Figure 3b, the DWA is the most favorable method for adjusting the kinematics of UGVs. In the second 

place stands APF that could be modified with global potential field line and genetic Trust Region 

strategies to overcome local minima and dynamic collision in coal mine rescue tasks [83]. Moreover, 

membrane computing-based ACO enhances robustness and convergence speed [75], while skeleton-

based thinning algorithms provide high stability and robustness [81]. Additionally, other 

applications of the TEB and PRM methods were utilized for local path planning. 

The test environments used in the reviewed studies, highlight the progression from simulation-

based validation to real-world implementation. Many algorithms have been tested in MATLAB and 

Python simulations, providing controlled conditions for evaluating path efficiency, convergence and 

obstacle avoidance. However, some studies extend their validation to indoor lab environments, 

where methods have been tested in structured, tunnel-like settings, enabling real-time sensor fusion 

and navigation performance analysis. The most reliable assessments come from real underground 

mine experiments. Only few algorithms have been deployed to evaluate practical feasibility, 

adaptability to real-world constraints and system robustness. 

6. Discussion 

The analysis of various path-planning algorithms for underground mine UGVs highlights 

significant trends and challenges in achieving efficient, safe and adaptive autonomous navigation. 

Most existing research is focused on transportation, inspection and SAR operations in mine. The 

comparison of graph-based, sampling-based, Nature-inspired, RL-based and Local path planning 

approaches demonstrates that each method has unique advantages and limitations depending on the 

operational environment and constraints. 

Graph-based approaches such as A* and Dijkstra remain widely used due to their deterministic 

nature and ability to find optimal paths. However, these algorithms often struggle with real-time 
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adaptability, particularly in dynamic underground environments where sudden obstacles and 

unpredictable conditions are common. To overcome these drawbacks especially for A* Collision 

threat cost and Repulsion potential field correction factor strategies are used. Furthermore, A* 

typically produces paths that can be jagged or not smooth, especially in complex environments. 

Techniques like cubic spline interpolation and B-spline curves provide a way to refine paths. 

The most commonly used sampling-based method, such as RRT, is effective in exploration tasks 

and offers better adaptability in large-scale environments. However, it can suffer from path 

irregularities and challenges in collision detection. To address these issues, several strategies, 

including vectorized maps, line corner handling and third-order Bessel curves proposed. 

Nature-inspired approaches, particularly ACO, improve search efficiency, robustness and 

obstacle avoidance but require higher computational resources. To mitigate this problem, the 16-

Directional 24-Neighbourhood Ant Search Approach and the Pheromone Updating Model were 

used. 

RL-based approaches, such as grey QL, have demonstrated potential in adaptive decision-

making, but their practical implementation is still limited by computational complexity and training 

data requirements. 

Among local path planning algorithms, DWA has been identified as the most favorable. To 

address its limitations, the Adaptive Trajectory Evaluation Function and Fuzzy Control were 

employed. 

Analyzing the current research, it is notable that some hybrid algorithms also demonstrated 

effective and optimal path planning, such as VFH-A*, Dijkstra-ACO, Dijkstra-PSO, RRT-PRM, BFA-

PSA. 

Several limitations persist in analyzing the existing research studies on the selected topic. (1) An 

Over-reliance on simulation environments which do not fully replicate real-world underground 

conditions. While indoor lab testing improves sensor integration and navigation accuracy, only a 

limited number of studies have been conducted in actual underground mines. Additionally, many 

path-planning algorithms do not account for real-time constraints, such as sensor delays, terrain 

variations and power limitations, which are critical for full-scale deployment in industrial mining 

operations. (2) Some algorithms may be overly complex, making them difficult to implement or adapt 

for real-world scenarios. Especially, hybrid, nature-inspired and RL algorithms can exhibit 

complexities. Simplicity and interpretability are often important for practical applications. 

Future research should focus on bridging the gap between simulation and real-world 

implementation of several successful approaches modified with optimization strategies by 

conducting more large-scale real-mine experiments. 

7. Conclusions 

The automation of underground mining operations has advanced significantly in recent years, 

with UGVs playing a crucial role in improving efficiency, safety and productivity. Unlike outdoor 

and structured indoor environments, underground mines present unique challenges, including 

complex tunnel networks, dynamic obstacles, low visibility and unstable terrain. To navigate in these 

environment, autonomous mining vehicles rely on core navigation components such as mapping, 

SLAM and path planning, all of which must be tailored to the constraints of underground operations. 

UGVs are deployed in exploration, monitoring structural changes, production-related tasks, SAR 

tasks and inspection requiring robust navigation systems to ensure operational reliability. 

Path planning in underground mines presents distinct challenges due to GPS-denied, 

unpredictable environmental changes and the need for efficient real-time decision-making. The 

requirement analysis in this study highlights the need for adaptive, efficient and safe path-planning 

strategies that can be implemented in UGVs. To address these challenges, ROS serves as a widely 

adopted implementation environment, offering flexibility, modular communication and support for 

multi-sensor integration. The integration of various sensors such as LiDAR, IMU and cameras, along 
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with ROS-based communication packages, enhances real-time perception and navigation 

capabilities. 

The review and analysis of path-planning algorithms in this study involve several global and 

local path-planning techniques, including traditional graph-based and sampling-based approaches, 

as well as nature-inspired and reinforcement learning (RL)-based algorithms. For global path 

planning A*, Dijkstra, RRT*and ACO and for local path planning DWA remain widely used in 

underground mine application with UGVS. Several critical factors such as robustness, calculation 

speed, smoothness, length of the path is enhanced with optimization strategies. 

The research limitation identified in the analysis of path planning techniques in underground 

mine with UGVs indicates the need for real-world deployment of several algorithms. Many 

algorithms have been validated in simulation environments only a limited number have been tested 

in real underground mines. 
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